編寫教案是教師對(duì)教學(xué)過程進(jìn)行規(guī)劃和組織的重要手段。教案中的教學(xué)方法應(yīng)該多樣化,符合學(xué)生的學(xué)習(xí)特點(diǎn)。在以下教案范文中,你會(huì)找到一些有關(guān)教學(xué)目標(biāo)、教學(xué)內(nèi)容和教學(xué)方法的精彩設(shè)計(jì)。
多邊形的內(nèi)角和教案四年級(jí)篇一
(1)知識(shí)結(jié)構(gòu):
(2)重點(diǎn)和難點(diǎn)分析:
重點(diǎn):四邊形的有關(guān)概念及內(nèi)角和定理.因?yàn)樗倪呅蔚挠嘘P(guān)概念及內(nèi)角和定理是本章的基礎(chǔ)知識(shí),對(duì)后繼知識(shí)的學(xué)習(xí)起著重要的作用,數(shù)學(xué)教案-多邊形的內(nèi)角和。
難點(diǎn):四邊形的概念及四邊形不穩(wěn)定性的理解和應(yīng)用.在前面講解三角形的概念時(shí),因?yàn)槿切蔚娜齻€(gè)頂點(diǎn)確定一個(gè)平面,所以三個(gè)頂點(diǎn)總是共面的,也就是說,三角形肯定是平面圖形,而四邊形就不是這樣,它的四個(gè)頂點(diǎn)有不共面的情況,又限于我們現(xiàn)在研究的是平面圖形,所以在四邊形的定義中加上“在同一平面內(nèi)”這個(gè)條件,這幾個(gè)字的意思學(xué)生不好理解,所以是難點(diǎn)。
2.教法建議。
(1)本節(jié)的引入最好使用我們提供的多媒體課件,通過這個(gè)課件,使學(xué)生認(rèn)識(shí)到這些四邊形都是常見圖形,研究它們具有實(shí)際應(yīng)用意義,從而激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
(2)本節(jié)的教學(xué),要以三角形為基礎(chǔ),可以仿照三角形,通過類比的方法建立四邊形的有關(guān)概念,如四邊形的邊、頂點(diǎn)、內(nèi)角、外角、內(nèi)角和、外角和、周長等都可同三角形類比,要結(jié)合三角形、四邊形的圖形,對(duì)比著指給學(xué)生看,讓學(xué)生明確這些概念。
(3)因?yàn)樵谌切沃袥]有對(duì)角線,所以四邊形的對(duì)角線是一個(gè)新概念,它是解決四邊形問題時(shí)常用的輔助線,通過它可以把四邊形問題轉(zhuǎn)化為三角形問題來解決.結(jié)合圖形,讓學(xué)生自己動(dòng)手作四邊形的一條對(duì)角線,并觀察四邊形的一條對(duì)角線把它分成幾個(gè)三角形?兩條對(duì)角線呢?使學(xué)生加深對(duì)對(duì)角線的作用的認(rèn)識(shí)。
(4)本節(jié)用到的數(shù)學(xué)思想方法是化歸轉(zhuǎn)化的思想和類比的思想,教師在講解本節(jié)知識(shí)時(shí)要滲透這兩種思想方法,并且在本節(jié)小結(jié)中對(duì)這兩種數(shù)學(xué)思想方法進(jìn)行總結(jié),使學(xué)生明白碰到復(fù)雜的、未知的問題要轉(zhuǎn)化為簡單的、已知的問題,初中數(shù)學(xué)教案《數(shù)學(xué)教案-多邊形的內(nèi)角和》。
教學(xué)目標(biāo):
1.使學(xué)生掌握四邊形的有關(guān)概念及四邊形的內(nèi)角和定理;
2.通過引導(dǎo)學(xué)生觀察氣象站的實(shí)例,培養(yǎng)學(xué)生從具體事物中抽象出幾何圖形的能力;
3.通過推導(dǎo)四邊形內(nèi)角和定理,對(duì)學(xué)生滲透化歸轉(zhuǎn)化的數(shù)學(xué)思想;
4.講解四邊形的`有關(guān)概念時(shí),聯(lián)系三角形的有關(guān)概念向?qū)W生滲透類比思想.
教學(xué)重點(diǎn):
教學(xué)難點(diǎn):
教學(xué)過程:
(一)復(fù)習(xí)。
在小學(xué)里,我們學(xué)過長方形、正方形、平行四邊形和梯形的有關(guān)知識(shí).請(qǐng)同學(xué)們回憶一下這些圖形的概念.找學(xué)生說出四種幾何圖形的概念,教師作評(píng)價(jià).
(二)提出問題,引入新課。
利用這些圖形的定義,你能在下圖中找出長方形、正方形、平行四邊形和梯形嗎?教師說完就打開多媒體課件.(先看畫面一)。
問題:你能類比三角形的概念,說出四邊形的概念嗎?
(三)理解概念。
1.四邊形:在平面內(nèi),由不在同一條直線的四條線段首尾順次相接組成的圖形叫做四邊形.
在定義中要強(qiáng)調(diào)“在同一平面內(nèi)”這個(gè)條件,或?yàn)閷W(xué)生稍微說明一下.其次,要給學(xué)生講清楚“首尾”和“順次”的含義.
2.類比三角形的邊、頂點(diǎn)、內(nèi)角、外角的概念,找學(xué)生答出四邊形的邊、頂點(diǎn)、內(nèi)角、外交的概念.
3.四邊形的記法:對(duì)照?qǐng)D形向?qū)W生講明四邊形的記法與三角形不同,表示四邊形必須按頂點(diǎn)的順序書寫,可以按順時(shí)針或逆時(shí)針的順序.
練習(xí):課本124頁1、2題.
4.四邊形的分類:凸四邊形、凹四邊形(不必向?qū)W生講它的概念),只要學(xué)生會(huì)辨認(rèn)一個(gè)四邊形是不是凸四邊形就可以了.
注意:在研究四邊形時(shí),常常通過作它的對(duì)角線,把關(guān)于四邊形的問題化成關(guān)于三角形的問題來解決.
(五)應(yīng)用、反思。
例1已知:如圖,直線,垂足為b,直線,垂足為c.
求證:(1);(2)。
練習(xí):
1.課本124頁3題.
小結(jié):
能力:向?qū)W生滲透類比和轉(zhuǎn)化的思想方法.
作業(yè):課本130頁2、3、4題.
多邊形的內(nèi)角和教案四年級(jí)篇二
本節(jié)課是人民教育出版社義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(六三學(xué)制)七年級(jí)下冊(cè)第七章第三節(jié)多邊形內(nèi)角和。
二、教學(xué)目標(biāo)。
2、數(shù)學(xué)思考:通過把多邊形轉(zhuǎn)化成三角形體會(huì)轉(zhuǎn)化思想在幾何中的運(yùn)用,同時(shí)讓學(xué)生體會(huì)從特殊到一般的認(rèn)識(shí)問題的方法。
3、解決問題:通過探索多邊形內(nèi)角和公式,嘗試從不同角度尋求解決問題的方法并能有效地解決問題。
4、情感態(tài)度目標(biāo):通過猜想、推理活動(dòng)感受數(shù)學(xué)活動(dòng)充滿著探索以及數(shù)學(xué)結(jié)論的確定性,提高學(xué)生學(xué)習(xí)熱情。
三、教學(xué)重、難點(diǎn)。
多邊形的內(nèi)角和教案四年級(jí)篇三
本節(jié)課的教學(xué)先通過計(jì)算三角尺的3個(gè)內(nèi)角的度數(shù)的和,激發(fā)學(xué)生的好奇心,進(jìn)而引發(fā)三角形內(nèi)角和是180度的猜想,再通過組織操作活動(dòng)驗(yàn)證猜想,得出結(jié)論。
1、讓學(xué)生通過觀察、操作、比較、歸納,發(fā)現(xiàn)三角形的內(nèi)角和是180。
2、讓學(xué)生學(xué)會(huì)根據(jù)三角形的內(nèi)角和是180°這一知識(shí)求三角形中一個(gè)未知角的度數(shù)。
3、激發(fā)學(xué)生主動(dòng)參與、自主探索的意識(shí),鍛煉動(dòng)手能力,發(fā)展空間觀念。
三角板,量角器、點(diǎn)子圖、自制的三種三角形紙片等。
看了這2個(gè)算式你有什么猜想?
(三角形的三個(gè)角加起來等于180度)。
1、畫、量:在點(diǎn)子圖上,分別畫銳角三角形、直角三角形、鈍角三角形。畫好后分別量出各個(gè)角的度數(shù),再把三個(gè)角的度數(shù)相加。
老師注意巡視和指導(dǎo)。交流各自加得的結(jié)果,說說你的發(fā)現(xiàn)。
2、折、拼:學(xué)生用自己事先剪好的圖形,折一折。
指名介紹折的方法:比如折的是一個(gè)銳角三角形,可以先把它上面的一個(gè)角折下,頂點(diǎn)和下面的邊重合,再分別把左邊、右邊的角往里折,三個(gè)角的頂點(diǎn)要重合。發(fā)現(xiàn):三個(gè)角會(huì)正好在一直線上,說明它們合起來是一個(gè)平角,也就是180度。
繼續(xù)用該方法折鈍角三角形,得到同樣的結(jié)果。
直角三角形的折法有不同嗎?
通過交流使學(xué)生明白:除了用剛才的方法之外,直角三角形還可以用更簡便的方法折;可以直角不動(dòng),而把兩個(gè)銳角折下,正好能拼成一個(gè)直角;兩個(gè)直角的度數(shù)和也是180度。
3、撕、拼:可能有個(gè)別學(xué)生對(duì)折的方法感到有困難。那么還可以用撕的方法。
在撕之前要分別在三個(gè)角上標(biāo)好角1、角2和角3。然后撕下三個(gè)角,把三個(gè)角的一條邊、頂點(diǎn)重合,也能清楚地看到三個(gè)角合起來就是一個(gè)平角180度。
小結(jié):我們可以用多種方法,得到同樣的結(jié)果:三角形的內(nèi)角和是180。
4、試一試。
三角形中,角1=75,角2=39,角3=()。
算一算,量一量,結(jié)果相同嗎?
1、算出下面每個(gè)三角形中未知角的度數(shù)。
在交流的時(shí)候可以分別學(xué)生說說怎么算才更方便。比如第1題,可先算40加60等于100,再用180減100等于80。第2題則先算180減110等于70,再用70減55更方便。第3題是直角三角形,可不用180去減,而用90減55更好。
指出:在計(jì)算的時(shí)候,我們可根據(jù)具體的數(shù)據(jù)選擇更佳的算法。
可先猜想:兩個(gè)三角形拼在一起,會(huì)不會(huì)它的內(nèi)角和變成1802=360°呢?為什么?
然后再分別算一算圖上的這三個(gè)三角形的內(nèi)角和。得出結(jié)論:三角形不論大小,它的內(nèi)角和都是180°。
3、用一張正方形紙折一折,填一填。
4、說理:一個(gè)直角三角形中最多有幾個(gè)直角?為什么?
一個(gè)鈍角三角形中最多有幾個(gè)直角?為什么?
第4、5題。
多邊形的內(nèi)角和教案四年級(jí)篇四
根據(jù)上面三組實(shí)驗(yàn)分別證明了銳角三角形、直角三角形、鈍角三角形的內(nèi)角和都等于180度。
四、練一練。
請(qǐng)學(xué)生自己畫任意的`三角形,并用剛才老師所講的方法自己來判斷一下三角形的內(nèi)角和。
五、實(shí)踐活動(dòng):
第1題:用紙剪出一個(gè)等邊三角形。
第2題:將等邊三角形兩邊取中點(diǎn),并向底作垂線,
第3題:把紙沿著虛線對(duì)折。
第4題:觀察三個(gè)角的內(nèi)角加起來為多少?
多邊形的內(nèi)角和教案四年級(jí)篇五
過程與方法目標(biāo):通過多邊形內(nèi)角和公式的推導(dǎo)過程,提高邏輯思維能力。
情感態(tài)度與價(jià)值觀目標(biāo):養(yǎng)成實(shí)事求是的科學(xué)態(tài)度。
教學(xué)重點(diǎn):多邊形的內(nèi)角和公式
教學(xué)難點(diǎn):多邊形內(nèi)角和公式
講解法、練習(xí)法、分小組討論法
結(jié)合新課程標(biāo)準(zhǔn)及以上的分析,我將我的教學(xué)過程設(shè)置為以下五個(gè)教學(xué)環(huán)節(jié):導(dǎo)入新知、
生成新知、深化新知、鞏固新知、小結(jié)作業(yè)。
1. 導(dǎo)入新知
首先是導(dǎo)入新知環(huán)節(jié),我會(huì)引導(dǎo)學(xué)生回顧三角形的內(nèi)角和,緊接著提出問題:四邊形的
內(nèi)角和是多少?五邊形的內(nèi)角和是多少?六邊形的內(nèi)角和是多少?引發(fā)學(xué)生思考,由此引出本節(jié)課的課題:多邊形的內(nèi)角和(板書)。
通過提問的方式幫助學(xué)生回顧舊知識(shí)的同時(shí),引導(dǎo)學(xué)生思考,也激發(fā)學(xué)生的求知欲,為本節(jié)課的多邊形內(nèi)角和的學(xué)習(xí)奠定了基礎(chǔ)。
2. 生成新知
接下來,進(jìn)入生成新知環(huán)節(jié),我會(huì)引導(dǎo)學(xué)生將四邊形分成兩個(gè)三角形來求內(nèi)角和,由此
得出四邊形的內(nèi)角和是2個(gè)三角形的內(nèi)角和,即2*180=360,那同樣的引導(dǎo)學(xué)生將五邊形,六邊形分別從同一個(gè)頂點(diǎn)出發(fā)劃分為3個(gè)4個(gè)三角形,從而得出五邊形的內(nèi)角和為3*180=540,然后,讓學(xué)生前后桌四個(gè)人為一個(gè)小組,五分鐘時(shí)間,歸納n變形的內(nèi)角和是多少,討論結(jié)束后,找一個(gè)小組來回答他們討論的結(jié)果。由此生成我們的新知識(shí):多邊形的內(nèi)角和公式180*(n-2)。
驗(yàn)證:七邊形驗(yàn)證
在本環(huán)節(jié)中通過學(xué)生自主學(xué)習(xí)歸納總結(jié)得出多邊形的內(nèi)角和公式,充分發(fā)揮了他們的自主探討能力,提升邏輯思維能力。
3. 深化新知
再次是深化新知環(huán)節(jié),在本環(huán)節(jié),我會(huì)引導(dǎo)學(xué)生思考一下有沒有其他的將多邊形分隔求
內(nèi)角和的方法,引導(dǎo)學(xué)生思考,可不可以將六邊形從多個(gè)頂點(diǎn)出發(fā),然后用公式驗(yàn)證一下我們這樣分割可行不可行。這時(shí)候會(huì)發(fā)現(xiàn)有的分割可行有的分割不可行,在這個(gè)時(shí)候給他們講解為什么不可行為什么可行,以此來引出分割時(shí)對(duì)角線不能相交,從而強(qiáng)調(diào)我們分隔的一個(gè)原則。
本環(huán)節(jié)的設(shè)計(jì)主要是對(duì)多變形內(nèi)角和的一個(gè)深入了解,給學(xué)生一個(gè)內(nèi)化的過程,同時(shí)引導(dǎo)學(xué)生不要將知識(shí)學(xué)死了,要活學(xué)活用,從多個(gè)角度來思考問題,解決問題。
4. 鞏固提高
我們說數(shù)學(xué)是來源于生活,服務(wù)于生活的一門學(xué)科,所以在接下來的鞏固提高環(huán)節(jié),
我講引領(lǐng)學(xué)生用我們所學(xué)過的多邊形的內(nèi)角和公式來解決生活中的實(shí)際問題。
我會(huì)在ppt上播放一個(gè)蜂巢的圖片,然后提出一個(gè)問題,蜂房是幾邊形?每個(gè)蜂房的內(nèi)角和是多少?由此來引發(fā)學(xué)生思考運(yùn)用我們本節(jié)課所學(xué)習(xí)的知識(shí)來解決問題,對(duì)多邊形的內(nèi)角和公式進(jìn)一步鞏固提高。
5. 小結(jié)作業(yè)
先讓學(xué)生思考一下我們本節(jié)課學(xué)習(xí)了什么知識(shí)點(diǎn),然后找一位同學(xué)來總結(jié)一下我們本節(jié)課所學(xué)習(xí)的知識(shí)點(diǎn)。對(duì)本節(jié)課學(xué)習(xí)內(nèi)容有了一個(gè)回顧之后,讓學(xué)生做一下練習(xí)題1、2題,以此來進(jìn)一步提升學(xué)生運(yùn)用知識(shí)的能力。
多邊形的內(nèi)角和教案四年級(jí)篇六
難點(diǎn):探索多邊形內(nèi)角和時(shí),如何把多邊形轉(zhuǎn)化成三角形。
四、教學(xué)方法:引導(dǎo)發(fā)現(xiàn)法、討論法。
五、教具、學(xué)具。
教具:多媒體課件。
學(xué)具:三角板、量角器。
六、教學(xué)媒體:大屏幕、實(shí)物投影。
七、教學(xué)過程:
(一)創(chuàng)設(shè)情境,設(shè)疑激思。
師:大家都知道三角形的內(nèi)角和是180?,那么四邊形的內(nèi)角和,你知道嗎?
在獨(dú)立探索的基礎(chǔ)上,學(xué)生分組交流與研討,并匯總解決問題的方法。
方法一:用量角器量出四個(gè)角的度數(shù),然后把四個(gè)角加起來,發(fā)現(xiàn)內(nèi)角和是360?。
方法二:把兩個(gè)三角形紙板拼在一起構(gòu)成四邊形,發(fā)現(xiàn)兩個(gè)三角形內(nèi)角和相加是360?。
接下來,教師在方法二的基礎(chǔ)上引導(dǎo)學(xué)生利用作輔助線的方法,連結(jié)四邊形的對(duì)角線,把一個(gè)四邊形轉(zhuǎn)化成兩個(gè)三角形。
師:你知道五邊形的內(nèi)角和嗎?六邊形呢?十邊形呢?你是怎樣得到的?
學(xué)生先獨(dú)立思考每個(gè)問題再分組討論。
關(guān)注:(1)學(xué)生能否類比四邊形的方式解決問題得出正確的結(jié)論。
(2)學(xué)生能否采用不同的方法。
方法1:把五邊形分成三個(gè)三角形,3個(gè)180?的和是540?。
方法2:從五邊形內(nèi)部一點(diǎn)出發(fā),把五邊形分成五個(gè)三角形,然后用5個(gè)180?的和減去一個(gè)周角360?。結(jié)果得540?。
方法3:從五邊形一邊上任意一點(diǎn)出發(fā)把五邊形分成四個(gè)三角形,然后用4個(gè)180?的和減去一個(gè)平角180?,結(jié)果得540?。
方法4:把五邊形分成一個(gè)三角形和一個(gè)四邊形,然后用180?加上360?,結(jié)果得540?。
師:你真聰明!做到了學(xué)以致用。
交流后,學(xué)生運(yùn)用幾何畫板演示并驗(yàn)證得到的方法。
得到五邊形的內(nèi)角和之后,同學(xué)們又認(rèn)真地討論起六邊形、十邊形的內(nèi)角和。類比四邊形、五邊形的討論方法最終得出,六邊形內(nèi)角和是720?,十邊形內(nèi)角和是1440?。
(二)引申思考,培養(yǎng)創(chuàng)新。
(3)從多邊形一個(gè)頂點(diǎn)引的對(duì)角線分三角形的個(gè)數(shù)與多邊形邊數(shù)的關(guān)系?
學(xué)生結(jié)合思考題進(jìn)行討論,并把討論后的結(jié)果進(jìn)行交流。
發(fā)現(xiàn)1:四邊形內(nèi)角和是2個(gè)180?的和,五邊形內(nèi)角和是3個(gè)180?的'和,六邊形內(nèi)角和是4個(gè)180?的和,十邊形內(nèi)角和是8個(gè)180?的和。
發(fā)現(xiàn)3:一個(gè)n邊形從一個(gè)頂點(diǎn)引出的對(duì)角線分三角形的個(gè)數(shù)與邊數(shù)n存在(n-2)的關(guān)系。
(三)實(shí)際應(yīng)用,優(yōu)勢互補(bǔ)。
(2)一個(gè)多邊形的內(nèi)角和是1440?,且每個(gè)內(nèi)角都相等,則每個(gè)內(nèi)角的度數(shù)是()。
(四)概括存儲(chǔ)。
學(xué)生自己歸納總結(jié):
2、運(yùn)用轉(zhuǎn)化思想解決數(shù)學(xué)問題。
3、用數(shù)形結(jié)合的思想解決問題。
(五)作業(yè):練習(xí)冊(cè)第93頁1、2、3。
八、教學(xué)反思:
1、教的轉(zhuǎn)變。
本節(jié)課教師的角色從知識(shí)的傳授者轉(zhuǎn)變?yōu)閷W(xué)生學(xué)習(xí)的組織者、引導(dǎo)者、合作者與共同研究者,在引導(dǎo)學(xué)生畫圖、測量發(fā)現(xiàn)結(jié)論后,利用幾何畫板直觀地展示,激發(fā)學(xué)生自覺探究數(shù)學(xué)問題,體驗(yàn)發(fā)現(xiàn)的樂趣。
2、學(xué)的轉(zhuǎn)變。
學(xué)生的角色從學(xué)會(huì)轉(zhuǎn)變?yōu)闀?huì)學(xué)。本節(jié)課學(xué)生不是停留在學(xué)會(huì)課本知識(shí)層面,而是站在研究者的角度深入其境。
3、課堂氛圍的轉(zhuǎn)變。
整節(jié)課以“流暢、開放、合作、‘隱’導(dǎo)”為基本特征,教師對(duì)學(xué)生的思維減少干預(yù),教學(xué)過程呈現(xiàn)一種比較流暢的特征。整節(jié)課學(xué)生與學(xué)生,學(xué)生與教師之間以“對(duì)話”、“討論”為出發(fā)點(diǎn),以互助合作為手段,以解決問題為目的,讓學(xué)生在一個(gè)比較寬松的環(huán)境中自主選擇獲得成功的方向,判斷發(fā)現(xiàn)的價(jià)值。
多邊形的內(nèi)角和教案四年級(jí)篇七
1、使學(xué)生在理解的基礎(chǔ)上掌握三角形的面積計(jì)算公式,能夠正確地計(jì)算三角形的面積。
2、使學(xué)生通過操作和對(duì)圖形的觀察、比較,發(fā)展學(xué)生的空間觀念,使學(xué)生知道轉(zhuǎn)化的思考方法在研究三角形面積時(shí)的運(yùn)用。
3、培養(yǎng)學(xué)生的分析、綜合、抽象、概括和運(yùn)用轉(zhuǎn)化方法解決實(shí)際問題的能力。
1、用厚紙做完全相同的兩個(gè)直角三角形、兩個(gè)銳角三角形、兩個(gè)鈍角三角形。
教師:前面我們學(xué)習(xí)了平行四邊形面積的計(jì)算,今天我們來學(xué)習(xí)三角形面積的計(jì)算。
板書:三角形面積的計(jì)算。
1、用數(shù)方格的`方法計(jì)算三角形的面積。
教師:前面我們?cè)趯W(xué)習(xí)長方形面積和平行四邊形面積時(shí),都曾經(jīng)用過數(shù)方格的方法,下面我們?cè)儆脭?shù)方格的方法來求三角形的面積。
2、通過操作總結(jié)三角形面積的計(jì)算公式。
讓學(xué)生拿出兩個(gè)完全一樣的銳角三角形,提問:
用兩個(gè)完全一樣的銳角三角形能不能拼成一個(gè)平行四邊形?讓每個(gè)學(xué)生都動(dòng)手拼一拼,或者同桌的兩個(gè)學(xué)生一同拼擺。
教師邊說邊演示拼的過程。先將兩個(gè)銳角三角形重合放置,再按住三角形的右邊頂點(diǎn),使三角形時(shí)針運(yùn)動(dòng)相反的方向轉(zhuǎn)動(dòng)180,到兩個(gè)三角形的底邊成一條直線為止,再把右邊三角形向上沿著第一個(gè)三角形的右邊平移,直到拼成一個(gè)平行四邊形為止,并把拼成的平行四邊形圖畫在黑板上。然后再帶著學(xué)生規(guī)范地照上面的步驟做一遍,做時(shí)仍需邊做邊強(qiáng)調(diào):先要把兩個(gè)銳角三角形重合,再旋轉(zhuǎn),旋轉(zhuǎn)時(shí)哪個(gè)點(diǎn)不動(dòng)?旋轉(zhuǎn)了多少度?平移時(shí)是沿著哪條直線移動(dòng)的?學(xué)生學(xué)會(huì)把兩個(gè)完全一樣的銳角三角形拼成一個(gè)平行四邊形后,教師再說明:平移是圖上各點(diǎn)沿直線移動(dòng),旋轉(zhuǎn)是一個(gè)點(diǎn)不動(dòng),其它的點(diǎn)都圍繞著不動(dòng)點(diǎn)轉(zhuǎn)。提問:
每個(gè)銳角三角形的面積和拼出的平行四邊形的面積有什么關(guān)系?
學(xué)生回答后,教師強(qiáng)調(diào):每個(gè)銳角三角形是拼成的平行四邊形面積的一半。
教師結(jié)合黑板上分別由兩個(gè)完全相同的三角形拼成的平行四邊形的圖指出:通過上面的實(shí)驗(yàn),兩個(gè)完全一樣的三角形,不論是直角三角形,銳角三角形,還是鈍角三角形,都可以拼成一個(gè)平行四邊形。提問:
這個(gè)平行四邊形的底和三角形的底有什么關(guān)系?
這個(gè)平行四邊形的高和三角形的高有什么關(guān)系?
這個(gè)平行四邊形的面積和其中一個(gè)三角形的面積有什么關(guān)系?
多邊形的內(nèi)角和教案四年級(jí)篇八
(1)知識(shí)結(jié)構(gòu):
(2)重點(diǎn)和難點(diǎn)分析:
重點(diǎn):四邊形的有關(guān)概念及內(nèi)角和定理.因?yàn)樗倪呅蔚挠嘘P(guān)概念及內(nèi)角和定理是本章的基礎(chǔ)知識(shí),對(duì)后繼知識(shí)的學(xué)習(xí)起著重要的作用。
難點(diǎn):四邊形的概念及四邊形不穩(wěn)定性的理解和應(yīng)用.在前面講解三角形的概念時(shí),因?yàn)槿切蔚娜齻€(gè)頂點(diǎn)確定一個(gè)平面,所以三個(gè)頂點(diǎn)總是共面的,也就是說,三角形肯定是平面圖形,而四邊形就不是這樣,它的四個(gè)頂點(diǎn)有不共面的情況,又限于我們現(xiàn)在研究的是平面圖形,所以在四邊形的定義中加上“在同一平面內(nèi)”這個(gè)條件,這幾個(gè)字的意思學(xué)生不好理解,所以是難點(diǎn)。
2.教法建議。
(1)本節(jié)的引入最好使用我們提供的多媒體課件,通過這個(gè)課件,使學(xué)生認(rèn)識(shí)到這些四邊形都是常見圖形,研究它們具有實(shí)際應(yīng)用意義,從而激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
(2)本節(jié)的教學(xué),要以三角形為基礎(chǔ),可以仿照三角形,通過類比的方法建立四邊形的有關(guān)概念,如四邊形的邊、頂點(diǎn)、內(nèi)角、外角、內(nèi)角和、外角和、周長等都可同三角形類比,要結(jié)合三角形、四邊形的圖形,對(duì)比著指給學(xué)生看,讓學(xué)生明確這些概念。
(3)因?yàn)樵谌切沃袥]有對(duì)角線,所以四邊形的對(duì)角線是一個(gè)新概念,它是解決四邊形問題時(shí)常用的輔助線,通過它可以把四邊形問題轉(zhuǎn)化為三角形問題來解決.結(jié)合圖形,讓學(xué)生自己動(dòng)手作四邊形的一條對(duì)角線,并觀察四邊形的一條對(duì)角線把它分成幾個(gè)三角形?兩條對(duì)角線呢?使學(xué)生加深對(duì)對(duì)角線的作用的認(rèn)識(shí)。
(4)本節(jié)用到的`數(shù)學(xué)思想方法是化歸轉(zhuǎn)化的思想和類比的思想,教師在講解本節(jié)知識(shí)時(shí)要滲透這兩種思想方法,并且在本節(jié)小結(jié)中對(duì)這兩種數(shù)學(xué)思想方法進(jìn)行總結(jié),使學(xué)生明白碰到復(fù)雜的、未知的問題要轉(zhuǎn)化為簡單的、已知的問題。
教學(xué)目標(biāo):
2.通過引導(dǎo)學(xué)生觀察氣象站的實(shí)例,培養(yǎng)學(xué)生從具體事物中抽象出幾何圖形的能力;。
3.通過推導(dǎo)四邊形內(nèi)角和定理,對(duì)學(xué)生滲透化歸轉(zhuǎn)化的數(shù)學(xué)思想;。
4.講解四邊形的有關(guān)概念時(shí),聯(lián)系三角形的有關(guān)概念向?qū)W生滲透類比思想.
教學(xué)重點(diǎn):
教學(xué)難點(diǎn):
四邊形的概念。
教學(xué)過程:
(一)復(fù)習(xí)。
在小學(xué)里,我們學(xué)過長方形、正方形、平行四邊形和梯形的有關(guān)知識(shí).請(qǐng)同學(xué)們回憶一下這些圖形的概念.找學(xué)生說出四種幾何圖形的概念,教師作評(píng)價(jià).
(二)提出問題,引入新課。
利用這些圖形的定義,你能在下圖中找出長方形、正方形、平行四邊形和梯形嗎?教師說完就打開多媒體課件.(先看畫面一)。
問題:你能類比三角形的概念,說出四邊形的概念嗎?
(三)理解概念。
1.四邊形:在平面內(nèi),由不在同一條直線的四條線段首尾順次相接組成的圖形叫做四邊形.
在定義中要強(qiáng)調(diào)“在同一平面內(nèi)”這個(gè)條件,或?yàn)閷W(xué)生稍微說明一下.其次,要給學(xué)生講清楚“首尾”和“順次”的含義.
2.類比三角形的邊、頂點(diǎn)、內(nèi)角、外角的概念,找學(xué)生答出四邊形的邊、頂點(diǎn)、內(nèi)角、外交的概念.
3.四邊形的記法:對(duì)照?qǐng)D形向?qū)W生講明四邊形的記法與三角形不同,表示四邊形必須按頂點(diǎn)的順序書寫,可以按順時(shí)針或逆時(shí)針的順序.
練習(xí):課本124頁1、2題.
4.四邊形的分類:凸四邊形、凹四邊形(不必向?qū)W生講它的概念),只要學(xué)生會(huì)辨認(rèn)一個(gè)四邊形是不是凸四邊形就可以了.
5.四邊形的對(duì)角線:
注意:在研究四邊形時(shí),常常通過作它的對(duì)角線,把關(guān)于四邊形的問題化成關(guān)于三角形的問題來解決.
(五)應(yīng)用、反思。
例1已知:如圖,直線,垂足為b,直線,垂足為c.
求證:(1);(2)。
(2)。
練習(xí):
1.課本124頁3題.
小結(jié):
能力:向?qū)W生滲透類比和轉(zhuǎn)化的思想方法.
作業(yè):課本130頁2、3、4題.
多邊形的內(nèi)角和教案四年級(jí)篇九
(1)知識(shí)結(jié)構(gòu):
(2)重點(diǎn)和難點(diǎn)分析:
重點(diǎn):四邊形的有關(guān)概念及內(nèi)角和定理.因?yàn)樗倪呅蔚挠嘘P(guān)概念及內(nèi)角和定理是本章的基礎(chǔ)知識(shí),對(duì)后繼知識(shí)的學(xué)習(xí)起著重要的作用。
難點(diǎn):四邊形的概念及四邊形不穩(wěn)定性的理解和應(yīng)用.在前面講解三角形的概念時(shí),因?yàn)槿切蔚娜齻€(gè)頂點(diǎn)確定一個(gè)平面,所以三個(gè)頂點(diǎn)總是共面的,也就是說,三角形肯定是平面圖形,而四邊形就不是這樣,它的四個(gè)頂點(diǎn)有不共面的情況,又限于我們現(xiàn)在研究的是平面圖形,所以在四邊形的定義中加上“在同一平面內(nèi)”這個(gè)條件,這幾個(gè)字的意思學(xué)生不好理解,所以是難點(diǎn)。
2.教法建議。
(1)本節(jié)的引入最好使用我們提供的多媒體課件,通過這個(gè)課件,使學(xué)生認(rèn)識(shí)到這些四邊形都是常見圖形,研究它們具有實(shí)際應(yīng)用意義,從而激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
(2)本節(jié)的教學(xué),要以三角形為基礎(chǔ),可以仿照三角形,通過類比的方法建立四邊形的有關(guān)概念,如四邊形的邊、頂點(diǎn)、內(nèi)角、外角、內(nèi)角和、外角和、周長等都可同三角形類比,要結(jié)合三角形、四邊形的圖形,對(duì)比著指給學(xué)生看,讓學(xué)生明確這些概念。
(3)因?yàn)樵谌切沃袥]有對(duì)角線,所以四邊形的對(duì)角線是一個(gè)新概念,它是解決四邊形問題時(shí)常用的輔助線,通過它可以把四邊形問題轉(zhuǎn)化為三角形問題來解決.結(jié)合圖形,讓學(xué)生自己動(dòng)手作四邊形的一條對(duì)角線,并觀察四邊形的一條對(duì)角線把它分成幾個(gè)三角形?兩條對(duì)角線呢?使學(xué)生加深對(duì)對(duì)角線的作用的認(rèn)識(shí)。
(4)本節(jié)用到的`數(shù)學(xué)思想方法是化歸轉(zhuǎn)化的思想和類比的思想,教師在講解本節(jié)知識(shí)時(shí)要滲透這兩種思想方法,并且在本節(jié)小結(jié)中對(duì)這兩種數(shù)學(xué)思想方法進(jìn)行總結(jié),使學(xué)生明白碰到復(fù)雜的、未知的問題要轉(zhuǎn)化為簡單的、已知的問題。
教學(xué)目標(biāo):
1.使學(xué)生掌握四邊形的有關(guān)概念及四邊形的內(nèi)角和定理;。
2.通過引導(dǎo)學(xué)生觀察氣象站的實(shí)例,培養(yǎng)學(xué)生從具體事物中抽象出幾何圖形的能力;。
3.通過推導(dǎo)四邊形內(nèi)角和定理,對(duì)學(xué)生滲透化歸轉(zhuǎn)化的數(shù)學(xué)思想;。
4.講解四邊形的有關(guān)概念時(shí),聯(lián)系三角形的有關(guān)概念向?qū)W生滲透類比思想.
教學(xué)重點(diǎn):
教學(xué)難點(diǎn):
四邊形的概念。
教學(xué)過程:
(一)復(fù)習(xí)。
在小學(xué)里,我們學(xué)過長方形、正方形、平行四邊形和梯形的有關(guān)知識(shí).請(qǐng)同學(xué)們回憶一下這些圖形的概念.找學(xué)生說出四種幾何圖形的概念,教師作評(píng)價(jià).
(二)提出問題,引入新課。
利用這些圖形的定義,你能在下圖中找出長方形、正方形、平行四邊形和梯形嗎?教師說完就打開多媒體課件.(先看畫面一)。
問題:你能類比三角形的概念,說出四邊形的概念嗎?
(三)理解概念。
1.四邊形:在平面內(nèi),由不在同一條直線的四條線段首尾順次相接組成的圖形叫做四邊形.
在定義中要強(qiáng)調(diào)“在同一平面內(nèi)”這個(gè)條件,或?yàn)閷W(xué)生稍微說明一下.其次,要給學(xué)生講清楚“首尾”和“順次”的含義.
2.類比三角形的邊、頂點(diǎn)、內(nèi)角、外角的概念,找學(xué)生答出四邊形的邊、頂點(diǎn)、內(nèi)角、外交的概念.
3.四邊形的記法:對(duì)照?qǐng)D形向?qū)W生講明四邊形的記法與三角形不同,表示四邊形必須按頂點(diǎn)的順序書寫,可以按順時(shí)針或逆時(shí)針的順序.
練習(xí):課本124頁1、2題.
4.四邊形的分類:凸四邊形、凹四邊形(不必向?qū)W生講它的概念),只要學(xué)生會(huì)辨認(rèn)一個(gè)四邊形是不是凸四邊形就可以了.
5.四邊形的對(duì)角線:
注意:在研究四邊形時(shí),常常通過作它的對(duì)角線,把關(guān)于四邊形的問題化成關(guān)于三角形的問題來解決.
(五)應(yīng)用、反思。
例1已知:如圖,直線,垂足為b,直線,垂足為c.
求證:(1);(2)。
(2)。
練習(xí):
1.課本124頁3題.
小結(jié):
知識(shí):四邊形的有關(guān)概念及其內(nèi)角和定理.
能力:向?qū)W生滲透類比和轉(zhuǎn)化的思想方法.
作業(yè):課本130頁2、3、4題.
多邊形的內(nèi)角和教案四年級(jí)篇十
完成《多邊形的內(nèi)角和》教學(xué)之后,學(xué)生很自然地就會(huì)想到對(duì)于多邊形的情況如何。為了體現(xiàn)課堂以學(xué)生為主,培養(yǎng)學(xué)生自主探究的能力,在課前的教學(xué)設(shè)計(jì)中盡量圍繞學(xué)生展開。如:采取了小組合作學(xué)習(xí)、組與組之間交流等形式。雖然想法上有此意圖,但在具體的實(shí)施過程中還是暴露出了很多問題,有事先沒預(yù)計(jì)到的,也有想體現(xiàn)但沒體現(xiàn)完整的。經(jīng)過課后反思及老教師們的指點(diǎn),主要表現(xiàn)在:
(1)較多的著眼于課堂形式的多樣化及學(xué)生能力(如:合作、探究、交流等)的培養(yǎng),而忽視了教學(xué)中最重要的知識(shí)點(diǎn)的落實(shí)。學(xué)生練的機(jī)會(huì)不多,僅有編制習(xí)題解答這一部分,且對(duì)學(xué)生來說要求較高,教師在編題前可先讓學(xué)生解題,給學(xué)生搭好階梯,使其不至于感到突然。
(2)小組討論可以說是新教材框架中的一個(gè)重要部分,教師事先一定要有詳細(xì)的計(jì)劃。這也是本堂課暴露缺陷較多的環(huán)節(jié)。比如:組員的設(shè)置(七、八人一組加上發(fā)下的表格較少使得討論未能有效的開展),以4、5人為一組較為合適,且要分工明確,如誰記錄,誰發(fā)言等等,避免某些小組成員流離于合作之外。教師還應(yīng)精心策劃:討論如何有效地開展;時(shí)間多長;采取何種討論方法;教師在討論過程中又該擔(dān)當(dāng)何種角色等。
(3)在小組交流過程中學(xué)生的發(fā)言過分地注重于探索的結(jié)果,而忽視了學(xué)生探索過程的展示。同時(shí)教師有些總結(jié)性的話,限制了學(xué)生的思維,不能最大限度的'發(fā)揮學(xué)生自主探究的能力。
(4)教師在教學(xué)過程中對(duì)學(xué)生的評(píng)價(jià)較為單一,肯定不夠及時(shí),表揚(yáng)不夠熱情,比如當(dāng)最后一個(gè)平常表現(xiàn)較為一般的學(xué)生有此創(chuàng)意時(shí),教師就應(yīng)大加贊揚(yáng),從而也能激發(fā)課堂氣氛。
將本文的word文檔下載到電腦,方便收藏和打印。
多邊形的內(nèi)角和教案四年級(jí)篇十一
我在學(xué)校出了一節(jié)公開課,下面是我的教學(xué)反思。
教學(xué)回顧:
一:引入新課。提問三角形內(nèi)角和,正方形和長方形的內(nèi)角和是多少?那任意一四邊形內(nèi)角和都是360度嗎?小組討論交流證明任意四邊形內(nèi)角和都是360度的方法。學(xué)生分析有度量法、剪拼法、切割法,做輔助線。其中把四邊形切割成兩個(gè)三角形的方法最為簡單。類似的探究其他多邊形內(nèi)角和。
二:完成學(xué)案第一部分,用數(shù)學(xué)歸納法完成填空,總結(jié)得出多邊形內(nèi)角和公式。
三:練習(xí)。
四:課堂小結(jié)。
五:作業(yè)。
反思:
這節(jié)課本節(jié)的教學(xué)活動(dòng)充分發(fā)揮學(xué)生的主體作用,激發(fā)了學(xué)生的學(xué)習(xí)興趣,使課堂充滿生機(jī)。在進(jìn)行四邊形內(nèi)角和定理的教學(xué)時(shí),設(shè)計(jì)完成三個(gè)步驟:
(1)通過動(dòng)手操作,讓學(xué)生自己通過實(shí)驗(yàn)的方法發(fā)現(xiàn)四邊形內(nèi)角和定理;
(2)讓學(xué)生把發(fā)現(xiàn)概括成命題;
(3)通過學(xué)生討論命題證明的不同方法。
整節(jié)課充滿著“自主、合作、探究、交流”的教學(xué)理念,營造了思維馳聘的空間,使學(xué)生在主動(dòng)思考探究的過程中自然的獲得了新的知識(shí)。但由于本節(jié)課的.內(nèi)容多,學(xué)習(xí)時(shí)間較緊張,所以在給學(xué)生進(jìn)行課堂討論四邊形內(nèi)角和的不同的證明方法這一環(huán)節(jié)時(shí)把握地不夠好。由于討論的問題有難度,討論時(shí)間不夠充分。而且我為了能完成這節(jié)課的內(nèi)容沒有對(duì)四邊形內(nèi)角和的證明方法做以補(bǔ)充(習(xí)題課時(shí)才加以補(bǔ)充)。
多邊形的內(nèi)角和教案四年級(jí)篇十二
知識(shí)與技能:掌握多邊形內(nèi)角和定理,進(jìn)一步了解轉(zhuǎn)化的數(shù)學(xué)思想。
重點(diǎn):多邊形內(nèi)角和定理的探索和應(yīng)用。
教學(xué)難點(diǎn):邊形定義的理解;多邊形內(nèi)角和公式的推導(dǎo);轉(zhuǎn)化的數(shù)學(xué)思維方法的滲透.。
教學(xué)過程。
第一環(huán)節(jié)創(chuàng)設(shè)現(xiàn)實(shí)情境,提出問題,引入新(3分鐘,學(xué)生思考問題,入)。
1.多媒體展示蜂窩,教師結(jié)合圖片讓學(xué)生發(fā)現(xiàn)生活中無處不在的多邊形.。
2.工人師傅鋸桌面:一個(gè)四邊形的桌面,用鋸子鋸掉一個(gè)角,還剩幾個(gè)角?
第二環(huán)節(jié)概念形成(5分鐘,學(xué)生理解定義)。
第三環(huán)節(jié)實(shí)驗(yàn)探究(12分鐘,學(xué)生動(dòng)手操作,探究內(nèi)角和)。
(以四人小組為單位展開探究活動(dòng))。
活動(dòng)一:利用四邊形探索四邊形內(nèi)角和。
要求:先獨(dú)立思考再小組合作交流完成.)。
(師巡視,了解學(xué)生探索進(jìn)程并適當(dāng)點(diǎn)撥.)。
(生思考后交流,把不同的方案在紙上完成.)。
……(組間交流,教師展示幾種方法)。
進(jìn)而引導(dǎo)學(xué)生得出:我們是把四邊形的問題轉(zhuǎn)化成三角形,再由三角形內(nèi)角和為180°,求出四邊形內(nèi)角和為360°,從而使問題得到解決!進(jìn)一步提出新的探索活動(dòng)。
活動(dòng)二:探索五邊形內(nèi)角和。
(要求:獨(dú)立思考,自主完成.)。
第四環(huán)節(jié)思維升華(5分鐘,教師引導(dǎo)學(xué)生進(jìn)行推算)。
教學(xué)過程:
探索n邊形內(nèi)角和,并試著說明理由。
(結(jié)合出示的圖表從代數(shù)角度猜測公式,并從幾何意義加以解讀)。
n邊形的內(nèi)角和=(n—2)180°。
正n邊形的一個(gè)內(nèi)角==。
第五環(huán)節(jié)能力拓展(12分鐘,學(xué)生搶答)。
搶答題:
1.正八邊形的內(nèi)角和為_______.
3.一個(gè)多邊形每個(gè)內(nèi)角的度數(shù)是150°,則這個(gè)多邊形的邊數(shù)是_______.
應(yīng)用發(fā)散:
第六環(huán)節(jié)時(shí)小結(jié):(3分鐘,學(xué)生填表)。
第七環(huán)節(jié)布置作業(yè):習(xí)題4、10。
b組(中等生)1。
c組(后三分之一生)1。
教學(xué)反思:
多邊形的內(nèi)角和教案四年級(jí)篇十三
學(xué)生已經(jīng)學(xué)過三角形的內(nèi)角和定理的知識(shí)基礎(chǔ),并且具備一定的化歸思想,但是推理能力和表達(dá)能力還稍稍有點(diǎn)欠缺。針對(duì)這種情況,我會(huì)引導(dǎo)學(xué)生利用分類、數(shù)形結(jié)合的思想,加強(qiáng)對(duì)數(shù)學(xué)知識(shí)的應(yīng)用,發(fā)展學(xué)生合情合理的推理能力和語言表達(dá)能力。
1.知識(shí)與技能:運(yùn)用三角形內(nèi)角和定理來推證多邊形內(nèi)角和公式,掌握多邊形的內(nèi)角和的計(jì)算公式。
2.過程與方法:經(jīng)理探究多邊形內(nèi)角和計(jì)算方法的過程,培養(yǎng)學(xué)生的合作交流的意識(shí)。
3.情感態(tài)度與價(jià)值觀:感受數(shù)學(xué)化歸的思想和實(shí)際應(yīng)用的價(jià)值,同時(shí)培養(yǎng)學(xué)生善于發(fā)現(xiàn),積極探究,合作創(chuàng)新的學(xué)習(xí)態(tài)度。
1、請(qǐng)看:我身后的建筑物是什么?——水立方。我看到水立方時(shí)發(fā)現(xiàn)它的膜結(jié)構(gòu)的結(jié)合處都是多邊形,你們想知道這些多邊形的內(nèi)角和嗎?(多媒體展示)。
知道四邊形的內(nèi)角和為360°,現(xiàn)在你能利用三角形的內(nèi)角和定理證明嗎?自主學(xué)習(xí)教材第34頁“動(dòng)腦筋”
【教學(xué)說明】“解放學(xué)生的手,解放學(xué)生的大腦”,鼓勵(lì)學(xué)生積極參與合作交流,尋找多種圖形形式,深入全面轉(zhuǎn)化的本質(zhì)——將四邊形轉(zhuǎn)化為三角形問題來解決.
預(yù)設(shè)回答:能,可以引對(duì)角線,將多邊形分成幾個(gè)三角形。
讓學(xué)生合作交流討論,展示探究成果。教材第35頁“探究”
n邊形有幾個(gè)內(nèi)角?是否可以“轉(zhuǎn)化”為多個(gè)三角形的角來求得呢?如何“轉(zhuǎn)化”?
【教學(xué)說明】通過五邊形、六邊形、七邊形、八邊形等特殊多邊形內(nèi)角和的探索,讓學(xué)生從特殊到一般歸納總結(jié)出多邊形內(nèi)角和公式,體會(huì)數(shù)形間的聯(lián)系,感受從特殊到一般的數(shù)學(xué)推理過程和數(shù)學(xué)思考方法.
例:教材第36頁例1。
【教學(xué)說明】讓學(xué)生利用多邊形的內(nèi)角和公式求一個(gè)多邊形的內(nèi)角和或它的邊數(shù),加深知識(shí)的理解與運(yùn)用.
1、若從一個(gè)多邊形的一個(gè)頂點(diǎn)出發(fā),最多可以引10條對(duì)角線,則它是()。
a.十三邊形b.十二邊形。
c.十一邊形d.十邊形。
2、十二邊形的內(nèi)角和為,已知一個(gè)多邊形的內(nèi)角和是1260°,則這個(gè)多邊形的邊數(shù)是。
【教學(xué)說明】由學(xué)生自主完成,教師及時(shí)了解學(xué)生的學(xué)習(xí)效果,讓學(xué)生經(jīng)歷運(yùn)用知識(shí)解決問題的過程.對(duì)需要幫助的學(xué)生及時(shí)點(diǎn)撥并加以強(qiáng)化.在完成上述題目后,讓學(xué)生完成練習(xí)冊(cè)中本課時(shí)的對(duì)應(yīng)訓(xùn)練部分.
1、這節(jié)課你有什么新的收獲?
教材第36頁練習(xí)1、2題。
邊數(shù)越多,內(nèi)角和就越大;
每增加一條邊,內(nèi)角和就增加180度。
多邊形的內(nèi)角和教案四年級(jí)篇十四
這節(jié)課本節(jié)的教學(xué)活動(dòng)充分發(fā)揮學(xué)生的主體作用,激發(fā)了學(xué)生的學(xué)習(xí)興趣,使課堂充滿生機(jī)。在進(jìn)行四邊形內(nèi)角和定理的教學(xué)時(shí),設(shè)計(jì)完成三個(gè)步驟:
(1)通過動(dòng)手操作,讓學(xué)生自己通過實(shí)驗(yàn)的方法發(fā)現(xiàn)四邊形內(nèi)角和定理;
(2)讓學(xué)生把發(fā)現(xiàn)概括成命題;
(3)通過學(xué)生討論命題證明的不同方法。
整節(jié)課充滿著“自主、合作、探究、交流”的教學(xué)理念,營造了思維馳聘的空間,使學(xué)生在主動(dòng)思考探究的過程中自然的獲得了新的知識(shí)。但由于本節(jié)課的內(nèi)容多,學(xué)習(xí)時(shí)間較緊張,所以在給學(xué)生進(jìn)行課堂討論四邊形內(nèi)角和的不同的證明方法這一環(huán)節(jié)時(shí)把握地不夠好。由于討論的問題有難度,討論時(shí)間不夠充分。而且我為了能完成這節(jié)課的內(nèi)容沒有對(duì)四邊形內(nèi)角和的證明方法做以補(bǔ)充。
這節(jié)課成功之處在習(xí)題的設(shè)計(jì),由淺入深,每道題都各具代表性,都是典型的例題。使學(xué)生能夠熟練的應(yīng)用多邊形內(nèi)角和。在講此處不足是到后面難一點(diǎn)的題時(shí),因?yàn)榭煲抡n了,沒有給學(xué)生太多的時(shí)間,就顯得有些倉促,后進(jìn)生有可能沒弄明白。
多邊形的內(nèi)角和教案四年級(jí)篇十五
《探索多邊形的內(nèi)角和》一課終于上完了,然而對(duì)這一課的思考才剛剛開始,正如周夢(mèng)莉校長所說,我們的目標(biāo)不是這一課本身,而是對(duì)于這一課的研究給我們數(shù)學(xué)教學(xué)的一點(diǎn)啟發(fā)。
有幸與實(shí)驗(yàn)小學(xué)趙麗老師同時(shí)選中《多邊形的內(nèi)角和》這一課,但我們從不同角度不同方式對(duì)它進(jìn)行了解讀。20世紀(jì)90年代,因?yàn)檗r(nóng)村小學(xué)學(xué)生人數(shù)的急劇減少,我們學(xué)校在課堂上嘗試性的進(jìn)行了分層異步教學(xué),在同一節(jié)課中,根據(jù)學(xué)生認(rèn)知水平差異,把學(xué)生分成a,b兩組,在組內(nèi)又依托知識(shí)水平相近原則,把3,4名學(xué)生分為一個(gè)小組,通常采用合——分——合的模式進(jìn)行教學(xué),即,當(dāng)a組同學(xué)教學(xué)時(shí),b組自學(xué),反之亦然,經(jīng)過與普通班的對(duì)比研究,發(fā)現(xiàn)復(fù)式班學(xué)生在學(xué)習(xí)效果上有著明顯的成效?;谶@一基礎(chǔ),我采用分層的模式來進(jìn)行多邊形的內(nèi)角和的教學(xué),這一嘗試,讓我對(duì)自己的.數(shù)學(xué)教學(xué)有了如下反思:
1,以經(jīng)驗(yàn)為基礎(chǔ),讓學(xué)生得到不同的發(fā)展。
基于學(xué)生的認(rèn)知經(jīng)驗(yàn)及活動(dòng)經(jīng)驗(yàn),對(duì)學(xué)生進(jìn)行分組,以期達(dá)到不同的學(xué)生在數(shù)學(xué)上得到不同程度的發(fā)展的目標(biāo),學(xué)習(xí)能力較強(qiáng)的同學(xué)要能吃飽,學(xué)習(xí)能力較弱的同學(xué)要在原有基礎(chǔ)上有所進(jìn)步。在實(shí)際教學(xué)中,對(duì)于a組和b組的學(xué)生,除了在教學(xué)形式上有所區(qū)別外,a組教學(xué)為主,b組自學(xué)為主,我在教學(xué)時(shí)間的分配上對(duì)ab組并沒有顯著區(qū)分,在以后的嘗試探索中,我應(yīng)對(duì)a組加以更細(xì)致的教學(xué)指導(dǎo),對(duì)b組更大膽的放手,讓學(xué)生上臺(tái)說,做,教,減少b組的教學(xué)時(shí)間。
2,勇于放手,培養(yǎng)學(xué)生自學(xué)的能力。
在一開始設(shè)計(jì)b組的學(xué)習(xí)單時(shí),即使b組同學(xué)學(xué)習(xí)能力較強(qiáng),但出于對(duì)學(xué)生的擔(dān)憂,擔(dān)心學(xué)生想不到用分一分的方法,在學(xué)習(xí)單上,我引導(dǎo)學(xué)生,多邊形能夠分成幾個(gè)三角形,內(nèi)角和怎么算。而周校長建議我,是否能給學(xué)生更多的空間,把“小問題”變?yōu)椤按髥栴}”,直接提問學(xué)生,多邊形的內(nèi)角和是多少,讓學(xué)生去嘗試探索各種方法,而不僅局限于轉(zhuǎn)化為三角形內(nèi)角和的方法。在后來的實(shí)際教學(xué)中,采用了“大問題”的提問方式,我驚喜的發(fā)現(xiàn),學(xué)生的探究自學(xué)能力比我預(yù)想的出色許多。
3,細(xì)節(jié)入手,培養(yǎng)學(xué)生良好習(xí)慣。
小學(xué)數(shù)學(xué)良好習(xí)慣的培養(yǎng)不僅對(duì)學(xué)生自身的數(shù)學(xué)學(xué)習(xí)有所裨益,對(duì)課堂教效果的影響更是尤為明顯。在分層教學(xué)的模式中,為避免ab組互相間的干擾,必須在課堂上對(duì)每組學(xué)生提出明確的要求,課前乃至平時(shí)都要對(duì)學(xué)生的學(xué)習(xí)習(xí)慣進(jìn)行培養(yǎng),這樣才能讓我們的數(shù)學(xué)老師對(duì)課堂全局的把握更加深刻,才能夠讓數(shù)學(xué)課堂井然有序,數(shù)學(xué)教學(xué)效果得到最大程度的保證。
“授人以魚,不如授人以漁?!蔽覀兊臄?shù)學(xué)分層教學(xué)不光是為了學(xué)生掌握某一定的知識(shí),而是讓學(xué)生在不同的學(xué)習(xí)方式中不斷感悟體會(huì),尋找適合自己的學(xué)習(xí)方法,最終以得到不同程度的發(fā)展。
多邊形的內(nèi)角和教案四年級(jí)篇十六
1、回憶所學(xué)的平面圖形的面積推導(dǎo)過程,弄清圖形面積之間的內(nèi)在聯(lián)系,鞏固學(xué)生對(duì)面積計(jì)算公式的理解和記憶。
2、通過整理知識(shí)網(wǎng)絡(luò)圖進(jìn)一步發(fā)展學(xué)生的空間觀念,提高學(xué)生分析和綜合概括的能力。
3、讓學(xué)生通過靈活運(yùn)用知識(shí)解決實(shí)際問題,提高不同層次學(xué)生解決實(shí)際問題的能力。
4、體會(huì)數(shù)學(xué)與生活的聯(lián)系,培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,以及良好的學(xué)習(xí)習(xí)慣和學(xué)習(xí)態(tài)度。
通過整理知識(shí)網(wǎng)絡(luò)圖進(jìn)一步發(fā)展學(xué)生的空間觀念,提高學(xué)生分析和綜合概括的能力。
通過靈活運(yùn)用知識(shí)解決實(shí)際問題,提高不同層次學(xué)生解決實(shí)際問題的能力。
根據(jù)本課的教學(xué)內(nèi)容,本課采用先整理后練習(xí)的復(fù)習(xí)模式。
本課的指導(dǎo)思想是發(fā)揮學(xué)生的主題作用,引導(dǎo)學(xué)生自主學(xué)習(xí),使不同學(xué)生在數(shù)學(xué)課上得到不同的發(fā)展。《課標(biāo)》指出:動(dòng)手實(shí)踐、自主探索與合作交流是學(xué)生學(xué)習(xí)數(shù)學(xué)的.重要方式;學(xué)生是數(shù)學(xué)學(xué)習(xí)的主人,教師是數(shù)學(xué)學(xué)習(xí)的組織者、引導(dǎo)者與合作者。本課在回憶整理應(yīng)用的教學(xué)環(huán)節(jié)中,通過教師引導(dǎo)和點(diǎn)撥,提高學(xué)生的歸納整理知識(shí)的能力,并充分調(diào)動(dòng)了學(xué)生的學(xué)習(xí)積極性,從而提高了學(xué)生運(yùn)用所學(xué)的知識(shí)解決問題的能力。
(一)整理和復(fù)習(xí)。
1、回憶。
課的開始,我讓學(xué)生回憶學(xué)過的平面圖形的面積,想到哪個(gè)說哪個(gè),給了學(xué)生選擇的余地,提高學(xué)生回答問題的興趣。然后讓學(xué)生回憶推動(dòng)過程時(shí),采取了先讓同桌交流的方法,這是因?yàn)槲曳治鰧W(xué)生可能會(huì)想到不同圖形的面積推導(dǎo)公式,為了照顧不同層次的學(xué)生,讓學(xué)生能人人動(dòng)口,提高學(xué)生的語言表達(dá)能力。
2、整理。
在整理的過程中,學(xué)生邊說,我一邊用課件演示,空間想象能力強(qiáng)的學(xué)生可以閉上眼睛在頭腦中演示這個(gè)過程,空間想象能力弱的學(xué)生,可以借助多媒體來回憶,以便幫助他們更好的理解記憶面積公式。
(二)構(gòu)建知識(shí)網(wǎng)絡(luò)圖。
構(gòu)建知識(shí)網(wǎng)絡(luò)圖是課前我比較擔(dān)心的,我不知道學(xué)生會(huì)把知識(shí)網(wǎng)絡(luò)圖構(gòu)建成什么樣子。雖然課上在我的引領(lǐng)下這樣比較好控制,但是為了照顧不同層次的學(xué)生,我把這項(xiàng)工作放在了課前,先讓學(xué)生在家里整理好,這要就避免了學(xué)生之間相互模仿,無法體現(xiàn)個(gè)性;再通過課上的回憶讓學(xué)生自己修改,使學(xué)生逐步學(xué)會(huì)整理歸納的方法;最后同學(xué)之間交流,完善知識(shí)網(wǎng)絡(luò)圖。在這個(gè)環(huán)節(jié),面對(duì)學(xué)生構(gòu)建的知識(shí)網(wǎng)絡(luò)圖,只要有道理我就會(huì)給予肯定,這樣才能使學(xué)生敢于發(fā)表自己的意見,體現(xiàn)個(gè)體差異,增強(qiáng)自信心。
(三)解決問題。
在解決問題的過程中,我用了羊村村長領(lǐng)著大家去羊村參觀這一情境,充分調(diào)動(dòng)了不同層次學(xué)生的學(xué)習(xí)積極性。
要想去羊村參觀就得闖關(guān)成功,這三關(guān)分別針對(duì)不同方面:第一關(guān)針對(duì)的是我們班的學(xué)困生,這些題讓他們回答,可以使他們獲得成功的體驗(yàn),幫助他們樹立自信心,提高學(xué)習(xí)數(shù)學(xué)的興趣;第二關(guān)考驗(yàn)學(xué)生是否能靈活運(yùn)用面積公式,針對(duì)的是中等學(xué)生;第三關(guān)是對(duì)學(xué)生在面積計(jì)算中經(jīng)常出現(xiàn)錯(cuò)誤的地方進(jìn)行針對(duì)性練習(xí),面向全體學(xué)生,以提高做題正確率。
闖關(guān)成功后,計(jì)算玻璃的面積,是解決實(shí)際生活中的問題,讓學(xué)生體會(huì)到數(shù)學(xué)與生活的聯(lián)系。這塊玻璃是一個(gè)組合圖形,既可以用分割法計(jì)算,又可以用添補(bǔ)法計(jì)算,學(xué)生自己動(dòng)手分一分、畫一畫,用自己的方法計(jì)算,充分體現(xiàn)了學(xué)生的個(gè)體差異。為了幫助學(xué)生理解,我制作了課件進(jìn)行演示,直觀形象,針對(duì)學(xué)困生降低了難度。
(四)課堂作業(yè)。
課堂作業(yè)的設(shè)計(jì)也充分考慮到了不同層次的學(xué)生,第1題和第題較為簡單,學(xué)優(yōu)生做完后,給出了一道思考題,這道題為學(xué)有余力的學(xué)生準(zhǔn)備。
(五)小結(jié)。
今天我們復(fù)習(xí)了多邊形的面積,并利用圖形之間的內(nèi)在聯(lián)系制作了知識(shí)網(wǎng)絡(luò)圖,還運(yùn)用所學(xué)幫助羊村解決了實(shí)際問題,在這里懶羊羊代表羊村謝謝大家,帶給大家一首好聽的歌,請(qǐng)大家伴隨著歌聲下課。
多邊形的內(nèi)角和教案四年級(jí)篇十七
(1)知識(shí)結(jié)構(gòu):
(2)重點(diǎn)和難點(diǎn)分析:
重點(diǎn):四邊形的有關(guān)概念及內(nèi)角和定理。因?yàn)樗倪呅蔚挠嘘P(guān)概念及內(nèi)角和定理是本章的基礎(chǔ)知識(shí),對(duì)后繼知識(shí)的學(xué)習(xí)起著重要的作用,數(shù)學(xué)教案-多邊形的內(nèi)角和。
難點(diǎn):四邊形的概念及四邊形不穩(wěn)定性的理解和應(yīng)用。在前面講解三角形的概念時(shí),因?yàn)槿切蔚娜齻€(gè)頂點(diǎn)確定一個(gè)平面,所以三個(gè)頂點(diǎn)總是共面的,也就是說,三角形肯定是平面圖形,而四邊形就不是這樣,它的四個(gè)頂點(diǎn)有不共面的情況,又限于我們現(xiàn)在研究的是平面圖形,所以在四邊形的定義中加上“在同一平面內(nèi)”這個(gè)條件,這幾個(gè)字的意思學(xué)生不好理解,所以是難點(diǎn)。
2.教法建議。
(1)本節(jié)的引入最好使用我們提供的多媒體課件,通過這個(gè)課件,使學(xué)生認(rèn)識(shí)到這些四邊形都是常見圖形,研究它們具有實(shí)際應(yīng)用意義,從而激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
(2)本節(jié)的教學(xué),要以三角形為基礎(chǔ),可以仿照三角形,通過類比的方法建立四邊形的有關(guān)概念,如四邊形的邊、頂點(diǎn)、內(nèi)角、外角、內(nèi)角和、外角和、周長等都可同三角形類比,要結(jié)合三角形、四邊形的圖形,對(duì)比著指給學(xué)生看,讓學(xué)生明確這些概念。
(3)因?yàn)樵谌切沃袥]有對(duì)角線,所以四邊形的對(duì)角線是一個(gè)新概念,它是解決四邊形問題時(shí)常用的輔助線,通過它可以把四邊形問題轉(zhuǎn)化為三角形問題來解決。結(jié)合圖形,讓學(xué)生自己動(dòng)手作四邊形的一條對(duì)角線,并觀察四邊形的一條對(duì)角線把它分成幾個(gè)三角形?兩條對(duì)角線呢?使學(xué)生加深對(duì)對(duì)角線的作用的認(rèn)識(shí)。
(4)本節(jié)用到的數(shù)學(xué)思想方法是化歸轉(zhuǎn)化的思想和類比的思想,教師在講解本節(jié)知識(shí)時(shí)要滲透這兩種思想方法,并且在本節(jié)小結(jié)中對(duì)這兩種數(shù)學(xué)思想方法進(jìn)行總結(jié),使學(xué)生明白碰到復(fù)雜的、未知的問題要轉(zhuǎn)化為簡單的、已知的問題,初中數(shù)學(xué)教案《數(shù)學(xué)教案-多邊形的內(nèi)角和》。
教學(xué)目標(biāo):
1.使學(xué)生掌握四邊形的有關(guān)概念及四邊形的內(nèi)角和定理;
2.通過引導(dǎo)學(xué)生觀察氣象站的實(shí)例,培養(yǎng)學(xué)生從具體事物中抽象出幾何圖形的能力;
3.通過推導(dǎo)四邊形內(nèi)角和定理,對(duì)學(xué)生滲透化歸轉(zhuǎn)化的數(shù)學(xué)思想;
4.講解四邊形的有關(guān)概念時(shí),聯(lián)系三角形的有關(guān)概念向?qū)W生滲透類比思想。
教學(xué)重點(diǎn):
教學(xué)難點(diǎn):
四邊形的概念。
教學(xué)過程:
(一)復(fù)習(xí)。
在小學(xué)里,我們學(xué)過長方形、正方形、平行四邊形和梯形的有關(guān)知識(shí)。請(qǐng)同學(xué)們回憶一下這些圖形的概念。找學(xué)生說出四種幾何圖形的概念,教師作評(píng)價(jià)。
(二)提出問題,引入新課。
利用這些圖形的定義,你能在下圖中找出長方形、正方形、平行四邊形和梯形嗎?教師說完就打開多媒體課件。(先看畫面一)。
問題:你能類比三角形的概念,說出四邊形的概念嗎?
(三)理解概念。
1.四邊形:在平面內(nèi),由不在同一條直線的四條線段首尾順次相接組成的圖形叫做四邊形。
在定義中要強(qiáng)調(diào)“在同一平面內(nèi)”這個(gè)條件,或?yàn)閷W(xué)生稍微說明一下。其次,要給學(xué)生講清楚“首尾”和“順次”的含義。
2.類比三角形的邊、頂點(diǎn)、內(nèi)角、外角的概念,找學(xué)生答出四邊形的邊、頂點(diǎn)、內(nèi)角、外交的概念。
3.四邊形的記法:對(duì)照?qǐng)D形向?qū)W生講明四邊形的記法與三角形不同,表示四邊形必須按頂點(diǎn)的順序書寫,可以按順時(shí)針或逆時(shí)針的順序。
練習(xí):課本124頁1、2題。
4.四邊形的分類:凸四邊形、凹四邊形(不必向?qū)W生講它的概念),只要學(xué)生會(huì)辨認(rèn)一個(gè)四邊形是不是凸四邊形就可以了。
5.四邊形的對(duì)角線:
(四)四邊形的內(nèi)角和定理。
定理:四邊形的內(nèi)角和等于.
注意:在研究四邊形時(shí),常常通過作它的對(duì)角線,把關(guān)于四邊形的問題化成關(guān)于三角形的問題來解決。
(五)應(yīng)用、反思。
例1已知:如圖,直線,垂足為b,直線,垂足為c.
求證:(1);(2)。
證明:(1)(四邊形的內(nèi)角和等于),
練習(xí):
1.課本124頁3題。
小結(jié):
知識(shí):四邊形的有關(guān)概念及其內(nèi)角和定理。
能力:向?qū)W生滲透類比和轉(zhuǎn)化的思想方法。
作業(yè):課本130頁2、3、4題。
【本文地址:http://mlvmservice.com/zuowen/9463998.html】