教案是教師在備課過程中用于組織、指導(dǎo)和反思教學(xué)活動(dòng)的書面文件。編制教案時(shí),需要充分考慮學(xué)生的學(xué)習(xí)層次和認(rèn)知特點(diǎn)。以下是小編為大家整理的一些優(yōu)秀教案范例,供大家參考借鑒。
華東師范八年級(jí)數(shù)學(xué)教案篇一
教學(xué)。
目標(biāo)(含重點(diǎn)、難點(diǎn))及。
設(shè)置依據(jù)教學(xué)目標(biāo)。
1、了解多面體、直棱柱的有關(guān)概念.2、會(huì)認(rèn)直棱柱的側(cè)棱、側(cè)面、底面.。
3、了解直棱柱的側(cè)棱互相平行且相等,側(cè)面是長方形(含正方形)等特征.。
教學(xué)重點(diǎn)與難點(diǎn)。
教學(xué)過程。
內(nèi)容與環(huán)節(jié)預(yù)設(shè)、簡明設(shè)計(jì)意圖二度備課(即時(shí)反思與糾正)。
一、創(chuàng)設(shè)情景,引入新課。
析:學(xué)生很容易回答出更多的答案。
師:(繼續(xù)補(bǔ)充)有許多著名的建筑,像古埃及的金字塔、巴黎的艾菲爾鐵塔、美國的迪思尼樂園、德國的古堡風(fēng)光,中國北京的西客站,它們也是由不同的立體圖形組成的;那么立體圖形在生活中有著怎樣的廣泛的應(yīng)用呢?瞧,食物中的冰激凌、櫻桃、端午節(jié)的粽子等。
二、合作交流,探求新知。
1.多面體、棱、頂點(diǎn)概念:
2.合作交流。
師:以學(xué)習(xí)小組為單位,拿出事先準(zhǔn)備好的幾何體。
學(xué)生活動(dòng):(讓學(xué)生從中閉眼摸出某些幾何體,邊摸邊用語言描。
述其特征。)。
師:同學(xué)們?cè)儆懻撘幌?,能否把自己的語言轉(zhuǎn)化為數(shù)學(xué)語言。
學(xué)生活動(dòng):分小組討論。
說明:真正體現(xiàn)了“以生為本”。讓學(xué)生在主動(dòng)探究中發(fā)現(xiàn)知識(shí),充分發(fā)揮了學(xué)生的主體作用和教師的主導(dǎo)作用,課堂氣氛活躍,教師教的輕松,學(xué)生學(xué)的愉快。
師:請(qǐng)大家找出與長方體,立方體類似的物體或模型。
析:舉出實(shí)例。(找出區(qū)別)。
師:(總結(jié))棱柱分為之直棱柱和斜棱柱。(根據(jù)其側(cè)棱與底面是否垂直)根據(jù)底面多邊形的邊數(shù)而分為直三棱柱、直四棱柱……直棱柱有以下特征:
有上、下兩個(gè)底面,底面是平面圖形中的多邊形,而且彼此全等;
側(cè)面都是長方形含正方形。
長方體和正方體都是直四棱柱。
3.反饋鞏固。
完成“做一做”
析:由第(3)小題可以得到:
直棱柱的相鄰兩條側(cè)棱互相平行且相等。
4.學(xué)以至用。
出示例題。(先請(qǐng)學(xué)生單獨(dú)考慮,再作講解)。
析:引導(dǎo)學(xué)生著重觀察首飾盒的側(cè)面是什么圖形,上底面是什么圖形,然后與直棱柱的特征作比較。(使學(xué)生養(yǎng)成發(fā)現(xiàn)問題,解決問題的創(chuàng)造性思維習(xí)慣)。
最后完成例題中的“想一想”
5.鞏固練習(xí)(學(xué)生練習(xí))。
完成“課內(nèi)練習(xí)”
三、小結(jié)回顧,反思提高。
師:我們這節(jié)課的重點(diǎn)是什么?哪些地方比較難學(xué)呢?
合作交流后得到:重點(diǎn)直棱柱的有關(guān)概念。
直棱柱有以下特征:
有上、下兩個(gè)底面,底面是平面圖形中的多邊形,而且彼此全等;
側(cè)面都是長方形含正方形。
例題中的把首飾盒看成是由兩個(gè)直三棱柱、直四棱柱的組合,或著是兩個(gè)直四棱柱的組合需要一定的空間想象能力和表達(dá)能力。這一點(diǎn)比較難。
板書設(shè)計(jì)。
作業(yè)布置或設(shè)計(jì)作業(yè)本及課時(shí)特訓(xùn)。
華東師范八年級(jí)數(shù)學(xué)教案篇二
多媒體投影一組圖片,讓同學(xué)們從中抽象出平面圖形,從而引出課題。
二、自主學(xué)習(xí),指向目標(biāo)。
學(xué)習(xí)至此:請(qǐng)完成《學(xué)生用書》相應(yīng)部分。
三、合作探究,達(dá)成目標(biāo)。
多邊形的定義及有關(guān)概念。
活動(dòng)一:閱讀教材p19。
小組討論:結(jié)合具體圖形說出多邊形的邊、內(nèi)角、外角?
反思小結(jié):多邊形的定義及相關(guān)概念。
針對(duì)訓(xùn)練:見《學(xué)生用書》相應(yīng)部分。
多邊形的對(duì)角線。
活動(dòng)二:(1)十邊形的對(duì)角線有35條。
(2)如果經(jīng)過多邊形的一個(gè)頂點(diǎn)有36條對(duì)角線,這個(gè)多邊形是39邊形。
反思小結(jié):當(dāng)n為已知時(shí),可以直接代入求得對(duì)角線的條數(shù),當(dāng)對(duì)角線條數(shù)已知時(shí),可以化為方程來求多邊形的邊數(shù)。
小組討論:如何靈活運(yùn)用多邊形對(duì)角線條數(shù)的規(guī)律解題?
針對(duì)訓(xùn)練:見《學(xué)生用書》相應(yīng)部分。
正多邊形的有關(guān)概念。
活動(dòng)二:閱讀教材p20。
小組討論:判斷一個(gè)多邊形是否是正多邊形的條件?
反思小結(jié):由正多邊形的概念知:滿足各邊、各角分別相等的多邊形是正多邊形。
針對(duì)訓(xùn)練:見《學(xué)生用書》相應(yīng)部分。
四、總結(jié)梳理,內(nèi)化目標(biāo)。
本節(jié)學(xué)習(xí)的數(shù)學(xué)知識(shí)是:
1、多邊形、多邊形的外角,多邊形的對(duì)角線。
2、凸凹多邊形的概念。
五、達(dá)標(biāo)檢測(cè),反思目標(biāo)。
1、下列敘述正確的是(d)。
a、每條邊都相等的多邊形是正多邊形。
c、每個(gè)角都相等的多邊形叫正多邊形。
d、每條邊、每個(gè)角都相等的多邊形叫正多邊形。
2、小學(xué)學(xué)過的下列圖形中不可能是正多邊形的是(d)。
a、三角形b。正方形c。四邊形d。梯形。
3、多邊形的內(nèi)角是指多邊形相鄰兩邊組成的角;多邊形的外角是指多邊形的邊與它的鄰邊的延長線組成的角;多邊形的內(nèi)角和它相鄰的外角是鄰補(bǔ)角關(guān)系。
4、已知一個(gè)四邊形的四個(gè)內(nèi)角的比為1∶2∶3∶4,求這個(gè)四邊形的各個(gè)內(nèi)角的度數(shù)。
華東師范八年級(jí)數(shù)學(xué)教案篇三
教學(xué)目標(biāo):
〔知識(shí)與技能〕。
1.探索作出軸對(duì)稱圖形的對(duì)稱軸的方法.掌握軸對(duì)稱圖形對(duì)稱軸的作法.
2.在探索的過程中,培養(yǎng)學(xué)生分析、歸納的能力.
〔過程與方法〕。
2、在靈活運(yùn)用知識(shí)解決有關(guān)問題的過程中,體驗(yàn)并掌握探索、歸納圖形性質(zhì)的推理方法,進(jìn)一步培說理和進(jìn)行簡單推理的能力。
〔情感、態(tài)度與價(jià)值觀〕。
1、體會(huì)數(shù)學(xué)與現(xiàn)實(shí)生活的聯(lián)系,增強(qiáng)克服困難的勇氣和信心;2、會(huì)應(yīng)用數(shù)學(xué)知識(shí)解決一些簡單的實(shí)際問題,增強(qiáng)應(yīng)用意識(shí)。
教學(xué)重點(diǎn):
軸對(duì)稱圖形對(duì)稱軸的作法.
教學(xué)難點(diǎn):
探索軸對(duì)稱圖形對(duì)稱軸的作法.
教具準(zhǔn)備:圓規(guī)、三角尺。
教學(xué)過程。
一.提出問題,引入新課。
2.軸對(duì)稱圖形性質(zhì).如果兩個(gè)圖形關(guān)于某條直線對(duì)稱,那么對(duì)稱軸是任何一對(duì)對(duì)稱點(diǎn)所連線段的垂直平分線.軸對(duì)稱圖形的對(duì)稱軸,是任何一對(duì)對(duì)稱點(diǎn)所連線段的垂直平分線.
3.找到一對(duì)對(duì)應(yīng)點(diǎn),作出連結(jié)它們的線段的垂直平分線,就可以得到這兩個(gè)圖形的對(duì)稱軸了.
4.問題:如何作出線段的垂直平分線?
二.導(dǎo)入新課。
1.要作出線段的垂直平分線,根據(jù)垂直平分線的判定定理,到線段兩端點(diǎn)距離相等的點(diǎn)在這條線段的垂直平分線上,又由兩點(diǎn)確定一條直線這個(gè)公理,那么必須找到兩個(gè)到線段兩端點(diǎn)距離相等的點(diǎn),這樣才能確定已知線段的垂直平分線.
[例]如圖(1),點(diǎn)a和點(diǎn)b關(guān)于某條直線成軸對(duì)稱,你能作出這條直線嗎?
已知:線段ab[如圖(1)].
求作:線段ab的垂直平分線.
作法:如圖(2)。
(1).分別以點(diǎn)a、b為圓心,以大于。
(2).作直線cd.
直線cd就是線段ab的垂直平分線.
2.[例]圖中的五角星有幾條對(duì)稱軸?作出這些對(duì)稱軸.
作法:
1.找出五角星的一對(duì)對(duì)應(yīng)點(diǎn)a和a′,
連結(jié)aa′.
2.作出線段aa′的垂直平分線l.
則l就是這個(gè)五角星的一條對(duì)稱軸.
用同樣的方法,可以找出五條對(duì)稱軸,所以五角星有五條對(duì)稱軸.
三.隨堂練習(xí)。
(一)課本35練習(xí)1、2、3。
如圖,與圖形a成軸對(duì)稱的是哪個(gè)圖形?畫出它們的對(duì)稱軸.
1ab的長為半徑作弧,兩弧相交于c和d兩點(diǎn);2。
答案:與a成軸對(duì)稱的是圖形d(或b).
四.課時(shí)小結(jié)。
方法:找出軸對(duì)稱圖形的任意一對(duì)對(duì)應(yīng)點(diǎn),連結(jié)這對(duì)對(duì)應(yīng)點(diǎn),?作出連線的垂直平分線,該垂直平分線就是這個(gè)軸對(duì)稱圖形的一條對(duì)稱軸.
五.課后作業(yè)。
華東師范八年級(jí)數(shù)學(xué)教案篇四
1.理解分式的基本性質(zhì).
2.會(huì)用分式的基本性質(zhì)將分式變形.
二、重點(diǎn)、難點(diǎn)。
1.重點(diǎn):理解分式的基本性質(zhì).
2.難點(diǎn):靈活應(yīng)用分式的基本性質(zhì)將分式變形.
3.認(rèn)知難點(diǎn)與突破方法。
教學(xué)難點(diǎn)是靈活應(yīng)用分式的基本性質(zhì)將分式變形.突破的方法是通過復(fù)習(xí)分?jǐn)?shù)的通分、約分總結(jié)出分?jǐn)?shù)的基本性質(zhì),再用類比的方法得出分式的基本性質(zhì).應(yīng)用分式的基本性質(zhì)導(dǎo)出通分、約分的概念,使學(xué)生在理解的基礎(chǔ)上靈活地將分式變形。
三、例、習(xí)題的意圖分析。
1.p7的例2是使學(xué)生觀察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后應(yīng)用分式的基本性質(zhì),相應(yīng)地把分子(或分母)乘以或除以了這個(gè)整式,填到括號(hào)里作為答案,使分式的值不變。
2.p9的例3、例4地目的是進(jìn)一步運(yùn)用分式的基本性質(zhì)進(jìn)行約分、通分.值得注意的是:約分是要找準(zhǔn)分子和分母的公因式,最后的結(jié)果要是最簡分式;通分是要正確地確定各個(gè)分母的最簡公分母,一般的取系數(shù)的最小公倍數(shù),以及所有因式的次冪的積,作為最簡公分母。
教師要講清方法,還要及時(shí)地糾正學(xué)生做題時(shí)出現(xiàn)的錯(cuò)誤,使學(xué)生在做提示加深對(duì)相應(yīng)概念及方法的理解。
3.p11習(xí)題16.1的第5題是:不改變分式的值,使下列分式的分子和分母都不含“-”號(hào).這一類題教材里沒有例題,但它也是由分式的基本性質(zhì)得出分子、分母和分式本身的符號(hào),改變其中任何兩個(gè),分式的值不變。
“不改變分式的值,使分式的分子和分母都不含‘-’號(hào)”是分式的基本性質(zhì)的應(yīng)用之一,所以補(bǔ)充例5。
四、課堂引入。
1.請(qǐng)同學(xué)們考慮:與相等嗎?與相等嗎?為什么?
2.說出與之間變形的過程,與之間變形的過程,并說出變形依據(jù)?
3.提問分?jǐn)?shù)的基本性質(zhì),讓學(xué)生類比猜想出分式的基本性質(zhì).
五、例題講解。
p7例2.填空:
[分析]應(yīng)用分式的基本性質(zhì)把已知的分子、分母同乘以或除以同一個(gè)整式,使分式的值不變.
p11例3.約分:
[分析]約分是應(yīng)用分式的基本性質(zhì)把分式的分子、分母同除以同一個(gè)整式,使分式的值不變.所以要找準(zhǔn)分子和分母的公因式,約分的結(jié)果要是最簡分式.
p11例4.通分:
[分析]通分要想確定各分式的公分母,一般的取系數(shù)的最小公倍數(shù),以及所有因式的次冪的積,作為最簡公分母.
(補(bǔ)充)例5.不改變分式的值,使下列分式的分子和分母都不含“-”號(hào).
[分析]每個(gè)分式的分子、分母和分式本身都有自己的符號(hào),其中兩個(gè)符號(hào)同時(shí)改變,分式的值不變.
解:=,=,=,=,=。
六、隨堂練習(xí)。
1.填空:
(1)=(2)=。
(3)=(4)=。
2.約分:
3.通分:
(1)和(2)和。
(3)和(4)和。
4.不改變分式的值,使下列分式的分子和分母都不含“-”號(hào).
七、課后練習(xí)。
1.判斷下列約分是否正確:
(1)=(2)=。
(3)=0。
2.通分:
(1)和(2)和。
3.不改變分式的值,使分子第一項(xiàng)系數(shù)為正,分式本身不帶“-”號(hào).
八、答案:
六、1.(1)2x(2)4b(3)bn+n(4)x+y。
2.(1)(2)(3)(4)-2(x-y)2。
3.通分:
(1)=,=。
(2)=,=。
(3)==。
(4)==。
華東師范八年級(jí)數(shù)學(xué)教案篇五
一、教學(xué)目的:
1、掌握菱形概念,知道菱形與平行四邊形的關(guān)系;
3、通過運(yùn)用菱形知識(shí)解決具體問題,提高分析能力和觀察能力;
4、根據(jù)平行四邊形與矩形、菱形的從屬關(guān)系,通過畫圖向?qū)W生滲透集合思想;
二、重點(diǎn)、難點(diǎn)。
1、教學(xué)重點(diǎn):菱形的性質(zhì)1、2;
2、教學(xué)難點(diǎn):菱形的性質(zhì)及菱形知識(shí)的綜合應(yīng)用;
三、例題的意圖分析。
四、課堂引入。
1、(復(fù)習(xí))什么叫做平行四邊形?什么叫矩形?平行四邊形和矩形之間的關(guān)系是什么?
《18、2、2菱形》課時(shí)練習(xí)含答案;
5、在同一平面內(nèi),用兩個(gè)邊長為a的等邊三角形紙片(紙片不能裁剪)可以拼成的四邊形是()。
a、矩形b、菱形c、正方形d、梯形。
答案:b。
知識(shí)點(diǎn):等邊三角形的性質(zhì);菱形的判定。
解析:
分析:此題主要考查了等邊三角形的性質(zhì),菱形的定義、
6、用兩個(gè)邊長為a的等邊三角形紙片拼成的四邊形是()。
a、等腰梯形b、正方形c、矩形d、菱形。
答案:d。
知識(shí)點(diǎn):等邊三角形的性質(zhì);菱形的判定。
解析:
分析:本題利用了菱形的概念:四邊相等的四邊形是菱形、
《菱形的性質(zhì)與判定》練習(xí)題。
一選擇題:
1、下列四邊形中不一定為菱形的是()。
a、對(duì)角線相等的平行四邊形b、每條對(duì)角線平分一組對(duì)角的四邊形。
c、對(duì)角線互相垂直的平行四邊形d、用兩個(gè)全等的等邊三角形拼成的四邊形。
2、下列說法中正確的是()。
a、四邊相等的四邊形是菱形。
b、一組對(duì)邊相等,另一組對(duì)邊平行的四邊形是菱形。
c、對(duì)角線互相垂直的四邊形是菱形。
d、對(duì)角線互相平分的四邊形是菱形。
3、若順次連接四邊形abcd各邊的中點(diǎn)所得四邊形是菱形,則四邊形abcd一定是()。
a、菱形b、對(duì)角線互相垂直的四邊形c、矩形d、對(duì)角線相等的四邊形。
華東師范八年級(jí)數(shù)學(xué)教案篇六
(一)、知識(shí)與技能:
(1)使學(xué)生了解因式分解的意義,理解因式分解的概念。
(2)認(rèn)識(shí)因式分解與整式乘法的相互關(guān)系——互逆關(guān)系,并能運(yùn)用這種關(guān)系尋求因式分解的方法。
(二)、過程與方法:
(1)由學(xué)生自主探索解題途徑,在此過程中,通過觀察、類比等手段,尋求因式分解與因數(shù)分解之間的關(guān)系,培養(yǎng)學(xué)生的觀察能力,進(jìn)一步發(fā)展學(xué)生的類比思想。
(2)由整式乘法的逆運(yùn)算過渡到因式分解,發(fā)展學(xué)生的逆向思維能力。
(3)通過對(duì)分解因式與整式的乘法的觀察與比較,培養(yǎng)學(xué)生的分析問題能力與綜合應(yīng)用能力。
(三)、情感態(tài)度與價(jià)值觀:讓學(xué)生初步感受對(duì)立統(tǒng)一的辨證觀點(diǎn)以及實(shí)事求是的科學(xué)態(tài)度。
二、教學(xué)重點(diǎn)和難點(diǎn)。
重點(diǎn):因式分解的概念及提公因式法。
難點(diǎn):正確找出多項(xiàng)式各項(xiàng)的公因式及分解因式與整式乘法的區(qū)別和聯(lián)系。
三、教學(xué)過程。
教學(xué)環(huán)節(jié):
活動(dòng)1:復(fù)習(xí)引入。
看誰算得快:用簡便方法計(jì)算:
(1)7/9×13-7/9×6+7/9×2=;
(2)-2.67×132+25×2.67+7×2.67=;
(3)992–1=。
設(shè)計(jì)意圖:
注意事項(xiàng):學(xué)生對(duì)于(1)(2)兩小題逆向利用乘法的分配律進(jìn)行運(yùn)算的方法是很熟悉,對(duì)于第(3)小題的逆向利用平方差公式的運(yùn)算則有一定的困難,因此,有必要引導(dǎo)學(xué)生復(fù)習(xí)七年級(jí)所學(xué)過的整式的乘法運(yùn)算中的平方差公式,幫助他們順利地逆向運(yùn)用平方差公式。
活動(dòng)2:導(dǎo)入課題。
p165的探究(略);
2.看誰想得快:993–99能被哪些數(shù)整除?你是怎么得出來的?
設(shè)計(jì)意圖:
引導(dǎo)學(xué)生把這個(gè)式子分解成幾個(gè)數(shù)的積的形式,繼續(xù)強(qiáng)化學(xué)生對(duì)因數(shù)分解的理解,為學(xué)生類比因式分解提供必要的精神準(zhǔn)備。
活動(dòng)3:探究新知。
看誰算得準(zhǔn):
計(jì)算下列式子:
(1)3x(x-1)=;
(2)(a+b+c)=;
(3)(+4)(-4)=;
(4)(-3)2=;
(5)a(a+1)(a-1)=;
根據(jù)上面的算式填空:
(1)a+b+c=;
(2)3x2-3x=;
(3)2-16=;
(4)a3-a=;
(5)2-6+9=。
在第一組的整式乘法的計(jì)算上,學(xué)生通過對(duì)第一組式子的觀察得出第二組式子的結(jié)果,然后通過對(duì)這兩組式子的結(jié)果的比較,使學(xué)生對(duì)因式分解有一個(gè)初步的意識(shí),由整式乘法的逆運(yùn)算逐步過渡到因式分解,發(fā)展學(xué)生的逆向思維能力。
活動(dòng)4:歸納、得出新知。
比較以下兩種運(yùn)算的聯(lián)系與區(qū)別:
a(a+1)(a-1)=a3-a。
a3-a=a(a+1)(a-1)。
在第三環(huán)節(jié)的運(yùn)算中還有其它類似的例子嗎?除此之外,你還能找到類似的例子嗎?
華東師范八年級(jí)數(shù)學(xué)教案篇七
教學(xué)目標(biāo):
〔知識(shí)與技能〕。
1.在生活實(shí)例中認(rèn)識(shí)軸對(duì)稱圖.
2.分析軸對(duì)稱圖形,理解軸對(duì)稱的概念.軸對(duì)稱圖形的概念。
〔過程與方法〕。
2、在靈活運(yùn)用知識(shí)解決有關(guān)問題的過程中,體驗(yàn)并掌握探索、歸納圖形性質(zhì)的推理方法,進(jìn)一步培說理和進(jìn)行簡單推理的能力。
〔情感、態(tài)度與價(jià)值觀〕。
辯證唯物主義觀點(diǎn)。
教學(xué)重點(diǎn):.
理解軸對(duì)稱的概念。
教學(xué)難點(diǎn)。
能夠識(shí)別軸對(duì)稱圖形并找出它的對(duì)稱軸.
教具準(zhǔn)備:三角尺。
教學(xué)過程。
一.創(chuàng)設(shè)情境,引入新課。
1.舉實(shí)例說明對(duì)稱的重要性和生活充滿著對(duì)稱。
2.對(duì)稱給我們帶來多少美的感受!初步掌握對(duì)稱的奧秒,不僅可以幫助我們發(fā)現(xiàn)一些圖形的特征,還可以使我們感受到自然界的美與和諧.
3.軸對(duì)稱是對(duì)稱中重要的一種,讓我們一起走進(jìn)軸對(duì)稱世界,探索它的秘密吧!
二.導(dǎo)入新課。
1.觀察:幾幅圖片(出示圖片),觀察它們都有些什么共同特征.
強(qiáng)調(diào):對(duì)稱現(xiàn)象無處不在,從自然景觀到分子結(jié)構(gòu),從建筑物到藝術(shù)作品,?甚至日常生活用品,人們都可以找到對(duì)稱的例子.
練習(xí):從學(xué)生生活周圍的事物中來找一些具有對(duì)稱特征的例子.
3.如果一個(gè)圖形沿一直線折疊,直線兩旁的部分能夠互相重合,這個(gè)圖形就叫做軸對(duì)稱圖形,這條直線就是它的對(duì)稱軸.我們也說這個(gè)圖形關(guān)于這條直線(成軸)?對(duì)稱.
4.動(dòng)手操作:取一張質(zhì)地較硬的紙,將紙對(duì)折,并用小刀在紙的中央隨意。
刻出一個(gè)圖案,將紙打開后鋪平,你得到兩個(gè)成軸對(duì)稱的圖案了嗎?
歸納小結(jié):由此我們進(jìn)一步了解了軸對(duì)稱圖形的特征:一個(gè)圖形沿一條直線折疊后,折痕兩側(cè)的圖形完全重合.
5.練習(xí):你能找出它們的對(duì)稱軸嗎?分小組討論.
思考:大家想一想,你發(fā)現(xiàn)了什么?
小結(jié)得出:.像這樣,?把一個(gè)圖形沿著某一條直線折疊,如果它能夠與另一個(gè)圖形重合,那么就說這兩個(gè)圖形關(guān)于這條直線對(duì)稱,?這條直線叫做對(duì)稱軸,折疊后重合的點(diǎn)是對(duì)應(yīng)點(diǎn),叫做對(duì)稱點(diǎn).
三.隨堂練習(xí)。
1、課本60練習(xí)1、2。
四.課時(shí)小結(jié)。
分了軸對(duì)稱圖形和兩個(gè)圖形成軸對(duì)稱.
五.課后作業(yè)。
習(xí)題13.1.1、2、6題.
六.教后記。
華東師范八年級(jí)數(shù)學(xué)教案篇八
正比例函數(shù)的概念。
2、內(nèi)容解析。
一次函數(shù)是最基本的初等函數(shù),是初中函數(shù)學(xué)習(xí)的重要內(nèi)容,正比例函數(shù)是特殊的一次函數(shù),也是初中學(xué)生接觸到的第一種函數(shù),要通過對(duì)正比例函數(shù)內(nèi)容的學(xué)習(xí),為后續(xù)類比學(xué)習(xí)一般一次函數(shù)打好基礎(chǔ),了解研究函數(shù)的基本套路和方法,積累研究一般一次函數(shù)乃至其他各種函數(shù)的基本經(jīng)驗(yàn)。
對(duì)正比例函數(shù)概念的學(xué)習(xí),既要借助具體的函數(shù)進(jìn)一步加深對(duì)函數(shù)概念的理解,即實(shí)際問題的兩個(gè)變量中,當(dāng)一個(gè)變量變化時(shí),另一個(gè)變量隨著它的變化而變化,而且對(duì)于這個(gè)變量的每一個(gè)確定的值,另一個(gè)變量都有唯一確定的值與之對(duì)應(yīng),這是理解正比例函數(shù)的核心;也要加強(qiáng)對(duì)正比例函數(shù)基本特征的認(rèn)識(shí),即根據(jù)實(shí)際問題構(gòu)建的函數(shù)模型中,函數(shù)和自變量每一對(duì)對(duì)應(yīng)值的比值是一定的,等于比例系數(shù),反映在函數(shù)解析式上,這些函數(shù)都是常數(shù)與自變量的積的形式,這是正比例函數(shù)的基本特征。
本節(jié)課主要是通過對(duì)生活中大量實(shí)際問題的分析,寫出變量間的函數(shù)關(guān)系式,觀察比較概括出這些函數(shù)關(guān)系式具有的共同特征,根據(jù)共同特征抽象出正比例函數(shù)的基本模型,歸納得出正比例函數(shù)的概念,再用正比例函數(shù)的概念對(duì)具體函數(shù)進(jìn)行辨析,對(duì)實(shí)際事例進(jìn)行分析,根據(jù)已知條件寫出正比例函數(shù)的解析式。
基于以上分析,確定本節(jié)課的教學(xué)重點(diǎn):正比例函數(shù)的概念。
1、目標(biāo)。
(1)經(jīng)歷正比例函數(shù)概念的形成過程,理解正比例函數(shù)的概念;
(2)能根據(jù)已知條件確定正比例函數(shù)的解析式,體會(huì)函數(shù)建模思想。
2、目標(biāo)解析。
達(dá)成目標(biāo)(1)的標(biāo)志是:通過對(duì)實(shí)際問題的分析,知道自變量和對(duì)應(yīng)函數(shù)成正比例的特征,能概括抽象出正比例函數(shù)的概念。
達(dá)成目標(biāo)(2)的標(biāo)志是:能根據(jù)實(shí)際問題中的已知條件確定變量間的正比例函數(shù)關(guān)系式,將實(shí)際問題抽象為函數(shù)模型,體會(huì)函數(shù)建模思想。
正比例函數(shù)是是初中學(xué)生接觸到的第一種初等函數(shù),由于函數(shù)概念比較抽象,學(xué)生對(duì)函數(shù)基本概念理解未必深刻,在對(duì)實(shí)際問題進(jìn)行分析過程中,需進(jìn)一步強(qiáng)化對(duì)函數(shù)概念的理解:即實(shí)際問題的兩個(gè)變量中,當(dāng)一個(gè)變量變化時(shí),另一個(gè)變量隨著它的變化而變化,而且對(duì)于這個(gè)變量的`每一個(gè)確定的值,另一個(gè)變量都有唯一確定的值與之對(duì)應(yīng);對(duì)正比例函數(shù)概念的理解關(guān)鍵是對(duì)正比例函數(shù)基本特征的認(rèn)識(shí),要通過大量實(shí)例分析,寫出變量間的函數(shù)關(guān)系式,觀察比較發(fā)現(xiàn)這些函數(shù)具有的共同特征,即函數(shù)與自變量的每一對(duì)對(duì)應(yīng)值的比值一定,都等于自變量前的常數(shù),這些函數(shù)都是常數(shù)與自變量的積的形式,再根據(jù)共同特征抽象出正比例函數(shù)的基本模型,歸納得出正比例函數(shù)的概念。對(duì)正比例函數(shù)基本特征的認(rèn)識(shí)和正比例函數(shù)概念的抽象歸納過程學(xué)生有一定難度。
因此本節(jié)課的教學(xué)難點(diǎn)是:對(duì)正比例函數(shù)基本特征的認(rèn)識(shí)和正比例函數(shù)概念的抽象歸納過程。
華東師范八年級(jí)數(shù)學(xué)教案篇九
1.了解方差的定義和計(jì)算公式。
2.理解方差概念的產(chǎn)生和形成的過程。
3.會(huì)用方差計(jì)算公式來比較兩組數(shù)據(jù)的波動(dòng)大小。
1.重點(diǎn):方差產(chǎn)生的必要性和應(yīng)用方差公式解決實(shí)際問題。
2.難點(diǎn):理解方差公式。
3.難點(diǎn)的突破方法:
方差公式:s=[(-)+(-)+…+(-)]比較復(fù)雜,學(xué)生理解和記憶這個(gè)公式都會(huì)有一定困難,以致應(yīng)用時(shí)常常出現(xiàn)計(jì)算的錯(cuò)誤,為突破這一難點(diǎn),我安排了幾個(gè)環(huán)節(jié),將難點(diǎn)化解。
(1)首先應(yīng)使學(xué)生知道為什么要學(xué)習(xí)方差和方差公式,目的不明確學(xué)生很難對(duì)本節(jié)課內(nèi)容產(chǎn)生興趣和求知欲望。教師在授課過程中可以多舉幾個(gè)生活中的小例子,不如選擇儀仗隊(duì)隊(duì)員、選擇運(yùn)動(dòng)員、選擇質(zhì)量穩(wěn)定的電器等。學(xué)生從中可以體會(huì)到生活中為了更好的做出選擇判斷經(jīng)常要去了解一組數(shù)據(jù)的波動(dòng)程度,僅僅知道平均數(shù)是不夠的。
(2)波動(dòng)性可以通過什么方式表現(xiàn)出來?第一環(huán)節(jié)中點(diǎn)明了為什么去了解數(shù)據(jù)的波動(dòng)性,第二環(huán)節(jié)則主要使學(xué)生知道描述數(shù)據(jù),波動(dòng)性的方法??梢援嬚劬€圖方法來反映這種波動(dòng)大小,可是當(dāng)波動(dòng)大小區(qū)別不大時(shí),僅用畫折線圖方法去描述恐怕不會(huì)準(zhǔn)確,這自然希望可以出現(xiàn)一種數(shù)量來描述數(shù)據(jù)波動(dòng)大小,這就引出方差產(chǎn)生的必要性。
(3)第三環(huán)節(jié)教師可以直接對(duì)方差公式作分析和解釋,波動(dòng)大小指的是與平均數(shù)之間差異,那么用每個(gè)數(shù)據(jù)與平均值的差完全平方后便可以反映出每個(gè)數(shù)據(jù)的波動(dòng)大小,整體的波動(dòng)大小可以通過對(duì)每個(gè)數(shù)據(jù)的波動(dòng)大小求平均值得到。所以方差公式是能夠反映一組數(shù)據(jù)的波動(dòng)大小的一個(gè)統(tǒng)計(jì)量,教師也可以根據(jù)學(xué)生程度和課堂時(shí)間決定是否介紹平均差等可以反映數(shù)據(jù)波動(dòng)大小的其他統(tǒng)計(jì)量。
1.教材p125的討論問題的意圖:
(1).創(chuàng)設(shè)問題情境,引起學(xué)生的學(xué)習(xí)興趣和好奇心。
(2).為引入方差概念和方差計(jì)算公式作鋪墊。
(3).介紹了一種比較直觀的衡量數(shù)據(jù)波動(dòng)大小的方法——畫折線法。
(4).客觀上反映了在解決某些實(shí)際問題時(shí),求平均數(shù)或求極差等方法的'局限性,使學(xué)生體會(huì)到學(xué)習(xí)方差的意義和目的。
2.教材p154例1的設(shè)計(jì)意圖:
(1).例1放在方差計(jì)算公式和利用方差衡量數(shù)據(jù)波動(dòng)大小的規(guī)律之后,不言而喻其主要目的是及時(shí)復(fù)習(xí),鞏固對(duì)方差公式的掌握。
(2).例1的解題步驟也為學(xué)生做了一個(gè)示范,學(xué)生以后可以模仿例1的格式解決其他類似的實(shí)際問題。
除采用教材中的引例外,可以選擇一些更時(shí)代氣息、更有現(xiàn)實(shí)意義的引例。例如,通過學(xué)生觀看2004年奧運(yùn)會(huì)劉翔勇奪110米欄冠軍的錄像,進(jìn)而引導(dǎo)教練員根據(jù)平時(shí)比賽成績選擇參賽隊(duì)員這樣的實(shí)際問題上,這樣引入自然而又真實(shí),學(xué)生也更感興趣一些。
教材xxx例x在分析過程中應(yīng)抓住以下幾點(diǎn):
1.題目中“整齊”的含義是什么?說明在這個(gè)問題中要研究一組數(shù)據(jù)的什么?學(xué)生通過思考可以回答出整齊即波動(dòng)小,所以要研究兩組數(shù)據(jù)波動(dòng)大小,這一環(huán)節(jié)是明確題意。
2.在求方差之前先要求哪個(gè)統(tǒng)計(jì)量,為什么?學(xué)生也可以得出先求平均數(shù),因?yàn)楣街行枰骄?,這個(gè)問題可以使學(xué)生明確利用方差計(jì)算步驟。
3.方差怎樣去體現(xiàn)波動(dòng)大???
這一問題的提出主要復(fù)習(xí)鞏固方差,反映數(shù)據(jù)波動(dòng)大小的規(guī)律。
1.從甲、乙兩種農(nóng)作物中各抽取1株苗,分別測(cè)得它的苗高如下:(單位:cm)。
甲:9、10、11、12、7、13、10、8、12、8;。
乙:8、13、12、11、10、12、7、7、9、11;。
問:(1)哪種農(nóng)作物的苗長的比較高?
(2)哪種農(nóng)作物的苗長得比較整齊?
測(cè)試次數(shù)12345。
段巍1314131213。
金志強(qiáng)1013161412。
參考答案:1.(1)甲、乙兩種農(nóng)作物的苗平均高度相同;(2)甲整齊。
的成績比xx的成績要穩(wěn)定。
略。
華東師范八年級(jí)數(shù)學(xué)教案篇十
在推理判斷中得出同底數(shù)冪乘法的運(yùn)算法則,并掌握“法則”的應(yīng)用.2.過程與方法。
在小組合作交流中,培養(yǎng)協(xié)作精神、探究精神,增強(qiáng)學(xué)習(xí)信心.重、難點(diǎn)與關(guān)鍵。
1.重點(diǎn):同底數(shù)冪乘法運(yùn)算性質(zhì)的推導(dǎo)和應(yīng)用.2.難點(diǎn):同底數(shù)冪的乘法的法則的應(yīng)用.
一、創(chuàng)設(shè)情境,故事引入【情境導(dǎo)入】。
力一劈,把混沌的宇宙劈成兩半,上面是天,下面是地,從此宇宙有了天地之分,盤古完成了這樣一個(gè)壯舉,累死了,他的左眼變成了太陽,右眼變成了月亮,毛發(fā)變成了森林和草原,骨頭變成了高山和高原,肌肉變成了平原與谷地,血液變成了河流.
華東師范八年級(jí)數(shù)學(xué)教案篇十一
1、理解極差的定義,知道極差是用來反映數(shù)據(jù)波動(dòng)范圍的一個(gè)量.
2、會(huì)求一組數(shù)據(jù)的極差.
1、重點(diǎn):會(huì)求一組數(shù)據(jù)的極差.
2、難點(diǎn):本節(jié)課內(nèi)容較容易接受,不存在難點(diǎn)、
從表中你能得到哪些信息?
比較兩段時(shí)間氣溫的高低,求平均氣溫是一種常用的方法、
這是不是說,兩個(gè)時(shí)段的氣溫情況沒有什么差異呢?
根據(jù)兩段時(shí)間的氣溫情況可繪成的折線圖、
觀察一下,它們有區(qū)別嗎?說說你觀察得到的結(jié)果、
本節(jié)課在教材中沒有相應(yīng)的例題,教材p152習(xí)題分析。
問題1可由極差計(jì)算公式直接得出,由于差值較大,結(jié)合本題背景可以說明該村貧富差距較大、問題2涉及前一個(gè)學(xué)期統(tǒng)計(jì)知識(shí)首先應(yīng)回憶復(fù)習(xí)已學(xué)知識(shí)、問題3答案并不唯一,合理即可。
華東師范八年級(jí)數(shù)學(xué)教案篇十二
學(xué)會(huì)可化為一元一次方程或一元二次方程的分式方程的解法,會(huì)用去分母求方程的解、掌握解分式方程的一般步驟。
去分母法解可化為一元一次方程或一元二次方程的分式方程、驗(yàn)根的方法、
解分式方程的一般步驟。
1、什么叫分式方程?
2、解分式方程的基本思想:
分式方程整式方程。
3、解方程(學(xué)生板演)。
1、由上述學(xué)生的板演歸納出解分式方程的一般步驟。
(1)去分母:在方程的兩邊都乘以最簡公分母,化為整式方程;
(2)解這個(gè)整式方程;
2、范例講解。
(學(xué)生嘗試練習(xí)后,教師講評(píng))。
例1:解方程例2:解方程例3:解方程講評(píng)時(shí)強(qiáng)調(diào):
1、怎樣確定最簡公分母?(先將各分母因式分解)。
2、解分式方程的步驟、
鞏固練習(xí):p1471t,2t、
課堂小結(jié):解分式方程的一般步驟。
布置作業(yè):見作業(yè)本。
華東師范八年級(jí)數(shù)學(xué)教案篇十三
可化為一元二次方程的分式方程的解法.。
教學(xué)難點(diǎn):解分式方程,學(xué)生不容易理解為什么必須進(jìn)行檢驗(yàn).。
一、新課引入:
1.什么叫做分式方程?解可化為一元一次方程的分化方程的方法與步驟是什么?
2.解可化為一元一次方程的分式方程為什么要檢驗(yàn)?檢驗(yàn)的方法是什么?
3、產(chǎn)生增根的原因是什么?.。
二、新課講解:
華東師范八年級(jí)數(shù)學(xué)教案篇十四
1、掌握平行四邊形的判定定理1、2、3、4,并能與性質(zhì)定理、定義綜合應(yīng)用。
2、使學(xué)生理解判定定理與性質(zhì)定理的區(qū)別與聯(lián)系。
3、會(huì)根據(jù)簡單的條件畫出平行四邊形,并說明畫圖的依據(jù)是哪幾個(gè)定理。
1、通過“探索式試明法”開拓學(xué)生思路,發(fā)展學(xué)生思維能力。
2、通過教學(xué),使學(xué)生逐步學(xué)會(huì)分別從題設(shè)或結(jié)論出發(fā)尋求論證思路的分析方法,進(jìn)一步提高學(xué)生分析問題,解決問題的能力。
通過一題多解激發(fā)學(xué)生的學(xué)習(xí)興趣。
通過學(xué)習(xí),體會(huì)幾何證明的方法美。
構(gòu)造逆命題,分析探索證明,啟發(fā)講解。
1、教學(xué)重點(diǎn):平行四邊形的判定定理1、2、3的應(yīng)用。
2、教學(xué)難點(diǎn):綜合應(yīng)用判定定理和性質(zhì)定理。
(強(qiáng)調(diào)在求證平行四邊形時(shí)用判定定理在已知平行四邊形時(shí)用性質(zhì)定理)。
華東師范八年級(jí)數(shù)學(xué)教案篇十五
本節(jié)內(nèi)容的重點(diǎn)是線段垂直平分線定理及其逆定理.定理反映了線段垂直平分線的性質(zhì),是證明兩條線段相等的依據(jù);逆定理反映了線段垂直平分線的判定,是證明某點(diǎn)在某條直線上及一條直線是已知線段的垂直平分線的依據(jù).
本節(jié)內(nèi)容的難點(diǎn)是定理及逆定理的關(guān)系.垂直平分線定理和其逆定理,題設(shè)與結(jié)論正好相反.學(xué)生在應(yīng)用它們的時(shí)候,容易混淆,幫助學(xué)生認(rèn)識(shí)定理及其逆定理的區(qū)別,這是本節(jié)的難點(diǎn).
本節(jié)課教學(xué)模式主要采用“學(xué)生主體性學(xué)習(xí)”的教學(xué)模式.提出問題讓學(xué)生想,設(shè)計(jì)問題讓學(xué)生做,錯(cuò)誤原因讓學(xué)生說,方法與規(guī)律讓學(xué)生歸納.教師的作用在于組織、點(diǎn)撥、引導(dǎo),促進(jìn)學(xué)生主動(dòng)探索,積極思考,大膽想象,總結(jié)規(guī)律,充分發(fā)揮學(xué)生的主體作用,讓學(xué)生真正成為教學(xué)活動(dòng)的主人.具體說明如下:
學(xué)生前面,學(xué)習(xí)過線段垂直平分線的概念,這樣由復(fù)習(xí)概念入手,順其自然提出問題:在垂直平分線上任取一點(diǎn)p,它到線段兩端的距離有何關(guān)系?學(xué)生會(huì)很容易得出“相等”.然后學(xué)生完成證明,找一名學(xué)生的證明過程,進(jìn)行投影總結(jié).最后,由學(xué)生將上述問題,用文字的形式進(jìn)行歸納,即得線段垂直平分線定理.這樣讓學(xué)生親自動(dòng)手實(shí)踐,積極參與發(fā)現(xiàn),激發(fā)了學(xué)生的認(rèn)識(shí)沖突,使學(xué)生克服思維和探求的惰性,獲得鍛煉機(jī)會(huì),對(duì)定理的產(chǎn)生過程,真正做到心領(lǐng)神會(huì).
線段垂直平分線的定理及逆定理的證明都比較簡單,學(xué)生學(xué)習(xí)一般沒有什么困難,這一節(jié)的難點(diǎn)仍然的定理及逆定理的關(guān)系,為了很好的突破這一難點(diǎn),教學(xué)時(shí)采用與角的平分線的性質(zhì)定理和逆定理對(duì)照,類比的方法進(jìn)行教學(xué),使學(xué)生進(jìn)一步認(rèn)識(shí)這兩個(gè)定理的區(qū)別和聯(lián)系.
華東師范八年級(jí)數(shù)學(xué)教案篇十六
基礎(chǔ)知識(shí)。
記住圓明園被燒毀,主權(quán)進(jìn)一步喪失,領(lǐng)土被大量割占的恥辱。
能力訓(xùn)練。
過程方法綜合理解。
識(shí)圖填圖新學(xué)案91頁第三題:沙俄割占我國領(lǐng)土及其條約名稱。
情感、態(tài)度。
思想意識(shí)要繼承并發(fā)揚(yáng)中華民族堅(jiān)決反抗外來侵略的光榮傳統(tǒng)。
教學(xué)重點(diǎn)第二次鴉片戰(zhàn)爭的發(fā)生以及列強(qiáng)侵華的罪行。
教學(xué)難點(diǎn)第二次鴉片戰(zhàn)爭與太平天國運(yùn)動(dòng)的關(guān)系。
教學(xué)過程。
導(dǎo)入新課。
組織學(xué)生回顧新學(xué)案第2頁的“知識(shí)網(wǎng)絡(luò)”,討論回答問題:
1.第一次鴉片戰(zhàn)爭《南京條約》的簽定,給中國帶來什么后果?(割讓香港島使中國領(lǐng)土主權(quán)不完整;巨額賠款,增加了人民負(fù)擔(dān);開放五口通商和協(xié)定關(guān)稅,有利于資本主義國家對(duì)中國的商品輸出。結(jié)果,中國開始淪為半殖民地半封建社會(huì)。)。
2.列強(qiáng)是否滿足已經(jīng)得到的利益?(不滿足)。
小結(jié)、過渡:《南京條約》使侵略者攫取了許多利益、中國遭受到了沉重的災(zāi)難,列強(qiáng)并沒有滿足貪婪的欲望,想要通過修訂條約來擴(kuò)大權(quán)益。遭到清政府拒絕后,他們便找借口發(fā)動(dòng)戰(zhàn)爭,想要迫使清政府就范。由于這場(chǎng)戰(zhàn)爭是上一次戰(zhàn)爭的繼續(xù),所以它被叫做第二次鴉片戰(zhàn)爭。
組織學(xué)生學(xué)習(xí)和探究新課。
一、火燒圓明園。
教師介紹圓明園建筑的宏偉和精美,組織學(xué)生看、說、議。
學(xué)生閱讀6——7頁的本目課文、插圖、資料和第10頁“自由閱讀卡”內(nèi)容,根據(jù)教師的提問在書上劃出或標(biāo)注答案。
1、看過電影《火燒圓明園》的同學(xué)請(qǐng)舉手。誰能結(jié)合課文內(nèi)容揭發(fā)列強(qiáng)的罪行?(掠奪珍寶,焚燒罪證)。
2、哪那兩位同學(xué)愿意扮演當(dāng)年的英國兵和法國兵?(背景是火燒圓明園后,他們?cè)趥惗刂胤甑哪骋惶?請(qǐng)他們通過對(duì)話,表示一種懺悔的心情。
二、俄國侵占我國大片領(lǐng)土。
學(xué)生閱讀7——8頁的本目課文和表格、地圖,隨堂練習(xí):
1、學(xué)生先根據(jù)第8頁表格,在4人小組內(nèi)“動(dòng)腦筋”:沙俄通過哪些不等條約割占我國北方哪些領(lǐng)土?(說出大致位置和面積)。
2、學(xué)生完成新學(xué)案第7頁[自我測(cè)評(píng)]第二題“知識(shí)聯(lián)線”:([數(shù)字]表示相應(yīng)的地理位置)。
(1)——[4];(2)——[1];(3)——[2];(4)——[3]。
3、學(xué)生完成課本第9頁“練一練”。(答案應(yīng)選c)。
三、太平軍抗擊洋槍隊(duì)。
學(xué)生閱讀第9頁本目課文和“插圖”以及“說明文字”,思考回答:
太平軍的斗爭,說明中國人民怎樣對(duì)待國內(nèi)的腐敗政府和外國的侵略勢(shì)力?(“落后就要挨打”是中國在鴉片戰(zhàn)爭中失敗的根本原因和深刻的歷史教訓(xùn)。所以,要想改變落后挨打的命運(yùn),就必須-國內(nèi)的腐敗政府,堅(jiān)決抗擊外來的野蠻侵略。)。
如時(shí)間許可,鞏固小結(jié)。
1、指導(dǎo)學(xué)生根據(jù)[知識(shí)網(wǎng)絡(luò)]梳理本課線索。
2、布置作業(yè)。
3、提醒學(xué)生預(yù)習(xí)第3課《收復(fù)x疆》。
華東師范八年級(jí)數(shù)學(xué)教案篇十七
教學(xué)目標(biāo):
1、知道一次函數(shù)與正比例函數(shù)的意義.
2、能寫出實(shí)際問題中正比例關(guān)系與一次函數(shù)關(guān)系的解析式.
3、滲透數(shù)學(xué)建模的思想,使學(xué)生體會(huì)到數(shù)學(xué)的抽象性和廣泛的應(yīng)用性.
4、激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,培養(yǎng)學(xué)生分析問題、解決問題的能力.
教學(xué)重點(diǎn):對(duì)于一次函數(shù)與正比例函數(shù)概念的理解.
教學(xué)難點(diǎn):根據(jù)具體條件求一次函數(shù)與正比例函數(shù)的解析式.
教學(xué)方法:結(jié)構(gòu)教學(xué)法、以學(xué)生“再創(chuàng)造”為主的教學(xué)方法。
教學(xué)過程:
1、復(fù)習(xí)舊課。
前面我們學(xué)習(xí)了函數(shù)的相關(guān)知識(shí),(教師在黑板上畫出本章結(jié)構(gòu)并讓學(xué)生說出前三。
2、引入新課。
就象以前我們學(xué)習(xí)方程、一元一次方程;不等式、一元一次不等式的內(nèi)容時(shí)一樣,我們?cè)趯W(xué)習(xí)了函數(shù)這個(gè)概念以后,要學(xué)習(xí)一些具體的函數(shù),今天我們要學(xué)習(xí)的是一次函數(shù).顧名思義,誰能根據(jù)一次函數(shù)這個(gè)名字,類比一元一次方程、一元一次不等式的概念能舉出一些一次函數(shù)的例子?(學(xué)生完全具備這種類比的能力,所以要快、不要耽誤太多時(shí)間叫幾個(gè)同學(xué)回答就可以了.教師將學(xué)生的正確的例子寫在黑板上)。
這些函數(shù)有什么共同特點(diǎn)呢?(注意根據(jù)學(xué)生情況適當(dāng)引導(dǎo),看能否歸納出一般結(jié)果.)不難看出函數(shù)都是用自變量的一次式表示的,可以寫成()的形式.一般地,如果(是常數(shù),)(括號(hào)內(nèi)用紅字強(qiáng)調(diào))那么y叫做x的一次函數(shù).特別地,當(dāng)b=0時(shí),一次函數(shù)就成為(是常數(shù),)。
3、例題講解。
例1、某油管因地震破裂,導(dǎo)致每分鐘漏出原油30公升。
(1)如果x分鐘共漏出y公升,寫出y與x之間的函數(shù)關(guān)系式。
(2)破裂3.5小時(shí)后,共漏出原油多少公升。
分析:y與x成正比例。
解:(1)(2)(升)。
例2、小丸子的存折上已經(jīng)有500元存款了,從現(xiàn)在開始她每個(gè)月可以得到150元的零用錢,小丸子計(jì)劃每月將零用錢的60%存入銀行,用以購買她期盼已久的cd隨身聽(價(jià)值1680元)。
(1)列出小丸子的銀行存款(不計(jì)利息)y與月數(shù)x的函數(shù)關(guān)系式;。
(2)多長時(shí)間以后,小丸子的銀行存款才能買隨身聽?
分析:銀行存款數(shù)由兩部分構(gòu)成:原有的存款500元,后存入的零用錢。
例3、已知函數(shù)是正比例函數(shù),求的值。
分析:本題考察的是正比例函數(shù)的概念。
解:
4、小結(jié)。
由學(xué)生對(duì)本節(jié)課知識(shí)進(jìn)行總結(jié),教師板書即可.
5、布置作業(yè)。
書面作業(yè):1、書后習(xí)題2、自己寫出一個(gè)實(shí)際中的一次函數(shù)的例子并進(jìn)行討論。
華東師范八年級(jí)數(shù)學(xué)教案篇十八
1.了解算術(shù)平方根的概念,會(huì)用根號(hào)表示正數(shù)的算術(shù)平方根,并了解算術(shù)平方根的非負(fù)性。
2.了解開方與乘方互為逆運(yùn)算,會(huì)用平方運(yùn)算求某些非負(fù)數(shù)的算術(shù)平方根。
算術(shù)平方根的概念。
根據(jù)算術(shù)平方根的概念正確求出非負(fù)數(shù)的算術(shù)平方根。
這就要用到平方根的概念,也就是本章的主要學(xué)習(xí)內(nèi)容.這節(jié)課我們先學(xué)習(xí)有關(guān)算術(shù)平方根的概念.
1、提出問題:(書p68頁的問題)
你是怎樣算出畫框的邊長等于5dm的呢?(學(xué)生思考并交流解法)
這個(gè)問題相當(dāng)于在等式擴(kuò)=25中求出正數(shù)x的值.
一般地,如果一個(gè)正數(shù)x的平方等于a,即=a,那么這個(gè)正數(shù)x叫做a的算術(shù)平方根.a的算術(shù)平方根記為,讀作根號(hào)a,a叫做被開方數(shù).規(guī)定:0的算術(shù)平方根是0.
也就是,在等式=a (x0)中,規(guī)定x = .
2、試一試:你能根據(jù)等式:=144說出144的算術(shù)平方根是多少嗎?并用等式表示出來.
3、想一想:下列式子表示什么意思?你能求出它們的值嗎?
建議:求值時(shí),要按照算術(shù)平方根的意義,寫出應(yīng)該滿足的關(guān)系式,然后按照算術(shù)平方根的記法寫出對(duì)應(yīng)的值.例如表示25的算術(shù)平方根。
4、例1求下列各數(shù)的算術(shù)平方根:
(1)100;(2)1;(3) ;(4)0.0001
p69練習(xí)1、2
怎樣用兩個(gè)面積為1的小正方形拼成一個(gè)面積為2的大正方形?
方法1:課本中的方法,略;
方法2:
可還有其他方法,鼓勵(lì)學(xué)生探究。
問題:這個(gè)大正方形的邊長應(yīng)該是多少呢?
大正方形的邊長是,表示2的算術(shù)平方根,它到底是個(gè)多大的數(shù)?你能求出它的值嗎?
建議學(xué)生觀察圖形感受的大小.小正方形的對(duì)角線的長是多少呢?(用刻度尺測(cè)量它與大正方形的邊長的大小)它的近似值我們將在下節(jié)課探究.
1、這節(jié)課學(xué)習(xí)了什么呢?
2、算術(shù)平方根的具體意義是怎么樣的?
3、怎樣求一個(gè)正數(shù)的算術(shù)平方根
p75習(xí)題13.1活動(dòng)第1、2、3題
華東師范八年級(jí)數(shù)學(xué)教案篇十九
《正方形》這節(jié)課是九年義務(wù)教育人教版數(shù)學(xué)教材八年級(jí)下冊(cè)第十九章第二節(jié)的內(nèi)容??v觀整個(gè)初中教材,《正方形》是在學(xué)生掌握了平行線、三角形、平行四邊形、矩形、菱形等有關(guān)知識(shí)及簡單圖形的平移和旋轉(zhuǎn)等平面幾何知識(shí),并且具備有初步的觀察、操作等活動(dòng)經(jīng)驗(yàn)的基礎(chǔ)上出現(xiàn)的。既是前面所學(xué)知識(shí)的延續(xù),又是對(duì)平行四邊形、菱形、矩形進(jìn)行綜合的不可缺少的重要環(huán)節(jié)。
本節(jié)課的重點(diǎn)是正方形的概念和性質(zhì),難點(diǎn)是理解正方形與平行四邊形、矩形、菱形之間的內(nèi)在聯(lián)系。根據(jù)大綱要求,本節(jié)課制定了知識(shí)、能力、情感三方面的目標(biāo)。
(一)知識(shí)目標(biāo):
1、要求學(xué)生掌握正方形的概念及性質(zhì);
2、能正確運(yùn)用正方形的性質(zhì)進(jìn)行簡單的計(jì)算、推理、論證;
(二)能力目標(biāo):
1、通過本節(jié)課培養(yǎng)學(xué)生觀察、動(dòng)手、探究、分析、歸納、總結(jié)等能力;
2、發(fā)展學(xué)生合情推理意識(shí),主動(dòng)探究的習(xí)慣,逐步掌握說理的基本方法;
(三)情感目標(biāo):
1、讓學(xué)生樹立科學(xué)、嚴(yán)謹(jǐn)、理論聯(lián)系實(shí)際的良好學(xué)風(fēng);
2、培養(yǎng)學(xué)生互相幫助、團(tuán)結(jié)協(xié)作、相互討論的團(tuán)隊(duì)精神;
3、通過正方形圖形的完美性,培養(yǎng)學(xué)生品格的完美性。
該段學(xué)生具有一定的獨(dú)立思考和探究的能力,但語言表達(dá)能力方面稍有欠缺,所以在本節(jié)課的教學(xué)過程中,特意設(shè)計(jì)了讓學(xué)生自己組織語言培養(yǎng)說理能力,讓學(xué)生們能逐步提高。
針對(duì)本節(jié)課的特點(diǎn),采用"實(shí)踐--觀察--總結(jié)歸納--運(yùn)用"為主線的教學(xué)方法。
通過學(xué)生動(dòng)手,采取幾種不同的方法構(gòu)造出正方形,然后引導(dǎo)學(xué)生探究正方形的概念。通過觀察、討論、歸納、總結(jié)出正方形性質(zhì)定理,最后以課堂練習(xí)加以鞏固定理,并通過一道拔高題對(duì)定義、性質(zhì)理解、鞏固加以升華。
本節(jié)課重點(diǎn)是從培養(yǎng)學(xué)生探索精神和分析歸納總結(jié)能力為出發(fā)點(diǎn),著重指導(dǎo)學(xué)生動(dòng)手、觀察、思考、分析、總結(jié)得出結(jié)論。在小組討論中通過互相學(xué)習(xí),讓學(xué)生體驗(yàn)合作學(xué)習(xí)的樂趣。
第一環(huán)節(jié):相關(guān)知識(shí)回顧。
以提問的形式復(fù)習(xí)平行四邊形、矩形、菱形的定義及性質(zhì)之后,引導(dǎo)學(xué)生發(fā)現(xiàn)矩形、菱形的實(shí)質(zhì)是由平行四邊形角度、邊長的變化得到的。并啟發(fā)學(xué)生考慮,若這兩種變化同時(shí)發(fā)生在平行四邊形上,則會(huì)得到什么樣的圖形?讓學(xué)生們通過手上的學(xué)具演示以上兩種變化,從而得出結(jié)論。
第二環(huán)節(jié):新課講解通過學(xué)生們的發(fā)現(xiàn)引出課題“正方形”
1、正方形的定義:引導(dǎo)學(xué)生說出自己變化出正方形的過程,并再次利用課件形象演示出由平行四邊形的邊、角的變化演變出正方形的過程。請(qǐng)同學(xué)們舉手發(fā)言,歸納總結(jié)出正方形定義:一組鄰邊相等,且一個(gè)角是直角的平行四邊形是正方形。再由此定義啟發(fā)學(xué)生們發(fā)現(xiàn)正方形的三個(gè)必要條件,并且由這三個(gè)條件通過重新組合即一組鄰邊相等與平行四邊形組成菱形再加上一個(gè)角是直角可得到正方形的另兩個(gè)定義:一個(gè)角是直角的菱形是正方形;一組鄰邊相等的矩形是正方形。此內(nèi)容借助課件演示其變化過程,進(jìn)一步啟發(fā)學(xué)生發(fā)現(xiàn),正方形既是特殊的菱形,又是特殊的矩形,從而總結(jié)出正方形的性質(zhì)。
2、正方形的性質(zhì)定理1:正方形的四個(gè)角都是直角,四條邊都相等;
定理2:正方形的兩條對(duì)角線相等,并且互相垂直、平分,每條對(duì)角線平分一組對(duì)角。
以上是對(duì)正方形定義和性質(zhì)的學(xué)習(xí),之后是進(jìn)行例題講解。
4、課堂練習(xí):第一部分采用三道有關(guān)正方形的周長、面積、對(duì)角線、邊長計(jì)算的填空題,目的是對(duì)正方形性質(zhì)的進(jìn)一步理解,并考察學(xué)生掌握的情況。
第二部分是選擇題,通過體現(xiàn)生活中實(shí)際問題,來提升學(xué)生所學(xué)的知識(shí),并加以綜合練習(xí),提高他們的綜合素質(zhì),使他們充分認(rèn)識(shí)到數(shù)學(xué)實(shí)質(zhì)是來源于生活并要服務(wù)于生活。
5、課堂小結(jié):此環(huán)節(jié)我是通過圖框的形式小結(jié)正方形和前階段所學(xué)特殊四邊形之間的內(nèi)在聯(lián)系,通過對(duì)所學(xué)幾種四邊形內(nèi)在聯(lián)系體現(xiàn)正方形完美的本質(zhì),渲染學(xué)生們應(yīng)追求象正方形一樣方正的品質(zhì),從而要努力學(xué)習(xí)以豐富的知識(shí)充實(shí)自己,達(dá)到理想中的完美。
6、作業(yè)設(shè)計(jì):作業(yè)是教材159頁,第12、14兩小道證明題,通過此作業(yè)讓同學(xué)們進(jìn)一步鞏固有關(guān)正方形的知識(shí)。
華東師范八年級(jí)數(shù)學(xué)教案篇二十
教學(xué)目標(biāo):
1、知識(shí)目標(biāo):了解圖案最常見的構(gòu)圖方式:軸對(duì)稱、平移、旋轉(zhuǎn)……,理解簡單圖案設(shè)計(jì)的意圖。認(rèn)識(shí)和欣賞平移,旋轉(zhuǎn)在現(xiàn)實(shí)生活中的應(yīng)用,能夠靈活運(yùn)用軸對(duì)稱、平移、旋轉(zhuǎn)的組合,設(shè)計(jì)出簡單的圖案。
2、能力目標(biāo):經(jīng)歷收集、欣賞、分析、操作和設(shè)計(jì)的過程,培養(yǎng)學(xué)生收集和整理信息的能力,分析和解決問題的能力,合作和交流的能力以及創(chuàng)新能力。
3、情感體驗(yàn)點(diǎn):經(jīng)歷對(duì)典型圖案設(shè)計(jì)意圖的分析,進(jìn)一步發(fā)展學(xué)生的空間觀念,增強(qiáng)審美意識(shí),培養(yǎng)學(xué)生積極進(jìn)取的生活態(tài)度。
重點(diǎn)與難點(diǎn):
重點(diǎn):靈活運(yùn)用軸對(duì)稱、平移、旋轉(zhuǎn)……等方法及它們的組合進(jìn)行的圖案設(shè)計(jì)。
難點(diǎn):分析典型圖案的設(shè)計(jì)意圖。
疑點(diǎn):在設(shè)計(jì)的圖案中清晰地表現(xiàn)自己的設(shè)計(jì)意圖。
教具學(xué)具準(zhǔn)備:
提前一周布置學(xué)生以小組為單位,通過各種渠道收集到的圖案、圖標(biāo)的剪貼、臨摹以及。多種常見的圖案及其形成過程的動(dòng)畫演示。
教學(xué)過程設(shè)計(jì):
1、情境導(dǎo)入:在優(yōu)美的音樂中,逐個(gè)展示生活中常見的典型圖案,并讓學(xué)生試著說一說每種圖案標(biāo)志的對(duì)象。(展示課本圖3—23)。
明確在欣賞了圖案后,簡單地復(fù)習(xí)旋轉(zhuǎn)的概念,為下面圖案的設(shè)計(jì)作好理論準(zhǔn)備。對(duì)教材給出的六個(gè)圖案通過觀察、分析進(jìn)行議論交流,讓學(xué)生初步了解圖案的設(shè)計(jì)中常常運(yùn)用圖形變換的思想方法,為學(xué)生自己設(shè)計(jì)圖案指明方向。其中圖(1)、(2)、(3)、(4)、(5)、(6)都可以通過旋轉(zhuǎn)適合角度形成(可以讓學(xué)生自己說說每個(gè)旋轉(zhuǎn)的角度和旋轉(zhuǎn)的次數(shù)及旋轉(zhuǎn)中心的位置),另外圖(2)、(3)、(5)也可以通過軸對(duì)稱變換形成(可以讓學(xué)生指出對(duì)軸對(duì)稱及對(duì)稱軸的條數(shù)),而圖(2)可以通過平移形成。
2、課本。
1欣賞課本75頁圖3—24的圖案,并分析這個(gè)圖案形成過程。
評(píng)注:圖案是密鋪圖案的代表,旨在通過對(duì)典型圖案的分析欣賞,使學(xué)生逐步能夠進(jìn)行圖案設(shè)計(jì),同時(shí)了解軸對(duì)稱、平移、旋轉(zhuǎn)變換是圖案制作的基本手段。例題解答的關(guān)鍵是確定“基本圖案”,然后再運(yùn)用平移、旋轉(zhuǎn)關(guān)系加以說明,注意旋轉(zhuǎn)中心可以為圖形上某一特征的點(diǎn)。
評(píng)注:可以取其中的任何一個(gè)為基本圖案,然后通過變換得到。而且變化方式也可以是:左下角的圖案通過軸對(duì)稱變換得到左上圖和右下圖。
(二)課內(nèi)練習(xí)。
(1)以小組為單位,由每組指定一個(gè)同學(xué)展示該組搜集得到的圖案,并在全班交流。
(2)利用下面提供的基本圖形,用平移、旋轉(zhuǎn)、軸對(duì)稱、中心對(duì)稱等方法進(jìn)行圖案設(shè)計(jì),并簡要說明自己的設(shè)計(jì)意圖。
(三)議一議。
生活中還有那些圖案用到了平移或旋轉(zhuǎn)?分析其中的一個(gè),并與同伴進(jìn)行交流。
(四)課時(shí)小結(jié)。
本課時(shí)的重點(diǎn)是了解平移、旋轉(zhuǎn)和軸對(duì)稱變換是圖案設(shè)計(jì)的基本方法,并能運(yùn)用這些變換設(shè)計(jì)出一些簡單的圖案。
通過今天的學(xué)習(xí),你對(duì)圖案的設(shè)計(jì)又增加了哪些新的認(rèn)識(shí)?(可以利用平移、旋轉(zhuǎn)、軸對(duì)稱等多種方法來設(shè)計(jì),而且設(shè)計(jì)的圖案要能表達(dá)自己的創(chuàng)作意圖,再就是圖案的設(shè)計(jì)一定要新穎,獨(dú)特,這樣才能使人過目不忘,達(dá)到標(biāo)志的效果。)。
進(jìn)一步搜集身邊的各種標(biāo)志性圖案,嘗試著重新設(shè)計(jì)它,并結(jié)合實(shí)際背景分析它的設(shè)計(jì)意圖。
華東師范八年級(jí)數(shù)學(xué)教案篇二十一
2、范例講解。
(學(xué)生嘗試練習(xí)后,教師講評(píng))。
例1:解方程例2:解方程例3:解方程講評(píng)時(shí)強(qiáng)調(diào):
1、怎樣確定最簡公分母?(先將各分母因式分解)。
2、解分式方程的步驟、
鞏固練習(xí):p1471t,2t、
課堂小結(jié):解分式方程的一般步驟。
布置作業(yè):見作業(yè)本。
【本文地址:http://mlvmservice.com/zuowen/9240273.html】