數(shù)學三角形的內(nèi)角和教案范文(18篇)

格式:DOC 上傳日期:2023-11-08 06:24:10
數(shù)學三角形的內(nèi)角和教案范文(18篇)
時間:2023-11-08 06:24:10     小編:飛雪

教案的編制需要充分考慮學生的學習特點和需求,注重激發(fā)學生的學習興趣和主動性。教案的編寫還可以結合學生的實際需求和興趣,引導他們主動參與學習。接下來是一些編寫精良的教案范本,有助于提高教學質量。

數(shù)學三角形的內(nèi)角和教案篇一

1、掌握三角形內(nèi)角和是180°,并能應用這一規(guī)律解決一些實際問題。

2、讓學生經(jīng)歷“猜想、動手操作、直觀感知、探索、歸納、應用”等知識形成的過程,掌握“轉化”的數(shù)學思想方法,培養(yǎng)學生動手實踐能力,發(fā)展學生的空間思維能力。

3、在活動中,讓學生體驗主動探究數(shù)學規(guī)律的樂趣,體驗數(shù)學的價值,激發(fā)學生學習數(shù)學的熱情,同時使學生養(yǎng)成獨立思考的好習慣。

讓學生經(jīng)歷“三角形內(nèi)角和是180度”這一知識的形成、發(fā)展和應用的全過程。

三角形內(nèi)角和的探索與驗證。

量角器 各種類型的三角形(硬的紙板) 三角板

一、設疑激趣,導入新課

師:今天老師給大家?guī)砹艘晃慌笥?課件)出示三角形,

師:對于三角形你有哪些認識與了解。

生:三角形有銳角三角形、直角三角形、鈍角三角形

生:由三條線段圍成的平面圖形叫三角形。

師:介紹內(nèi)角、內(nèi)角和

三角形中每兩條邊組成的角叫做三角形的內(nèi)角。

師:三角形有幾個內(nèi)角。

生:三個。

師:這三個角的和,就叫做三角形的內(nèi)角和。你知道三角形內(nèi)角和是多少度?

生1:我通過直角三角板知道的

生3:我預習了,三角形內(nèi)角和就是180度)

師:是不是向他們說的一樣,所有的三角形內(nèi)角和都是180度呢?

二、自主探索,進行驗證

師:你打算怎樣驗證呢?

生1用量角器量出每個角的度數(shù),再加一加看看是不是180度 生2:把三角形撕下來

生3:把三個角順次畫下來也可以

生4:拼一拼的方法

師:好!同學們想出了這么多辦法,下面就用你喜歡的方法驗證 師:cai多媒體課件展示操作要求:

合作探究:

1、每四人一組,每組至少選兩個三角形,用你喜歡的方法驗證

2、看那個小組驗證的方法新、方法多

師:在巡視,并進行個別操作指導

三、交流探索的方法和結果

孩子們探索的方法可能有三個:

生1:一是用量角器量各個角,然后再算出三角形中三個角的度數(shù)和,用這種方法求的結果可能是180度也可能比180度小一些,也可能比180度大一些。

生2:二是用轉化法,把三角形中三個角剪下來,拼在一起成為一個平角,由此得出三角形中三個角的和是180度。

生3:三是折一折,把三個角折在一起,折在一起成為一個平角,由此得出三角形中三個角的和是180度。

四、歸納總結,體驗成功

師:孩子們,三角形中三個角的度數(shù)和到底是多少度呢?

生:180度。

五、拓展應用

1、基礎練習

2、等邊三角形、等腰三角形、直角三角形

六、課堂小結

談一談自己的學習收獲。

數(shù)學三角形的內(nèi)角和教案篇二

《三角形的內(nèi)角和》教材是先讓學生通過計算三角尺得個內(nèi)角的度數(shù)和,激發(fā)學生好奇心,進而引發(fā)學生猜想:其他三角形的內(nèi)角和也是180度嗎?再通過組織操作活動驗證猜想,得出結論。根據(jù)這樣的教材安排,本課的重點也就應放在“三角形內(nèi)角和是180度”的探索上,讓學生在探索中深入理解得出過程。針對教材的如此安排,我也設計了如下的開放的課堂預設:

1、要知道我們猜測的是否正確,你有什么辦法驗證呢?

先獨立思考,有想法了在小組里交流。

生一:我們組根據(jù)剛才三角板的內(nèi)角和是三個角的度數(shù)加起來得出的,所以,我們就用量角器量出了三個角的度數(shù),再加起來。

學生說出了測量的度數(shù)相加,雖然不是很精確180度,量的過程中有點誤差,得到了在180度左右。

生二:我們組是把銳角三角形的三個角跟書上一樣去折,折在一起發(fā)現(xiàn)正好是個平角,所以我們發(fā)現(xiàn)銳角三角形內(nèi)角和也是180度。(及時表揚了能主動預習的好習慣。)。

生三:我們組把鈍角三角形跟剛才一組一樣,折在一起,發(fā)現(xiàn)也能拼成一個平角,所以鈍角三角形的內(nèi)角和也是180度。

生四:我們組研究的是直角三角形,跟上面兩組的同學一樣折在一起,三個角拼起來也是一個平角,所以直角三角形的內(nèi)角和也是180度。

生五:我們也是折的,但我們沒有把三個角折在一起,而是把兩個小的角折到直角那里發(fā)現(xiàn)兩個銳角合起來正好與直角三角形的直角重合,圖形也就成了一個長方形,兩個銳角的和是90度再加個直角也就是180度。

也有同學提出了采用了減下角再拼的方法。

以上這個小片段,雖然在孩子們表述中沒這么流利,完整,但卻是他們最真實的發(fā)現(xiàn),這堂課上下來,感覺收獲很大。

自己感覺這節(jié)課的設計上把握了學生學習起點與心理,遵循了教材讓學生先猜想再驗證的思路,從學生已有的知識背景出發(fā),為他們提供了重復粉從事數(shù)學活動的時間和交流機會。學生思考著,討論著,交流著,感悟著,在這一過程中,學生不僅掌握了知識,尋求到了解決問題的方法,更重要的是在交流中,學生的語言表達能力也得到了很大的增強。

數(shù)學三角形的內(nèi)角和教案篇三

“三角形內(nèi)角和”是人教版數(shù)學四年級下冊的一節(jié)探索與發(fā)現(xiàn)課,讓學生在學習了三角形的特征、高以及三角形分類的基礎上,進一步研究三角形三個角的關系。本節(jié)課學生對知識點的掌握還不錯,但是,這一節(jié)課還有很多不足之處,需要加以改進:

1、教學設計不錯,環(huán)節(jié)緊湊,思路清晰。

2、重視操作過程,時間把握得好。本節(jié)課用了大量的時間來讓學生做小組實驗,從而讓他們自己感知三角形內(nèi)角和是180°,印象深刻。

3、能注意前后照應,解決了前面的疑問。在講授新課前,設置一個疑問“為什么同一個三角形不能有兩個直角?”以此來吸引學生,找出三角形內(nèi)角和的特性。在掌握了三角形內(nèi)角和是180°后,再次把問題提出來,讓學生解決。

4、板書巧妙,一步步引入課題。先是讓學生復習“三角形”的定義,接著簡單說明什么是“三角形內(nèi)角”,最后再講授三角形三個內(nèi)角度數(shù)的和叫做“三角形內(nèi)角和”。

5、課堂紀律好,氣氛活躍,學生踴躍積極。學生在小組活動時,活躍而有序,上課時能認真聽講,積極舉手。同時,實行小組評價更是發(fā)揮了學生的主動性。

6、求三角形內(nèi)角和的方法,一個比一個直觀、生動。從量一量、算一算,到剪一剪、折一折,讓學生更容易感受到三角形內(nèi)角和是180°。

7、練習題設計得比較好,特別是判斷題,都是學生平時容易出錯的題目,在課堂上用比較直觀的課件顯示出來,讓學生的印象深刻。組合題也很有靈活性,先是找出能組成三角形的度數(shù),然后根據(jù)度數(shù)判斷出是什么三角形。

8、能尊重學生的意見,有的小組沒有在算一算的時候,沒有得出180°的結果,老師能夠分析其中的原因。

1、在老師給出“畫有2個內(nèi)角是直角的三角形”的任務時,學生明顯是畫不出來。但是教師也可以把學生失敗的作品展示出來,照應之后的講解。而不能一帶而過。

2、如果量一量的方法,不能讓人信服,要在后面打個“?”,等到解決疑問后,再去掉。

3、在進行剪一剪、折一折的活動時,老師應該先用板書上的三角形來示范一次,告訴學生應該怎么做。因為有些學生折不出來。拼的時候,也有出錯。

4、把三角形拼成平角后,要用直尺或者是量角器測量一下,看看得出的圖形是不是平角,要用嚴謹?shù)膽B(tài)度對待,不能光用眼睛來判斷。

5、老師注意提醒學生讀題的時候要規(guī)范,要讀出度數(shù)單位,這很好。但是,在做題練習時,應該請一兩個學生在黑板上做,這樣也便于教師提醒學生,在書寫時,也要注意寫上度數(shù)單位,強調(diào)格式。

數(shù)學三角形的內(nèi)角和教案篇四

遵循由特殊到一般的規(guī)律進行探究活動是這節(jié)課設計的主要特點之一?!稊?shù)學課程標準》指出,讓學生學習有價值的數(shù)學,讓學生帶著問題、帶著自己的思想、自己的思維進入數(shù)學課堂,對于學生的數(shù)學學習有著重要作用。因此,我嘗試著將數(shù)學文本、課外預習、課堂教學三方有機整合,在質疑、解疑、釋疑中展開教學,培養(yǎng)學生提出問題、分析問題和解決問題的探究能力。

三角形的內(nèi)角和是三角形的一個重要特征。本課是安排在學習三角形的概念及分類之后進行的,它是學生以后學習多邊形的內(nèi)角和及解決其它實際問題的基礎。學生在掌握知識方面:已經(jīng)掌握了三角形的分類,比較熟悉平角等有關知識;能力方面:經(jīng)過三年多的學習,已具備了初步的動手操作能力和主動探究能力以及合作學習的習慣。因此,教材很重視知識的探索與發(fā)現(xiàn),安排了一系列的實驗操作活動。教材呈現(xiàn)教學內(nèi)容時,不但重視體現(xiàn)知識的形成過程,而且注意留給學生充分進行自主探索和交流的空間,為教師靈活組織教學提供了清晰的思路。概念的形成沒有直接給出結論,而是通過量、算、拼等活動,讓學生探索、實驗、發(fā)現(xiàn)、討論交流、推理歸納出三角形的內(nèi)角和是180。

學生已經(jīng)掌握三角形特性和分類,熟悉了鈍角、銳角、平角這些角的知識,大多數(shù)學生已經(jīng)在課前通過不同的途徑知道三角形的內(nèi)角和是180度的結論,但不一定清楚道理,所以本課的設計意圖不在于了解,而在于驗證,讓學生在課堂上經(jīng)歷研究問題的過程是本節(jié)課的重點。四年級的學生已經(jīng)初步具備了動手操作的意識和能力,并形成了一定的空間觀念,能夠在探究問題的過程中,運用已有知識和經(jīng)驗,通過交流、比較、評價尋找解決問題的途徑和策略。

1、使學生經(jīng)歷自主探索三角形的內(nèi)角和的過程,知道三角形的內(nèi)角和是180°,能運用這一規(guī)律解決一些簡單的問題。

2、使學生在觀察、操作、分析、猜想、驗證、合作、交流等具體活動中,提高動手操作能力和數(shù)學思考能力。

數(shù)學三角形的內(nèi)角和教案篇五

義務教育課程標準試驗教科書《數(shù)學》(人教版)四年級下冊第85頁。

設計思路

遵循由特殊到一般的規(guī)律進行探究活動是這節(jié)課設計的主要特點之一。學生對三角尺上每個角的度數(shù)比較熟悉,就從這里入手。先讓學生算出每塊三角尺三個內(nèi)角的和是180°,引發(fā)學生的猜想:其它三角形的內(nèi)角和也是180°嗎?接著,引導學生小組合作,任意畫出不同類型的三角形,用通過量一量、算一算,得出三角形的內(nèi)角和是180°或接近180°(測量誤差),再引導學生通過剪拼的方法發(fā)現(xiàn):各類三角形的三個內(nèi)角都可以拼成一個平角。再利用課件演示進一步驗證,由此獲得三角形的內(nèi)角和是180°的結論。這一系列活動潛移默化地向學生滲透了“轉化”數(shù)學思想,為后繼學習奠定了必要的基礎。最后讓學生運用結論解決實際問題,練習的安排上,注意練習層次,共安排三個層次,逐步加深。練習形式具有趣味性,激發(fā)了學生主動解題的積極性。第一個練習從知識的直接應用到間接應用,數(shù)學信息的出現(xiàn)從比較顯現(xiàn)到較為隱藏。這些題檢測不同層次的學生是否掌握所學知識應該達到的基本要求,顧及到智力水平發(fā)展較慢和中等的同學,第3個練習設計了開放性的練習,在小組內(nèi)完成。由一個同學出題,其它三個同學回答。先給出三角形兩個內(nèi)角的度數(shù),說出另外一個內(nèi)角。有唯一的答案。訓練多次后,只給出三角形一個內(nèi)角,說出其它兩個內(nèi)角,答案不唯一,可以得出無數(shù)個答案。讓學生在游戲中消除疲倦激發(fā)興趣,拓展學生思維。兼顧到智力水平發(fā)展較快的同學。在整個教學設計中,本著“學貴在思,思源于疑”的思想,不斷創(chuàng)設問題情境,讓學生去實驗、去發(fā)現(xiàn)新知識的奧妙,從而讓學生在動手操作、積極探索的活動中掌握知識,積累數(shù)學活動經(jīng)驗,發(fā)展空間觀念和推理能力。

教學目標

1.讓學生親自動手,通過量、剪、拼等活動發(fā)現(xiàn)、證實三角形內(nèi)角和是180°,并會應用這一知識解決生活中簡單的實際問題。

2.讓學生在動手獲取知識的過程中,培養(yǎng)學生的創(chuàng)新意識、探索精神和實踐能力。并通過動手操作把三角形內(nèi)角和轉化為平角的探究活動,向學生滲透“轉化”數(shù)學思想。

3.使學生體驗成功的喜悅,激發(fā)學生主動學習數(shù)學的興趣。

教材分析

三角形的內(nèi)角和是三角形的一個重要特征。本課是安排在學習三角形的概念及分類之后進行的,它是學生以后學習多邊形的內(nèi)角和及解決其它實際問題的基礎。學生在掌握知識方面:已經(jīng)掌握了三角形的分類,比較熟悉平角等有關知識;能力方面:經(jīng)過三年多的學習,已具備了初步的動手操作能力和主動探究能力以及合作學習的習慣。因此,教材很重視知識的探索與發(fā)現(xiàn),安排了一系列的實驗操作活動。教材呈現(xiàn)教學內(nèi)容時,不但重視體現(xiàn)知識的形成過程,而且注意留給學生充分進行自主探索和交流的空間,為教師靈活組織教學提供了清晰的思路。概念的形成沒有直接給出結論,而是通過量、算、拼等活動,讓學生探索、實驗、發(fā)現(xiàn)、討論交流、推理歸納出三角形的內(nèi)角和是180°。

教學重點

讓學生經(jīng)歷“三角形內(nèi)角和是180°”這一知識的形成、發(fā)展和應用的全過程。

教學準備

多媒體課件、學具。

教學過程

一、激趣引入

(一)認識三角形內(nèi)角

師:我們已經(jīng)認識了什么是三角形,誰能說出三角形有什么特點?

生1:三角形是由三條線段圍成的圖形。

生2:三角形有三個角,……

師:請看屏幕(課件演示三條線段圍成三角形的過程)。

師:三條線段圍成三角形后,在三角形內(nèi)形成了三個角,(課件分別閃爍三個角及的弧線),我們把三角形里面的這三個角分別叫做三角形的內(nèi)角。(這里,有必要向學生直觀介紹“內(nèi)角”。)

(二)設疑,激發(fā)學生探究新知的心理

師:請同學們幫老師畫一個三角形,能做到嗎?(激發(fā)學生主動學習的心理)

生:能。

師:請聽要求,畫一個有兩個內(nèi)角是直角的三角形,開始。(設置矛盾,使學生在矛盾中去發(fā)現(xiàn)問題、探究問題。)

師:有誰畫出來啦?

生1:不能畫。

生2:只能畫兩個直角。

生3:只能畫長方形。

師(課件演示):是不是畫成這個樣子了?哦,只能畫兩個直角。

師:問題出現(xiàn)在哪兒呢?這一定有什么奧秘?想不想知道?

生:想。

師:那就讓我們一起來研究吧!

(揭示矛盾,巧妙引入新知的探究)

二、動手操作,探究新知

(一)研究特殊三角形的內(nèi)角和

師:請看屏幕。(播放課件)熟悉這副三角板嗎?請拿出形狀與這塊一樣的三角板,并同桌互相指一指各個角的度數(shù)。(課件閃動其中的一塊三角板)

生:90°、60°、30°。(課件演示:由三角板抽象出三角形)

師:也就是這個三角形各角的度數(shù)。它們的和怎樣?

生:是180°。

師:你是怎樣知道的?

生:90°+60°+30°=180°。

師:對,把三角形三個內(nèi)角的度數(shù)合起來就叫三角形的內(nèi)角和。

師:(課件演示另一塊三角板的各角的度數(shù)。)這個呢?它的內(nèi)角和是多少度呢?

生:90°+45°+45°=180°。

師:從剛才兩個三角形內(nèi)角和的計算中,你發(fā)現(xiàn)什么?

生1:這兩個三角形的內(nèi)角和都是180°。

生2:這兩個三角形都是直角三角形,并且是特殊的三角形。

(二)研究一般三角形內(nèi)角和

1.猜一猜。

師:猜一猜其它三角形的內(nèi)角和是多少度呢?同桌互相說說自己的看法。

生1:180°。

生2:不一定。

……

2.操作、驗證一般三角形內(nèi)角和是180°。

(1)小組合作、進行探究。

師:所有三角形的內(nèi)角和究竟是不是180°,你能用什么辦法來證明,使別人相信呢?

生:可以先量出每個內(nèi)角的度數(shù),再加起來。

師:哦,也就是測量計算,是嗎?那就請四人小組共同研究吧!

師:每個小組都有不同類型的三角形。每種類型的三角形都需要驗證,先討論一下,怎樣才能很快完成這個任務。(課前每個小組都發(fā)有銳角三角形、直角三角形、鈍角三角形,指導學生選擇解決問題的策略,進行合理分工,提高效率。)

(2)小組匯報結果。

師:請各小組匯報探究結果。

生1:180°。

生2:175°。

生3:182°。

……

(三)繼續(xù)探究

師:沒有得到統(tǒng)一的結果。這個辦法不能使人很信服,怎么辦?還有其它辦法嗎?

生1:有。

生2:用拼合的辦法,就是把三角形的三個內(nèi)角放在一起,可以拼成一個平角。

數(shù)學三角形的內(nèi)角和教案篇六

根據(jù)上面三組實驗分別證明了銳角三角形、直角三角形、鈍角三角形的內(nèi)角和都等于180度。

四、練一練。

請學生自己畫任意的`三角形,并用剛才老師所講的方法自己來判斷一下三角形的內(nèi)角和。

五、實踐活動:

第1題:用紙剪出一個等邊三角形。

第2題:將等邊三角形兩邊取中點,并向底作垂線,

第3題:把紙沿著虛線對折。

第4題:觀察三個角的內(nèi)角加起來為多少?

數(shù)學三角形的內(nèi)角和教案篇七

1.讓學生親自動手,通過量、剪、拼等活動發(fā)現(xiàn)、證實三角形內(nèi)角和是180°,并會應用這一知識解決生活中簡單的實際問題。

2.讓學生在動手獲取知識的過程中,培養(yǎng)學生的創(chuàng)新意識、探索精神和實踐能力。并通過動手操作把三角形內(nèi)角和轉化為平角的探究活動,向學生滲透“轉化”數(shù)學思想。

3.使學生體驗成功的喜悅,激發(fā)學生主動學習數(shù)學的興趣。

三角形的內(nèi)角和是三角形的一個重要特征。本課是安排在學習三角形的概念及分類之后進行的,它是學生以后學習多邊形的內(nèi)角和及解決其它實際問題的基礎。學生在掌握知識方面:已經(jīng)掌握了三角形的分類,比較熟悉平角等有關知識;能力方面:經(jīng)過三年多的學習,已具備了初步的動手操作能力和主動探究能力以及合作學習的習慣。因此,教材很重視知識的探索與發(fā)現(xiàn),安排了一系列的實驗操作活動。教材呈現(xiàn)教學內(nèi)容時,不但重視體現(xiàn)知識的形成過程,而且注意留給學生充分進行自主探索和交流的空間,為教師靈活組織教學提供了清晰的思路。概念的形成沒有直接給出結論,而是通過量、算、拼等活動,讓學生探索、實驗、發(fā)現(xiàn)、討論交流、推理歸納出三角形的內(nèi)角和是180°。

讓學生經(jīng)歷“三角形內(nèi)角和是180°”這一知識的形成、發(fā)展和應用的全過程。

多媒體課件、學具。

一、激趣引入。

師:我們已經(jīng)認識了什么是三角形,誰能說出三角形有什么特點?

生1:三角形是由三條線段圍成的圖形。

生2:三角形有三個角……。

師:請看屏幕(課件演示三條線段圍成三角形的過程)。

師:三條線段圍成三角形后,在三角形內(nèi)形成了三個角,(課件分別閃爍三個角及的弧線),我們把三角形里面的這三個角分別叫做三角形的內(nèi)角。(這里,有必要向學生直觀介紹“內(nèi)角”。)。

(二)設疑,激發(fā)學生探究新知的心理。

師:請同學們幫老師畫一個三角形,能做到嗎?(激發(fā)學生主動學習的心理)。

生:能。

師:請聽要求,畫一個有兩個內(nèi)角是直角的三角形,開始。(設置矛盾,使學生在矛盾中去發(fā)現(xiàn)問題、探究問題。)。

師:有誰畫出來啦?

生1:不能畫。

生2:只能畫兩個直角。

生3:只能畫長方形。

師(課件演示):是不是畫成這個樣子了?哦,只能畫兩個直角。

師:問題出現(xiàn)在哪兒呢?這一定有什么奧秘?想不想知道?

生:想。

師:那就讓我們一起來研究吧!

(揭示矛盾,巧妙引入新知的探究)。

二、動手操作,探究新知。

師:請看屏幕。(播放課件)熟悉這副三角板嗎?請拿出形狀與這塊一樣的三角板,并同桌互相指一指各個角的度數(shù)。(課件閃動其中的一塊三角板)。

生:90°、60°、30°。(課件演示:由三角板抽象出三角形)。

師:也就是這個三角形各角的度數(shù)。它們的和怎樣?

生:是180°。

師:你是怎樣知道的?

生:90°+60°+30°=180°。

師:對,把三角形三個內(nèi)角的度數(shù)合起來就叫三角形的內(nèi)角和。

師:(課件演示另一塊三角板的各角的度數(shù)。)這個呢?它的內(nèi)角和是多少度呢?

生:90°+45°+45°=180°。

師:從剛才兩個三角形內(nèi)角和的計算中,你發(fā)現(xiàn)什么?

生2:這兩個三角形都是直角三角形,并且是特殊的三角形。

1.猜一猜。

師:猜一猜其它三角形的內(nèi)角和是多少度呢?同桌互相說說自己的看法。

生1:180°。

生2:不一定。

……。

(1)小組合作、進行探究。

師:所有三角形的內(nèi)角和究竟是不是180°,你能用什么辦法來證明,使別人相信呢?

生:可以先量出每個內(nèi)角的度數(shù),再加起來。

師:哦,也就是測量計算,是嗎?那就請四人小組共同研究吧!

師:每個小組都有不同類型的三角形。每種類型的三角形都需要驗證,先討論一下,怎樣才能很快完成這個任務。(課前每個小組都發(fā)有銳角三角形、直角三角形、鈍角三角形,指導學生選擇解決問題的策略,進行合理分工,提高效率。)。

(2)小組匯報結果。

師:請各小組匯報探究結果。

生1:180°。

生2:175°。

生3:182°。

……。

(三)繼續(xù)探究。

師:沒有得到統(tǒng)一的結果。這個辦法不能使人很信服,怎么辦?還有其它辦法嗎?

生1:有。

生2:用拼合的辦法,就是把三角形的三個內(nèi)角放在一起,可以拼成一個平角。

數(shù)學三角形的內(nèi)角和教案篇八

l教學目標:

知識與技能目標:

1.會用平行線的性質與平角的定義證明三角形內(nèi)角和等于180o;。

2.能用三角形內(nèi)角和等于180o進行角度計算和簡單推理,并初步學會利用輔助線解決問題,體會轉化思想在解決問題中的應用.

過程與方法目標:

2.掌握三角形內(nèi)角和定理,并初步學會利用輔助線證題,同時培養(yǎng)學生觀察、猜想和論證能力..

情感態(tài)度與價值觀目標:

1.通過操作、交流、探究、表述、推理等活動,培養(yǎng)學生的合作精神,體會數(shù)學知識內(nèi)在的聯(lián)系與嚴謹性,鼓勵學生大膽提出疑問,培養(yǎng)學生良好的學習習慣.

l重點:

難點:

l教學流程:

一、情境引入。

內(nèi)角三兄弟之爭。

在一個直角三角形里住著三個內(nèi)角,平時,它們?nèi)值芊浅F結可是有一天,老二突然不高興,發(fā)起脾氣來,它指著老大說:“你憑什么度數(shù)最大,我也要和你一樣大!”“不行啊!”老大說:“這是不可能的,否則,我們這個家就再也圍不起了……”“為什么?”老二很納悶.

同學們,你們知道其中的道理嗎?

目的:通過對話激發(fā)學生的求知欲;讓學生通過小組討論:其中的道理.

數(shù)學三角形的內(nèi)角和教案篇九

1、知識與技能:

(2)運用三角形的內(nèi)角和知識解決實際問題和拓展性問題。

2、過程與方法:

(1)通過測量、撕拼、折疊等方法,探索和發(fā)現(xiàn)三角形三個內(nèi)角的和等于180°。

(2)知道三角形兩個角的度數(shù),能求出第三個角的度數(shù)。

(3)發(fā)展學生動手操作、觀察比較和抽象概括的能力。

3、情感態(tài)度與價值觀:

讓學生體驗數(shù)學活動的探索樂趣,通過教學中的活動體會數(shù)學的轉化思想。

教學課件、各種三角形。

1、猜謎語:。

形狀似座山,穩(wěn)定性能堅。三竿首尾連,學問不簡單。

(打一圖形名稱)。

2、猜三角形。

3、引出課題。

師:為什么不會出現(xiàn)兩個直角?今天我們就再次走進數(shù)學王國,探討三角形的內(nèi)角和的奧秘。(板書課題)。

2、猜一猜。

3、驗證。

4、學生匯報。

(1)測量。

(2)剪拼。

a、學生上臺演示。

b、請大家三人小組合作,用剪拼的方法驗證其它三角形。

c、師演示。

(3)折拼。

師:有沒有別的驗證方法?我在電腦里收索到折的方法,請同學們看一看他是怎么折的(課件演示)。

(5)數(shù)學小知識。

5、鞏固知識。

教師:為什么不是360°?

師:接下來,利用三角形的內(nèi)角和我們來解決一些相關的問題吧!

1、看圖,求未知角的度數(shù)。

2、判斷。

3、如果一個都不知道,或只知道1個角,你能知道三角形各角的度數(shù)嗎?

(1)我三邊相等。

(2)我是等腰三角形,我的頂角是96°。

(3)我有一個銳角是40°。

4、求四邊形、五邊形內(nèi)角和。

師:這節(jié)課你有什么收獲?

數(shù)學三角形的內(nèi)角和教案篇十

遵循由特殊到一般的規(guī)律進行探究活動是這節(jié)課設計的主要特點之一。《數(shù)學課程標準》指出,讓學生學習有價值的數(shù)學,讓學生帶著問題、帶著自己的思想、自己的思維進入數(shù)學課堂,對于學生的數(shù)學學習有著重要作用。因此,我嘗試著將數(shù)學文本、課外預習、課堂教學三方有機整合,在質疑、解疑、釋疑中展開教學,培養(yǎng)學生提出問題、分析問題和解決問題的探究能力。

數(shù)學三角形的內(nèi)角和教案篇十一

本節(jié)課的教學先通過計算三角尺的3個內(nèi)角的度數(shù)的和,激發(fā)學生的好奇心,進而引發(fā)三角形內(nèi)角和是180度的猜想,再通過組織操作活動驗證猜想,得出結論。

1、讓學生通過觀察、操作、比較、歸納,發(fā)現(xiàn)三角形的內(nèi)角和是180。

2、讓學生學會根據(jù)三角形的內(nèi)角和是180°這一知識求三角形中一個未知角的度數(shù)。

3、激發(fā)學生主動參與、自主探索的意識,鍛煉動手能力,發(fā)展空間觀念。

三角板,量角器、點子圖、自制的三種三角形紙片等。

看了這2個算式你有什么猜想?

(三角形的三個角加起來等于180度)。

1、畫、量:在點子圖上,分別畫銳角三角形、直角三角形、鈍角三角形。畫好后分別量出各個角的度數(shù),再把三個角的度數(shù)相加。

老師注意巡視和指導。交流各自加得的結果,說說你的發(fā)現(xiàn)。

2、折、拼:學生用自己事先剪好的圖形,折一折。

指名介紹折的方法:比如折的是一個銳角三角形,可以先把它上面的一個角折下,頂點和下面的邊重合,再分別把左邊、右邊的角往里折,三個角的頂點要重合。發(fā)現(xiàn):三個角會正好在一直線上,說明它們合起來是一個平角,也就是180度。

繼續(xù)用該方法折鈍角三角形,得到同樣的結果。

直角三角形的折法有不同嗎?

通過交流使學生明白:除了用剛才的方法之外,直角三角形還可以用更簡便的方法折;可以直角不動,而把兩個銳角折下,正好能拼成一個直角;兩個直角的度數(shù)和也是180度。

3、撕、拼:可能有個別學生對折的方法感到有困難。那么還可以用撕的方法。

在撕之前要分別在三個角上標好角1、角2和角3。然后撕下三個角,把三個角的一條邊、頂點重合,也能清楚地看到三個角合起來就是一個平角180度。

小結:我們可以用多種方法,得到同樣的結果:三角形的內(nèi)角和是180。

4、試一試。

三角形中,角1=75,角2=39,角3=()。

算一算,量一量,結果相同嗎?

1、算出下面每個三角形中未知角的度數(shù)。

在交流的時候可以分別學生說說怎么算才更方便。比如第1題,可先算40加60等于100,再用180減100等于80。第2題則先算180減110等于70,再用70減55更方便。第3題是直角三角形,可不用180去減,而用90減55更好。

指出:在計算的時候,我們可根據(jù)具體的數(shù)據(jù)選擇更佳的算法。

可先猜想:兩個三角形拼在一起,會不會它的內(nèi)角和變成1802=360°呢?為什么?

然后再分別算一算圖上的這三個三角形的內(nèi)角和。得出結論:三角形不論大小,它的內(nèi)角和都是180°。

3、用一張正方形紙折一折,填一填。

4、說理:一個直角三角形中最多有幾個直角?為什么?

一個鈍角三角形中最多有幾個直角?為什么?

第4、5題。

數(shù)學三角形的內(nèi)角和教案篇十二

1.通過動手操作和觀察比較,認識三角形,知道三角形的特性及三角形的高和底的含義,會在三角形內(nèi)畫高。

2.通過實驗,知道三角形的穩(wěn)定性及其在生活中的應用。

過程與方法。

通過畫圖實驗培養(yǎng)學生觀察、操作、自學的能力和應用數(shù)學知識解決實際問題的能力。

情感、態(tài)度與價值觀。

結合實際生活,體驗數(shù)學和生活的聯(lián)系,培養(yǎng)學生學習數(shù)學的興趣。

教學重難點。

教學重點:理解三角形的特性及三邊的關系。

教學難點:學會在三角形內(nèi)畫高。

教學工具。

多媒體、板書。

教學過程。

一、情境導入。

師:我們的城市日新月異,每天都有新的變化。瞧,這是正在建設中的博物館,不久的將來就會落成。你能說出圖中哪些物體上有三角形嗎?(課件展示課本情境圖)。

生1:建筑物上有三角形。(課件動態(tài)閃爍三角形)。

生2:吊重機的架子上。

生3:吊重機的鐵線上。

師:生活中還有哪些物體上有三角形?

生1:自行車上三角形。

生2:電線桿上有三角形。

生3:班里的流動紅旗有三角形。

師:天壇、金字塔、鐵塔、天安門、鐵架、自行車上都有三角形。(課件展示)。

師:三角形在生活中有這么廣泛的運用,究竟它有什么特點?這節(jié)課我們將對它進行深入的研究。(板書課題)。

二、探究新知。

師:大家認識了三角形的特征。能用自己的話概括一下,什么樣的圖形叫三角形?

1:有三條邊的圖形叫三角形。

2:有三條邊、三個角的圖形叫三角形;。

3:有三條邊、三個角、三個頂點的圖形叫三角形;。

4:由三條邊組成的圖形叫三角形;。

5:由三條線段圍成的圖形叫三角形。

1:第一個不是三角形,因為有一條邊是彎曲了,不是線段。

2:第二個也不是三角形,它的邊沒有合攏在一起。

師:也就是它的邊沒有封閉吧。但它是由三條邊組成的呀?所以光有三條邊組成不行,還要封閉起來。

3:第三個不是三角形,他沒有封閉起來,而且有四條線段。

4:第四個不是三角形,雖然有三條邊,三個角,但也沒封閉起來。

5:第五個呢,圖形封閉起來了,所以是三角形。

師:根據(jù)對這些圖形的判斷,小組討論:上面哪種說法更準確?

師:根據(jù)剛才的判斷,有三條邊、三個角、三個頂點的圖形和由三條邊組成的圖形不一定是三角形。

師:總結三角形的定義是:由3條線段圍成的圖形(每相鄰兩條線段的端點相連)叫做三角形.

師:請你畫出一個三角形。邊畫邊想:三角形有幾條邊?幾個角?幾個頂點?

師:小組內(nèi)展示畫的三角形,交流:三角形有什么特點?

師:三角形有3條邊,3個角,3個頂點。

師:請你在自己畫的三角形上嘗試標出邊、角、頂點。

(板書三角形各部分的名稱)。

課件動態(tài)演示三角形各部分名稱并歸納三角形的特點。

生:平行四邊形容易變形,不穩(wěn)定。

師:請拿出平行四邊形,用手拉動,感受三角形的不穩(wěn)定性。

師:去掉一條邊,再扣上圍成三角形。再拉一拉有什么感覺?

生:拉不動。

師:想一想這說明三角形具備什么特性?(穩(wěn)定性)。

師:通過實驗操作發(fā)現(xiàn):四邊形容易變形,三角形不容易變形,所以三角形具有穩(wěn)定性。

師:三角形的穩(wěn)定性在生活中的用處很大,圖中哪兒有三角形?它們有什么作用?(課件出示例2的主題圖)。

1:自行車中間的鐵架有三角形??梢云鸬焦潭ǖ淖饔谩?/p>

2:籃球架上有三角形。有穩(wěn)定的作用,如果不是三角形,有可能會掉下來,壓到同學了。

3:電線桿上有三角形。有穩(wěn)定的作用。

師:你能再舉出生活中應用三角形穩(wěn)定性的例子嗎?

師:舉世矚目的奧運會將在我國首都舉行,我國的射擊健兒曾在歷屆的奧運會上取得了輝煌的成績。為什么射擊健兒的手和槍支要成一個三角形呢?(課件展示)。

生1:可以穩(wěn)定槍支。

生2:這樣可以瞄準目標。

師:應用三角形穩(wěn)定性的例子還有:馬扎,空調(diào)架子。(課件展示)。

活學活用:。

桌子太搖晃,怎樣能使它加固?

課后小結。

通過這節(jié)課的學習,你學會了什么?你有什么收獲?

1、由三條線段圍成的圖形(每相鄰兩條線段的端點相連)叫做三角形。

2、三角形有三條邊,三個頂點,三個角。

3、從三角形的一個頂點到對邊做一條垂線,頂點和垂足之間的線段叫三角形的高,這條對邊叫做三角形的底。

課后習題。

一、判斷題。

1、由三條線段組成的圖形是三角形。(錯)。

2、自行車車架運用了三角形穩(wěn)定性的原理。(對)。

3、每個三角形只有一條高。(錯)。

二、判斷下列圖形是三角形嗎?

答案:都不是三角形。

三、你能從下面的圖形中找到三角形嗎?怎樣測量這個屋頂?shù)母叨?

答案:屋頂是三角形,畫出三角形的高即可測量。

拓展提升。

生:從平行四邊形一條邊上的一點到對邊引一條垂線,這點和垂足之間的線段叫平行四邊形的高,垂足所在的邊叫平行四邊形的底。(老師板演畫高)。

師:怎樣正確的畫出三角形的高呢?我們來看有一位同學做的高.

生:從三角形的一個頂點到它的對邊做一條垂線,頂點和垂足之間的線段叫做三角形的高,這條對邊叫做三角形的底。

師:請你在練習紙第1題的三角形中畫出三角形的一條高,并標出它所對應的底。

師:同位用三角尺互相檢查一下,高畫對了嗎?再看一下底標對嗎?

生:從b點到ac邊引一條垂線,b點到垂足之間的線段是這個三角形的高,ac邊是這個三角形的底。

師:三角尺的一條直角邊和ac邊重合,沿著ac邊平移,使另一條直角邊過b點,從b點到ac邊引一條垂線。b點到垂足之間的線段是它的高,ac邊是它的底。(板演)。

師:在三角形中標上字母abc,和同桌說一說剛才畫的高是以哪條邊為底畫的?

師:剛才我們畫了三角形的一組底和高,想一想一個三角形只有一組底和高嗎?為什么?

生1:不是,有三組底和高。因為三角形有三條邊。

生2:因為三角形有三個頂點,三個頂點都可以到對邊引一條垂線,所以有三組底和高。

活學活用。

你能畫出下列三角形的高嗎?

板書。

1、由三條線段圍成的圖形(每相鄰兩條線段的端點相連)叫做三角形。

2、三角形有三條邊,三個頂點,三個角。

3、從三角形的一個頂點到對邊做一條垂線,頂點和垂足之間的線段叫三角形的高,這條對邊叫做三角形的底。

數(shù)學三角形的內(nèi)角和教案篇十三

1、初步感知三角形的特征,學習觀察并找尋三角形、圓形和方形。

2、愿意觀察、比較,體驗發(fā)現(xiàn)的快樂。

【活動準備】。

1、經(jīng)驗準備:幼兒已認識了圓形、方形。(事先了解過,幼兒已具備認識這兩種形狀的經(jīng)驗)。

2、材料準備:黑板、每人三根長度不一的小棒;小的圓形、方形、三角形卡片若干;大的圓形、方形、三角形卡片各一張。

【指導要點】。

1、活動重點:初步感知三角形的特征。

2、活動難點:能按要求操作,根據(jù)圖形特征進行匹配。

3、指導要點:引導幼兒通過擺弄、觀察、比較感知三角形的特征。

【活動過程】。

1、操作探索,初步感知三角形的特征。

(1)三點連線變?nèi)切巍?/p>

(2)擺圖形。

師:給你們每人三根小棒,看看能不能變出像魔術師一樣的圖形。幼兒自由擺弄、操作。

問題:大部分的幼兒并不能拼出三角形,面對三根小棒更多的茫然,需要老師幫忙才能拼出來,并且三根棒子的長度是一致的。

(3)數(shù)一數(shù)。

讓幼兒數(shù)一數(shù)擺出來的圖形有幾個角,并總結:有三個角的圖形叫三角形。

問題:個別幼兒對角的概念還不能理解。

2、感知三角形在生活中的應用。

師:請你仔細看看,哪些東西是三角形的?請你指出來。

用幻燈片的形式將日常生活中見到的、用過的三角形狀的東西展示出來:如屋頂、彩旗、圣誕帽、三角形蛋糕等。

在這個環(huán)節(jié),幼兒比較感興趣,并且運用到自己生活經(jīng)驗說出了他們看到的三角形物品,但由于年齡尚小,經(jīng)驗不足中大班豐富,因此回答的也比較有限。

師:你從哪里可以看出這是三角形?

小結:有三個角的圖形叫三角形。

3、根據(jù)圖形特征進行匹配。

游戲1:看到圖形,幼兒進入相應的圈中。

評價:幼兒在認識這三種形狀的基礎上去玩這個游戲,才能玩得開心,幼兒的情緒很投入,能夠很快的反應老師的指令跑到相應的圈中。

游戲2:聽口令找圖形。

師:我的本領可大了,還能變出其他的圖形,看我變變變。逐一出示大的圓形、方形、三角形。

將小的圓形、方形、三角形圖卡四散放在地上,幼兒聽指令取圖卡。

小結:這個環(huán)節(jié),幼兒的秩序有些混亂,很多幼兒沒有聽清楚老師的指令,就去取圖卡,為了速度,隨手亂抓。

游戲小結:(1)引導幼兒說說自己是怎么將圖形送回家的?

(2)啟發(fā)幼兒說出圓形是圓的;方形是方的;三角形是三個角的。

評價要素:

1、幼兒是否能在活動感知到三角形的特征。

2、從幼兒找出圓形、方形、三角形的途徑和方法上進行評價。

活動建議:

數(shù)學三角形的內(nèi)角和教案篇十四

遵循由特殊到一般的規(guī)律進行探究活動是這節(jié)課設計的主要特點之一。學生對三角尺上每個角的度數(shù)比較熟悉,就從這里入手。先讓學生算出每塊三角尺三個內(nèi)角的和是180°,引發(fā)學生的猜想:其它三角形的內(nèi)角和也是180°嗎?接著,引導學生小組合作,任意畫出不同類型的三角形,用通過量一量、算一算,得出三角形的內(nèi)角和是180°或接近180°(測量誤差),再引導學生通過剪拼的方法發(fā)現(xiàn):各類三角形的三個內(nèi)角都可以拼成一個平角。再利用課件演示進一步驗證,由此獲得三角形的內(nèi)角和是180°的結論。這一系列活動潛移默化地向學生滲透了“轉化”數(shù)學思想,為后繼學習奠定了必要的基礎。

最后讓學生運用結論解決實際問題,練習的安排上,注意練習層次,共安排三個層次,逐步加深。練習形式具有趣味性,激發(fā)了學生主動解題的積極性。第一個練習從知識的直接應用到間接應用,數(shù)學信息的出現(xiàn)從比較顯現(xiàn)到較為隱藏。這些題檢測不同層次的學生是否掌握所學知識應該達到的基本要求,顧及到智力水平發(fā)展較慢和中等的同學,第3個練習設計了開放性的練習,在小組內(nèi)完成。由一個同學出題,其它三個同學回答。先給出三角形兩個內(nèi)角的度數(shù),說出另外一個內(nèi)角。有唯一的答案。訓練多次后,只給出三角形一個內(nèi)角,說出其它兩個內(nèi)角,答案不唯一,可以得出無數(shù)個答案。讓學生在游戲中消除疲倦激發(fā)興趣,拓展學生思維。兼顧到智力水平發(fā)展較快的同學。在整個教學設計中,本著“學貴在思,思源于疑”的思想,不斷創(chuàng)設問題情境,讓學生去實驗、去發(fā)現(xiàn)新知識的奧妙,從而讓學生在動手操作、積極探索的活動中掌握知識,積累數(shù)學活動經(jīng)驗,發(fā)展空間觀念和推理能力。

1、讓學生親自動手,通過量、剪、拼等活動發(fā)現(xiàn)、證實三角形內(nèi)角和是180°,并會應用這一知識解決生活中簡單的實際問題。

2、讓學生在動手獲取知識的過程中,培養(yǎng)學生的創(chuàng)新意識、探索精神和實踐能力。并通過動手操作把三角形內(nèi)角和轉化為平角的探究活動,向學生滲透“轉化”數(shù)學思想。

3、使學生體驗成功的喜悅,激發(fā)學生主動學習數(shù)學的興趣。

三角形的內(nèi)角和是三角形的一個重要特征。本課是安排在學習三角形的概念及分類之后進行的,它是學生以后學習多邊形的內(nèi)角和及解決其它實際問題的基礎。學生在掌握知識方面:已經(jīng)掌握了三角形的分類,比較熟悉平角等有關知識;能力方面:經(jīng)過三年多的學習,已具備了初步的動手操作能力和主動探究能力以及合作學習的習慣。

因此,教材很重視知識的探索與發(fā)現(xiàn),安排了一系列的實驗操作活動。教材呈現(xiàn)教學內(nèi)容時,不但重視體現(xiàn)知識的形成過程,而且注意留給學生充分進行自主探索和交流的空間,為教師靈活組織教學提供了清晰的思路。概念的形成沒有直接給出結論,而是通過量、算、拼等活動,讓學生探索、實驗、發(fā)現(xiàn)、討論交流、推理歸納出三角形的內(nèi)角和是180°。

讓學生經(jīng)歷“三角形內(nèi)角和是180°”這一知識的形成、發(fā)展和應用的全過程。

多媒體課件、學具。

師:我們已經(jīng)認識了什么是三角形,誰能說出三角形有什么特點?

生1:三角形是由三條線段圍成的圖形。

生2:三角形有三個角,……。

師:請看屏幕(課件演示三條線段圍成三角形的過程)。

師:三條線段圍成三角形后,在三角形內(nèi)形成了三個角,(課件分別閃爍三個角及的弧線),我們把三角形里面的這三個角分別叫做三角形的內(nèi)角。(這里,有必要向學生直觀介紹“內(nèi)角”。)。

(二)設疑,激發(fā)學生探究新知的心理。

師:請同學們幫老師畫一個三角形,能做到嗎?(激發(fā)學生主動學習的心理)。

生:能。

師:請聽要求,畫一個有兩個內(nèi)角是直角的三角形,開始。(設置矛盾,使學生在矛盾中去發(fā)現(xiàn)問題、探究問題。)。

師:有誰畫出來啦?

生1:不能畫。

生2:只能畫兩個直角。

生3:只能畫長方形。

師(課件演示):是不是畫成這個樣子了?哦,只能畫兩個直角。

師:問題出現(xiàn)在哪兒呢?這一定有什么奧秘?想不想知道?

生:想。

師:那就讓我們一起來研究吧!

(揭示矛盾,巧妙引入新知的探究)。

師:請看屏幕。(播放課件)熟悉這副三角板嗎?請拿出形狀與這塊一樣的三角板,并同桌互相指一指各個角的度數(shù)。(課件閃動其中的一塊三角板)。

生:90°、60°、30°。(課件演示:由三角板抽象出三角形)。

師:也就是這個三角形各角的度數(shù)。它們的和怎樣?

生:是180°。

師:你是怎樣知道的?

生:90°+60°+30°=180°。

師:對,把三角形三個內(nèi)角的度數(shù)合起來就叫三角形的內(nèi)角和。

師:(課件演示另一塊三角板的各角的度數(shù)。)這個呢?它的內(nèi)角和是多少度呢?

生:90°+45°+45°=180°。

師:從剛才兩個三角形內(nèi)角和的計算中,你發(fā)現(xiàn)什么?

生2:這兩個三角形都是直角三角形,并且是特殊的三角形。

1、猜一猜。

師:猜一猜其它三角形的內(nèi)角和是多少度呢?同桌互相說說自己的看法。

生1:180°。

生2:不一定。

……。

(1)小組合作、進行探究。

師:所有三角形的內(nèi)角和究竟是不是180°,你能用什么辦法來證明,使別人相信呢?

生:可以先量出每個內(nèi)角的度數(shù),再加起來。

師:哦,也就是測量計算,是嗎?那就請四人小組共同研究吧!

師:每個小組都有不同類型的三角形。每種類型的三角形都需要驗證,先討論一下,怎樣才能很快完成這個任務。(課前每個小組都發(fā)有銳角三角形、直角三角形、鈍角三角形,指導學生選擇解決問題的策略,進行合理分工,提高效率。)。

(2)小組匯報結果。

師:請各小組匯報探究結果。

生1:180°。

生2:175°。

生3:182°。

師:沒有得到統(tǒng)一的結果。這個辦法不能使人很信服,怎么辦?還有其它辦法嗎?

生1:有。

生2:用拼合的辦法,就是把三角形的三個內(nèi)角放在一起,可以拼成一個平角。

師:怎樣才能把三個內(nèi)角放在一起呢?

生:把它們剪下來放在一起。

1、用拼合的方法驗證。

師:很好,請用不同的三角形來驗證。

師:小組內(nèi)完成,仍然先分工怎樣才能很快完成任務,開始吧。

2、匯報驗證結果。

師:先驗證銳角三角形,我們得出什么結論?

生1:銳角三角形的內(nèi)角拼在一起是一個平角,所以銳角三角形的內(nèi)角和是180°。

3、課件演示驗證結果。

師:請看屏幕,老師也來驗證一下,是不是跟你們得到的結果一樣?(播放課件)。

師:我們可以得出一個怎樣的結論?

師:為什么用測量計算的方法不能得到統(tǒng)一的結果呢?

生1:量的不準。

生2:有的量角器有誤差。

師:對,這就是測量的誤差。

數(shù)學三角形的內(nèi)角和教案篇十五

學生已經(jīng)掌握三角形特性和分類,熟悉了鈍角、銳角、平角這些角的知識,大多數(shù)學生已經(jīng)在課前通過不同的途徑知道三角形的內(nèi)角和是180度的結論,但不一定清楚道理,所以本課的設計意圖不在于了解,而在于驗證,讓學生在課堂上經(jīng)歷研究問題的過程是本節(jié)課的重點。四年級的學生已經(jīng)初步具備了動手操作的意識和能力,并形成了一定的空間觀念,能夠在探究問題的過程中,運用已有知識和經(jīng)驗,通過交流、比較、評價尋找解決問題的途徑和策略。

數(shù)學三角形的內(nèi)角和教案篇十六

《課程標準》倡導探究性學習,力圖改變學生的學習方式,引導學生主動參與、樂于探究、勤于動手,逐步培養(yǎng)學生收集和處理科學信息的能力、獲取新知識的能力、分析和解決問題的能力,以及交流與合作的能力等,突出創(chuàng)新精神和實踐能力的培養(yǎng)。探究三角形內(nèi)角和的過程的時候,我注意鼓勵學生通過動手操作、小組合作的方法去探究,并利用多媒體去驗證學生的結論,最終得到三角形的內(nèi)角和都是180°。

給學生一些問題,讓他們自己去探索;給學生一片空間,讓他們自己飛翔。“為什么不能畫出有兩個直角的三角形?三角形的內(nèi)角度數(shù)有何奧秘?”這正是小組合作的契機。通過小組內(nèi)交流,讓學生在小組內(nèi)完成從特殊到一般的研究過程。教師引導學生通過測量、剪拼、折拼等實際操作,建立解決問題的目標意識,形成學習的氛圍,給學生更多的自主學習、合作學習的機會,促進學生的主體參與意識。在此基礎上,教師通過多媒體動畫演示,讓學生更直觀、更清晰地觀察到剪拼、折拼的過程,進一步驗證探究結論。同學們通過自主實踐、合作探究完成了本節(jié)課的教學任務。

整節(jié)課的練習設計,由易到難。在應用“三角形內(nèi)角和是180°”這一結論時,第一、二層練習是已知三角形兩個內(nèi)角的度數(shù),求另一個角和簡單的'判斷題。第三層練習是求特殊三角形內(nèi)角的度數(shù),真正做到了三角形內(nèi)角和知識與三角形特點的有機結合。

在實際教學中,我多次利用超級畫板、flash動畫,從開始的激趣引入、觀察猜想,到后來的數(shù)據(jù)驗證,多媒體在整個教學中起到了不可忽視的輔助作用。另外,參與學生的探究活動是我教學的一大特點,詢問、點撥、交流,使學生都能積極參與到合作學習之中,更好地完成教學任務。同時我也發(fā)現(xiàn),學生在合作探究中的組織如合理分工、有效合作等方面不夠科學合理,還需更具體的指導,以使每位學生都能真正參與,讓合作探究更有效。

數(shù)學三角形的內(nèi)角和教案篇十七

本節(jié)微課視頻是蘇教版數(shù)學教科書四年級下冊第78~79頁的教學內(nèi)容。在教學之前,學生已經(jīng)掌握了角的概念、角的分類和角的測量;認識了三角形,知道三角形是由三條線段首尾相接圍成的圖形,有三個頂點、三條邊和三個角。這些已經(jīng)構成學生進一步學習的認知基礎?!度切蔚膬?nèi)角和》是三角形的一個重要性質。學生在學習四年級上冊“角的度量”時,通過測量三角尺三個角的度數(shù),知道三角尺三個角加起來的和是180度,再加上課前的預習,大部分的學生已經(jīng)能得出結論:三角形的內(nèi)角和是180度,只不過他們不清楚其中的道理,只是機械性的記憶。因此,本節(jié)課的重點不是結論,而是驗證結論的過程。教材組織學生對不同形狀、不同大小的三角形的內(nèi)角和進行探索,通過轉化、推理、比較、操作和驗證,總結概括出“所有三角形的內(nèi)角和都是180度”的規(guī)律,從而進一步發(fā)展學生的空間觀念,提高學生的自主學習能力和推理能力。

下面就具體談談微課的教學設計:

1、通過測量、轉化、觀察和比較等活動探索發(fā)現(xiàn)并驗證“三角形的內(nèi)角和是180度”的規(guī)律,并且能利用這一結論解決求三角形中未知角的度數(shù)等實際問題。

2、通過折一折、拼一拼和剪一剪等一系列的操作活動培養(yǎng)學生的聯(lián)想意識和動手操作能力。體驗驗證結論的過程與方法,提高學生分析和解決問題的能力。

3、使學生通過操作的過程獲得發(fā)現(xiàn)規(guī)律的喜悅,獲得成就感,從而激發(fā)學生積極主動學習數(shù)學的興趣。

重點:讓學生親自驗證并總結出三角形的內(nèi)角和是180度的結論

難點:對不同驗證方法的理解和掌握。

交流:不同三角尺的內(nèi)角和都是一樣的嗎?三角尺的內(nèi)角和有什么特征?

引導學生得出三角尺的三個內(nèi)角的度數(shù)和是180度。

提問:三角尺的形狀是什么三角形?三角尺的內(nèi)角和是180度,我們還可以說成是什么?(得出結論:直角三角形的內(nèi)角和是180度。)

你有什么辦法驗證這一結論呢?(動手操作,尋找答案)

方法一:拿出不同的直角三角形,分別測量三個內(nèi)角的度數(shù),再求和。(提示存在誤差,但三個內(nèi)角的和都在180度左右)

方法二:用兩個相同的直角三角形拼成一個長方形,由于長方形的四個內(nèi)角和是360度,因此能得出一個直角三角形的三個內(nèi)角和是180度。

出示三個三角形:直角三角形、銳角三角形和鈍角三角形。

引導:直角三角形的內(nèi)角和是180度了,由此我們聯(lián)想到銳角三角形和鈍角三角形的內(nèi)角和也有可能是180度。

提問:你有什么辦法來驗證這一猜想呢?

拿出事先從課本第113頁剪下來的3個三角形,動手操作,自主探索,發(fā)現(xiàn)規(guī)律。

方法一:可以像上面那樣先測量每個三角形的三個內(nèi)角的度數(shù),再計算出它們的和,看看能發(fā)現(xiàn)什么規(guī)律。學生測量計算,教師巡視指導。

引導:測量時要盡量做到準確,測量是存在誤差的,對于測量的不準的同學要重新測定和確認,計算出它們的和,發(fā)現(xiàn)其中的規(guī)律。

方法二:既然是求三角形的內(nèi)角和,我們就可以想辦法把三角形的3個內(nèi)角拼在一起,看看拼成了什么角。那怎樣才能把3個內(nèi)角拼在一起呢?我們可以將三角形中的3個內(nèi)角撕下來,再拼在一起,會發(fā)現(xiàn)拼成了一個平角,是180度。

方法三:把三角形的三個內(nèi)角撕下來,雖然能將他們拼在一起,但是原有的三角形被破壞了。因此,我們還可以通過折一折的方法,把三個內(nèi)角折過來拼在一起,同樣會發(fā)現(xiàn)拼成一個平角,是180度。

方法四:將銳角三角形和鈍角三角形分別分成兩個直角三角形,利用直角三角形內(nèi)角和是180度進行推理。180+180=360度,360-90-90=180度。

交流:回顧以上3個三角形的內(nèi)角和的探索過程,你發(fā)現(xiàn)了什么規(guī)律?

總結:通過測量計算、拼一拼和折一折的方法,我們可以消除心中的問號,肯定得說出所有三角形的內(nèi)角和都是180度這一結論。

1、將一個大三角形剪成兩個小三角形,每個小三角形的內(nèi)角和是多少度?

2、在一個三角形中,根據(jù)兩個內(nèi)角的度數(shù),求第三個內(nèi)角的度數(shù)?

數(shù)學三角形的內(nèi)角和教案篇十八

《三角形的內(nèi)角和》在學生學習了三角形的特征以及三角形分類的基礎上,進一步研究三角形三個角的關系。讓學生猜測-質疑-驗證得出“三角形的內(nèi)角和等于180°”,引導學生觀察、實驗、猜測,逐步培養(yǎng)學生的`邏輯推理能力。

愛因斯坦說過:“問題的提出往往比解答問題更重要”,上課開始,我通過觀察長方形的內(nèi)角和連接對角線把它分成兩個直角三角形讓學生猜測三角形的內(nèi)角和是180°,然后質疑:那是不是所有的三角形的內(nèi)角和都是180°呢?這個問題一拋出去馬上激發(fā)學生的學習熱情。接著就讓學生來驗證三角形的內(nèi)角和。驗證過程分兩部分來進行,先通過量一量、算一算的方法讓學生驗證各類三角形的內(nèi)角和,一是加深對三角形內(nèi)角和的理解就是三個內(nèi)角的度數(shù)之和,二是讓學生在小組內(nèi)通過動手操作、記錄、觀察,驗證三角形的內(nèi)角和是否為180°。之后我組織學生在全班匯報交流,沒有以小組的形式展示,給學生交流的空間太小沒有達到小組合作的真正目的。再讓學生通過拼一拼、折一折的方法來發(fā)現(xiàn)各類三角形的三個內(nèi)角都可以拼成一個平角,從而得出三角形的內(nèi)角和的確是180°的結論。匯報展示這個環(huán)節(jié)只是口頭敘述的形式描述驗證的結果,若先還原原圖,再展示驗證過程與結果效果更佳。

探究新知是為了應用,這節(jié)課在練習的安排上,我注意把握練習層次,共安排三個層次,由易到難,逐步加深。第一層練習是已知三角形兩個內(nèi)角度數(shù),求另一個角。練習內(nèi)容的安排從知識的直接應用到間接應用,數(shù)學信息的出現(xiàn)從比較顯現(xiàn)到較為隱藏。第二層練習是判斷題,讓學生應用結論思考分析,檢驗語言的嚴密性。第三層是解決多種類型三角形的內(nèi)角問題,有等邊三角形、等腰三角形、直角三角形,根據(jù)自身特點來解決問題。

本節(jié)課我采用逐步設置疑問,讓學生動手、動腦、動口,積極參與知識學習的全過程,滲透多觀察、動腦想、大膽猜、勤鉆研的研討式學習方法,培養(yǎng)學生學習數(shù)學的興趣,給學生提供更多的活動機會和空間,使學生在參與的過程中得到充足的體驗和發(fā)展。

【本文地址:http://mlvmservice.com/zuowen/9182434.html】

全文閱讀已結束,如果需要下載本文請點擊

下載此文檔