在寫心得體會的過程中,我們需要注意結(jié)構(gòu)的合理性和語言的準(zhǔn)確性,以便更好地表達(dá)自己的想法和感受。寫心得體會要注意用詞準(zhǔn)確、語言簡潔,避免太過啰嗦和冗長。小編為大家準(zhǔn)備了一些心得體會的實例,希望可以給大家?guī)硪恍┧伎己蛦⑹尽?/p>
三角形的內(nèi)角和聽課心得體會篇一
三角形是初中數(shù)學(xué)中必不可少的重點知識,而三角形內(nèi)角和也是重中之重的一部分。此次,我學(xué)習(xí)了三角形內(nèi)角和的證明方式,深刻認(rèn)識到這一部分的重要性,并從中獲得了一些有益的體驗和心得。本文將探討我在學(xué)習(xí)過程中所獲得的這些經(jīng)驗和感悟。
第二段:學(xué)習(xí)過程。
在學(xué)習(xí)三角形內(nèi)角和的證明中,我首先認(rèn)識到三角形是一個基本的平面圖形,由三條邊和三個內(nèi)角組成。內(nèi)角和是三角形重要的數(shù)學(xué)性質(zhì)之一,通常用于計算未知角度。在諸如三角函數(shù)等各種初等函數(shù)中都會涉及到三角形的內(nèi)角和。因此,通過證明三角形內(nèi)角和定理,我們可以更好地掌握數(shù)學(xué)知識,并有效地推斷出三角形的各種性質(zhì)。
第三段:證明方法。
在證明三角形內(nèi)角和定理的過程中,有多種不同的證明方法。我們可以使用幾何證明法、數(shù)學(xué)歸納證明法等方法,使得三角形內(nèi)角和定理的成立更為顯然。三角形內(nèi)角和定理說的是:任何一個三角形的三個內(nèi)角的和始終為180度,這個證明可以用許多方法來證明,在證明過程中要盡可能使用簡單明了的方法,以便于理解。
第四段:學(xué)習(xí)收獲。
通過學(xué)習(xí),我認(rèn)識到證明三角形內(nèi)角和的定理是非常有益的,可以幫助我們牢固掌握三角函數(shù)中的基本概念,進(jìn)一步提高數(shù)學(xué)水平。同時,學(xué)習(xí)三角形內(nèi)角和定理可以讓我們進(jìn)一步認(rèn)識到證明在數(shù)學(xué)中所扮演的重要作用,提高我們的邏輯思維能力和數(shù)學(xué)推理能力,從而更加深入地理解數(shù)學(xué)的各種概念和定理。
第五段:總結(jié)。
學(xué)習(xí)三角形內(nèi)角和,不僅可以幫助我們更好地掌握三角函數(shù)中的基本概念,提高我們的數(shù)學(xué)水平,還可以提高我們解決問題和推理的能力。在學(xué)習(xí)三角形內(nèi)角和定理的過程中,我們需要理解三角形的性質(zhì)和相關(guān)幾何知識,并學(xué)習(xí)不同的證明方法。只有通過不斷的練習(xí)和努力,我們才能夠更好地掌握三角形內(nèi)角和定理以及更多的數(shù)學(xué)知識,實現(xiàn)數(shù)學(xué)優(yōu)秀成績的突破。
三角形的內(nèi)角和聽課心得體會篇二
首先,我們來了解一下三角形內(nèi)角和的概念。三角形內(nèi)角和指的是一個三角形內(nèi)的三個角的角度之和。也就是說,無論一個三角形的大小和形狀如何,其內(nèi)角和的總和是不變的。對于這個概念,我們需要進(jìn)行一些證明,并從中得出一些體會。
一、首先是證明三角形內(nèi)角和的公式:我們可以將一個任意的三角形劃分為兩個三角形,這樣就可以得到2個內(nèi)角和相等的三角形。根據(jù)這兩個三角形的性質(zhì),它們的內(nèi)角和分別為180度。因此,原先的三角形的內(nèi)角和等于2個相同的三角形內(nèi)角和之和,即2×180度。因此,三角形的內(nèi)角和公式為:180度×(n-2),其中n為三角形的邊數(shù)。這是三角形內(nèi)角和的公式,也就意味著,無論三角形的大小和形狀如何,其內(nèi)角和的總和是不變的。
二、接下來,我想談?wù)勥@個公式所蘊含的性質(zhì)。這個公式表明了任意一個三角形內(nèi)角和都是一個定值,這意味著我們在處理與三角形有關(guān)的問題時,我們可以依據(jù)這個公式來計算。同時,我們也可以通過這個定值來判斷三角形是否存在。如果我們知道三角形的任意兩個角的度數(shù),我們就可以通過計算得出第三個角的度數(shù),如果這個度數(shù)滿足三角形內(nèi)角和公式,那么這個三角形就是存在的??傊?,這個公式為我們解決與三角形相關(guān)的問題提供了一個非常有效的工具。
三、其次,我們來看一下三角形內(nèi)角和的一些特殊情況。如果我們將一個三角形變形成一條直線,那么這條直線上的角的度數(shù)之和顯然是180度。這也就是說,當(dāng)一個三角形的一個角的度數(shù)等于另外兩個角的度數(shù)之和時,這個三角形就成為了直角三角形。這個特殊情況提示我們,任何一個角的度數(shù)都不能超過180度,超過這個范圍就不再是三角形。
四、此外,我們還要關(guān)注三角形內(nèi)角和的一個重要性質(zhì)。在一個任意的三角形中,最大的內(nèi)角所對應(yīng)的邊是最長的,而最小的內(nèi)角所對應(yīng)的邊則是最短的。這提示我們,我們可以通過測量三角形的三個角的度數(shù)來判斷三角形的大小和形狀。如果一個三角形的度數(shù)都相等,那么這是一個等邊三角形。如果只有兩個角度相等,那么這是一個等腰三角形。通過這些性質(zhì),我們可以進(jìn)行更復(fù)雜的三角形的處理。
五、最后,我想強(qiáng)調(diào)一個重點,那就是,我們需要掌握三角形內(nèi)角和公式的證明過程。如果我們只是僅僅記住了這個公式,但是不理解其意義和原理,那么我們將很難理解和解決與三角形相關(guān)的問題。因此,在我們學(xué)習(xí)三角形內(nèi)角和公式的過程中,我們需要認(rèn)真學(xué)習(xí)其證明過程,并從中理解和掌握重要的原理和性質(zhì)。只有這樣,我們才能夠真正掌握這個公式,以及它所包含的深刻含義。
三角形的內(nèi)角和聽課心得體會篇三
2.弄清三角形按角的分類,會按角的大小對三角形進(jìn)行分類;。
3.通過對三角形分類的學(xué)習(xí),使學(xué)生了解數(shù)學(xué)分類的基本思想,并會用方程思想去解決一些圖形中求角的問題。
4.通過三角形內(nèi)角和定理的證明,提高學(xué)生的邏輯思維能力,同時培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)。
5.通過對定理及推論的分析與討論,發(fā)展學(xué)生的求同和求異的思維能力,培養(yǎng)學(xué)生聯(lián)系與轉(zhuǎn)化的辯證思想。
直尺、微機(jī)。
互動式,談話法。
1、創(chuàng)設(shè)情境,自然引入。
把問題作為教學(xué)的出發(fā)點,創(chuàng)設(shè)問題情境,激發(fā)學(xué)生學(xué)習(xí)興趣和求知欲,為發(fā)現(xiàn)新知識創(chuàng)造一個最佳的心理和認(rèn)知環(huán)境。
問題2你能用幾何推理來論證得到的關(guān)系嗎?
對于問題1絕大多數(shù)學(xué)生都能回答出來(小學(xué)學(xué)過的),問題2學(xué)生會感到困難,因為這個證明需添加輔助線,這是同學(xué)們第一次接觸的新知識―――“輔助線”。教師可以趁機(jī)告訴學(xué)生這節(jié)課將要學(xué)習(xí)的一個重要內(nèi)容(板書課題)。
新課引入的好壞在某種程度上關(guān)系到課堂教學(xué)的成敗,本節(jié)課從舊知識切入,特別是從知識體系考慮引入,“學(xué)習(xí)了三角形邊的關(guān)系,自然想到三角形角的關(guān)系怎樣呢?”使學(xué)生感覺本節(jié)課學(xué)習(xí)的內(nèi)容自然合理。
2、設(shè)問質(zhì)疑,探究嘗試。
讓學(xué)生剪一個三角形,并把它的三個內(nèi)角分別剪下來,再拼成一個平面圖形。這里教師設(shè)計了電腦動畫顯示具體情景。然后,圍繞問題設(shè)計以下幾個問題讓學(xué)生思考,教師進(jìn)行學(xué)法指導(dǎo)。
問題1觀察:三個內(nèi)角拼成了一個什么角?
問題2此實驗給我們一個什么啟示?
問題3由圖中ab與cd的關(guān)系,啟發(fā)我們畫一條什么樣的線,作為解決問題的橋梁?
其中問題2是解決本題的關(guān)鍵,教師可引導(dǎo)學(xué)生分析。對于問題3學(xué)生經(jīng)過思考會畫出此線的。這里教師要重點講解“輔助線”的有關(guān)知識。比如:為什么要畫這條線?畫這條線有什么作用?要讓學(xué)生知道“輔助線”是以后解決幾何問題有力的工具。它的作用在于充分利用條件;恰當(dāng)轉(zhuǎn)化條件;恰當(dāng)轉(zhuǎn)化結(jié)論;充分提示題目中各元素間的一些不明顯的關(guān)系,達(dá)到化難為易解決問題的目的。
(2)通過類比“三角形按邊分類”,三角形按角怎樣分類呢?
學(xué)生回答后,電腦顯示圖表。
(3)三角形中三個內(nèi)角之和為定值,那么對三角形的其它角還有哪些特殊的關(guān)系呢?
問題1直角三角形中,直角與其它兩個銳角有何關(guān)系?
問題2三角形一個外角與它不相鄰的兩個內(nèi)角有何關(guān)系?
問題3三角形一個外角與其中的一個不相鄰內(nèi)角有何關(guān)系?
其中問題1學(xué)生很容易得出,提出問題2之后,先給出三角形外角的定義,然后讓學(xué)生經(jīng)過分析討論,得出結(jié)論并書寫證明過程。
這樣安排的目的有三點:第一,理解定理之后的延伸――推論,培養(yǎng)學(xué)生良好的學(xué)習(xí)習(xí)慣。第二,模仿定理的證明書寫格式,加強(qiáng)學(xué)生書寫能力。第三,提高學(xué)生靈活運用所學(xué)知識的能力。
引導(dǎo)學(xué)生分析并嚴(yán)格書寫解題過程。
三角形的內(nèi)角和聽課心得體會篇四
在整個教學(xué)設(shè)計上謝老師充分體現(xiàn)“以學(xué)生發(fā)展為本”教育理念,將教學(xué)思路擬定為“談話激趣設(shè)疑導(dǎo)入——猜想——驗證{自主探究}——鞏固內(nèi)化——拓展延伸”,努力構(gòu)建探索型的課堂教學(xué)模式。具體體現(xiàn)在以下幾點:
1、善用激趣設(shè)疑導(dǎo)入:教學(xué)的藝術(shù)不在于傳授知識,而在于喚醒、激發(fā)和鼓勵。剛開始上課,謝老師用選王大會設(shè)懸念,三種類型的角在激烈的爭執(zhí),到的誰的內(nèi)角和大呢?這樣,在很短的時間內(nèi)最大限度的激發(fā)學(xué)生探究數(shù)學(xué)的愿望和興趣,而且也很自然地揭示了課題。
2、巧用猜想:學(xué)生有了探索的愿望和興趣,可是不能沒有目標(biāo)的去探索,那樣只會事倍功半,甚至沒有結(jié)果,這時謝老師就提到到底三角形的內(nèi)角和是不是180度呢,我們總不能口說無憑吧?使后邊的探索和驗證活動有了明確的目標(biāo)。
3、善用驗證{自主探索}:學(xué)生形成統(tǒng)一的猜想{即三角形的內(nèi)角和等于180度}后,謝老師就把課堂大量的時間和空間留給學(xué)生,讓他們開展有針對性的數(shù)學(xué)探究活動{即驗證三角形的內(nèi)角和是否是180度?},在活動中,把放和引有機(jī)的結(jié)合,鼓勵學(xué)生積極開動腦筋,從不同的途徑探索解決問題的方法。不但讓每個學(xué)生自主參與驗證活動,而且使學(xué)生在經(jīng)歷觀察、操作、分析、推理和想象活動過程中解決問題,發(fā)展空間觀念和論證推理能力。具體過程為:量一量——拼一拼——看一看。
4、善于引導(dǎo)鞏固內(nèi)化:俗話說的好:“熟能生巧”。數(shù)學(xué)離不開練習(xí),要掌握知識,形成技能技巧,一定要通過練習(xí)。養(yǎng)成良好的思維品質(zhì)也要通過一定的思考練習(xí),課程標(biāo)準(zhǔn)提倡練習(xí)的有效性。對此,謝老師非常注意將數(shù)學(xué)的思考融入不同層次的練習(xí)之中,很好的發(fā)揮練習(xí)的作用,如第一關(guān)牛刀小試:給出一個三角形的兩個角度,學(xué)生求第三個角,從中培養(yǎng)學(xué)生應(yīng)用意識和解決問題的能力;第三關(guān)過關(guān)斬將:讓學(xué)生判斷有兩個小三角形拼成的三角形的內(nèi)角和的度數(shù),使學(xué)生在圖形變化的過程中掌握知識,培養(yǎng)思維的靈活性,從中發(fā)展學(xué)生的空間觀念和空間想象能力。這些練習(xí)設(shè)計目的明確,針對性強(qiáng),使學(xué)生不但鞏固了知識,更重要的是數(shù)學(xué)思維得到不斷的發(fā)展。
5、有一定的拓展創(chuàng)新:數(shù)學(xué)具有嚴(yán)密的邏輯性和抽象性。而學(xué)生學(xué)習(xí)內(nèi)容的呈現(xiàn)是從簡單到復(fù)雜,思維方式是從具體到抽象的一個循序漸進(jìn)的過程,前面學(xué)習(xí)的知識往往是后面進(jìn)一步學(xué)習(xí)的基礎(chǔ)。要培養(yǎng)學(xué)生思維的靈活性,可以先讓學(xué)生學(xué)會對知識的遷移。本課最后,謝老師設(shè)計了這樣一道題目:學(xué)了三角形的內(nèi)角和后,你知道四邊形的內(nèi)角和是多少度嗎?這道題通過對本節(jié)課所學(xué)知識的遷移就可以完成,既能對學(xué)生進(jìn)行思維訓(xùn)練,又能培養(yǎng)學(xué)生應(yīng)用知識的能力,更能培養(yǎng)學(xué)生的創(chuàng)新意識和創(chuàng)新精神。
總之,本節(jié)課教學(xué)活動中謝老師充分體現(xiàn)以下特點:以學(xué)生發(fā)展為本,以學(xué)生為主體,思維為主線的思想;充分關(guān)注學(xué)生的自主探究與合作交流;練習(xí)體現(xiàn)了層次性,知識技能得于落實和發(fā)展。是一節(jié)非常成功的課。
三角形的內(nèi)角和聽課心得體會篇五
學(xué)習(xí)三角形內(nèi)角是數(shù)學(xué)學(xué)習(xí)中的基礎(chǔ)知識之一,三角形是幾何學(xué)中的重點內(nèi)容之一。通過學(xué)習(xí)三角形內(nèi)角,可以幫助我們更好地理解三角形的性質(zhì),提高數(shù)學(xué)思維能力。在學(xué)習(xí)的過程中,我深受啟發(fā),也積累了一些心得體會。
首先,我們來了解一下三角形內(nèi)角的定義和性質(zhì)。三角形內(nèi)角是指三角形內(nèi)部的角度,任意一個三角形的三個內(nèi)角相加總是等于180度。這個性質(zhì)被稱為三角形內(nèi)角和定理?;趦?nèi)角和定理,我們可以進(jìn)一步推導(dǎo)出三角形的其他性質(zhì),比如角平分線、垂直線等概念。通過理解和應(yīng)用這些性質(zhì),我們可以更好地解決與三角形相關(guān)的問題。
第三段:學(xué)習(xí)方法和技巧。
在學(xué)習(xí)三角形內(nèi)角的過程中,我們也可以運用一些學(xué)習(xí)方法和技巧,來提高學(xué)習(xí)效果。首先,要熟練掌握三角形內(nèi)角和的計算方法,包括直角三角形、等腰三角形和一般三角形的特殊情況。其次,要多做練習(xí)題,通過實際操作來鞏固知識。同時,還需要理解和運用三角函數(shù),來解決與三角形內(nèi)角和相關(guān)的實際問題。最后,要注重學(xué)習(xí)的整體性,將三角形內(nèi)角和與其他知識點相結(jié)合,形成知識網(wǎng)絡(luò)。
學(xué)習(xí)三角形內(nèi)角不僅是為了解答與三角形相關(guān)的問題,更重要的是培養(yǎng)和提高我們的數(shù)學(xué)思維能力。學(xué)習(xí)三角形內(nèi)角能夠鍛煉我們的邏輯思維、推理能力和問題解決能力。三角形內(nèi)角和定理不僅僅適用于三角形,還可以推廣應(yīng)用到其他幾何學(xué)相關(guān)知識中。通過學(xué)習(xí)三角形內(nèi)角,我們可以更深入地理解幾何學(xué)的基本概念和原理,提高我們的數(shù)學(xué)素養(yǎng)。
通過學(xué)習(xí)三角形內(nèi)角,我深刻地認(rèn)識到數(shù)學(xué)是一門自洽、邏輯嚴(yán)密的學(xué)科。三角形內(nèi)角和定理的證明過程非常復(fù)雜,需要我們嚴(yán)密的思考和理解。而且,學(xué)習(xí)三角形內(nèi)角還要求我們具備良好的空間想象力和幾何直覺。通過不斷練習(xí)和思考,我漸漸地培養(yǎng)起了這些能力。此外,學(xué)習(xí)三角形內(nèi)角還讓我慢慢體會到數(shù)學(xué)的美和魅力,它是一門融思考、推理和創(chuàng)造于一體的學(xué)科。通過學(xué)習(xí)三角形內(nèi)角,我不僅僅掌握了一種方法,還獲得了更深刻的數(shù)學(xué)認(rèn)識,對數(shù)學(xué)產(chǎn)生了濃厚的興趣。
總結(jié):
學(xué)習(xí)三角形內(nèi)角是數(shù)學(xué)學(xué)習(xí)中的重要內(nèi)容之一,通過學(xué)習(xí)三角形內(nèi)角,我們可以更好地理解三角形的性質(zhì)和解決與三角形相關(guān)的問題。在學(xué)習(xí)過程中,我們可以運用一些學(xué)習(xí)方法和技巧,同時也要注重培養(yǎng)整體性的學(xué)習(xí)能力。學(xué)習(xí)三角形內(nèi)角不僅僅是為了解答問題,更重要的是提高數(shù)學(xué)思維能力和數(shù)學(xué)素養(yǎng)。通過學(xué)習(xí)三角形內(nèi)角,我們可以感受到數(shù)學(xué)的美和魅力,培養(yǎng)出對數(shù)學(xué)的興趣和熱愛。
三角形的內(nèi)角和聽課心得體會篇六
三角形作為幾何學(xué)中的基本圖形之一,具有豐富的性質(zhì)和定理。在學(xué)習(xí)中證明三角形的一些相關(guān)定理過程中,我有幸參加了一堂生動有趣的證明課程,深刻感受到了數(shù)學(xué)證明的魅力。這次聽課讓我對數(shù)學(xué)的理解更加深入,同時也培養(yǎng)了我邏輯思維和分析問題的能力。
首先,課程的開始引人入勝,老師分享了一些與三角形相關(guān)的有趣事例和實際應(yīng)用,使得大家對于學(xué)習(xí)的內(nèi)容產(chǎn)生了濃厚的興趣。老師講述了古希臘的數(shù)學(xué)家畢達(dá)哥拉斯的故事,他發(fā)現(xiàn)了一個重要的定理——畢達(dá)哥拉斯定理,即直角三角形的兩條直角邊的平方和等于斜邊的平方。這個定理不僅為數(shù)學(xué)研究提供了基礎(chǔ),也為實際生活中的測量和構(gòu)造提供了方便。老師還提到了有關(guān)三角形的實際應(yīng)用,如建筑工程中的角度測量,航海中的航線計算等。這些實例的講述讓我對于三角形證明的學(xué)習(xí)有了更直觀的認(rèn)識。
接著,課程以三角形的性質(zhì)和定理為主線,詳細(xì)介紹了一些經(jīng)典的三角形定理。我印象最為深刻的是三角形的角平分線定理。老師首先講述了這個定理的原理和推論,然后以實際的例子進(jìn)行了具體運用,這讓我真正理解了定理的含義和應(yīng)用。通過證明了這一定理,我逐漸認(rèn)識到數(shù)學(xué)證明的嚴(yán)謹(jǐn)性和邏輯性,深刻體會到了數(shù)學(xué)證明的美妙之處。
在課程的過程中,老師還鼓勵同學(xué)們積極參與,提問和回答問題。通過與同學(xué)們的互動,我學(xué)到了很多我以前沒有了解到的知識。同學(xué)們紛紛分享了自己的思考和觀點,從不同的角度來解釋和理解問題,這為我提供了新的思路和思考方式。我也積極向老師請教一些疑惑,老師耐心解答并鼓勵我多思考多探索。這樣的交流讓我在學(xué)習(xí)中不再感覺孤立,而是能夠充分發(fā)揮自己的思維和創(chuàng)造力。
最后,課程以綜合練習(xí)的形式結(jié)束。老師提供了一些需要進(jìn)行證明的三角形問題,讓我們自己動手去解決。這種讓學(xué)生主動參與的方式,激發(fā)了我們的求知欲和學(xué)習(xí)興趣。雖然在解題的過程中會遇到一些困難,但通過自己的思考和嘗試,我逐漸找到了解決問題的方法。解決問題的過程不僅培養(yǎng)了我的邏輯思維和分析問題的能力,也讓我對于數(shù)學(xué)證明的過程和方法有了更深入的理解。
通過這次課程,我對于三角形的證明有了更加全面和深入的認(rèn)識。我明白了數(shù)學(xué)證明的重要性,它不僅是數(shù)學(xué)學(xué)習(xí)中的一種方法,更是一個鍛煉思維和培養(yǎng)邏輯能力的過程。在以后的學(xué)習(xí)中,我會將這些知識應(yīng)用到實際問題中,不斷提高自己的數(shù)學(xué)能力。同時,我也會更加注重數(shù)學(xué)證明的學(xué)習(xí),進(jìn)一步拓寬自己的視野,培養(yǎng)自己的數(shù)學(xué)思維。通過不斷努力和學(xué)習(xí),我相信自己一定能夠在數(shù)學(xué)領(lǐng)域取得更大的成就。
三角形的內(nèi)角和聽課心得體會篇七
一堂好課不應(yīng)是自始至終的高潮和精彩,也不必是高科技現(xiàn)代教育技術(shù)的集中展示。一堂好課不是看它的熱鬧程度,而在于學(xué)生從中得到了什么,它留給人們的應(yīng)是思考、啟示和回味。2月19日上午,在沈家門第一小學(xué),我有幸聆聽了趙斌娜老師執(zhí)教的《三角形的內(nèi)角和》一課,這就是一堂好課。
趙老師營造了寬松和諧的課堂氣氛,讓學(xué)生能主動參與學(xué)習(xí)活動,既關(guān)注了學(xué)生的個人差異和不同的學(xué)習(xí)需求,又注重了學(xué)生的個體感悟,強(qiáng)調(diào)情感體驗的過程。確立了學(xué)生在課堂教學(xué)中的主體地位,使學(xué)生在學(xué)習(xí)過程中既調(diào)動了積極性,又激發(fā)了學(xué)生的主體意識和進(jìn)取精神。學(xué)生在自主、合作、探究的學(xué)習(xí)方式中互相激勵,取長補短,能團(tuán)結(jié)協(xié)作,最終形成了相應(yīng)能力;同時培養(yǎng)了學(xué)生刻苦鉆研,事實求是的態(tài)度。
教學(xué)過程是一堂課關(guān)鍵中的關(guān)鍵,新課標(biāo)提出數(shù)學(xué)教學(xué)是數(shù)學(xué)活動的教學(xué),而數(shù)學(xué)活動應(yīng)是學(xué)生自己建構(gòu)知識的活動。教師讓學(xué)生“在參與中體驗,在活動中發(fā)展”。本節(jié)課有操作活動、自主探索與合作交流、應(yīng)用活動三個方面,下面我重點談?wù)劜僮骰顒印?/p>
1、在實踐材料上下了工夫。
操作實踐的材料是精心選擇的,老師為學(xué)生準(zhǔn)備了用卡紙制作的形狀、大小、顏色不同的三角形各幾個,這樣學(xué)生在操作時候,便于選擇、測量、拼擺、觀察、思考問題,而且這些三角形顏色醒目、比較大,學(xué)生應(yīng)用起來很得手,操作的材料和學(xué)生的動手實踐配合恰當(dāng)。
2、找準(zhǔn)時機(jī)讓學(xué)生進(jìn)行實踐操作。
本節(jié)課安排了兩次操作活動:一是在得出三角形內(nèi)角和規(guī)律前進(jìn)行實踐操作,促使學(xué)生在實踐操作中探究新知識;二是在初步得出規(guī)律之后,讓學(xué)生通過實踐操作來驗證新知識。幫助學(xué)生清楚地認(rèn)識到第一次出現(xiàn)內(nèi)角和偏差的原因是測量誤差造成的。給學(xué)生提供的這兩次動手實踐的機(jī)會,不僅提高了操作的效果,更重要的使“聽數(shù)學(xué)”變?yōu)椤白鰯?shù)學(xué)”。促使學(xué)生在“做數(shù)學(xué)”的過程中對所學(xué)知識產(chǎn)生了深刻的體驗,從中感悟和理解到新知識的形成和發(fā)展,體會了數(shù)學(xué)學(xué)習(xí)的過程與方法,獲得數(shù)學(xué)活動的經(jīng)驗。
3、把實踐操作和數(shù)學(xué)思維結(jié)合起來。
學(xué)生通過實踐操作獲得的認(rèn)識是一種感性的認(rèn)識,是外在的直觀的印象。在本節(jié)課中趙老師在學(xué)生實踐操作的基礎(chǔ)上引導(dǎo)學(xué)生把動手實踐和數(shù)學(xué)思維結(jié)合起來,先讓學(xué)生思考出可以用量、撕和拼的方法來推導(dǎo)三角形內(nèi)角和的度數(shù),接著引導(dǎo)學(xué)生說出量的方法,最后讓學(xué)生實際測量。采取邊說邊操作,邊討論邊操作的方式,讓手、腦、口并用,在操作和直觀教學(xué)的基礎(chǔ)上及時對三角形內(nèi)角和規(guī)律進(jìn)行抽象概括。做到邊動手,邊思考。同時學(xué)生獲得了一種數(shù)學(xué)思想和方法,學(xué)會了解決一些類似的一系列的問題,提高了實踐動手的有效性。
三角形的內(nèi)角和聽課心得體會篇八
1、善用激趣設(shè)疑導(dǎo)入:教學(xué)的藝術(shù)不在于傳授知識,而在于喚醒、激發(fā)和鼓勵。剛開始上課,謝老師用選王大會設(shè)懸念,三種類型的角在激烈的爭執(zhí),到的誰的內(nèi)角和大呢?這樣,在很短的時間內(nèi)最大限度的激發(fā)學(xué)生探究數(shù)學(xué)的愿望和興趣,而且也很自然地揭示了課題。
2、巧用猜想:學(xué)生有了探索的愿望和興趣,可是不能沒有目標(biāo)的去探索,那樣只會事倍功半,甚至沒有結(jié)果,這時謝老師就提到到底三角形的內(nèi)角和是不是180度呢,我們總不能口說無憑吧?使后邊的探索和驗證活動有了明確的目標(biāo)。
3、善用驗證{自主探索}:學(xué)生形成統(tǒng)一的猜想{即三角形的內(nèi)角和等于180度}后,謝老師就把課堂大量的時間和空間留給學(xué)生,讓他們開展有針對性的`數(shù)學(xué)探究活動{即驗證三角形的內(nèi)角和是否是180度?},在活動中,把放和引有機(jī)的結(jié)合,鼓勵學(xué)生積極開動腦筋,從不同的途徑探索解決問題的方法。不但讓(轉(zhuǎn)自數(shù)學(xué)吧http://)每個學(xué)生自主參與驗證活動,而且使學(xué)生在經(jīng)歷觀察、操作、分析、推理和想象活動過程中解決問題,發(fā)展空間觀念和論證推理能力。具體過程為:量一量——拼一拼——看一看。
4、善于引導(dǎo)鞏固內(nèi)化:俗話說的好:“熟能生巧”。數(shù)學(xué)離不開練習(xí),要掌握知識,形成技能技巧,一定要通過練習(xí)。養(yǎng)成良好的思維品質(zhì)也要通過一定的思考練習(xí),課程標(biāo)準(zhǔn)提倡練習(xí)的有效性。對此,謝老師非常注意將數(shù)學(xué)的思考融入不同層次的練習(xí)之中,很好的發(fā)揮練習(xí)的作用,如第一關(guān)牛刀小試:給出一個三角形的兩個角度,學(xué)生求第三個角,從中培養(yǎng)學(xué)生應(yīng)用意識和解決問題的能力;第三關(guān)過關(guān)斬將:讓學(xué)生判斷有兩個小三角形拼成的三角形的內(nèi)角和的度數(shù),使學(xué)生在圖形變化的過程中掌握知識,培養(yǎng)思維的靈活性,從中發(fā)展學(xué)生的空間觀念和空間想象能力。這些練習(xí)設(shè)計目的明確,針對性強(qiáng),使學(xué)生不但鞏固了知識,更重要的是數(shù)學(xué)思維得到不斷的發(fā)展。
5、有一定的拓展創(chuàng)新:數(shù)學(xué)具有嚴(yán)密的邏輯性和抽象性。而學(xué)生學(xué)習(xí)內(nèi)容的呈現(xiàn)是從簡單到復(fù)雜,思維方式是從具體到抽象的一個循序漸進(jìn)的過程,前面學(xué)習(xí)的知識往往是后面進(jìn)一步學(xué)習(xí)的基礎(chǔ)。要培養(yǎng)學(xué)生思維的靈活性,可以先讓學(xué)生學(xué)會對知識的遷移。本課最后,謝老師設(shè)計了這樣一道題目:學(xué)了三角形的內(nèi)角和后,你知道四邊形的內(nèi)角和是多少度嗎?這道題通過對本節(jié)課所學(xué)知識的遷移就可以完成,既能對學(xué)生進(jìn)行思維訓(xùn)練,又能培養(yǎng)學(xué)生應(yīng)用知識的能力,更能培養(yǎng)學(xué)生的創(chuàng)新意識和創(chuàng)新精神。
總之,本節(jié)課教學(xué)活動中謝老師充分體現(xiàn)以下特點:以學(xué)生發(fā)展為本,以學(xué)生為主體,思維為主線的思想;充分關(guān)注學(xué)生的自主探究與合作交流;練習(xí)體現(xiàn)了層次性,知識技能得于落實和發(fā)展。是一節(jié)非常成功的課。
三角形的內(nèi)角和聽課心得體會篇九
課程標(biāo)準(zhǔn)這樣描述:通過觀察、操作了解三角形內(nèi)角和是180。
分析教材內(nèi)容,在上學(xué)期的學(xué)習(xí)中學(xué)生已經(jīng)掌握了角的分類及度量的知識。在本課之前,學(xué)生又研究了三角形的特性、三邊間的關(guān)系及三角形的分類等知識。積累了一些有關(guān)三角形的知識和經(jīng)驗,形成了一定的空間觀念,可以在比較抽象的水平上進(jìn)一步認(rèn)識三角形,探索新知。教材中安排了學(xué)生對不同形狀的、大小的三角形進(jìn)行度量,再運用拼、折、剪等方法發(fā)現(xiàn)三角形的內(nèi)角和是180°,學(xué)好它有助于學(xué)生理解三角形的三個內(nèi)角之間的關(guān)系,也是進(jìn)一步學(xué)習(xí)其他圖形內(nèi)角和的基礎(chǔ),同時為初中進(jìn)一步論證做好準(zhǔn)備。
課前我對學(xué)情進(jìn)行了分析:
1、學(xué)生在學(xué)習(xí)本課前已經(jīng)掌握了銳角、直角、鈍角、平角和周角的度數(shù),認(rèn)識了三角形的基本特征及其分類,由于學(xué)生的數(shù)學(xué)知識、能力和思考問題的角度有一定的差異,因此比較容易出現(xiàn)解決問題策略的多樣化。
2、已經(jīng)有不少學(xué)生知道了三角形內(nèi)角和是180度的結(jié)論,但是很可能都知其然不知其所以然。
通過對課程標(biāo)準(zhǔn)的認(rèn)識,以及內(nèi)容分析和學(xué)情分析,我制定了這樣的學(xué)習(xí)目標(biāo):
1、通過量、拼、折、剪等方法探索和發(fā)現(xiàn)三角形的內(nèi)角和等于180°并會應(yīng)用這一規(guī)律解決實際的問題。
2、通過研究直角三角形進(jìn)而研究銳角三角形、鈍角三角形,初步認(rèn)識、理解由特殊到一般的邏輯思辨方法。
針對這一目標(biāo)的完成,我設(shè)計了一下評價方式:
1、交流式評價:通過師生、生生對話交流,在交流中對學(xué)生進(jìn)行評價。
2、表現(xiàn)性評價:通過小組討論表現(xiàn)、學(xué)生回答問題情況,適當(dāng)對學(xué)生進(jìn)行點撥。
1、通過3個練習(xí)題(1、做一做。2、說一說3、拼一拼、想一想)
檢測學(xué)習(xí)目標(biāo)1的掌握情況。
教具準(zhǔn)備:課件、3個直角三角形,2個銳角三角形、2個鈍角三角形、一張表格
學(xué)具準(zhǔn)備:三角板、量角器.
這節(jié)課的教學(xué)我通過一下四個環(huán)節(jié)完成。
1、觀察猜測,引入新知;
2、動手操作,探索新知;
3、鞏固新知,拓展應(yīng)用;
4、總結(jié)評價、延伸知識。
第一環(huán)節(jié),觀察猜測,引入新知。
由圖形引入,讓學(xué)生指出銳角三角形,直角三角形,鈍角三角形的三個內(nèi)角,發(fā)現(xiàn)在這些三角形中最大的內(nèi)角是鈍角。問:想看鈍角三角形72變嗎?我們一起來看一看。課件演示:
(1)鈍角變小,另外兩個角怎樣變?
(2)鈍角變大,另外兩個角怎樣變?
(3)鈍角變大、變大、變大再變大,還能再大嗎?發(fā)現(xiàn)再大就成平角了。平角多少度?這時把三角形三個內(nèi)角的加起來,和可能多少呢?猜測:180度。
第二環(huán)節(jié),動手操作,探索新知。
1、直角三角形的內(nèi)角和。
(一)直角三角形內(nèi)角和
先讓學(xué)生觀察一副三角板的內(nèi)角和,發(fā)現(xiàn)都是180度,和猜測是一樣的,是不是所有的直角三角形內(nèi)角和都是180度呢?課件出示一些直角三角形,讓學(xué)生用手中的工具驗證你的猜測。
四人小組合作,拿出學(xué)具袋里三個紅色的直角三角形和表格,用不同的方法驗證猜測。學(xué)生可以“量一量”,也可以“剪一剪”,還可以“折一折”。匯報時要讓學(xué)生說一說方法,同時在課件上展示。
這個環(huán)節(jié)引導(dǎo)學(xué)生通過量、拼、推理等實踐操作活動,自主探究直角三角形的內(nèi)角和是180度,體驗解決問題策略的多樣化。通過這些過程使學(xué)生明白:探究問題有不同的方法、途徑,并且方法之間可以互為驗證,達(dá)到結(jié)論的統(tǒng)一,從而使學(xué)生明白獲得探究問題的方法比獲得結(jié)論更為重要。
(二)、銳角三角形、鈍角三角形的內(nèi)角和
課件出示將銳角三角形、鈍角三角形,問:你能利用我們剛才學(xué)到的知識來研究它們的內(nèi)角和嗎?動手試一試,可以同桌討論。(學(xué)生操作,匯報,課件演示)讓學(xué)生模仿老師操作說理。由此得到了銳角三角形和鈍角三角形的內(nèi)角和也是180度。我們就可以說所有三角形的內(nèi)角和都是180度。這是三角形的一個特性。
這樣引導(dǎo)學(xué)生通過直角三角形的內(nèi)角和是180度來推導(dǎo)出銳角和鈍角三角形的內(nèi)角和是180度,使學(xué)生初步掌握由特殊到一般的邏輯思辨方法。
第三環(huán)節(jié)、鞏固新知,拓展應(yīng)用
用三角形的這一特性來解決一些問題
1、基本練習(xí)
通過做一做和說一說這兩個練習(xí)來強(qiáng)化學(xué)生認(rèn)知。
2、拓展練習(xí)
拼一拼、想一想
(1)兩個三角形拼成大三角形,說出大三角形的內(nèi)角和
(2)一個三角形去掉一部分
引導(dǎo)學(xué)生發(fā)現(xiàn),無論三角形的形狀或大小如何改變,內(nèi)角和都是180度,看來三角形的內(nèi)角和度數(shù)和他的大小形狀都無關(guān)。
(3)再把這個三角形剪去一部分剪成一個四邊形,它的內(nèi)角和是多少度?
(4)如果變成五邊形,你還能求出他的度數(shù)嗎?
充分利用多媒體資源幫助學(xué)生理解、消化、新的知識,能夠靈活的運用三角形的內(nèi)角和等于180度。在此基礎(chǔ)上滲透數(shù)學(xué)的“轉(zhuǎn)化”思想和“分割”思想提高學(xué)生靈活運用和推理等各方面的能力。
第四環(huán)節(jié)、總結(jié)評價、延伸知識
通過這個環(huán)節(jié)讓學(xué)生談一談自己的收獲或感受,對本節(jié)課的知識進(jìn)行拓展升華。
三角形的內(nèi)角和
猜測(180度)
驗證:測量、撕拼、折疊結(jié)論
三角形的內(nèi)角和是180度
我的板書簡明扼要,體現(xiàn)了本節(jié)課的重點,而且是對本節(jié)課學(xué)習(xí)方法的一個回顧。
三角形的內(nèi)角和聽課心得體會篇十
《三角形內(nèi)角和》是人教版四年級下在學(xué)生掌握了三角形的特性和分類之后的一個內(nèi)容。三角形的內(nèi)角和為180°是三角形的一個重要性質(zhì)。它有助于學(xué)生理解三角形三個內(nèi)角之間的關(guān)系,也是學(xué)生下一步學(xué)習(xí)三角函數(shù)的基礎(chǔ)。通過前面的摸底,我發(fā)現(xiàn)百分之八十的學(xué)生對三角形的內(nèi)角和是180度是知道的,但都沒有仔細(xì)研究過。學(xué)生有了這樣的基礎(chǔ)之后,對教師來說,要展開教學(xué)還是有困難的。怎么樣才能讓學(xué)生在整堂課中有所收獲呢?我把教學(xué)目標(biāo)定位在讓學(xué)生經(jīng)過操作、驗證等一系列活動,經(jīng)歷猜測、驗證的過程,從而習(xí)得知識,并得以鞏固。我是這樣安排的:
通過回憶舊知,引出鈍角三角形,讓學(xué)生指鈍角,接著說另外二個角為銳角,教師接著引出這三個角叫做這個鈍角三角形的三個內(nèi)角,并畫上相應(yīng)的角的符號。師接著呈現(xiàn)直角三角形和銳角三角形,讓學(xué)生找內(nèi)角,讓內(nèi)角這一概念得到鞏固。應(yīng)該說在這個過程中,內(nèi)角這個概念是落實得比較到位的,學(xué)生也能很快領(lǐng)悟到每個三角形的三個內(nèi)角分別是什么。
通過前一階段的說課,教研員指出在學(xué)習(xí)三角形的內(nèi)角和是180度這一內(nèi)容時,我們首先要告訴學(xué)生,或者是形成一個共識,那就是三角形的內(nèi)角和都是一樣的,也就是是一個固定的數(shù),有了這樣的前提之后才能讓學(xué)生進(jìn)行猜測并驗證。所以在設(shè)計的時候,我把這二個活動結(jié)合在一起進(jìn)行了。通過讓學(xué)生觀察,猜測哪個三角形的三個內(nèi)角和相加的和最大?通過這一問題,既引出了內(nèi)角和,也拋出了猜測。在這個問題拋出之后,通過和吳校長討論,我們做了各種各樣的預(yù)設(shè)。在課上,問題一拋下去,學(xué)生都說是一樣的,是180度。面對這樣的起點,我就接著問學(xué)生一個問題,你是怎么知道的?第一位學(xué)生回答得支支吾吾,也不知道該怎么說,就坐下了。第二位學(xué)生說:因為三角板上有過的,相加的和是180度。這個回答也是在我預(yù)設(shè)之內(nèi)的,學(xué)生對三角形的內(nèi)角和接觸最多的就是從三角板上獲得的,所以當(dāng)學(xué)生有了這樣的回答之后。我就說,同學(xué)們,看一看我們的三角板,你發(fā)現(xiàn)它們都是……(直角三角形)那鈍角三角形和銳角三角形呢?你們仔細(xì)研究過嗎?今天我們就來研究一下這個問題。通過這一環(huán)節(jié),直接把話題引到了今天學(xué)習(xí)的內(nèi)容上來了。
在這個過程中,我分了二個層次,第一:學(xué)生量教師給的三種類型的三角形。
第二:生任意畫一個三角形進(jìn)行驗證。讓學(xué)生經(jīng)歷從特殊到普遍的過程。這是動手操作的過程。因為前面沒有試教過,所以在這里花的時間比較多,我自己覺得課上得有點拖,也有點沉悶。但在這一過程中,我也發(fā)現(xiàn)了很多的問題。很多學(xué)生是運用180度這個結(jié)論來量的。比如說他先量了二個角,最后一個角就不量了,直接用180度減去前面二個角,就是第三個角。我想如果這樣的話就失去了測量的意義了。在交流的過程中,很多同學(xué)都說他們測量的結(jié)果是180度,導(dǎo)致另外一些不是180度的學(xué)生不敢表達(dá)自己的意見。我想面對這樣的問題,如果我在交流反饋的時候,再多加一個環(huán)節(jié),問你量出來的三個角分別是幾度,內(nèi)角和是幾度,這樣是不是會減少一些這樣的問題。
這一環(huán)節(jié),我選擇了直接告訴學(xué)生,剪下三個角來拼一拼,看看有什么發(fā)現(xiàn)。
通過了解,其實有一些學(xué)生是知道的。(在聽課的過程中,旁邊的四年級老師告訴我,他們以前組織過這樣的活動,讓學(xué)生剪角、拼角,所以一些學(xué)生有這樣的基礎(chǔ))因為事先沒有了解,所以我低估了學(xué)生的能力。如果我選用拋問題的方法,可能會出現(xiàn)一些亮點。當(dāng)然這也只是一小部分學(xué)生而已,其實在實際的操作過程中,在我電腦演示了剪與拼的過程之后,再讓學(xué)生自己任意剪一剪、拼一拼的時候,還是有很多學(xué)生是不會拼的,不知道三個角該怎樣放。我想在這個過程中,我在電腦演示的時候,如果再多加引導(dǎo)一下的話,可能在操作的過程中,更多的學(xué)生能夠參與進(jìn)來。
三角形的內(nèi)角和聽課心得體會篇十一
一、構(gòu)建新的課堂教學(xué)模式。
傳統(tǒng)的教學(xué)往往只重視對結(jié)論的記憶和模仿,而這節(jié)課老師把學(xué)生的學(xué)習(xí)定位在自主建構(gòu)知識的.基礎(chǔ)上,建立了“猜想——驗證——歸納——運用”的教學(xué)模式。
二、培養(yǎng)學(xué)生勇于猜想,大膽創(chuàng)新的精神。
教學(xué)中趙老師遵循的基本教學(xué)原則是激勵學(xué)生展開積極的思維活動.先創(chuàng)設(shè)猜角的游戲情景,讓學(xué)生對三角形的三個角的度數(shù)關(guān)系產(chǎn)生好奇,引發(fā)學(xué)生的探究欲望.
三、為學(xué)生提供了大量數(shù)學(xué)活動的機(jī)會,讓學(xué)生真正成為學(xué)習(xí)的主人。
“給學(xué)生一些權(quán)利,讓他們自己選擇;讓他們自己去鍛煉;給學(xué)生一些問題,讓他們自己去探索;給學(xué)生一片空間,讓學(xué)生自己飛翔.”這正是課堂教學(xué)改革中學(xué)生的主體性的表現(xiàn)。所以在這節(jié)課中趙老師樹立了數(shù)學(xué)教學(xué)為學(xué)生服務(wù),創(chuàng)設(shè)有助于學(xué)生自主學(xué)習(xí),合作交流的機(jī)會,通過想辦法求三角形的內(nèi)角和這一核心問題,引發(fā)學(xué)生去思考,去探究.這樣學(xué)生的潛能的以激活,思維展開了想象,能力得以發(fā)展.
四、給學(xué)生一個開放探究的學(xué)習(xí)空間.
培養(yǎng)學(xué)生的問題意識是數(shù)學(xué)課堂教學(xué)的核心問題,所以課堂上學(xué)生的學(xué)習(xí)過程就是解決問題的過程,當(dāng)一個問題解決完后又引發(fā)出新的問題,使學(xué)生體會到成功的喜悅,使數(shù)學(xué)課堂充滿挑戰(zhàn).所以課堂上老師沒有因?qū)W生發(fā)現(xiàn)三角形內(nèi)角和是180度而罷休,然后用一個大的三角形剪成兩個小的,用兩個小的拼成大的內(nèi)角和延伸,使學(xué)生悟出規(guī)律,這樣學(xué)生帶著問題在課后向更高的學(xué)習(xí)目標(biāo)繼續(xù)探索,一追求更大的成功。
一堂好課不應(yīng)是自始至終的高潮和精彩,也不必是高科技現(xiàn)代教育技術(shù)的集中展示。一堂好課不是看它的熱鬧程度,而在于學(xué)生從中得到了什么,它留給人們的應(yīng)是思考、啟示和回味。
三角形的內(nèi)角和聽課心得體會篇十二
“三角形的內(nèi)角和”是人教版小學(xué)數(shù)學(xué)四年級下冊第五單元第四節(jié)的內(nèi)容,“三角形的內(nèi)角和”是三角形的一個重要性質(zhì)。本課教學(xué)內(nèi)容不算多,學(xué)生只需要翻看課本就會知道三角形的內(nèi)角和是180°,但是陳麗老師并沒有讓學(xué)生這樣做?!皵?shù)學(xué)學(xué)習(xí)的過程實際上是數(shù)學(xué)活動的過程”。課程標(biāo)準(zhǔn)要求我們“將課堂還給學(xué)生,讓課堂煥發(fā)生命的活力”,要求我們“努力營造學(xué)生在教學(xué)活動中獨立自主學(xué)習(xí)的時間和空間,使他們成為課堂教學(xué)中重要的參與者與創(chuàng)造者,落實學(xué)生的主體地位,促進(jìn)學(xué)生的自主學(xué)習(xí)和探究?!痹诮虒W(xué)中,陳老師力求探究,將教學(xué)思路擬定為“創(chuàng)設(shè)情境,激趣引題——自主合作,探究新知——交流釋疑,歸納總結(jié)——拓展應(yīng)用,反思升華”四個環(huán)節(jié),努力構(gòu)建探究型的課堂教學(xué)模式。具體體現(xiàn)在以下幾個方面:
課一開始,陳老師創(chuàng)設(shè)了一個實踐操作的活動情境:讓學(xué)生畫一個含有兩個直角的三角形。很顯然三角形是畫不出來的,學(xué)生同樣也不知道畫不出來。簡單的活動激活了學(xué)生的思維,讓他們產(chǎn)生了問題:是不是三角形的角有些什么秘密呢?這樣,在很短的時間內(nèi)最大限度的激發(fā)學(xué)生探究數(shù)學(xué)的愿望和興趣,而且也很自然地揭示了課題。
在教學(xué)中,陳老師巧妙運用“猜想、驗證”的方式引導(dǎo)學(xué)生進(jìn)行自主學(xué)習(xí)和探究活動。學(xué)生大膽猜想三角形的內(nèi)角和是180°,讓學(xué)生對問題形成了統(tǒng)一的認(rèn)識,使后邊的探索和驗證活動有了明確的目標(biāo)。這個時候,陳老師就把課堂大量的時間和空間留給學(xué)生,在學(xué)生交流探究設(shè)想和打算采用的方法后,放手讓每個同學(xué)自主參與驗證活動,在經(jīng)歷觀察、操作、分析、推理和想象活動過程中解決問題,同時發(fā)展空間觀念和論證推理能力。驗證的具體過程為:量角求和——撕角拼一拼——折角拼一拼。拼角的方法具有一般性,結(jié)論的形成不缺乏科學(xué)性。這個環(huán)節(jié)的設(shè)計更重要的是變“聽數(shù)學(xué)”為“做數(shù)學(xué)”,讓學(xué)生在“做中學(xué)”。
學(xué)生在活動中體驗,在交流中消除疑惑,獲得新知。這節(jié)課生與生、生與師的交流不僅僅停留在知識的層面上,陳老師還引導(dǎo)學(xué)生對獲得知識所用的方法進(jìn)行了總結(jié),加強(qiáng)了學(xué)法指導(dǎo)。
課程標(biāo)準(zhǔn)提倡練習(xí)的.有效性。本節(jié)課的練習(xí)設(shè)計陳老師非常注意將數(shù)學(xué)的思考融入不同層次的練習(xí)之中,很好的發(fā)揮練習(xí)的作用。兩個小三角形拼成一個較大的三角形互動練習(xí)讓學(xué)生進(jìn)一步理解任意三角形的內(nèi)角和都是180°;后面的練習(xí)設(shè)計從圖形到文字,由一般到特殊;“開心一刻”更是把學(xué)生帶到無窮的學(xué)習(xí)樂趣之中。這些練習(xí)設(shè)計目的明確,針對性強(qiáng),使學(xué)生不但鞏固了知識,更重要的是數(shù)學(xué)思維得到不斷的發(fā)展。
兩點建議:
2、學(xué)生的猜想結(jié)果都是180°,這時老師是否可以反問:你們是怎樣知道的?便于學(xué)生的學(xué)習(xí)活動更流暢的進(jìn)入下一個環(huán)節(jié)。
總之,我個人認(rèn)為陳老師對“四步教學(xué)法”模式的把握是成功的,學(xué)生在這種課堂教學(xué)模式下的學(xué)習(xí)是自主的,是活動的,也是快樂的。
三角形的內(nèi)角和聽課心得體會篇十三
大家好!
今天我說課的題目是《三角形的內(nèi)角》,我將從如下方面作出說明。
(一)教學(xué)內(nèi)容的地位
本節(jié)課是在研究了三角形的有關(guān)概念和學(xué)生在對 “三角形的內(nèi)角和等于1800 ”有感性認(rèn)識的基礎(chǔ)上,對該定理進(jìn)行推理論證。它是進(jìn)一步研究三角形及其它圖形的重要基礎(chǔ),更是研究 多邊形問題轉(zhuǎn)化的關(guān)鍵點;此外,在它的證明中第一次引入了輔助線,而輔助線又是解決幾何問題的一種重要工具,因此本節(jié)是本章的一個重點。
(二)教學(xué)重點、難點:
三角形內(nèi)角和等于180度,是三角形的一條重要性質(zhì),有著廣泛的應(yīng)用。雖然學(xué)生在小學(xué)已經(jīng)知道這一結(jié)論,但沒有從理論的角度進(jìn)行推理論證,因此三角形內(nèi)角和等于180度的證明及應(yīng)用是本節(jié)課的重點。
另外,由于學(xué)生還沒有正 式學(xué)習(xí)幾何證明,而三角形內(nèi)角和等于180度的證明難度又較大,因此證明三角形內(nèi)角和等于180度也是本節(jié)課的難點。
突破難點的關(guān)鍵:讓學(xué)生通過動手實踐獲得感性認(rèn)識,將實物圖形抽象轉(zhuǎn)化為幾何圖形得出所需輔助線。
基于以上分析和數(shù)學(xué)課程標(biāo)準(zhǔn)的要求,我制定了本節(jié)課的教學(xué)目標(biāo),下面我從以下三個方面進(jìn)行說明。
(一)知識與技能目標(biāo):
會用平行線的性質(zhì)與平角的定義證明三角形的內(nèi)角和等于1800,能用三角形內(nèi)角和等于180度進(jìn)行角度計算和簡單推理,并初步學(xué)會利用輔助線解決問題,體會轉(zhuǎn)化思想在解決問題中的應(yīng)用。
(二)過程與方法目標(biāo):
經(jīng)歷拼圖試驗、合作交流、推理論證的過程,體現(xiàn)在“做中學(xué)”,發(fā)展學(xué)生的合 情推理能力和邏輯思維能力。
(三)情感、態(tài)度價值觀目標(biāo):
通過操作、交流、探究、表述、推理等活動培養(yǎng)學(xué)生的合作精神,體會數(shù)學(xué)知識內(nèi)在的聯(lián)系與嚴(yán)謹(jǐn)性,鼓勵學(xué)生大膽質(zhì)疑,敢于提出不同見解,培養(yǎng)學(xué)生良好的學(xué)習(xí)習(xí)慣。
七年級學(xué)生的特點是模仿力強(qiáng),喜歡動手,思維活躍,但思維往往依賴于直觀具體的形象,而學(xué)生在小學(xué)已通過量、拼、折等實驗的方法得出了三角形內(nèi)角和等于180度這一結(jié)論,只是沒有從理論的角度去研究它,學(xué)生現(xiàn)在已具備了簡單說理的能力,同時已學(xué)習(xí)了平行線的性質(zhì)和判定及平角的定義,這就為學(xué)生自主探究,動手實驗,討論交流、嘗試證明做好了準(zhǔn)備。
根據(jù)新課程標(biāo)準(zhǔn)的要求,學(xué)習(xí)活動應(yīng)體現(xiàn)學(xué)生身心發(fā)展特點,應(yīng)有利于引導(dǎo)學(xué)生主動探索和發(fā)現(xiàn),因此,我采用了動手操作— 觀察實驗—猜想論證的探究式教學(xué)方法,整個探究學(xué)習(xí)的過程充滿了師生之間,生生之間的交流和互動,體 現(xiàn)了教師是教學(xué)活動的組織者、引導(dǎo)者、合作 者,學(xué)生才是學(xué)習(xí)的主體。并教給學(xué)生通過動手實驗、觀察思考、抽象概括從而獲得知識的學(xué)習(xí)方法,培養(yǎng)他們利用舊知識獲取新知識的能力。
我結(jié)合七年級學(xué)生的年齡特點,采用了“1.情景激趣 引出課題”的環(huán)節(jié)引入課題,這樣可以激發(fā)學(xué)生學(xué)習(xí)興趣和求知欲,為探索新知識創(chuàng)造一個最佳的心理和認(rèn)知環(huán)境。讓學(xué)生說明三角形內(nèi)角和是180度,是本節(jié)課的重點、難點,為此我設(shè)計了“2.自主探索 動手實驗 ”“3.討論交流 嘗試證明”以下兩個環(huán)節(jié)。 定理的掌握必須要有訓(xùn)練作為依托,因此我設(shè)計了“4.應(yīng)用新知 鞏固提高。為了培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,在競爭中體驗成功的快樂。我設(shè)計了“5. ‘漁技’大比拼”這4道習(xí)題既含蓋了方程的思想又包括了整體的思想,還讓學(xué)生提前感受到了反證法的方法,有利于學(xué)生掌握重要的數(shù)學(xué)思想方法。回顧使人記憶深刻,反思促人進(jìn)步。在“6.暢談體會 課外延伸 ”這一環(huán)節(jié)我選擇從三個方面,讓學(xué)生進(jìn)行 回顧反思和作業(yè)補充。我認(rèn)為學(xué)生要從一堂課中得到收獲不僅僅是知識上的,更重要的是讓他們通過這種方式,獲取比知 識本身更重要的東西,那就是數(shù)學(xué)方法,數(shù)學(xué)能力以及對數(shù)學(xué)的積極情感。
本節(jié)課的設(shè)計從學(xué)生已有的知識經(jīng)驗出發(fā),遵循學(xué)生的認(rèn)知規(guī)律,將實物拼圖與說理論證有機(jī)結(jié)合,在動手操作,合情推理的基礎(chǔ)上進(jìn)行嚴(yán)密的推理論證,使學(xué)生對知識的認(rèn)識從感性逐步上升到理性。以問題為載體,在探究解決問題策略的過程中學(xué)會知識、感悟方法、訓(xùn)練思維、發(fā)展能力,練習(xí)的設(shè)計起點低、范圍廣、有梯度,以滿足不同程度學(xué)生的需要。樹立大數(shù)學(xué)觀 ,把課堂探究 活動延伸到課外,在課與課之間,新舊知識之間,數(shù)學(xué)與生活之間搭建橋梁,為學(xué)生長遠(yuǎn)的發(fā)展奠基。
本節(jié)課的教學(xué)在一種輕松愉快的氛圍中完成,大部分學(xué)生能參與活動中,突出了重點 ,突破了難點。完成了教學(xué)任務(wù)。取得了較好的教學(xué)效果。練習(xí)除注重基礎(chǔ)外 并進(jìn)行了延伸。拓寬了學(xué)生思維的空間。美中不足的是,還有少部分學(xué)習(xí)基礎(chǔ)較差的學(xué)生可能沒有在參與活動中去思考,收獲不大。
新課程的教學(xué)評價對老師和學(xué)生都提出了新的要求 :因此整個教學(xué)過程中我對學(xué)生的如下方面作出了多元化的關(guān)注:1、關(guān)注學(xué)生探索結(jié)論、分析思路和方法的過程。2、關(guān)注學(xué)生說理的能力和水平。3、關(guān)注學(xué)生參與教學(xué)活動的程度。以期待人人都能學(xué)有 所得,不同的學(xué)生在課堂上得到不同的發(fā)展。
以上是我對這節(jié)課的初淺認(rèn)識,希望得能到各位專家、各位老師的指導(dǎo),謝謝大家!
三角形的內(nèi)角和聽課心得體會篇十四
“三角形的內(nèi)角和”是人教版小學(xué)四年級下冊第五單元第四節(jié)的內(nèi)容?!叭切蔚膬?nèi)角和”是三角形的一個重要性質(zhì),是“空間與圖形”領(lǐng)域的重要內(nèi)容之一,學(xué)好它有助于學(xué)生理解三角形內(nèi)角之間的關(guān)系,也是進(jìn)一步學(xué)習(xí)幾何的基礎(chǔ)。經(jīng)過第一學(xué)段以及本單元的學(xué)習(xí),學(xué)生已經(jīng)具備一定的關(guān)于三角形的認(rèn)識的直接經(jīng)驗,已具備了一些相應(yīng)的三角形知識和技能,這為感受、理解、抽象“三角形的內(nèi)角和”的概念,打下了堅實的基礎(chǔ)。
在教學(xué)中李老師充分體現(xiàn)了新課程標(biāo)準(zhǔn)的基本理念:讓學(xué)生“人人學(xué)有價值的數(shù)學(xué)”。從學(xué)生已有的經(jīng)驗出發(fā),讓學(xué)生親身經(jīng)歷將實際問題抽象成數(shù)學(xué)模型并進(jìn)行解釋與應(yīng)用的過程。善于激發(fā)學(xué)生的學(xué)習(xí)積極性,向?qū)W生提供充分從事數(shù)學(xué)活動的機(jī)會,讓他們積極主動地探索,解決數(shù)學(xué)問題,發(fā)現(xiàn)數(shù)學(xué)規(guī)律,獲得數(shù)學(xué)經(jīng)驗;李老師善于做好學(xué)生學(xué)習(xí)的組織者、引導(dǎo)者和合作者,在全面參與和了解學(xué)生的學(xué)習(xí)過程中起著對學(xué)生進(jìn)行積極的評價,關(guān)注他們的學(xué)習(xí)方法、學(xué)習(xí)水平和情感態(tài)度,促使學(xué)生向著預(yù)定的目標(biāo)發(fā)展的作用”。
【本文地址:http://mlvmservice.com/zuowen/8142393.html】