2022年七年級人教版數(shù)學(xué)教案正數(shù)和負數(shù)(5篇)

格式:DOC 上傳日期:2022-12-24 08:41:05
2022年七年級人教版數(shù)學(xué)教案正數(shù)和負數(shù)(5篇)
時間:2022-12-24 08:41:05     小編:zdfb

作為一名專為他人授業(yè)解惑的人民教師,就有可能用到教案,編寫教案助于積累教學(xué)經(jīng)驗,不斷提高教學(xué)質(zhì)量。教案書寫有哪些要求呢?我們怎樣才能寫好一篇教案呢?以下是小編為大家收集的教案范文,僅供參考,大家一起來看看吧。

七年級人教版數(shù)學(xué)教案正數(shù)和負數(shù)篇一

復(fù)習(xí)具體數(shù)字的一元二次方程配方法的解題過程,引入ax2+bx+c=0(a≠0)的求根公式的推導(dǎo),并應(yīng)用公式法解一元二次方程。

重點

求根公式的推導(dǎo)和公式法的應(yīng)用。

難點

一元二次方程求根公式的推導(dǎo)。

一、復(fù)習(xí)引入

1、前面我們學(xué)習(xí)過解一元二次方程的“直接開平方法”,比如,方程

(1)x2=4(2)(x-2)2=7

提問1這種解法的(理論)依據(jù)是什么?

提問2這種解法的局限性是什么?(只對那種“平方式等于非負數(shù)”的特殊二次方程有效,不能實施于一般形式的二次方程。)

2、面對這種局限性,怎么辦?(使用配方法,把一般形式的二次方程配方成能夠“直接開平方”的形式。)

(學(xué)生活動)用配方法解方程2x2+3=7x

(老師點評)略

總結(jié)用配方法解一元二次方程的步驟(學(xué)生總結(jié),老師點評)。

(1)先將已知方程化為一般形式;

(2)化二次項系數(shù)為1;

(3)常數(shù)項移到右邊;

(4)方程兩邊都加上一次項系數(shù)的一半的平方,使左邊配成一個完全平方式;

(5)變形為(x+p)2=q的形式,如果q≥0,方程的根是x=-p±q;如果q<0,方程無實根。

二、探索新知

用配方法解方程:

(1)ax2-7x+3=0(2)ax2+bx+3=0

如果這個一元二次方程是一般形式ax2+bx+c=0(a≠0),你能否用上面配方法的步驟求出它們的兩根,請同學(xué)獨立完成下面這個問題。

問題:已知ax2+bx+c=0(a≠0),試推導(dǎo)它的兩個根x1=-b+b2-4ac2a,x2=-b-b2-4ac2a(這個方程一定有解嗎?什么情況下有解?)

分析:因為前面具體數(shù)字已做得很多,我們現(xiàn)在不妨把a,b,c也當(dāng)成一個具體數(shù)字,根據(jù)上面的解題步驟就可以一直推下去。

解:移項,得:ax2+bx=-c

二次項系數(shù)化為1,得x2+bax=-ca

配方,得:x2+bax+(b2a)2=-ca+(b2a)2

即(x+b2a)2=b2-4ac4a2

∵4a2>0,當(dāng)b2-4ac≥0時,b2-4ac4a2≥0

∴(x+b2a)2=(b2-4ac2a)2

直接開平方,得:x+b2a=±b2-4ac2a

即x=-b±b2-4ac2a

∴x1=-b+b2-4ac2a,x2=-b-b2-4ac2a

由上可知,一元二次方程ax2+bx+c=0(a≠0)的根由方程的系數(shù)a,b,c而定,因此:

(1)解一元二次方程時,可以先將方程化為一般形式ax2+bx+c=0,當(dāng)b2-4ac≥0時,將a,b,c代入式子x=-b±b2-4ac2a就得到方程的根。

(2)這個式子叫做一元二次方程的求根公式。

(3)利用求根公式解一元二次方程的方法叫公式法。

公式的理解

(4)由求根公式可知,一元二次方程最多有兩個實數(shù)根。

例1用公式法解下列方程:

(1)2x2-x-1=0(2)x2+1.5=-3x

(3)x2-2x+12=0(4)4x2-3x+2=0

分析:用公式法解一元二次方程,首先應(yīng)把它化為一般形式,然后代入公式即可。

補:(5)(x-2)(3x-5)=0

三、鞏固練習(xí)

教材第12頁練習(xí)1.(1)(3)(5)或(2)(4)(6)。

四、課堂小結(jié)

本節(jié)課應(yīng)掌握:

(1)求根公式的概念及其推導(dǎo)過程;

(2)公式法的概念;

(3)應(yīng)用公式法解一元二次方程的步驟:1)將所給的方程變成一般形式,注意移項要變號,盡量讓a>0;2)找出系數(shù)a,b,c,注意各項的系數(shù)包括符號;3)計算b2-4ac,若結(jié)果為負數(shù),方程無解;4)若結(jié)果為非負數(shù),代入求根公式,算出結(jié)果。

(4)初步了解一元二次方程根的情況。

五、作業(yè)布置

教材第17頁習(xí)題4

七年級人教版數(shù)學(xué)教案正數(shù)和負數(shù)篇二

一、背景知識

《有理數(shù)的大小比較》選自浙江版《義務(wù)教育課程標(biāo)準(zhǔn)實驗教科書數(shù)學(xué)七年級(上冊)》第一章《從自然數(shù)到有理數(shù)》的第5節(jié),有理數(shù)大小比較的提出是從學(xué)生生活熟悉的情境入手,借助于氣溫的高低及數(shù)軸,得出有理數(shù)的大小比較方法。課本安排了"做一做"等形式多樣的教學(xué)活動,讓學(xué)生通過觀察、思考和自己動手操作,體驗有理數(shù)大小比較法則的探索過程。

二、教學(xué)目標(biāo)

1、使學(xué)生能說出有理數(shù)大小的比較法則

2、能熟練運用法則結(jié)合數(shù)軸比較有理數(shù)的大小,特別是應(yīng)用絕對值概念比較兩個負數(shù)的大小,能利用數(shù)軸對多個有理數(shù)進行有序排列。

3、能正確運用符號"<"">""∵""∴"寫出表示推理過程中簡單的因果關(guān)系。

三、教學(xué)重點與難點

重點:運用法則借助數(shù)軸比較兩個有理數(shù)的大小。

難點:利用絕對值概念比較兩個負分數(shù)的大小。

四、教學(xué)準(zhǔn)備

多媒體課件

五、教學(xué)設(shè)計

(一)交流對話,探究新知

1、說一說

(多媒體顯示)某一天我們5個城市的最低氣溫從剛才的圖片中你獲得了哪些信息?(從常見的氣溫入手,激發(fā)學(xué)生的求知欲望,可能有些學(xué)生會說從中知道廣州的最低氣溫10℃比上海的最低氣溫0℃高,有些學(xué)生會說哈爾濱的最低氣溫零下20℃比北京的最低氣溫零下10℃低等;不會說的,老師適當(dāng)點拔,從而學(xué)生在合作交流中不知不覺地完成了以下填空。

比較這一天下列兩個城市間最低氣溫的高低(填"高于"或"低于")

廣州_______上海;北京________上海;北京________哈爾濱;武漢________哈爾濱;武漢__________廣州。

2、畫一畫:(1)把上述5個城市最低氣溫的數(shù)表示在數(shù)軸上,(2)觀察這5個數(shù)在數(shù)軸上的位置,從中你發(fā)現(xiàn)了什么?

(3)溫度的高低與相應(yīng)的數(shù)在數(shù)軸上的位置有什么?

(通過學(xué)生自己動手操作,觀察、思考,發(fā)現(xiàn)原點左邊的數(shù)都是負數(shù),原點右邊的數(shù)都是正數(shù);同時也發(fā)現(xiàn)5在0右邊,5比0大;10在5右邊,10比5大,初步感受在數(shù)軸上原點右邊的兩個數(shù),右邊的數(shù)總比左邊的數(shù)大。教師趁機追問,原點左邊的數(shù)也有這樣的規(guī)律嗎?從而激發(fā)學(xué)生探索知識的欲望,進一步驗證了原點左邊的數(shù)也有這樣的規(guī)律。從而使學(xué)生親身體驗探索的樂趣,在探究中不知不覺獲得了知識。)由小組討論后,教師歸納得出結(jié)論:

在數(shù)軸上表示的兩個數(shù),右邊的數(shù)總比左邊的數(shù)大。

正數(shù)都大于零,負數(shù)都小于零,正數(shù)大于負數(shù)。

(二)應(yīng)用新知,體驗成功

1、練一練(師生共同完成例1后,學(xué)生完成隨堂練習(xí)1)

例1:在數(shù)軸上表示數(shù)5,0,-4,-1,并比較它們的大小,將它們按從小到大的順序用"<"號連接。(師生共同完成)

分析:本題意有幾層含義?應(yīng)分幾步?

要點總結(jié):小組討論歸納,本題解題時的一般步驟:①畫數(shù)軸②描點;③有序排列;④不等號連接。

隨堂練習(xí): p19 t1

2、做一做

(1)在數(shù)軸上表示下列各對數(shù),并比較它們的大小

①2和7②-6和-1③-6和-36④-和-1.5

(2)求出圖中各對數(shù)的絕對值,并比較它們的大小。

(3)由①、②從中你發(fā)現(xiàn)了什么?

(學(xué)生小組討論后,代表站起來發(fā)言,口述自己組的發(fā)現(xiàn),說明自己組發(fā)現(xiàn)的過程,逐步培養(yǎng)學(xué)生觀察、歸納、用數(shù)學(xué)語言表達數(shù)學(xué)規(guī)律的能力。)

要點總結(jié):兩個正數(shù)比較大小,絕對值大的數(shù)大;兩個負數(shù)比較大小,絕對值大的數(shù)反而小。

在學(xué)生討論的基礎(chǔ)上,由學(xué)生總結(jié)得出有理數(shù)大小的比較法則。

(1)正數(shù)都大于零,負數(shù)都小于零,正數(shù)大于負數(shù)。

(2)兩個正數(shù)比較大小,絕對值大的數(shù)大。

(3)兩個負數(shù)比較大小,絕對值大的數(shù)反而小。

3、師生共同完成例2后,學(xué)生完成隨堂練習(xí)2、3、4。

例2比較下列每對數(shù)的大小,并說明理由:(師生共同完成)

(1)1與-10,(2)-0.001與0,(3)-8與+2;(4)-與-;(5)-(+)與-|-0.8|

分析:第(4)(5)題較難,第(4)題應(yīng)先通分,第(5)題應(yīng)先化簡,再比較。同時在講解時,要注意格式。

注:絕對值比較時,分母相同,分子大的數(shù)大;分子相同,則分母大的數(shù)反而?。环肿臃帜付疾幌嗤瑫r,則應(yīng)先通分再比較,或把分子化相同再比較。

兩個負數(shù)比較大小時的一般步驟:①求絕對值;②比較絕對值的大??;③比較負數(shù)的大小。

思考:還有別的方法嗎?(分組討論,積極思考)

4、想一想:我們有幾種方法來判斷有理數(shù)的大???你認為它們各有什么特點?

由學(xué)生討論后,得出比較有理數(shù)的大小共有兩種方法,一種是法則,另一種是利用數(shù)軸,當(dāng)兩個數(shù)比較時一般選用第一種,當(dāng)多個有理數(shù)比較大小時,一般選用第二種較好。

練一練:p19 t2、3、4

5、考考你:請你回答下列問題:

(1)有沒有的有理數(shù),有沒有最小的有理數(shù),為什么?

(2)有沒有絕對值最小的有理數(shù)?若有,請把它寫出來?

(3)在于-1.5且小于4.2的整數(shù)有_____個,它們分別是____。

(4)若a>0,b<0,a<|b|,則你能比較a、b、-a、-b這四個數(shù)的大小嗎?(本題屬提高題,不要求全體學(xué)生掌握)

(新穎的問題會激發(fā)學(xué)生的好奇心,通過合作交流,自主探究等活動,培養(yǎng)學(xué)生思維的習(xí)慣和數(shù)學(xué)語言的表達能力)

6、議一議,談?wù)劚竟?jié)課你有哪些收獲

(由師生共同完成本節(jié)課的小結(jié))本節(jié)課主要學(xué)習(xí)了有理數(shù)大小比較的兩種方法,一種是按照法則,兩兩比較,另一種是利用數(shù)軸,運用這種方法時,首先必須把要比較的數(shù)在數(shù)軸上表示出來,然后按照它們在數(shù)軸上的位置,從左到右(或從右到左)用"<"(或">")連接,這種方法在比較多個有理數(shù)大小時非常簡便。

六、布置作業(yè):p19 a組、b組

基礎(chǔ)好的a、b兩組都做

基礎(chǔ)較差的同學(xué)選做a組。

七年級人教版數(shù)學(xué)教案正數(shù)和負數(shù)篇三

一。教學(xué)目標(biāo):

1、認知目標(biāo):

1)了解二元一次方程組的概念。

2)理解二元一次方程組的解的概念。

3)會用列表嘗試的方法找二元一次方程組的解。

2、能力目標(biāo):

1)滲透把實際問題抽象成數(shù)學(xué)模型的思想。

2)通過嘗試求解,培養(yǎng)學(xué)生的探索能力。

3、情感目標(biāo):

1)培養(yǎng)學(xué)生細致,認真的學(xué)習(xí)習(xí)慣。

2)在積極的教學(xué)評價中,促進師生的情感交流。

二。教學(xué)重難點

重點:二元一次方程組及其解的概念

難點:用列表嘗試的方法求出方程組的解。

三。教學(xué)過程

(一)創(chuàng)設(shè)情景,引入課題

1、本班共有40人,請問能確定男_幾人嗎?為什么?

(1)如果設(shè)本班男生x人,_人,用方程如何表示?(x+y=40)

(2)這是什么方程?根據(jù)什么?

2、男生比_了2人。設(shè)男生x人,_人。方程如何表示?x,y的值是多少?

3、本班男生比_2人且男_40人。設(shè)該班男生x人,_人。方程如何表示?

兩個方程中的x表示什么?類似的兩個方程中的y都表示?

象這樣,同一個未知數(shù)表示相同的量,我們就應(yīng)用大括號把它們連起來組成一個方程組。

4、點明課題:二元一次方程組。

[設(shè)計意圖:從學(xué)生身邊取數(shù)據(jù),讓他們感受到生活中處處有數(shù)學(xué)]

(二)探究新知,練習(xí)鞏固

1、二元一次方程組的概念

(1)請同學(xué)們看課本,了解二元一次方程組的的概念,并找出關(guān)鍵詞由教師板書。

[讓學(xué)生看書,引起他們對教材重視。找關(guān)鍵詞,加深他們對概念的了解。]

(2)練習(xí):判斷下列是不是二元一次方程組:

x+y=3,x+y=200,

2x-3=7,3x+4y=3

y+z=5,x=y+10,

2y+1=5,4x-y2=2

學(xué)生作出判斷并要說明理由。

2、二元一次方程組的解的概念

(1)由學(xué)生給出引例的答案,教師指出這就是此方程組的解。

(2)練習(xí):把下列各組數(shù)的題序填入圖中適當(dāng)?shù)奈恢茫?/p>

x=1;x=-2;x=;-x=

y=0;y=2;y=1;y=

方程x+y=0的解,方程2x+3y=2的解,方程組x+y=0的解。

2x+3y=2

(3)既滿足第一個方程也滿足第二個方程的解叫作二元一次方程組的解。

(4)練習(xí):已知x=0是方程組x-b=y的解,求a,b的值。

y=0.55x+2a=2y

(三)合作探索,嘗試求解

現(xiàn)在我們一起來探索如何尋找方程組的解呢?

1、已知兩個整數(shù)x,y,試找出方程組3x+y=8的解。

2x+3y=10

學(xué)生兩人一小組合作探索。并讓已經(jīng)找出方程組解的學(xué)生利用實物投影,講明自己的解題思路。

提煉方法:列表嘗試法。

一般思路:由一個方程取適當(dāng)?shù)膞y的值,代到另一個方程嘗試。

[把課堂還給學(xué)生,讓他們探索并解答問題,在獲取新知識的同時也積累數(shù)學(xué)活動的經(jīng)驗。]

2、據(jù)了解,某商店出售兩種不同星號的“紅雙喜”牌乒乓球。其中“紅雙喜”二星乒乓球每盒6只,三星乒乓球每盒3只。某同學(xué)一共買了4盒,剛好有15個球。

(1)設(shè)該同學(xué)“紅雙喜”二星乒乓球買了x盒,三星乒乓球買了y盒,請根據(jù)問題中的條件列出關(guān)于x、y的方程組。(2)用列表嘗試的方法解出這個方程組的解。

由學(xué)生獨立完成,并分析講解。

(四)課堂小結(jié),布置作業(yè)

1、這節(jié)課學(xué)哪些知識和方法?(二元一次方程組及解概念,列表嘗試法)

2、你還有什么問題或想法需要和大家交流?

3、作業(yè)本。

教學(xué)設(shè)計說明:

1、本課設(shè)計主線有兩條。其一是知識線,內(nèi)容從二元一次方程組的概念到二元一次方程組解的概念再到列表嘗試法,環(huán)環(huán)相扣,層層遞進;第二是能力培養(yǎng)線,學(xué)生從看書理解二元一次方程組的概念到學(xué)會歸納解的概念,再到自主探索,用列表嘗試法解題,循序漸進,逐步提高。

2、“讓學(xué)生成為課堂的真正主體”是本課設(shè)計的主要理念。由學(xué)生給出數(shù)據(jù),得出結(jié)果,再讓他們在積極嘗試后進行講解,實現(xiàn)生生互評。把課堂的一切交給學(xué)生,相信他們能在已有的知識上進一步學(xué)習(xí)提高,教師只是點播和引導(dǎo)者。

3、本課在設(shè)計時對教材也進行了適當(dāng)改動。例題方面考慮到數(shù)_代,學(xué)生對膠卷已漸失興趣,所以改為學(xué)生比較熟悉的乒乓球為體裁。另一方面,充分挖掘練習(xí)的作用,為知識的落實打下軋實的基礎(chǔ),為學(xué)生今后的進一步學(xué)習(xí)做好鋪墊。

七年級人教版數(shù)學(xué)教案正數(shù)和負數(shù)篇四

教學(xué)內(nèi)容:人教版七年級數(shù)學(xué)下冊第八章二元一次方程組第2節(jié)p96頁

教學(xué)目標(biāo)

(1)基礎(chǔ)知識與技能目標(biāo):會用代入消元法解簡單的二元一次方程組。

(2)過程與方法目標(biāo):經(jīng)歷探索代入消元法解二元一次方程的過程,理解代入消元法的基本思想所體現(xiàn)的化歸思想方法。

(3)情感、態(tài)度與價值觀目標(biāo):通過提供適當(dāng)?shù)那榫迟Y料,吸引學(xué)生的注意力,激發(fā)學(xué)生的學(xué)習(xí)興趣;在合作討論中學(xué)會交流與合作,培養(yǎng)良好的數(shù)學(xué)思想,逐步滲透類比、化歸的意識。

教學(xué)重、難點關(guān)鍵

教學(xué)重點:用代入消元法解二元一次方程組

教學(xué)難點:探索如何用代入消元法解二元一次方程組,感受“消元”思想。

教學(xué)關(guān)鍵:把方程組中的某個方程變形,而后代入另一個方程中去,消去一個未知數(shù),轉(zhuǎn)化成一元一次方程。學(xué)生分析授課對象為少數(shù)民族地區(qū)的七年級學(xué)生,基礎(chǔ)知識薄弱,特別是對一元一次方程內(nèi)容掌握的不夠透徹,再加上厭學(xué)現(xiàn)象嚴峻,團結(jié)協(xié)作的能力差,本節(jié)課設(shè)計了他們感興趣的籃球比賽和常用的消毒液作為題材來研究二元一次方程組,既能調(diào)動他們的學(xué)習(xí)興趣,又能解決本節(jié)課所涉及到的問題,為以后的進一步學(xué)習(xí)二元一次方程組做好鋪墊。

教學(xué)內(nèi)容分析:本節(jié)主要內(nèi)容是在上節(jié)已認識二元一次方程(組)和二元一次方程(組)的解等概念的基礎(chǔ)上,來學(xué)習(xí)解方程組的第一種方法——代入消元法。并初步體會解二元一次方程組的基本思想“消元”。二元一次方程組的求解,不但用到了前面學(xué)過的一元一次方程的解法,是對過去所學(xué)知識的一個回顧和提高,同時,也為后面的利用方程組來解決實際問題打下了基礎(chǔ)。通過實際問題中二元一次方程組的應(yīng)用,進一步增強學(xué)生學(xué)習(xí)數(shù)學(xué)、用數(shù)學(xué)的意識,體會學(xué)數(shù)學(xué)的價值和意義。初中階段要掌握的二元一次方程組的消元解法有代入消元法和加減消元法兩種,教材都是按先求解后應(yīng)用的順序安排,這樣安排既可以在前一小節(jié)中有針對性的學(xué)習(xí)解法,又可在后一小節(jié)的應(yīng)用中鞏固前面的知識,但教材相對應(yīng)的練習(xí)安排較少,不過這樣也給了學(xué)生一較大的發(fā)揮空間。

教具準(zhǔn)備教師準(zhǔn)備:ppt多媒體課件投影儀

教學(xué)方法本節(jié)課采用“問題引入——探究解法——歸納反思”的教學(xué)方法,堅持啟發(fā)式教學(xué)。

教學(xué)過程

(一)創(chuàng)設(shè)情境,導(dǎo)入新課籃球聯(lián)賽中,每場比賽都要分出勝負,每隊勝一場得2分,負一場得1分,保安族中學(xué)校隊為了爭取較好的名次,想在全部22場比賽中得到40分,那么這個隊勝負場數(shù)分別是多少?

(二)合作交流,探究新知第一步,初步了解代入法1、在上述問題中,除了用一元一次方程解答外,我們還可以設(shè)出兩個未知數(shù),列出二元一次方程組學(xué)生活動:分別列出一元一次方程和二元一次方程組,兩個學(xué)生板演①設(shè)勝的場數(shù)是x,負的場數(shù)是y

x+y=22

2x+y=40

②設(shè)勝的場數(shù)是x,則負的場數(shù)為22-x

2x+(22-x)=40

2、自主探究,小組討論那么怎樣求解二元一次方程組呢?上面的二元一次方程組和一元一次方程有什么關(guān)系?

3、學(xué)生歸納,教師作補充上面的解法,第一步是由二元一次方程組中一個方程,將一個未知數(shù)用含另一未知數(shù)的式子表示出來,再代入另一方程,實現(xiàn)消元,進而求得這個二元一次方程組的解。這種方法叫做代入消元法,簡稱代入法。

第二步,用代入法解方程組把下列方程寫成用含x的式子表示y的形式(1)2x-y=5(2)4x+3y-1=0學(xué)生活動:嘗試自主完成,教師糾正思考:能否用含y的式子來表示x呢?

例1用代入法解方程組x-y=3①3x-8y=14②

思路點撥:先觀察這個方程組中哪一項系數(shù)較小,發(fā)現(xiàn)①中x的系數(shù)為1,這樣可以確定消x較簡單,首先用含y的代數(shù)式表示x,而后再代入②消元。

解:由①變形得x=y+3③

把③代入②,得3(y+3)-8y=14

解這個方程,得y=-1

把y=-1代入③,得x=2

所以這個方程組的解是x=2y=-1

如何檢驗得到的結(jié)果是否正確?學(xué)生活動:口答檢驗。

第三步,在實際生活中應(yīng)用代入法解方程組

例2根據(jù)市場調(diào)查,某種消毒液的大瓶裝(500g)和小瓶裝(250g)兩種產(chǎn)品的銷售數(shù)量(按瓶計算)比為2:5.某廠每天生產(chǎn)這種消毒液22.5噸,這些消毒液應(yīng)該分裝大、小瓶裝兩種產(chǎn)品各多少瓶?思路點撥:本題是實際應(yīng)用問題,可采用二元一次方程組為工具求解,這就需要構(gòu)建模型,尋找兩個等量關(guān)系,從題意可知:大瓶數(shù):小瓶數(shù)=2:5;大瓶所裝消毒液+小瓶所裝消毒液=總生產(chǎn)量(解題過程略)教師活動:啟發(fā)引導(dǎo)學(xué)生構(gòu)建二元一次方程組的模型。學(xué)生活動:嘗試設(shè)出:這些消毒液應(yīng)該分裝x個大瓶和y個小瓶,得到5x=2y500x+250y=22500000并解出x=20000y=50000

第四步,小組討論,得出步驟學(xué)生活動:根據(jù)例1、例2的解題過程,你們能不能歸納一下用代入法解二元一次方程組的步驟呢?小組討論一下。學(xué)生歸納,教師補充,總結(jié)出代入法解二元一次方程組的步驟:①選取一個系數(shù)較簡單的二元一次方程變形,用含有一個未知數(shù)的代數(shù)式表示另一個未知數(shù);②將變形后的方程代入另一個方程中,消去一個未知數(shù),得到一個一元一次方程(在代入時,要注意不能代入原方程,只能代入另一個沒有變形的方程中,以達到消元的目的。);③解這個一元一次方程,求出未知數(shù)的值;④將求得的未知數(shù)的值代入①中變形后的方程中,求出另一個未知數(shù)的值;⑤用“{”聯(lián)立兩個未知數(shù)的值,就是方程組的解;⑥最后檢驗求得的結(jié)果是否正確(代入原方程組中進行檢驗,方程是否滿足左邊=右邊)。

(三)分組比賽,鞏固新知為了激發(fā)學(xué)生的興趣,鞏固所學(xué)的知識,我把全班分成4個小組,把書本p98頁練習(xí)設(shè)計成必答題、搶答題和風(fēng)險題幾個集知識性、趣味性于一體的獨立版塊,練習(xí)是由易到難、由淺到深,以小組比賽的形式呈現(xiàn)出來,這樣既提高了學(xué)生的積極性,培養(yǎng)了團隊精神,也使各類學(xué)生的能力都得到不同的發(fā)展。

(四)歸納總結(jié),知識回顧1、通過這節(jié)課的學(xué)習(xí)活動,你有什么收獲?2、你認為在運用代入法解二元一次方程組時,應(yīng)注意什么問題?

(五)布置作業(yè)1、作業(yè):p103頁第1、2、4題2、思考:提出在日常生活中可以利用二元一次方程組來解決的實際問題。設(shè)計說明代入消元法體現(xiàn)了數(shù)學(xué)學(xué)習(xí)中“化未知為已知”的化歸思想方法,化歸的原則就是將不熟悉的問題化歸為比較熟悉的問題,用于解決新問題?;谶@點認識,本課按照“身邊的數(shù)學(xué)問題引入—尋求一元一次方程的解法—探索二元一次方程組的代入消元法—典型例題—歸納代入法的一般步驟”的思路進行設(shè)計。在教學(xué)過程中,充分調(diào)動學(xué)生的主觀能動性和發(fā)揮教師的主導(dǎo)作用,堅持啟發(fā)式教學(xué)。教師創(chuàng)設(shè)有趣的情境,引發(fā)學(xué)生自覺參與學(xué)習(xí)活動的積極性,使知識發(fā)現(xiàn)過程融于有趣的活動中。重視知識的發(fā)生過程。將設(shè)未知數(shù)列一元一次方程的求解過程與二元一次方程組相比較,從而得到二元一次方程組的代入(消元)解法,這種比較,可使學(xué)生在復(fù)習(xí)舊知識的同時,使新知識得以掌握,這對于學(xué)生體會新知識的產(chǎn)生和形成過程是十分重要的。

七年級人教版數(shù)學(xué)教案正數(shù)和負數(shù)篇五

1、掌握一元二次方程的根與系數(shù)的關(guān)系并會初步應(yīng)用。

2、培養(yǎng)學(xué)生分析、觀察、歸納的能力和推理論證的能力。

3、滲透由特殊到一般,再由一般到特殊的認識事物的規(guī)律。

4、培養(yǎng)學(xué)生去發(fā)現(xiàn)規(guī)律的積極性及勇于探索的精神。

重點

根與系數(shù)的關(guān)系及其推導(dǎo)

難點

正確理解根與系數(shù)的關(guān)系。一元二次方程根與系數(shù)的關(guān)系是指一元二次方程兩根的和、兩根的積與系數(shù)的關(guān)系。

一、復(fù)習(xí)引入

1、已知方程x2-ax-3a=0的一個根是6,則求a及另一個根的值。

2、由上題可知一元二次方程的系數(shù)與根有著密切的關(guān)系。其實我們已學(xué)過的求根公式也反映了根與系數(shù)的關(guān)系,這種關(guān)系比較復(fù)雜,是否有更簡潔的關(guān)系?

3、由求根公式可知,一元二次方程ax2+bx+c=0(a≠0)的兩根為x1=-b+b2-4ac2a,x2=-b-b2-4ac2a.觀察兩式右邊,分母相同,分子是-b+b2-4ac與-b-b2-4ac.兩根之間通過什么計算才能得到更簡潔的關(guān)系?

二、探索新知

解下列方程,并填寫表格:

方程 x1 x2 x1+x2 x1?x2

x2-2x=0

x2+3x-4=0

x2-5x+6=0

觀察上面的表格,你能得到什么結(jié)論?

(1)關(guān)于x的方程x2+px+q=0(p,q為常數(shù),p2-4q≥0)的兩根x1,x2與系數(shù)p,q之間有什么關(guān)系?

(2)關(guān)于x的方程ax2+bx+c=0(a≠0)的兩根x1,x2與系數(shù)a,b,c之間又有何關(guān)系呢?你能證明你的猜想嗎?

解下列方程,并填寫表格:

方程 x1 x2 x1+x2 x1?x2

2x2-7x-4=0

3x2+2x-5=0

5x2-17x+6=0

小結(jié):根與系數(shù)關(guān)系:

(1)關(guān)于x的方程x2+px+q=0(p,q為常數(shù),p2-4q≥0)的兩根x1,x2與系數(shù)p,q的關(guān)系是:x1+x2=-p,x1?x2=q(注意:根與系數(shù)關(guān)系的前提條件是根的判別式必須大于或等于零。)

(2)形如ax2+bx+c=0(a≠0)的方程,可以先將二次項系數(shù)化為1,再利用上面的結(jié)論。

即:對于方程ax2+bx+c=0(a≠0)

∵a≠0,∴x2+bax+ca=0

∴x1+x2=-ba,x1?x2=ca

(可以利用求根公式給出證明)

例1不解方程,寫出下列方程的兩根和與兩根積:

(1)x2-3x-1=0(2)2x2+3x-5=0

(3)13x2-2x=0 (4)2x2+6x=3

(5)x2-1=0 (6)x2-2x+1=0

例2不解方程,檢驗下列方程的解是否正確?

(1)x2-22x+1=0 (x1=2+1,x2=2-1)

(2)2x2-3x-8=0 (x1=7+734,x2=5-734)

例3已知一元二次方程的兩個根是-1和2,請你寫出一個符合條件的方程。(你有幾種方法?)

例4已知方程2x2+kx-9=0的一個根是-3,求另一根及k的值。

變式一:已知方程x2-2kx-9=0的兩根互為相反數(shù),求k;

變式二:已知方程2x2-5x+k=0的兩根互為倒數(shù),求k.

三、課堂小結(jié)

1、根與系數(shù)的關(guān)系。

2、根與系數(shù)關(guān)系使用的前提是:(1)是一元二次方程;(2)判別式大于等于零。

四、作業(yè)布置

1、不解方程,寫出下列方程的兩根和與兩根積。

(1)x2-5x-3=0(2)9x+2=x2(3)6x2-3x+2=0

(4)3x2+x+1=0

2、已知方程x2-3x+m=0的一個根為1,求另一根及m的值。

3、已知方程x2+bx+6=0的一個根為-2,求另一根及b的值

【本文地址:http://mlvmservice.com/zuowen/736119.html】

全文閱讀已結(jié)束,如果需要下載本文請點擊

下載此文檔