有時候,只有冷靜地停下腳步,才能看到那些被忽略的美好。教育總結(jié)應(yīng)該包括哪些內(nèi)容?如何提高總結(jié)的質(zhì)量和深度?通過閱讀這些總結(jié)范文,我們可以發(fā)現(xiàn)一些共通點(diǎn)和相似之處,從中學(xué)習(xí)到更多的經(jīng)驗和智慧。
數(shù)學(xué)思想方法心得篇一
一、注重引導(dǎo),抓住學(xué)習(xí)關(guān)鍵
二、要正確處理本課程的自身邏輯系統(tǒng)與相關(guān)課程的關(guān)系
初數(shù)研究課在研究初等數(shù)學(xué)問題時,大多采用專題討論的方法,都有一套完整的體系。如果過分強(qiáng)調(diào)自身完整的邏輯系統(tǒng),容易導(dǎo)致不同學(xué)科、不同課程的內(nèi)客及方法有很多重復(fù)和交叉。
如數(shù)與初等數(shù)論中的相關(guān)內(nèi)容,解析式的恒等變形,方程、不等式的解法與證明,幾何證題法與證題術(shù)排列、組合及數(shù)列的一些解題方法等。如果不處理好它們之間的關(guān)系,只是簡單地追求各門課程自身體系的完整,既不利于學(xué)生整體數(shù)學(xué)思想的建立,又制約了他們數(shù)學(xué)綜合運(yùn)用能力的提高,同時占用了很多的課時,所以,對于相關(guān)課程中己作詳盡討論過的知識及理論,應(yīng)作為工具來應(yīng)用,避免一些不必要的重復(fù)。
三、變被動式學(xué)習(xí)為主動式學(xué)習(xí)
1.知識系統(tǒng)的探究
初數(shù)研究課涉及大量的理論,教師講、學(xué)生聽的傳統(tǒng)教學(xué)模式既占用課時多,又難以體現(xiàn)學(xué)生的主體性。因此對理論性較強(qiáng)的內(nèi)容,教師可以先提出一些切題的問題作為一堂課的鍥子,留待后面逐個解決。這些問題將整個教學(xué)內(nèi)容串起來,起到提綱摯領(lǐng)的作用,使學(xué)生明確學(xué)習(xí)目標(biāo),集中學(xué)習(xí)資源(如本課程及相關(guān)課程的教村及參考書)有針對性地去探究問題,然后教師組織學(xué)生對探究的結(jié)果進(jìn)行歸納整理,形成較完整的知識體系。當(dāng)然一個問題的解訣并非探究的終結(jié),在探究過程中教師與學(xué)生都可以提出一些新問題,延續(xù)學(xué)生探究的熱情,在合作交流的民主和諧的氛圍里,盡可能地讓學(xué)生走向自由探究。
2.解題方法的探究
從學(xué)生的認(rèn)知角度未說,解題過程是獨(dú)立的發(fā)現(xiàn)、探索與積極思考的過程,這種探索過程中所形成的意識和思維,就是真正的創(chuàng)造與發(fā)現(xiàn)。應(yīng)該說,解題教學(xué)是中學(xué)數(shù)學(xué)教學(xué)的主要任務(wù)之一,設(shè)置初數(shù)研究課程的目的之一,就是結(jié)合中學(xué)實(shí)際對解題作專門的訓(xùn)練。
3.條件與結(jié)論的探究
對一個問題的條件或結(jié)論進(jìn)行探究是對問題深入研究的重要組成部分,也是初數(shù)研究課程中具有挑戰(zhàn)性的任務(wù)之一,引導(dǎo)學(xué)生從不同角度、不同層面來看問題,對學(xué)生的發(fā)散思維及創(chuàng)造思維的培養(yǎng),都能起到良好的推動作用。
隨著教學(xué)改革的深化,教學(xué)思想方法不僅要在理論上做研究探討,更重要的是需要在實(shí)踐中不斷地創(chuàng)造與完善,才能使教學(xué)取得較好的效果。
[數(shù)學(xué)思想方法心得體會]
數(shù)學(xué)思想方法心得篇二
《新課程標(biāo)準(zhǔn)》在總目標(biāo)中提出:通過義務(wù)教育階段的數(shù)學(xué)學(xué)習(xí),學(xué)生能獲得適應(yīng)社會生活和進(jìn)一步發(fā)展所必須的數(shù)學(xué)知識、基本技能、基本思想、基本活動經(jīng)驗。這句話對于我們新教師來已經(jīng)是爛熟于心,但對于這句話真正理解的少之又少,讀了王永春老師的《小學(xué)數(shù)學(xué)思想與數(shù)學(xué)思想方法》之后,對這句話才有了真正的認(rèn)識。“授人以魚不如授人以漁”,對于學(xué)生而言,數(shù)學(xué)知識在其次,數(shù)學(xué)方法才是最重要的,在這本書中,王老師為我們總結(jié)了小學(xué)數(shù)學(xué)知識中蘊(yùn)含的數(shù)學(xué)思想,這讓我們在日常教學(xué)中可以結(jié)合所教知識很清楚地知道這些知識中蘊(yùn)含了哪些數(shù)學(xué)思想方法,為我們的教學(xué)提供了指導(dǎo)和幫助。
這學(xué)期我任三年級數(shù)學(xué),三年級上冊中的主要思想有:第3單元“測量”中學(xué)習(xí)的長度單位:分米(dm)、毫米(mm)、千米(km)是符號化思想的應(yīng)用;第7單元“長方形和正方形”中有些習(xí)題如本書中第25頁的“案例2”應(yīng)用了分類思想;第9單元“數(shù)學(xué)廣角――集合”中學(xué)習(xí)的重復(fù)問題是集合思想的應(yīng)用;第8單元“分?jǐn)?shù)的初步認(rèn)識”中學(xué)生用一張正方形白紙可以折出不同的形狀表示它的1/4。在學(xué)生充分展示后,我們可以引導(dǎo)學(xué)生發(fā)現(xiàn)雖然形狀、大小不同,但都是把一張正方形白紙平均成4份,每份是它的1/4。這個教學(xué)過程中有變中有不變的思想的應(yīng)用。第8單元“分?jǐn)?shù)的初步認(rèn)識”中把一個圓形平均分,分的份數(shù)越多,分?jǐn)?shù)越小,如果一直分下去,可以對應(yīng)寫出無限多個分?jǐn)?shù)。
生活本身是一個巨大的數(shù)學(xué)課堂,生活中客觀存在著大量有價值的數(shù)學(xué)現(xiàn)象。指導(dǎo)學(xué)生運(yùn)用數(shù)學(xué)知識寫日記,能促使學(xué)生主動地用數(shù)學(xué)的眼光去觀察生活,去思考生活問題,讓生活問題數(shù)學(xué)化。在教學(xué)中注重培養(yǎng)孩子運(yùn)用數(shù)學(xué)的意識,增強(qiáng)學(xué)生運(yùn)用知識解決實(shí)際問題的能力。由此可見,數(shù)學(xué)并不是靠老師教會的,而是在教師的指導(dǎo)下,靠學(xué)生自己學(xué)會的。在教學(xué)中教師要給學(xué)生創(chuàng)造情景、提供機(jī)會,給學(xué)生充足的時間和空間,讓學(xué)生主動探究新知,在探究中發(fā)現(xiàn)規(guī)律、歸納規(guī)律。因此,我們在課堂教學(xué)中,多留些時間給學(xué)生,讓他們動手操作;多留些時間給學(xué)生,自己的`意見;多留些時間給學(xué)生,讓他們質(zhì)疑問難。保證充分的時間和空間,讓學(xué)生再課內(nèi)交流、討論、質(zhì)疑。
這本書教給了我們一種教學(xué)理念,教會了我們一種教學(xué)方法。讀書更是一種好的學(xué)習(xí)手段,它將帶領(lǐng)我們不斷更新、與時俱進(jìn),成為一名學(xué)生喜歡的、有專業(yè)素養(yǎng)的好老師。
數(shù)學(xué)思想方法心得篇三
所謂的數(shù)學(xué)思想,是指人們對數(shù)學(xué)理論與內(nèi)容的本質(zhì)認(rèn)識,是從某些具體數(shù)學(xué)認(rèn)識過程中提煉出的一些觀點(diǎn),是分析處理和解決數(shù)學(xué)問題的根本方法,也是對數(shù)學(xué)規(guī)律的理性認(rèn)識。它揭示了數(shù)學(xué)發(fā)展中普遍的規(guī)律,它直接支配著數(shù)學(xué)的實(shí)踐活動,這是對數(shù)學(xué)規(guī)律的理性認(rèn)識。
數(shù)學(xué)方法是數(shù)學(xué)思想的具體化形式,即解決數(shù)學(xué)具體問題時所采用的方式、途徑和手段,也可以說是解決數(shù)學(xué)問題的策略。實(shí)質(zhì)上兩者的本質(zhì)是相同的,差別只是站在不同的角度看問題,通?;旆Q為思想方法。數(shù)學(xué)思想方法的自覺運(yùn)用會使我們運(yùn)算簡潔、推理機(jī)敏,是提高數(shù)學(xué)能力的必由之路。常見的數(shù)學(xué)思想方法有:數(shù)形結(jié)合方法、對應(yīng)思想方法、轉(zhuǎn)化思想方法、猜想驗證思想方法等。下面就以自己的教學(xué)實(shí)踐為例談?wù)勗趯?shí)際教學(xué)中滲透這些數(shù)學(xué)思想方法的一些粗淺做法。
一、數(shù)形結(jié)合的思想方法
數(shù)和形是數(shù)學(xué)研究的兩個主要對象,數(shù)離不開形,形離不開數(shù),一方面抽象的數(shù)學(xué)概念,復(fù)雜的數(shù)量關(guān)系,借助圖形使之直觀化、形象化、簡單化。另一方面復(fù)雜的形體可以用簡單的數(shù)量關(guān)系表示。在解應(yīng)用題中常常借助線段圖的直觀幫助分析數(shù)量關(guān)系。
在小學(xué)一年級剛開始學(xué)習(xí)數(shù)的認(rèn)識時,都是以實(shí)物進(jìn)行引入,再從中學(xué)習(xí)數(shù)字的實(shí)際含義。例如學(xué)習(xí)“6的認(rèn)識”時,先出示主題圖,問學(xué)生圖中有些什么?學(xué)生從中數(shù)出6朵小花,6只小鳥,6個氣球。從而感知5的某些具體意義。再從實(shí)物中慢慢抽象成某一特定物體,利用學(xué)生的'學(xué)具小棒擺出由6根小棒組成的任何圖形,從而讓學(xué)生在動手的過程中,不僅表現(xiàn)出自己的獨(dú)特創(chuàng)意,而且更深一層地理解6的實(shí)際意義;第三層次是利用黑板進(jìn)行畫6個圓,6個正方形,6個三角形等特定圖形來代表6,從而慢慢抽象至數(shù)字6。這樣從實(shí)物至圖形,在抽象到數(shù)字,整個過程應(yīng)該符合一年級小學(xué)生的特點(diǎn),也是數(shù)形結(jié)合思想的一種滲透。
二、對應(yīng)思想方法
利用數(shù)量間的對應(yīng)關(guān)系來思考數(shù)學(xué)問題,就是對應(yīng)思想。尋找數(shù)量之間的對應(yīng)關(guān)系,也是解答應(yīng)用題的一種重要的思維方式。
在低、中年級整數(shù)應(yīng)用題訓(xùn)練時,教師就應(yīng)該讓學(xué)生明白數(shù)量之間存在著一一對應(yīng)的關(guān)系。
例如:水果店上午賣出蘋果6筐,下午又賣出同樣的蘋果8筐,比上午多賣100元,每筐蘋果多少元?這里存在著錢數(shù)和筐數(shù)的對應(yīng)關(guān)系,學(xué)生如果能看出下午比上午多賣的100元對應(yīng)的筐數(shù)是(8-6)筐,此題就迎刃而解了,即100÷(8-6)=50(元)。
此外,在教學(xué)歸一問題、相遇問題時,都要讓學(xué)生找到題中數(shù)量之間的對應(yīng)關(guān)系。解決問題對于小學(xué)生是個抽象的問題,特別對于低、中年級學(xué)生更難理解。但找到了對應(yīng)關(guān)系,也就找到了解題的關(guān)鍵。
三、轉(zhuǎn)化思想方法
轉(zhuǎn)化就是在研究和解決有關(guān)數(shù)學(xué)問題時,采用某種手段將一個問題轉(zhuǎn)化成為另外一個問題來解決。一般是將復(fù)雜的問題轉(zhuǎn)化為簡單的問題,將難解問題轉(zhuǎn)化為容易求解的問題,將未解決的問題轉(zhuǎn)化為已解決的問題。
例如:上“整十、整百相加減”一課時,先讓學(xué)生觀察,然后問一問,能不能把整十、整百相加減化為我們以前所學(xué)過的幾加幾,幾減幾,這樣學(xué)生不僅很快能掌握新學(xué)得知識,還可以自己解決整百相加減。這正是再滲透轉(zhuǎn)化思想的方法。
四、猜想驗證思想方法
猜想驗證是一種重要的數(shù)學(xué)思想方法,正如荷蘭數(shù)學(xué)教育家弗賴登塔爾所說:“真正的數(shù)學(xué)家常常憑借數(shù)學(xué)的直覺思維做出各種猜想,然后加以證實(shí)。”因此,小學(xué)數(shù)學(xué)教學(xué)中,教師要重視猜想驗證思想方法的滲透,以增強(qiáng)學(xué)生主動探索和獲取數(shù)學(xué)知識的能力,促進(jìn)學(xué)生創(chuàng)新能力的發(fā)展。
例如:教“乘法分配律”一課時,我設(shè)計了以下幾個環(huán)節(jié):
1、出示例題:(1)(6+8)×25(2)6×25+8×25
學(xué)生獨(dú)自計算結(jié)果。
2、討論兩個算式的異同點(diǎn)。
3、根據(jù)自己的發(fā)現(xiàn)舉出類似的例子,并加以計算。
4、驗證后,總結(jié)歸律。
這樣,通過算、討論、說、算、說,學(xué)生初步感知了乘法分配律。至此,猜想乘法分配律已是水到渠成。
現(xiàn)代數(shù)學(xué)思想方法的內(nèi)涵極為豐富,諸如還有集合思想、極限思想、優(yōu)化思想、統(tǒng)計思想、等等,小學(xué)數(shù)學(xué)教學(xué)中都有所涉及。我們廣大小學(xué)數(shù)學(xué)教師要做教學(xué)有心人,有意滲透,有意點(diǎn)撥,重視數(shù)學(xué)史的滲透,重視課堂教學(xué)小結(jié),要以適應(yīng)小學(xué)生年齡特點(diǎn)的大眾化、生活化方式呈現(xiàn)教學(xué)內(nèi)容,讓學(xué)生通過現(xiàn)實(shí)活動,主動參與、自主探究,學(xué)會用數(shù)學(xué)思維方法提出問題、分析問題、解決問題,從而讓學(xué)生的數(shù)學(xué)思維能力得到切實(shí)、有效地發(fā)展,進(jìn)而提高全民族的數(shù)學(xué)文化素養(yǎng)。在小學(xué)數(shù)學(xué)中,數(shù)學(xué)思想方法給出了解決問題的方向,給出了解決問題的策略。這就需要教師挖掘、提煉隱含于教材的思想方法,納入到教學(xué)目標(biāo)。有目的、有計劃、有步驟地精心設(shè)計教學(xué)過程,有效地滲透數(shù)學(xué)思想方法。
數(shù)學(xué)思想方法心得篇四
教師是落實(shí)數(shù)學(xué)思想方法的實(shí)施者,教師對數(shù)學(xué)思想方法的理解程度直接影響這一教學(xué)目標(biāo)的有效落實(shí)。因此,教師首先要認(rèn)真研讀小學(xué)階段所涉及的各種思想方法的內(nèi)涵。
教師深刻理解了各種數(shù)學(xué)思想方法的內(nèi)涵,在課前預(yù)設(shè)時把數(shù)學(xué)思想方法的滲透作為重要的教學(xué)目標(biāo),是小學(xué)生理解、掌握數(shù)學(xué)思想方法的前提。
二、在教學(xué)設(shè)計時,有意識地挖掘教材中蘊(yùn)藏的數(shù)學(xué)思想方法
教材體系有兩條基本線索:一條是數(shù)學(xué)知識,這是明線,另一條是數(shù)學(xué)思想方法,這是蘊(yùn)含在教材中的暗線?!稊?shù)學(xué)課程標(biāo)準(zhǔn)》在教材編寫建議上,要求根據(jù)學(xué)生已有經(jīng)驗、心理發(fā)展規(guī)律以及所學(xué)內(nèi)容的特點(diǎn),一些重要的數(shù)學(xué)概念與數(shù)學(xué)思想方法采取逐步滲透編排的,以便逐步實(shí)現(xiàn)學(xué)習(xí)目標(biāo),為此,在小學(xué)數(shù)學(xué)教材中根據(jù)不同年級蘊(yùn)含著不同的數(shù)學(xué)思想方法。
小學(xué)生在解決問題時,往往要滲透“從有限中認(rèn)識無限,從精確中認(rèn)識近似,從量變中認(rèn)識質(zhì)變”的極限思想。四年級教材中“直線、射線和角”的知識點(diǎn),就蘊(yùn)含極限的思想:射線只有一個端點(diǎn),可以向一端無限延伸;直線由無數(shù)點(diǎn)組成,但沒有端點(diǎn),可以兩端無限延伸;角的兩邊可以無限延長,角的大小與角的兩邊畫出的長短無關(guān)。
總之,數(shù)學(xué)思想方法總是隱含在各知識版塊中,體現(xiàn)在應(yīng)用知識的過程中,沒有不包括數(shù)學(xué)思想方法的知識,也沒有游離于知識之外的思想方法,教師在教學(xué)時要研究教材,遵照《教師教學(xué)用書》的教材編寫要求中“有步驟地滲透數(shù)學(xué)思想方法,培養(yǎng)學(xué)生思維能力和解決問題的能力”的意見,認(rèn)真?zhèn)湔n,努力挖掘教材中進(jìn)行數(shù)學(xué)思想方法滲透的各種因素,按章節(jié)及知識板塊考慮應(yīng)滲透哪些,怎樣滲透,滲透到什么程度,并列為教學(xué)目標(biāo),使?jié)B透成為有意識的教學(xué)活動。讓學(xué)生理解并初步掌握數(shù)學(xué)思想方法,不僅有利于提高他們用數(shù)學(xué)解決問題的能力,同時也可使他們感受到數(shù)學(xué)思想方法的作用,受到思維訓(xùn)練,逐步形成有序地、嚴(yán)密地思考問題的意識,學(xué)生掌握了思想方法將終身受益。
三、小學(xué)數(shù)學(xué)教學(xué)應(yīng)如何加強(qiáng)數(shù)學(xué)思想方法的滲透
(一)提高滲透的自覺性
數(shù)學(xué)概念、法則、公式、性質(zhì)等知識都明顯地寫在教材中,是有“形”的,而數(shù)學(xué)思想方法卻隱含在數(shù)學(xué)知識體系里,是無“形”的,并且不成體系地散見于教材各章節(jié)中。教師講不講,講多講少,隨意性較大,常常因教學(xué)時間緊而將它作為一個“軟任務(wù)”擠掉。對于學(xué)生的要求是能領(lǐng)會多少算多少。因此,作為教師首先要更新觀念,從思想上不斷提高對滲透數(shù)學(xué)思想方法重要性的認(rèn)識,把掌握數(shù)學(xué)知識和滲透數(shù)學(xué)思想方法同時納入教學(xué)目的,把數(shù)學(xué)思想方法教學(xué)的要求融入備課環(huán)節(jié)。其次要深入鉆研教材,努力挖掘教材中可以進(jìn)行數(shù)學(xué)思想方法滲透的各種因素,對于每一章每一節(jié),都要考慮如何結(jié)合具體內(nèi)容進(jìn)行數(shù)學(xué)思想方法滲透,滲透哪些數(shù)學(xué)思想方法,怎么滲透,滲透到什么程度,應(yīng)有一個總體設(shè)計,提出不同階段的具體教學(xué)要求。
(二)把握滲透的可行性
數(shù)學(xué)思想方法的教學(xué)必須通過具體的教學(xué)過程加以實(shí)現(xiàn)。因此,必須把握好教學(xué)過程中進(jìn)行數(shù)學(xué)思想方法教學(xué)的契機(jī)——概念形成的過程,結(jié)論推導(dǎo)的過程,方法思考的過程,思路探索的過程,規(guī)律揭示的過程等。同時,進(jìn)行數(shù)學(xué)思想方法的教學(xué)要注意有機(jī)結(jié)合、自然滲透,要有意識地潛移默化地啟發(fā)學(xué)生領(lǐng)悟蘊(yùn)含于數(shù)學(xué)知識之中的種.種數(shù)學(xué)思想方法,切忌生搬硬套、和盤托出、脫離實(shí)際等適得其反的做法。
(三)注重滲透的反復(fù)性
數(shù)學(xué)思想方法是在啟發(fā)學(xué)生思維過程中逐步積累和形成的。為此,在教學(xué)中,首先要特別強(qiáng)調(diào)解決問題以后的“反思”,因為在這個過程中提煉出來的數(shù)學(xué)思想方法,對學(xué)生來說才是易于體會、易于接受的。如通過分?jǐn)?shù)和百分?jǐn)?shù)應(yīng)用題有規(guī)律的對比板演,指導(dǎo)學(xué)生小結(jié)解答這類應(yīng)用題的關(guān)鍵,找到具體數(shù)量的對應(yīng)分率,從而使學(xué)生自己體驗到對應(yīng)思想和化歸思想。其次要注意滲透的長期性,應(yīng)該看到,對學(xué)生數(shù)學(xué)思想方法的滲透不是一朝一夕就能見到學(xué)生數(shù)學(xué)能力提高的,而是有一個過程。數(shù)學(xué)思想方法必須經(jīng)過循序漸進(jìn)和反復(fù)訓(xùn)練,才能使學(xué)生真正地有所領(lǐng)悟。
綜上所述,小學(xué)數(shù)學(xué)教學(xué)中,教師重視數(shù)學(xué)思想方法的挖掘、提煉和研究,加強(qiáng)數(shù)學(xué)思想方法的指導(dǎo),有意識地把數(shù)學(xué)教學(xué)過程轉(zhuǎn)變?yōu)閿?shù)學(xué)思維活動的過程,不斷強(qiáng)化訓(xùn)練思想方法,培養(yǎng)應(yīng)用思想方法探索問題和解決問題的良好習(xí)慣,從而提高學(xué)生數(shù)學(xué)思維素養(yǎng)。
數(shù)學(xué)思想方法心得篇五
(一)滲透如數(shù)學(xué)思想的概念顯得較為模糊
因為在小學(xué)教學(xué)階段,教師教授的數(shù)學(xué)知識都是比較簡單的,因此數(shù)學(xué)思想自然也就會顯得比較模糊,在小學(xué)數(shù)學(xué)課堂教學(xué)相關(guān)工作進(jìn)行的過程中,從事數(shù)學(xué)教學(xué)相關(guān)工作的教師,想要將數(shù)學(xué)思想滲透到較為模糊的概念中是比較困難的,在日常教學(xué)相關(guān)工作進(jìn)行的過程中,一般情況之下都是不會予以數(shù)學(xué)思想教學(xué)工作充分的總是的,單單是將數(shù)學(xué)教學(xué)當(dāng)成是基礎(chǔ)性數(shù)學(xué)知識教學(xué)工作,僅僅在教學(xué)相關(guān)工作進(jìn)行的過程中傳授給學(xué)生一些解答問題的方式方法,基本上是不會在數(shù)學(xué)思想的層面上對學(xué)生進(jìn)行引導(dǎo)的,從而在此基礎(chǔ)之上想要使得數(shù)學(xué)思想和小學(xué)數(shù)學(xué)教學(xué)有機(jī)的相互融合在一起就變得比較困難。
(二)學(xué)生在學(xué)習(xí)數(shù)學(xué)的過程中基本上不會做出反思
小學(xué)生正處于的是形象思維為主的這樣一個階段,在學(xué)習(xí)數(shù)學(xué)知識的過程中并沒有形成較為明確的認(rèn)識和觀點(diǎn),從而在此基礎(chǔ)之上想要對某些抽象的數(shù)學(xué)概念形成明確的了解就會變得比較困難,因此在學(xué)習(xí)數(shù)學(xué)的過程中一般情況之下都是停留在最為基礎(chǔ)的模仿式學(xué)習(xí)階段中的,依據(jù)教學(xué)教學(xué)流程展開模仿式數(shù)學(xué)學(xué)習(xí),在此基礎(chǔ)之上學(xué)生形成的認(rèn)識觀點(diǎn)自然也是較為模糊的,進(jìn)而在模仿式學(xué)習(xí)的基礎(chǔ)上,想要在學(xué)習(xí)工作完成之后對數(shù)學(xué)學(xué)習(xí)做出反思也就是一件比較困難的事情。
(三)對知識進(jìn)行總結(jié)和整理的意識是較為薄弱的
小學(xué)數(shù)學(xué)教學(xué)階段中包含的知識點(diǎn)是十分瑣碎的,當(dāng)教師開展教學(xué)相關(guān)工作的過程中想要將各個知識點(diǎn)串聯(lián)起來也就是一件比較困難的事情,當(dāng)教師開展課堂教學(xué)相關(guān)工作的過程中,一般情況之下僅僅會在復(fù)習(xí)的時候開展知識點(diǎn)梳理工作,在日常課堂教學(xué)相關(guān)工作進(jìn)行的過程中,一般情況之下都是不會向?qū)W生闡述各個知識點(diǎn)之間呈現(xiàn)出來的相互關(guān)系的,學(xué)生在日常學(xué)習(xí)的過程中自然也就難以積累下來豐富的經(jīng)驗及解決模式,因此教師想要使得課堂教學(xué)相關(guān)工作的效率得到一定程度的提升自然也就比較困難。
2滲透到教學(xué)中的方法
1.在研究探索知識的過程中,著重于將數(shù)學(xué)思想方法滲透到學(xué)習(xí)中
教師應(yīng)該加強(qiáng)在學(xué)生學(xué)習(xí)過程中教學(xué)的力度,一定要凸顯出數(shù)學(xué)知識中一些定理、公式、性質(zhì)等得來的探究過程,進(jìn)而使同學(xué)們把過程轉(zhuǎn)換成解決問題的思想和方法。知識形成并發(fā)展的過程中應(yīng)穿針引線地將數(shù)學(xué)思想方法滲入其中,讓學(xué)生能夠掌握簡單的基礎(chǔ)知識,也能體會深層數(shù)學(xué)原理、性質(zhì)的探索過程,形成良好的解題思路,使學(xué)生在數(shù)學(xué)方面的造詣達(dá)到一個新的高度。教師在授課過程中,要引導(dǎo)學(xué)生自覺地對數(shù)學(xué)知識、方法進(jìn)行探究、學(xué)習(xí),主動追溯知識的探索過程,感悟數(shù)學(xué)知識,將數(shù)學(xué)思想方法與數(shù)學(xué)知識的學(xué)習(xí)融會貫通,使其在數(shù)學(xué)方面達(dá)到質(zhì)的飛躍。
2.在解題和講解例題的過程中滲透數(shù)學(xué)思想方法
在授課中,教師講解例題并且舉一反三,每解決一個問題和例題就為學(xué)生歸納總結(jié)出一種方法,久而久之,學(xué)生就會形成新的解題思路、學(xué)會新的解題方法。對于初中這個階段來講,許多典型例題被設(shè)計出來,許多出色的題目也出現(xiàn)在每年中考題中,老師有效地挑選具有啟示性和創(chuàng)造性的題目進(jìn)行訓(xùn)練,再將數(shù)學(xué)思想和教學(xué)方法展示在對這些問題的講解和探究中,可以培養(yǎng)學(xué)生的解題能力。
3.按時總結(jié),漸進(jìn)地消化數(shù)學(xué)思想方法
在初中的數(shù)學(xué)知識體系中蘊(yùn)含著數(shù)學(xué)思想,不同的數(shù)學(xué)思想通常蘊(yùn)藏于一個內(nèi)容中,而同一個數(shù)學(xué)思想方法又常常被運(yùn)用于許多不同的基礎(chǔ)知識中,教師在對一道題目進(jìn)行分析后,要清晰地向?qū)W生展示出教師在解決這道題時的思路以及解決這道題需要哪些我們原先學(xué)習(xí)的知識以及解題方法。與此同時,要引導(dǎo)學(xué)生對新方法、新思路的思考,鍛煉其發(fā)散性思維。老師通過“一題多解”及舉一反三等方式及時鞏固,使學(xué)生慢慢內(nèi)化這些數(shù)學(xué)思想、解題思路等。
3解題滲透數(shù)學(xué)思想方法
(1)注意分析探求解題思路時數(shù)學(xué)思想方法的運(yùn)用。解題的過程就是在數(shù)學(xué)思想方法的指導(dǎo)下,合理聯(lián)想提取相關(guān)知識,調(diào)用一定數(shù)學(xué)方法加工、處理題設(shè)條件及知識,逐步縮小題設(shè)與題干之間的差異的過程。解題思想的尋求就自然是運(yùn)用數(shù)學(xué)思想方法分析、解決問題的過程。
(2)注意數(shù)學(xué)思想方法在解決典型問題中的運(yùn)用。如解題中求二面角大小最常用的方法之一就是:根據(jù)已知條件,在二面角內(nèi)尋找或作出過一個面內(nèi)一點(diǎn)到另一個面上的垂線,過這點(diǎn)再作二面角的棱的垂線,然后連結(jié)兩個垂足。這樣平面角即為所得的直角三角形的一銳角。這個通法就是在立體問題化平面的轉(zhuǎn)化思想的指導(dǎo)下求得的,其中三垂線定理在構(gòu)圖中的運(yùn)用,也是分析、聯(lián)想等數(shù)學(xué)思維方法運(yùn)用之所得。
(3)用數(shù)學(xué)思想指導(dǎo)知識、方法的靈活運(yùn)用,進(jìn)行一題多解的練習(xí),培養(yǎng)思維的發(fā)散性、靈活性、敏捷性;對習(xí)題靈活變通、引伸推廣,培養(yǎng)思維的深刻性、抽象性;組織引導(dǎo)對解法的簡捷性的反思評估,不斷優(yōu)化思維品質(zhì),培養(yǎng)思維的嚴(yán)謹(jǐn)性,批判性。對同一數(shù)學(xué)問題的多角度的審視引發(fā)的不同聯(lián)想,是一題多解的思維本源。豐富合理的聯(lián)想,是對知識的深刻理解,及類比、轉(zhuǎn)化、數(shù)形結(jié)合、函數(shù)與方程等數(shù)學(xué)思想運(yùn)用的必然。數(shù)學(xué)方法、數(shù)學(xué)思想的自覺運(yùn)用往往使我們運(yùn)算簡捷、邏輯嚴(yán)密,是提高數(shù)學(xué)能力的必由之路。
4提高課堂教學(xué)效率
重視備課,明確教學(xué)目標(biāo)
如果說數(shù)學(xué)是一門藝術(shù),那么備好課是搞好藝術(shù)的基本條件。不經(jīng)武裝的戰(zhàn)士上戰(zhàn)場,只能束手就擒;沒有充分準(zhǔn)備的教師上講臺,充其量是“信口開河”,決談不上駕馭課堂的能力,作為教師,傳授知識是我們的責(zé)任,出色的備課也是我們實(shí)行責(zé)任的前提。那怎么去用心備課呢?在此我只談?wù)勛约旱母形颍菏紫?,選好合適的起點(diǎn),起點(diǎn)就是新知識在原有知識基礎(chǔ)上的生長點(diǎn)。起點(diǎn)要合適,采有利于促進(jìn)知識遷移,學(xué)生才能學(xué),才肯學(xué)。起點(diǎn)過低,學(xué)生沒興趣,不愿學(xué);起點(diǎn)過高,學(xué)生又聽不懂,不能學(xué)。
其次,明確重點(diǎn),每一堂課都要有一個重點(diǎn),而整堂的教學(xué)都是圍繞著這個重點(diǎn)來逐步展開的。為了讓學(xué)生明確本堂課的重點(diǎn)、難點(diǎn),教師在備課時,應(yīng)該在課本上做標(biāo)記。重點(diǎn)往往是新知識的起點(diǎn)和主體部分。備課時要突出重點(diǎn)。一節(jié)課內(nèi),首先要在時間上保證重點(diǎn)內(nèi)容重點(diǎn)講,要緊緊圍繞重點(diǎn),以它為中心,輔以知識講練,引導(dǎo)啟發(fā)學(xué)生加強(qiáng)對重點(diǎn)內(nèi)容的理解,做到心中有重點(diǎn),講中出重點(diǎn),才能使整個一堂課有個靈魂。最后,注重聯(lián)系,即新舊知識的聯(lián)系。數(shù)學(xué)知識本身系統(tǒng)性很強(qiáng),章節(jié)、例題、習(xí)題中都有密切的聯(lián)系,要真正搞懂新舊知識的交點(diǎn),才能把知識融會貫通,溝通知識間的縱橫聯(lián)系,形成知識網(wǎng)絡(luò),學(xué)生才能舉一反三,更有利于靈活地運(yùn)用知識。作為教師,切記備課的重要性,一切的一切都要從備課開始,出色的備課是成功課堂教學(xué)的前提。
重視教學(xué)方法的作用,加強(qiáng)學(xué)法的指導(dǎo)
曾經(jīng)看過這么一句話,說的是“未來的文盲不再是不識字的人,而是沒有學(xué)會怎樣學(xué)習(xí)的人”。這充分說明了學(xué)習(xí)方法的重要性,它是獲取知識的金鑰匙。學(xué)生一旦掌握了學(xué)習(xí)方法,就能自己打開知識寶庫的大門。所以我們應(yīng)該改進(jìn)課堂教學(xué),運(yùn)用正確的教學(xué)方法去指導(dǎo)學(xué)生的學(xué)法,傳授給學(xué)生的不僅僅是知識,更重要的是學(xué)習(xí)方法。同時每一節(jié)課都有每一節(jié)課的知識點(diǎn),都有需要掌握的重點(diǎn)內(nèi)容。教師能隨著教學(xué)內(nèi)容的變化,教學(xué)對象的變化,教學(xué)設(shè)備的變化,靈活應(yīng)用教學(xué)方法。我們可以結(jié)合課堂內(nèi)容,靈活采用談話、讀書指導(dǎo)、作業(yè)、練習(xí)等多種教學(xué)方法。有時,在一堂課上,要同時使用多種教學(xué)方法。俗話說:“教無定法,貴要得法”。只要能激發(fā)學(xué)生的學(xué)習(xí)興趣,提高學(xué)生的學(xué)習(xí)積極性,有助于學(xué)生思維能力的培養(yǎng),有利于所學(xué)知識的掌握和運(yùn)用,都是好的教學(xué)方法。教會學(xué)生的學(xué)習(xí)方法,是我們作為教師的責(zé)任。
綜上所述,學(xué)好數(shù)學(xué)對學(xué)生將來的發(fā)展起到至關(guān)重要的作用,作為教師,我們要認(rèn)真?zhèn)湔n,全身心的投入課堂,創(chuàng)造最佳的課堂氣氛和環(huán)境,充分調(diào)動學(xué)生的內(nèi)在積極因素,激發(fā)求知欲,千方百計使學(xué)生的注意力高度集中,同時還應(yīng)該不斷地努力提高自己的能力,在有限的時間內(nèi),將知識最大化的傳授給學(xué)生,提高課堂教學(xué)效率。
數(shù)學(xué)思想方法心得篇六
特殊與一般的數(shù)學(xué)思想:對于在一般情況下難以求解的問題,可運(yùn)用特殊化思想,通過取特殊值、特殊圖形等,找到解題的規(guī)律和方法,進(jìn)而推廣到一般,從而使問題順利求解。常見情形為:用字母表示數(shù);特殊值的應(yīng)用;特殊圖形的應(yīng)用;用特殊化方法探求結(jié)論;用一般規(guī)律解題等。
整體的數(shù)學(xué)思想:所謂整體思想,就是當(dāng)我們遇到問題時,不著眼于問題的各個部分,而是有意識地放大考慮問題的視角,將所需要解決的問題看作一個整體,通過研究問題的整體形式、整體結(jié)構(gòu)、整體與局部的內(nèi)在聯(lián)系來解決問題的思想。用整體思想解題時,是把一些彼此獨(dú)立,但實(shí)質(zhì)上又相互緊密聯(lián)系的量作為整體來處理,一定要善于把握求值或求解的問題的內(nèi)在結(jié)構(gòu)、數(shù)與形之間的內(nèi)在結(jié)構(gòu),要敏銳地洞察問題的本質(zhì),有時也不要放棄直覺的作用,把注意力和著眼點(diǎn)放在問題的整體上。常見的情形為:整體代入;整式約簡;整體求和與求積;整體換元與設(shè)元;整體變形與補(bǔ)形;整體改造與合并;整體構(gòu)造與操作等。分類討論的數(shù)學(xué)思想:也稱分情況討論,當(dāng)一個數(shù)學(xué)問題在一定的題設(shè)下,其結(jié)論并不唯一時,我們就需要對這一問題進(jìn)行必要的分類。將一個數(shù)學(xué)問題根據(jù)題設(shè)分為有限的若干種情況,在每一種情況中分別求解,最后再將各種情況下得到的答案進(jìn)行歸納綜合。分類討論是根據(jù)問題的不同情況分類求解,它體現(xiàn)了化整為零和積零為整的思想與歸類整理的方法。運(yùn)用分類討論思想解題的關(guān)鍵是如何正確的進(jìn)行分類,即確定分類的標(biāo)準(zhǔn)。分類討論的原則是:(1)完全性原則,就是說分類后各子類別涵蓋的范圍之和,應(yīng)當(dāng)是原被分對象所涵蓋的范圍,即分類不能遺漏;(2)互斥性原則,就是說分類后各子類別涵蓋的范圍之間,彼此互相獨(dú)立,不應(yīng)重疊或部分重疊,即分類不能重復(fù);(3)統(tǒng)一性原則,就是說在同一次分類中,只能按所確定的一個標(biāo)準(zhǔn)進(jìn)行分類,即分類標(biāo)準(zhǔn)統(tǒng)一。分類的方法是:明確討論的對象,確定對象的全體,確立分類標(biāo)準(zhǔn),正確進(jìn)行分類,逐步進(jìn)行討論,獲取階段性結(jié)果,歸納小結(jié),綜合得出結(jié)論。常見的情形為:由字母系數(shù)引起的討論;由絕對值引起的討論;由點(diǎn)、線的運(yùn)動變化引起的討論;由圖形引起的討論;由邊、點(diǎn)的不確定引起的討論;存在特殊情形而引起的討論;應(yīng)用問題中的分類討論等。
轉(zhuǎn)化的數(shù)學(xué)思想:將未知解法或難以解決的問題,通過觀察、分析、聯(lián)想、類比等思維過程,選擇恰當(dāng)?shù)姆椒ㄟM(jìn)行變換,化歸為在已知知識范圍內(nèi)已經(jīng)解決或容易解決的問題。解題的過程實(shí)際就是轉(zhuǎn)化的過程。常見的情形為:高次轉(zhuǎn)化為低次、多元轉(zhuǎn)化為一元、式子轉(zhuǎn)化為方程、次元轉(zhuǎn)化為主元、正面轉(zhuǎn)化為反面、分散轉(zhuǎn)化為集中、未知轉(zhuǎn)化為已知、動轉(zhuǎn)化為靜、部分轉(zhuǎn)化為整體、還有一般與特殊、數(shù)與形、相等與不等之間的相互轉(zhuǎn)化。
數(shù)形結(jié)合的數(shù)學(xué)思想:數(shù)與形是數(shù)學(xué)教學(xué)研究對象的兩個側(cè)面,把數(shù)量關(guān)系和空間形式結(jié)合起來去分析問題、解決問題,就是數(shù)形結(jié)合思想。數(shù)、式能反映圖形的準(zhǔn)確性,圖形能增強(qiáng)數(shù)、式的直觀性,“數(shù)形結(jié)合”可以調(diào)動和促進(jìn)學(xué)生形象思維和抽象思維的協(xié)調(diào)發(fā)展,溝通數(shù)學(xué)知識之間的聯(lián)系,從復(fù)雜的數(shù)量關(guān)系中凸顯最本質(zhì)的特征。數(shù)形結(jié)合是研究數(shù)學(xué)問題的有效途徑和重要策略,它體現(xiàn)了數(shù)學(xué)的和諧美、統(tǒng)一美。華羅庚先生曾用“數(shù)缺形時少直覺,形少數(shù)時難入微”作高度的概括。常見的情形為:利用數(shù)軸、函數(shù)的圖象和性質(zhì)、幾何模型、方程與不等式以及數(shù)式特征可以將代數(shù)問題轉(zhuǎn)化為集合問題;利用代數(shù)計算、幾何圖形特征可以將幾何問題轉(zhuǎn)化為代數(shù)問題;利用三角知識解決幾何問題;利用統(tǒng)計圖表讓統(tǒng)計數(shù)據(jù)更形象更直觀等。
函數(shù)與方程的思想:函數(shù)的思想就是利用運(yùn)動與變化的觀點(diǎn)、集合與對應(yīng)的思想,去分析和研究數(shù)學(xué)中的等量關(guān)系,建立和構(gòu)造函數(shù)關(guān)系,再運(yùn)用函數(shù)的圖象和性質(zhì)去分析問題,達(dá)到轉(zhuǎn)化問題的目的,從而使問題獲得解決。方程的思想就是從問題的數(shù)量關(guān)系入手,運(yùn)用數(shù)學(xué)語言將問題中的條件轉(zhuǎn)化為數(shù)學(xué)模型——方程或方程組,通過解方程或方程組,或者運(yùn)用方程的性質(zhì)去分析、轉(zhuǎn)化問題,使問題獲得解決。函數(shù)與方程的思想實(shí)際是就是一種模型化的思想。常見的情形為:數(shù)字問題、面積問題、幾何問題方程化;應(yīng)用函數(shù)思想解方程問題、不等問題、幾何問題、實(shí)際問題;利用方程作判斷;構(gòu)建方程模型探求實(shí)際問題;應(yīng)用函數(shù)設(shè)計方案和探求面積等。
常用數(shù)學(xué)方法如:配方法、消元法、換元法、待定系數(shù)法、構(gòu)造法、主元法、面積法、類比法、參數(shù)法、降次法、圖表法、估算法、分析法、綜合法、拼湊法、割補(bǔ)法、反證法、倒數(shù)法、同一法等。
數(shù)學(xué)思想方法心得篇七
新課標(biāo)明確提出開展數(shù)學(xué)思想方法的教學(xué)要求,旨在引導(dǎo)學(xué)生去把握數(shù)學(xué)知識結(jié)構(gòu)的.核心和靈魂,其重要意義顯而易見.數(shù)學(xué)思想方法是從數(shù)學(xué)內(nèi)容中提煉出來的數(shù)學(xué)學(xué)科的精髓,是將數(shù)學(xué)知識轉(zhuǎn)化為數(shù)學(xué)能力的橋梁.
作者:朱毅作者單位:四川省榮縣富北學(xué)校,四川,榮縣,643100刊名:讀寫算(教育教學(xué)研究)英文刊名:duyuxie年,卷(期):“”(7)分類號:關(guān)鍵詞:數(shù)學(xué)思想方法心得篇八
復(fù)習(xí)備考需要足夠數(shù)量的習(xí)題,只有針對性訓(xùn)練才能在中考得以正常發(fā)揮,只有每天動筆適當(dāng)?shù)淖鲂┝?xí)題才能保持思維的連貫性。但僅僅做題還是遠(yuǎn)遠(yuǎn)不夠,需要解題后的反思與總結(jié)。在反思中才能進(jìn)一步看透問題的本質(zhì),體會命題的意圖。在總結(jié)的過程中也才能優(yōu)化解題的思路,探索處理問題規(guī)律,形成有自己特色的經(jīng)驗。
在復(fù)習(xí)中既要注重數(shù)學(xué)概念、法則、定理等基礎(chǔ)知識的梳理,更要關(guān)注解題后的反思與總結(jié),領(lǐng)會解題中蘊(yùn)含的數(shù)學(xué)思想方法,并通過不斷積累逐漸的納入自己已有的知識體系。在反思總結(jié)中可以從兩方面考慮:一是宏觀層面,如每復(fù)習(xí)一塊內(nèi)容后可以從主要知識考點(diǎn)、考點(diǎn)之間的聯(lián)系等去反思;二是微觀層面,如解題后的可以對所解題的結(jié)構(gòu)是否理解清楚,解題過程中運(yùn)用了哪些基礎(chǔ)知識和基本技能?哪些步驟易出錯?原因何在?如何防止?也可以對解題的方法進(jìn)行評價找出最優(yōu)的解法,考慮解題中運(yùn)用了哪些思維方式、數(shù)學(xué)思想方法?想法是如何分析出來的?有無規(guī)律可循?也可以對解題步驟進(jìn)行分析,抓住解題的關(guān)鍵。如解題的難點(diǎn)在哪?我是如何突破的?能否用其他方法也得到同樣結(jié)果?其方法的優(yōu)劣所在?若能把反思與總結(jié)當(dāng)作一個經(jīng)常性、自覺性的學(xué)習(xí)行為,就會在不斷地積累和總結(jié)基本的數(shù)學(xué)活動經(jīng)驗中,提高數(shù)學(xué)知識的運(yùn)用能力。
......
函數(shù)思想,是指用函數(shù)的概念和性質(zhì)去分析問題、轉(zhuǎn)化問題和解決問題。方程思想,是從問題中的數(shù)量關(guān)系入手,運(yùn)用數(shù)學(xué)語言將問題中的條件轉(zhuǎn)化為數(shù)學(xué)模型(方程、不......
數(shù)學(xué)思想方法心得篇九
生活中不是沒有美,只是缺乏發(fā)現(xiàn)美的眼睛。學(xué)習(xí)數(shù)學(xué)也是一樣,要帶著發(fā)現(xiàn)的眼睛去觀察。學(xué)好數(shù)學(xué)固然重要,但是要上學(xué)生意識的數(shù)學(xué)的美,發(fā)現(xiàn)數(shù)學(xué)的美才是學(xué)生持續(xù)學(xué)習(xí)數(shù)學(xué)的動力,這樣才有利于學(xué)生的可持續(xù)法展。
聽過這樣一句話:“孩子在入學(xué)時是一個問號,卻在畢業(yè)時成了一個句號。”也就是在孩子最初的認(rèn)識里數(shù)學(xué)是美的,只是在逐漸的學(xué)習(xí)中改變了自己的想法。問題究竟出在哪里呢?這值得我們深思,尤其是值得教育者深思。怎樣才能使孩子回到最初的認(rèn)識,回歸數(shù)學(xué)美。
首先我覺得要對自己執(zhí)教的班級做一份問卷調(diào)查,了解一下數(shù)學(xué)在學(xué)生心目中的現(xiàn)狀,及學(xué)生心目中數(shù)學(xué)美應(yīng)該隱藏在哪里,以及心目中的數(shù)學(xué)課應(yīng)該是怎么樣的。這樣的話教師可以做到心中有底,對癥下藥。還可以找到認(rèn)為數(shù)學(xué)是美的學(xué)生驚醒一次小的座談會,讓他們說說自己的想法。
要想引導(dǎo)孩子認(rèn)識數(shù)學(xué)美,前提是教師本身認(rèn)為數(shù)學(xué)中的美,這樣才能教出認(rèn)為數(shù)學(xué)是美的學(xué)生。如何正確的引導(dǎo)孩子認(rèn)識到數(shù)學(xué)中的形形色色的美以及采用什么樣的方式是我們需要思考的問題。楊正寧教授在中美學(xué)生的對比中談到:“中國學(xué)生學(xué)得多,悟得少;美國學(xué)生學(xué)得少,卻悟得多。這就是中國教育不出諾貝爾獎得者的重要原因。縱觀我們的教學(xué),學(xué)生總是被塞得滿滿的,這就是我們的學(xué)生體會不到數(shù)學(xué)美的重要原因。因此我覺得首先要將學(xué)生從繁重的課業(yè)中解脫出來,給孩子更多的思考和實(shí)踐的機(jī)會。以學(xué)生的直接經(jīng)驗為主輔助以必要的間接經(jīng)驗。就像著名的教育家杜威說的那樣“在做中學(xué)”。讓孩子自己動手自己體會自己總結(jié),進(jìn)而更加深刻的體會到成功感,以培養(yǎng)孩子欣賞數(shù)學(xué)美認(rèn)識數(shù)學(xué)美進(jìn)而創(chuàng)造數(shù)學(xué)美。另外,在日常的教學(xué)中要給學(xué)生一些啟發(fā)、一些思考的余地和自由掌握的時間,使學(xué)生可以自由地活動,從“無”中生出“有”。培養(yǎng)學(xué)生自己發(fā)現(xiàn)問題,解決問題的能力。讓學(xué)生自己去思考自己去領(lǐng)悟一些東西。
另外我認(rèn)為也要在日常的教學(xué)中給孩子營造一個良好的感受數(shù)學(xué)美的氛圍。在學(xué)生的周圍時刻的感染學(xué)生,影響學(xué)生。教師可以準(zhǔn)備一些精美的反應(yīng)數(shù)學(xué)美的圖片,讓學(xué)生感受數(shù)學(xué)美。也可以讓學(xué)生自己去尋找一些自己認(rèn)為包含數(shù)學(xué)美的圖片或者視頻,讓學(xué)生自己分享一下?;蛘咦寣W(xué)生自己感悟一些偉大的數(shù)學(xué)家心目中的數(shù)學(xué)。
我想只有讓數(shù)學(xué)回歸自然回歸生活,才能喚醒孩子心中的數(shù)學(xué)美。
數(shù)學(xué)思想方法心得篇十
為了幫助小學(xué)數(shù)學(xué)教師轉(zhuǎn)變數(shù)學(xué)教育觀念,提高對數(shù)學(xué)思想方法的理解和運(yùn)用水平,進(jìn)而提高數(shù)學(xué)專業(yè)素養(yǎng),本書主編王永春于出版了專著《小學(xué)數(shù)學(xué)與數(shù)學(xué)思想方法》,該書一經(jīng)出版,便受到廣大小學(xué)數(shù)學(xué)教師的歡迎,參與學(xué)習(xí)活動的老師們把自己的讀書心得寫出來,在教學(xué)中去實(shí)踐自己的學(xué)習(xí)收獲,主編王永春把這些鮮活的學(xué)習(xí)體會和寶貴的教學(xué)經(jīng)驗案例結(jié)集出版,形成了本書,讓更多的老師分享通俗而深刻的理論解讀和接地氣的實(shí)踐經(jīng)驗。
本書作者王永春,作為人民教育出版社小學(xué)數(shù)學(xué)編輯室主任,長期從事小學(xué)數(shù)學(xué)教材的編寫工作,致力于課程、教材的研究,對小學(xué)數(shù)學(xué)思想方法有深入的思考和探索。基于對提高教育質(zhì)量、落實(shí)教育目標(biāo)的強(qiáng)烈責(zé)任感,作者撰寫了系列文章,就有關(guān)數(shù)學(xué)思想方法在小學(xué)教學(xué)中的應(yīng)用作了專門的論述。在此基礎(chǔ)上,形成了本書。
本書是《小學(xué)數(shù)學(xué)與數(shù)學(xué)思想方法》一書的讀后感,是一線教師對數(shù)學(xué)思想方法的解讀和教學(xué)案例的研究。因此本書的內(nèi)容結(jié)構(gòu)和目錄與《小學(xué)數(shù)學(xué)與數(shù)學(xué)思想方法》的內(nèi)容結(jié)構(gòu)和目錄是基本相對應(yīng)的,其中第1章到第五章的目錄與《小學(xué)數(shù)學(xué)與數(shù)學(xué)思想方法》相對應(yīng),第六章教學(xué)案例部分,考慮到各年級案例分布不均,沒有按照冊數(shù)分節(jié),把一、二年級分為第1節(jié),三、四年級分為第二節(jié),五年級分為第三節(jié),六年級分為第四節(jié)。對學(xué)生來說,數(shù)學(xué)思想方法不同于一般的概念和技能,概念與技能通??梢酝ㄟ^短期的訓(xùn)練便能掌握,而數(shù)學(xué)思想方法則需要通過教師長期的滲透和影響才能夠形成。教師應(yīng)在每堂課的教學(xué)中適時、適當(dāng)?shù)伢w現(xiàn)思想方法的教學(xué)目標(biāo),使學(xué)生在潛移默化中日積月累,通過提高數(shù)學(xué)素養(yǎng)達(dá)到學(xué)好數(shù)學(xué)的目的。
數(shù)學(xué)思想方法不同于一般的概念和技能,后者一般通過短期的訓(xùn)練便能掌握,而數(shù)學(xué)思想方法需要通過在教學(xué)中長期地滲透和影響才能夠形成。古語云“泰山不讓土壤,故能成其大;河海不擇細(xì)流,故能就其深?!苯處煈?yīng)在每堂課的教學(xué)中適時、適當(dāng)?shù)伢w現(xiàn)思想方法的教學(xué)目標(biāo),使學(xué)生在潛移默化中日積月累,通過提高數(shù)學(xué)素養(yǎng)達(dá)到學(xué)好數(shù)學(xué)的目的。希望數(shù)學(xué)思想方法的教學(xué)能夠像春雨一樣,滋潤著學(xué)生的心田。
數(shù)學(xué)思想方法心得篇十一
一、集合的思想方法
把一組對象放在一起,作為討論的范圍,這是人類早期就有的思想方法,繼而把一定程度抽象了的思維對象,如數(shù)學(xué)上的點(diǎn)、數(shù)、式放在一起作為研究對象,這種思想就是集合思想。集合思想作為一種思想,在小學(xué)數(shù)學(xué)中就有所體現(xiàn)。在小學(xué)數(shù)學(xué)中,集合概念是通過畫集合圖的辦法來滲透的。
如用圓圈圖(韋恩圖)向?qū)W生直觀的滲透集合概念。讓他們感知圈內(nèi)的物體具有某種共同的屬性,可以看作一個整體,這個整體就是一個集合。利用圖形間的關(guān)系則可向?qū)W生滲透集合之間的關(guān)系,如長方形集合包含正方形集合,平行四邊形集合包含長方形集合,四邊形集合又包含平行四邊行集合等。
二、對應(yīng)的思想方法
對應(yīng)是人的思維對兩個集合間問題聯(lián)系的把握,是現(xiàn)代數(shù)學(xué)的一個最基本的概念。小學(xué)數(shù)學(xué)教學(xué)中主要利用虛線、實(shí)線、箭頭、計數(shù)器等圖形將元素與元素、實(shí)物與實(shí)物、數(shù)與算式、量與量聯(lián)系起來,滲透對應(yīng)思想。
如人教版一年級上冊教材中,分別將小兔和磚頭、小豬和木頭、小白兔和蘿卜、蘋果和梨一一對應(yīng)后,進(jìn)行多少的比較學(xué)習(xí),向?qū)W生滲透了事物間的對應(yīng)關(guān)系,為學(xué)生解決問題提供了思想方法。
三、數(shù)形結(jié)合的思想方法
數(shù)與形是數(shù)學(xué)教學(xué)研究對象的兩個側(cè)面,把數(shù)量關(guān)系和空間形式結(jié)合起來去分析問題、解決問題,就是數(shù)形結(jié)合思想?!皵?shù)形結(jié)合”可以借助簡單的圖形、符號和文字所作的示意圖,促進(jìn)學(xué)生形象思維和抽象思維的協(xié)調(diào)發(fā)展,溝通數(shù)學(xué)知識之間的聯(lián)系,從復(fù)雜的數(shù)量關(guān)系中凸顯最本質(zhì)的特征。它是小學(xué)數(shù)學(xué)教材編排的重要原則,也是小學(xué)數(shù)學(xué)教材的一個重要特點(diǎn),更是解決問題時常用的.方法。
例如,我們常用畫線段圖的方法來解答應(yīng)用題,這是用圖形來代替數(shù)量關(guān)系的一種方法。我們又可以通過代數(shù)方法來研究幾何圖形的周長、面積、體積等,這些都體現(xiàn)了數(shù)形結(jié)合的思想。
四、函數(shù)的思想方法
恩格斯說:“數(shù)學(xué)中的轉(zhuǎn)折點(diǎn)是笛卡兒的變數(shù)。有了變數(shù),運(yùn)動進(jìn)入了數(shù)學(xué),有了變數(shù),辯證法進(jìn)入了數(shù)學(xué),有了變數(shù),微分和積分也就立刻成為必要的了?!蔽覀冎溃\(yùn)動、變化是客觀事物的本質(zhì)屬性。函數(shù)思想的可貴之處正在于它是運(yùn)動、變化的觀點(diǎn)去反映客觀事物數(shù)量間的相互聯(lián)系和內(nèi)在規(guī)律的。學(xué)生對函數(shù)概念的理解有一個過程。在小學(xué)數(shù)學(xué)教學(xué)中,教師在處理一些問題時就要做到心中有函數(shù)思想,注意滲透函數(shù)思想。
函數(shù)思想在人教版一年級上冊教材中就有滲透。如讓學(xué)生觀察《20以內(nèi)進(jìn)位加法表》,發(fā)現(xiàn)加數(shù)的變化引起的和的變化的規(guī)律等,都較好的滲透了函數(shù)的思想,其目的都在于幫助學(xué)生形成初步的函數(shù)概念。
這就是我們精心為大家準(zhǔn)備的小升初學(xué)習(xí)數(shù)學(xué)思想方法,希望對大家有用!更多小升初復(fù)習(xí)資料及相關(guān)資訊,盡在數(shù)學(xué)網(wǎng),請大家及時關(guān)注!
數(shù)學(xué)思想方法心得篇十二
中學(xué)數(shù)學(xué)內(nèi)容從總體上可以分為兩個層次:一個稱為基礎(chǔ)知識,另一個稱為深層知識.基礎(chǔ)知識包括概念、性質(zhì)、法則、公式、公理、定理等數(shù)學(xué)的基本知識和基本技能,深層知識主要指數(shù)學(xué)思想和數(shù)學(xué)方法。
基礎(chǔ)知識是深層知識的基礎(chǔ),是教學(xué)大綱中明確規(guī)定的,教材中明確給出的,以及具有較強(qiáng)操作性的知識.學(xué)生只有通過對教材的學(xué)習(xí),在掌握和理解了一定的基礎(chǔ)知識后,才能進(jìn)一步的學(xué)習(xí)和領(lǐng)悟相關(guān)的深層知識。
那種只重視講授基礎(chǔ)知識,而不注重滲透數(shù)學(xué)思想、方法的復(fù)習(xí),是不完備的,它不利于對所學(xué)知識的真正理解和掌握,使學(xué)生的知識水平永遠(yuǎn)停留在一個初級階段,難以提高;反之,如果單純強(qiáng)調(diào)數(shù)學(xué)思想和方法,而忽略基礎(chǔ)知識的教學(xué),就會使復(fù)習(xí)流于形式,成為無源之水,無本之木,學(xué)生也難以領(lǐng)略到深層知識的真諦.因此,數(shù)學(xué)思想、方法的復(fù)習(xí)應(yīng)與整個基礎(chǔ)知識的融為一體,使學(xué)生逐步掌握有關(guān)的深層知識,提高數(shù)學(xué)能力,形成良好的數(shù)學(xué)素質(zhì)。這也是數(shù)學(xué)思想方法復(fù)習(xí)的基本原則。
數(shù)學(xué)思想方法心得篇十三
素質(zhì)教育,面向全體學(xué)生,讓學(xué)生全面發(fā)展,是當(dāng)前教育改革的主要任務(wù),世界上的一切事物,都有對立面,如好與壞,前進(jìn)與后退等,而且對立的雙方可以互相轉(zhuǎn)化。學(xué)生的學(xué)習(xí)也是如此,同是一個班,有尖子生,也有學(xué)困生。俗話說:“十個手指都有長短”。提起學(xué)困生,每位班主任老師都會感到頭痛,轉(zhuǎn)化學(xué)困生是班主任老師最經(jīng)常,最棘手的一項工作。
學(xué)困生是學(xué)校領(lǐng)導(dǎo)的一塊心病,也是班主任最感到頭痛的事,同時也成為當(dāng)今教育領(lǐng)域的一大社會問題。學(xué)困生的存在是不可避免的,我們教育工作者應(yīng)該積極去面對,幫助每一個學(xué)生成功是教育工作者的根本目的,也是廣大教育工作者的共同愿望。由于各種因素,在我們學(xué)校的各個班級中,不同程度地存在著學(xué)習(xí)困難生,他們有的由于學(xué)習(xí)基礎(chǔ)較差,有的由于學(xué)習(xí)態(tài)度不端正或?qū)W習(xí)習(xí)慣較差等,表現(xiàn)出對學(xué)習(xí)不感興趣,缺乏信心等不良特征。學(xué)困生的存在成為困擾每個教師的一大難題,也制約了學(xué)校教育教學(xué)質(zhì)量的提高。特別是農(nóng)村學(xué)校,由于農(nóng)村學(xué)生家長教育不當(dāng),留守兒童多,缺乏家長教育,農(nóng)村學(xué)困生比例相對較大。
農(nóng)村學(xué)困生主要有以下幾點(diǎn)特征:
一、具有明顯的自卑感,失落感。
由于學(xué)困生學(xué)習(xí)成績差,一時無法彌補(bǔ)他們在群體中落后的位置,家長埋怨,老師指責(zé),同學(xué)歧視,導(dǎo)致他們自暴自棄,不思進(jìn)取,形成一種心理定勢“我不如人”,長期生活在一種頹喪抑郁的氛圍中,對學(xué)習(xí)喪失信心。
二、具有膽怯心理。
學(xué)習(xí)上遇到困難不敢向老師或同學(xué)請教,不愿意暴露自己的弱點(diǎn),怕別人譏笑,結(jié)果一連串的問題得不到解決,形成惡性循環(huán)。
三、具有壓抑心理。
多數(shù)學(xué)困生也想學(xué)好,家長也很希望他們成才。但由于基礎(chǔ)差總是學(xué)不好,于是得不到老師的重視、同學(xué)的幫助和家庭的溫暖,常常陷于痛苦憂傷難以自拔的心境之中,情緒波動,性格浮躁,導(dǎo)致悲觀消極的壓抑心理。
四、具有惰性心理。
學(xué)習(xí)上不肯用功,思想上不求進(jìn)步。只圖安逸自在,玩字當(dāng)頭,混字領(lǐng)先,怕動腦子,缺乏吃苦精神,不愿意在困苦中學(xué)習(xí)。
五、具有逆反心理。
由于學(xué)困生得到的常常是批評,指責(zé)和嘲諷,因此,對老師的教育產(chǎn)生反感,形成逆反心理。
六、普遍的學(xué)困生都缺乏遠(yuǎn)大的理想和抱負(fù),對自己的學(xué)習(xí)目的不明確。
不知道一天該做什么,對什么都不感興趣,結(jié)果什么都做不好。
七、注意力不集中,記憶速度慢,遺忘快。
90%的學(xué)困生課堂注意力不集中。他們心里想集中但集中不起來。所學(xué)的知識記不住,記住的也很快就忘。
八、學(xué)困生由于對知識掌握差,遇到過去的已有的知識不能很好的回憶、再認(rèn),使知識不連貫,無法跟上教師上課進(jìn)度。
九、遷移能力差。
對照例題能完成部分作業(yè),但對變形的題就不知所措。舉一反三的能力差。
十、歸納概括能力差。
學(xué)困生的學(xué)習(xí)停留在識記階段,對事物共性的認(rèn)識并進(jìn)行歸納的'能力較差。在學(xué)習(xí)中基本上無法歸納、總結(jié)。
大多數(shù)班主任都認(rèn)為對品學(xué)兼優(yōu)學(xué)生的管理比較輕松,而對學(xué)困生的教育,不少教師感到很棘手。曾幾何時,做教師尤其是當(dāng)班主任的我們,經(jīng)常抱怨這樣的學(xué)生如何如何地難教,學(xué)生是如何如何地沒有感情,甚至責(zé)罵學(xué)生蠢笨不可教……。沒有不好的孩子,只有不好的教育。因此,如何教育學(xué)困生是老師特別是我們班主任一項值得深究的課題。學(xué)困生通常是指那些在學(xué)習(xí)或品行方面暫時落后的學(xué)生。這類學(xué)生給班級工作的正常開展帶來負(fù)面影響,特別是學(xué)習(xí)、品德都很差的學(xué)生。我從事班主任工作已有二十多年,轉(zhuǎn)化學(xué)困生的工作,不論從學(xué)校角度來講,還是從學(xué)生成長來講,都十分重要,那么,如何轉(zhuǎn)化農(nóng)村學(xué)困生呢?我覺得可以從以下幾個方面入手:
一、對他們要充滿愛心和信任
日本教育家池田大作說過:“伸出充滿熱愛的雙手,這就是英才教育。”愛,可以激發(fā)學(xué)生的興趣,反之,則可能泯滅學(xué)生的天才。我們要堅持多表揚(yáng)、公開場合少點(diǎn)名批評、正面疏導(dǎo)的工作方法。對后進(jìn)生要從生活上給予關(guān)心,讓他感到溫暖。實(shí)踐證明:這樣做效果往往較好。從學(xué)生的心理需要上講,愛和信任是他們最渴望得到的東西。學(xué)生渴望在充滿愛心和信任的環(huán)境中成長。作家冰心說過,愛是教育的前提,愛是教育的基礎(chǔ),沒有愛就沒有教育。教師的親切感能引起學(xué)生的接近感。教師要滿腔熱情、誠心誠意地關(guān)懷愛護(hù)學(xué)困生,每當(dāng)他們有困難時,教師要及時幫助他們。通過集體活動,培養(yǎng)互助友愛精神,使他們感到集體的溫暖,安心學(xué)習(xí)。
我們教師愛護(hù)差生要像救火救災(zāi)似的,刻不容緩地去搶救他們,光停留在咬牙切齒地去咒罵、去怨恨,是達(dá)不到轉(zhuǎn)化他們思想這一目的的。如果班主任能以發(fā)自內(nèi)心的愛和信任對待學(xué)困生,善于發(fā)現(xiàn)學(xué)困生的長處,看到他們的閃光點(diǎn),尤其是當(dāng)他們有了進(jìn)步,那怕是一點(diǎn)進(jìn)步,都要及時給予表揚(yáng)和肯定,比如,本班的周富枝同學(xué),在學(xué)習(xí)上較差,上課不安分,但他在校運(yùn)會上取得好成績,我及時表揚(yáng)他,并說如果學(xué)習(xí)也有這樣好,你就是一個非常優(yōu)秀的學(xué)生,后來他學(xué)習(xí)比以前自覺多了。多施雨露,少下風(fēng)霜,激發(fā)他們的上進(jìn)心,從而促使后進(jìn)生在思想覺悟上提高,養(yǎng)成良好的學(xué)習(xí)習(xí)慣。
二、要與學(xué)困生交心,做他們的知心朋友
情感是打開學(xué)生心靈的一把鑰匙?!敖逃龥]有情愛,就成了無水之池。”必須經(jīng)常要抽出一定的時間深入到學(xué)困生的學(xué)習(xí)、生活中去,與學(xué)困生廣泛地接觸,給予百倍的耐心和無微不至的關(guān)懷,了解他們的內(nèi)心世界、思想動態(tài),做他們的知心朋友。
幫助學(xué)困生克服學(xué)習(xí)生活中的困難,多同他們進(jìn)行情感性交談。這種談話方式往往話題自由,態(tài)度隨和,可在學(xué)生心中激起強(qiáng)烈的情感波瀾,使學(xué)生對老師產(chǎn)生親近感,從而消除了畏懼心理,撤掉了心理防線,進(jìn)一步融洽了師生關(guān)系,那么學(xué)生就會把你當(dāng)做為知心朋友,有什么心事就會向你訴說,讓你幫他出主意、想辦法,你也會從中了解他們的性格特點(diǎn)以及在日常學(xué)習(xí)、生活中的興趣、愛好等,從而尋找出最佳的教育方法。
三、教師和家長的配合要緊密。
學(xué)困生的轉(zhuǎn)化工作主要靠學(xué)校,但也需要家庭支持,社會配合,在學(xué)校里,我們應(yīng)提倡素質(zhì)教育,促使學(xué)生德、智、體、美、勞全面發(fā)展,變教書為“鑄魂”,使學(xué)生在學(xué)習(xí)過程中不僅僅接受知識,還要有愉快的情緒和積極的情感體驗,如今新教材改革,要求學(xué)校把更多的時間還給學(xué)生,豐富他們的業(yè)余生活,注重他們的均衡發(fā)展,這是我們減少學(xué)困生的有效途徑。學(xué)生的家庭我們要常去走走,適當(dāng)?shù)募以L,面對面的交流能拉近我們與學(xué)生和家長的距離,還能更好地了解學(xué)困生的成因所在。例如本班的李獻(xiàn)云同學(xué),學(xué)習(xí)成績優(yōu)秀,但近來上課精神不夠集中,情緒低落,通過家訪,了解到她父母鬧離婚,我及時疏通父母及學(xué)生的思想,使她重新集中精力在學(xué)習(xí)上。通過家長、學(xué)校,培訓(xùn)和教育家長如何教育子女,通過家長會進(jìn)行互相交流,讓我們與家長齊抓共管,形成合力,共同轉(zhuǎn)化學(xué)生的思想。
四、要尊重學(xué)困生,平等相處。
學(xué)困生與優(yōu)秀的學(xué)生也一樣,他們也希望得到老師的尊重。前蘇聯(lián)教育家蘇霍姆林斯基說:“自尊心是青少年心理最敏感的角落,是學(xué)生前進(jìn)的潛在力量,是前進(jìn)的動力,是向上的能源,它是高尚純潔的心理品質(zhì)。”這說明維護(hù)學(xué)生的自尊心是做好學(xué)困生工作的前提。后進(jìn)生的自尊心時強(qiáng)時弱,教師應(yīng)根據(jù)這一點(diǎn),保護(hù)他們“極其脆弱的自尊心”。對他們提出的合理要求,要給予滿腔熱情的支持,對他們的點(diǎn)滴進(jìn)步更應(yīng)該給予肯定。教師不但自己要尊重學(xué)困生,保護(hù)他們的自尊,還要教育其他同學(xué)也要尊重學(xué)困生,平等對待學(xué)困生,切不可挖苦、諷刺、打擊他們,要與學(xué)困生保持良好的同學(xué)關(guān)系,相互幫助,共同進(jìn)步。
教師在教育教學(xué)活動中,如果發(fā)現(xiàn)學(xué)生做錯了事,就會恨鐵不成鋼,不去積極引導(dǎo)他們,而是一味地訓(xùn)斥、指責(zé)、向家長告狀等,既傷害了學(xué)生的自尊心,又容易使人產(chǎn)生逆反心理,乃至對抗情緒,所以在與學(xué)生交談時要注意引導(dǎo)。其實(shí)許多學(xué)困生和大多數(shù)同學(xué)一樣,內(nèi)心里非常希望得到家長、老師、同學(xué)和社會的安慰、保護(hù)、理解和尊重。盡快地加倍努力、迎頭趕上,甩掉后進(jìn)生的帽子。然而,由于他們學(xué)習(xí)成績不理想或?qū)曳稿e誤,往往會受到老師、家長的批評、譏諷、挖苦、訓(xùn)斥、打罵、體罰,時常受到冷遇,使他們?nèi)烁瘛⒆宰鹗艿綐O大損害,與學(xué)校、家庭、教師、家長間滋生對立情緒,認(rèn)為反正被人瞧不起,破罐子破摔、拉倒。由此他們失去前進(jìn)動力,形成自卑心態(tài)。
學(xué)困生的自卑心態(tài)是希望改變現(xiàn)狀,求得尊重??梢哉f,沒有自尊心就沒有自卑感,要上進(jìn),必須付出艱辛的努力和痛苦的抉擇,而他們長期形成的松散、懶惰的壞習(xí)慣,害怕艱苦的腦力勞動,缺乏毅力,造成了意志薄弱的心理缺陷。因此在發(fā)展過程中上進(jìn)心與惰性一對矛盾交織存在。一旦遇到難以逾越的困難,就會退縮不前,打退堂鼓,喪失前進(jìn)的勇氣和信心,往往容易舊“病”復(fù)發(fā)。表現(xiàn)不良行為習(xí)性的反復(fù)。班主任一定要耐心把握時機(jī),耐心進(jìn)行思想教育,抓住學(xué)生的閃光點(diǎn),及時表揚(yáng)、不斷給學(xué)生鼓士氣。
五、以寬容之心對待他們
寬容不是忍讓,更不是縱容。只是當(dāng)我們發(fā)現(xiàn)學(xué)困生做錯事時,我們首先要以寬容的態(tài)度來對待他們的不是,從不同角度談問題,換位思考,讓他們明白什么可以做,什么不能做。當(dāng)然,凡事都有一個過程。我們應(yīng)該給學(xué)困生一個學(xué)好、變好的過程。一個人要學(xué)好不是一件容易的事。因調(diào)皮而致后進(jìn)的學(xué)生,他們的行為不受常規(guī)約束,頑皮、淘氣,不接受師道尊嚴(yán),有時甚至頂撞老師,這些正是他們個性的反映,其中,很可能蘊(yùn)藏著創(chuàng)造潛能。要容忍愛護(hù),耐心指教,并發(fā)掘他們的閃光點(diǎn)。
六、以身示教,樹立榜樣
榜樣的力量是無窮的,它是無聲的召喚,前進(jìn)的燈塔,它也是學(xué)困生前進(jìn)的目標(biāo),它能激勵學(xué)困生天天向上。榜樣可以是領(lǐng)袖將帥,英雄模范,名人賢達(dá),師長父母,也可以是同學(xué)、伙伴,最好是和學(xué)困生各方面基礎(chǔ)差不多,但成績進(jìn)步很大的同學(xué)。比如你作為班主任要求男學(xué)生不留長發(fā),自己首先要理好自己的頭發(fā),要給學(xué)生做個榜樣,這樣做起學(xué)生的工作就容易多了。通過這些活動,就使學(xué)困生有樣可學(xué),并使其明白,只要經(jīng)過努力,就會有進(jìn)步,就會成功,從而產(chǎn)生一種后進(jìn)趕先進(jìn),后進(jìn)超先進(jìn)的念頭,樹立開拓進(jìn)取心,摒棄不良傾向,于無聲處達(dá)到成功教育的目的。
全面正確的看待學(xué)困生是教育工作的起點(diǎn)。學(xué)困生的缺點(diǎn)和不足是顯而易見的,但學(xué)困生身上也有金子般的閃光點(diǎn),教師就應(yīng)該更好地去發(fā)現(xiàn)學(xué)困生身上容易被忽視、掩蓋的可貴之處,開發(fā)學(xué)生心靈深處的精神寶藏。比如,自尊心強(qiáng)渴望得到信任,重友誼講感情,生活知識較多,實(shí)踐能力強(qiáng),精力充沛,興趣廣泛等。只有全面正確地認(rèn)識學(xué)困生,采取針對性的教育,才可收到良好效果。我嘗試運(yùn)用學(xué)生管理學(xué)生的辦法,有意識讓部分學(xué)困生參與班級管理,如有的學(xué)生管理紀(jì)律、有的學(xué)生管理勞動、有的學(xué)生管理衛(wèi)生。讓他們當(dāng)室長,一個學(xué)期下來,發(fā)現(xiàn)這些學(xué)生有很大的進(jìn)步,自我約束能力、社會責(zé)任心、工作能力等進(jìn)一步增強(qiáng),通過班主任的肯定和同學(xué)們的相信,學(xué)習(xí)興趣明顯增加,他們的思想有了很大的轉(zhuǎn)變。
大量的教育實(shí)踐證明,只要教育教學(xué)得法,沒有一個學(xué)困生可以被認(rèn)為是不可救藥的,教育的藝術(shù)就在于善于撥開學(xué)生眼前的迷霧,點(diǎn)燃學(xué)生心中的希望之火,幫助學(xué)生體會到上進(jìn)及學(xué)習(xí)成功的快樂,誘發(fā)學(xué)生的責(zé)任心和榮譽(yù)感。
總之,對學(xué)困生,我們只要給他們多一點(diǎn)關(guān)懷,多一些耐心,多一些細(xì)心,多一些時間,多給他們創(chuàng)設(shè)一個寬松、民主的學(xué)習(xí)情境,他們一定會成為一個自尊、自重、自強(qiáng)、自立的好學(xué)生,將來也同樣成為社會主義現(xiàn)代化建設(shè)的有用人才。
數(shù)學(xué)思想方法心得篇十四
“讓讀書成為師生的習(xí)慣,讓書香浸潤全校師生的心靈”是莒南縣第一小學(xué)倡導(dǎo)師生閱讀的初衷。20xx年,學(xué)校提出了“六年影響一生”的辦學(xué)理念,著力打造內(nèi)涵發(fā)展的學(xué)校。作為師生成長發(fā)展的重要措施,學(xué)校啟動了“書香校園”的建設(shè)。學(xué)校試行“長短課結(jié)合”,開設(shè)大閱讀課,統(tǒng)一制定學(xué)生閱讀計劃,按班級人數(shù)購置《中國小學(xué)生基礎(chǔ)閱讀書目》等100種近萬冊圖書,周二至周五下午,在老師的指導(dǎo)下集體閱讀,保障了閱讀時間和效果。教師讀書交流會、師生讀書才藝展示、重陽節(jié)經(jīng)典誦讀活動、“書香伴我成長”主題教育活動、讀書征文活動等一系列形式多樣的讀書交流活動,豐富了廣大師生的讀書生活,使讀書成為一種享受,成為一種快樂!在國家倡導(dǎo)“全民閱讀”的大背景下,3月30日,學(xué)校舉行了“首屆讀書節(jié)”活動啟動儀式,拉開了學(xué)校讀書活動新的啟程。作為此次活動的重要組成部分,凝結(jié)了廣大教師在寒假中讀書的所感所想,是教師專業(yè)幸福成長的又一見證!
讀了王永春老師的《小學(xué)數(shù)學(xué)與數(shù)學(xué)思想方法》,我對小學(xué)數(shù)學(xué)與數(shù)學(xué)思想方法有了更進(jìn)一步的認(rèn)識。下面是我梳理一些知識。
數(shù)學(xué)思想是數(shù)學(xué)知識內(nèi)容的精髓,是對數(shù)學(xué)的本質(zhì)認(rèn)識。是從某些具體的數(shù)學(xué)內(nèi)容和對數(shù)學(xué)的認(rèn)識過程中提煉上升的.數(shù)學(xué)觀點(diǎn),是構(gòu)建數(shù)學(xué)理論和用數(shù)學(xué)理論解決問題的指導(dǎo)思想。
數(shù)學(xué)方法是指從數(shù)學(xué)角度提出問題、解決問題時所采用的各種方式和手段。數(shù)學(xué)思想和數(shù)學(xué)方法既有區(qū)別又有密切聯(lián)系。數(shù)學(xué)思想的理論和抽象程度要高一些,而數(shù)學(xué)方法的實(shí)踐性更強(qiáng)一些。人們實(shí)現(xiàn)數(shù)學(xué)思想往往要靠一定的數(shù)學(xué)方法;而人們選擇數(shù)學(xué)方法,又要以一定的數(shù)學(xué)思想為依據(jù)。因此,二者是有密切聯(lián)系的。我們把二者合稱為數(shù)學(xué)思想方法。
數(shù)學(xué)思想方法是數(shù)學(xué)的靈魂,那么,要想學(xué)好數(shù)學(xué)、用好數(shù)學(xué),就要深入到數(shù)學(xué)的“靈魂深處”。
1、有利于建立現(xiàn)代數(shù)學(xué)教育觀、落實(shí)新課程理念
2、有利于提高教師專業(yè)素養(yǎng)、提高教學(xué)水平
《標(biāo)準(zhǔn)(20xx版)》把數(shù)學(xué)基本思想作為“四基”之一之后,我面臨更大的挑戰(zhàn),一方面是關(guān)于數(shù)學(xué)思想方法的專業(yè)知識方面的欠缺,另一方面是課堂教學(xué)中應(yīng)該具備的數(shù)學(xué)思想方法的意識、經(jīng)驗、策略等的不足。
3、有利于提高學(xué)生的思維水平。培養(yǎng)“四能”完善認(rèn)知結(jié)構(gòu),指導(dǎo)學(xué)習(xí)遷移,促進(jìn)思維發(fā)展。
因此,在小學(xué)數(shù)學(xué)階段有意識的向?qū)W生滲透一些基本的數(shù)學(xué)想方法可以加深學(xué)生對數(shù)學(xué)概念、公式、法則、定律等知識的數(shù)學(xué)本質(zhì)的理解,提高學(xué)生發(fā)現(xiàn)問題、提出問題、分析問題和解決問題的能力及思維能力,也是小學(xué)數(shù)學(xué)進(jìn)行素質(zhì)教育的真正內(nèi)涵之所在。同時,也能為初中數(shù)學(xué)的學(xué)習(xí)打下較好的基礎(chǔ)。
1、重視思想方法目標(biāo)的落實(shí)。
2、在知識形成過程中體現(xiàn)數(shù)學(xué)思想方法。
3、在知識的應(yīng)用過程中體現(xiàn)數(shù)學(xué)思想方法。
4、在整理和復(fù)習(xí)、總復(fù)習(xí)中體現(xiàn)數(shù)學(xué)思想方法。
5、潛移默化、明確呈現(xiàn)、長期堅持
數(shù)學(xué)思想方法心得篇十五
其實(shí),這本書擱置在書架上已經(jīng)許久了,因為里面概念性的東西比較多,所以讀起來并不是那么趣味十足,之前讀了幾頁,便沒有再讀下去。
之所以重讀這本書,緣于這幾天和學(xué)生一起收看《名師同步課堂》,在電視上做六年級數(shù)學(xué)直播課的是經(jīng)驗豐富的魯向前老師,我發(fā)現(xiàn)他在講課的時候,特別注重數(shù)學(xué)思想方法的滲透,在這方面正是我所欠缺的。
魯老師在講解求體積的解決問題時,提到了把一個體積轉(zhuǎn)化成另一個體積,正方體熔鑄成圓柱體,小石子放入水中水面升高等等,體現(xiàn)了恒等變形的思想。
魯老師特別提到一種數(shù)學(xué)思想方法,由圓柱體積的求法猜想并實(shí)驗證明圓錐體積的求法,體現(xiàn)了類比的思想方法。類比思想是指依據(jù)兩類數(shù)學(xué)對象的相似性,將已知的一類數(shù)學(xué)對象的性質(zhì)遷移到另一類數(shù)學(xué)對象上去的思想。
經(jīng)常說教方法比教知識重要,作為一名數(shù)學(xué)老師,需要系統(tǒng)的了解數(shù)學(xué)思想方法。所以我便想到了書架上的這本書。說實(shí)話,讀這本書是有些枯燥的,而且如果你不動腦子去思考書中的問題的話,那你可能僅僅讀的就是字了。
在《小學(xué)數(shù)學(xué)與數(shù)學(xué)思想方法》這本書的封皮上寫著:
數(shù)學(xué)思想方法不同于一般的概念和技能,后者一般通過短期的訓(xùn)練便能掌握,數(shù)學(xué)思想方法的教學(xué)更應(yīng)該是一個通過長期的滲透和影響才能夠形成思想和方法的過程。教師應(yīng)在每堂課的教學(xué)中適時、適當(dāng)?shù)伢w現(xiàn)思想方法的教學(xué)目標(biāo),使學(xué)生在潛移默化中日積月累,通過提高數(shù)學(xué)素養(yǎng)達(dá)到學(xué)好數(shù)學(xué)的目的。
這本書分上下兩篇,上篇介紹各類思想方法,下篇介紹各類思想方法在每一冊教材中的體現(xiàn),這本書可以當(dāng)成我們的一本工具書,在我們備課的時候,方便我們查閱。比如,在總結(jié)十以內(nèi)的加減法或者乘法口訣的推導(dǎo)過程中,都體現(xiàn)了函數(shù)思想,作為老師的我們,不必讓學(xué)生明確知道什么是函數(shù)思想,但是我們應(yīng)該明白這里面體現(xiàn)了函數(shù)思想,并且有意識地向?qū)W生滲透思想方法,讓學(xué)生在以后面對類似的問題,能夠聯(lián)想到這種思想方法去解決問題。
僅僅花費(fèi)兩三天的時間,匆匆讀完了這本書,書中的一些思想方法或者內(nèi)容,有些地方還不是太懂,需要慢慢去領(lǐng)悟,但是我知道,在以后備課,做教學(xué)設(shè)計時,一定要思考一個問題:這節(jié)課體現(xiàn)了哪些思想方法?我們應(yīng)該向?qū)W生滲透哪些思想方法?為學(xué)生考慮的再長遠(yuǎn)一些。
數(shù)學(xué)思想方法心得篇十六
高考試題重在考查對知識理解的準(zhǔn)確性、深刻性,重在考查知識的綜合靈活運(yùn)用。它著眼于知識點(diǎn)新穎巧妙的組合,試題新而不偏,活而不過難;著眼于對數(shù)學(xué)思想方法、數(shù)學(xué)能力的考查。尤其是近幾年的高考試題加大了對考生應(yīng)用能力的考查,高考《考試說明》中明確指出:“能綜合應(yīng)用所學(xué)數(shù)學(xué)知識、思想方法解決問題,包括解決在相關(guān)學(xué)科、生產(chǎn)生活中的數(shù)學(xué)問題……”、“有效地檢測考生對中學(xué)數(shù)學(xué)知識中所蘊(yùn)涵的數(shù)學(xué)思想和方法的掌握程度……”。高考的這種積極導(dǎo)向,決定了我們的數(shù)學(xué)復(fù)習(xí)中必須以數(shù)學(xué)思想指導(dǎo)知識、方法的運(yùn)用,整體把握各部分知識的內(nèi)在聯(lián)系。
高考復(fù)習(xí)有別于新知識的教學(xué)。它是在學(xué)生基本掌握了中學(xué)數(shù)學(xué)知識體系、具備了一定的解題經(jīng)驗的基礎(chǔ)上的復(fù)課數(shù)學(xué),也是在學(xué)生基本認(rèn)識了各種數(shù)學(xué)基本方法、思維方法及數(shù)學(xué)思想的基礎(chǔ)上的復(fù)課數(shù)學(xué)。其目的在于深化學(xué)生對基礎(chǔ)知識的理解,完善學(xué)生的知識結(jié)構(gòu),在綜合性強(qiáng)的練習(xí)中進(jìn)一步形成基本技能,優(yōu)化思維品質(zhì),使學(xué)生在多次的練習(xí)中充分運(yùn)用數(shù)學(xué)思想方法,提高數(shù)學(xué)能力。高考復(fù)習(xí)是學(xué)生發(fā)展數(shù)學(xué)思想,熟練掌握數(shù)學(xué)方法理想的難得的深化過程。
數(shù)學(xué)思想方法心得篇十七
為什么我看這個《小學(xué)數(shù)學(xué)與數(shù)學(xué)思想方法》幾頁就覺得很受益,有觸動。因為以前自己數(shù)學(xué)能學(xué)好感覺只是天然的選擇,下意識的動作,在這里能找到原理,讓你的行為有理論依據(jù),更加明晰思維方法的重要性。自己就是受益于這些思維方法,但卻沒意識到,看了書才恍然大悟。很多習(xí)以為常,想當(dāng)然的事情明白了這樣設(shè)計的道理了。比如為啥設(shè)計小學(xué)五年級六年級。為什么三四年級、初中一年級會是檻。區(qū)別主要是抽象能力的發(fā)展不同。思維在低年級作用不是特別大。差距顯現(xiàn)不出來。從作者的言外之意也可以看到數(shù)學(xué)思維方法是最重要的東西,但卻不是課堂教學(xué)的常態(tài)目標(biāo),只是教學(xué)的附屬品,滲透出來的,有人悟性高,捕獲的多,發(fā)展的好。有人不敏感,攫取的少。差距就出來了。
但不管從數(shù)學(xué)教育從業(yè)者還是我們個人的經(jīng)歷來說,數(shù)學(xué)思維方法都是最基本的。屬于對數(shù)學(xué)本質(zhì)的認(rèn)識,理性的認(rèn)識。
奧數(shù)就是為了訓(xùn)練數(shù)學(xué)思維方法啊。但是真假奧數(shù)不一樣,假奧數(shù)就是教給你套路,記住就好。
我自己數(shù)學(xué)學(xué)習(xí)也是原發(fā)性的。沒人指導(dǎo),沒人培訓(xùn)。不過有人指點(diǎn)肯定會更輕松,或者能更進(jìn)一步。
我們常說語文學(xué)習(xí),詞匯是理解力的基礎(chǔ)。在數(shù)學(xué)中,概念是數(shù)學(xué)學(xué)習(xí)的基礎(chǔ),是抽象思維的基礎(chǔ)和基本形式。概念大概等同于中文閱讀里的抽象詞匯,不過概念是有相關(guān)系統(tǒng)的東西。說這個是為了說明我們平時說的打好基礎(chǔ)再拓展。到底什么是基礎(chǔ)?;A(chǔ)就是概念與概念之間的關(guān)系構(gòu)成的知識結(jié)構(gòu)。
所以也自然明白日常我們說的“拓展”是什么。拓展就是在理解概念之間關(guān)系的知識結(jié)構(gòu)基礎(chǔ)上,利用思想方法、模型思想、推理思想等學(xué)習(xí)數(shù)學(xué),解決問題。
數(shù)學(xué)思想方法心得篇十八
為什么我看這個數(shù)學(xué)思維方法幾頁就覺得很受益,有觸動。因為以前自己數(shù)學(xué)能學(xué)好感覺只是天然的選擇,下意識的動作,在這里能找到原理,讓你的行為有理論依據(jù),更加明晰思維方法的重要性。自己就是受益于這些思維方法,但卻沒意識到,看了書才恍然大悟。很多習(xí)以為常,想當(dāng)然的事情明白了這樣設(shè)計的道理了。比如為啥設(shè)計小學(xué)五年級六年級。為什么三四年級、初中一年級會是檻。區(qū)別主要是抽象能力的發(fā)展不同。思維在低年級作用不是特別大。差距顯現(xiàn)不出來。從作者的言外之意也可以看到數(shù)學(xué)思維方法是最重要的東西,但卻不是課堂教學(xué)的常態(tài)目標(biāo),只是教學(xué)的附屬品,滲透出來的,有人悟性高,捕獲的多,發(fā)展的好。有人不敏感,攫取的少。差距就出來了。
但不管從數(shù)學(xué)教育從業(yè)者還是我們個人的經(jīng)歷來說,數(shù)學(xué)思維方法都是最基本的。屬于對數(shù)學(xué)本質(zhì)的認(rèn)識,理性的認(rèn)識。
奧數(shù)就是為了訓(xùn)練數(shù)學(xué)思維方法啊。但是真假奧數(shù)不一樣,假奧數(shù)就是教給你套路,記住就好。
我自己數(shù)學(xué)學(xué)習(xí)也是原發(fā)性的。沒人指導(dǎo),沒人培訓(xùn)。不過有人指點(diǎn)肯定會更輕松,或者能更進(jìn)一步。
我們常說語文學(xué)習(xí),詞匯是理解力的基礎(chǔ)。在數(shù)學(xué)中,概念是數(shù)學(xué)學(xué)習(xí)的基礎(chǔ),是抽象思維的基礎(chǔ)和基本形式。概念大概等同于中文閱讀里的抽象詞匯,不過概念是有相關(guān)系統(tǒng)的東西。說這個是為了說明我們平時說的打好基礎(chǔ)再拓展。到底什么是基礎(chǔ)。基礎(chǔ)就是概念與概念之間的關(guān)系構(gòu)成的知識結(jié)構(gòu)。
所以也自然明白日常我們說的“拓展”是什么。拓展就是在理解概念之間關(guān)系的知識結(jié)構(gòu)基礎(chǔ)上,利用思想方法、模型思想、推理思想等學(xué)習(xí)數(shù)學(xué),解決問題。
數(shù)學(xué)思想方法心得篇十九
《新課程標(biāo)準(zhǔn)》在總目標(biāo)中提出:通過義務(wù)教育階段的數(shù)學(xué)學(xué)習(xí),學(xué)生能獲得適應(yīng)社會生活和進(jìn)一步發(fā)展所必須的數(shù)學(xué)知識、基本技能、基本思想、基本活動經(jīng)驗。這句話對于我們新教師來已經(jīng)是爛熟于心,但對于這句話真正理解的少之又少,讀了王永春老師的《小學(xué)數(shù)學(xué)思想與數(shù)學(xué)思想方法》之后,對這句話才有了真正的認(rèn)識?!笆谌艘贼~不如授人以漁”,對于學(xué)生而言,數(shù)學(xué)知識在其次,數(shù)學(xué)方法才是最重要的,在這本書中,王老師為我們總結(jié)了小學(xué)數(shù)學(xué)知識中蘊(yùn)含的數(shù)學(xué)思想,這讓我們在日常教學(xué)中可以結(jié)合所教知識很清楚地知道這些知識中蘊(yùn)含了哪些數(shù)學(xué)思想方法,為我們的教學(xué)提供了指導(dǎo)和幫助。
這學(xué)期我任三年級數(shù)學(xué),三年級上冊中的主要思想有:第3單元“測量”中學(xué)習(xí)的長度單位:分米(dm)、毫米(mm)、千米(km)是符號化思想的應(yīng)用;第7單元“長方形和正方形”中有些習(xí)題如本書中第25頁的“案例2”應(yīng)用了分類思想;第9單元“數(shù)學(xué)廣角――集合”中學(xué)習(xí)的重復(fù)問題是集合思想的應(yīng)用;第8單元“分?jǐn)?shù)的初步認(rèn)識”中學(xué)生用一張正方形白紙可以折出不同的形狀表示它的1/4。在學(xué)生充分展示后,我們可以引導(dǎo)學(xué)生發(fā)現(xiàn)雖然形狀、大小不同,但都是把一張正方形白紙平均成4份,每份是它的1/4。這個教學(xué)過程中有變中有不變的思想的應(yīng)用。第8單元“分?jǐn)?shù)的初步認(rèn)識”中把一個圓形平均分,分的份數(shù)越多,分?jǐn)?shù)越小,如果一直分下去,可以對應(yīng)寫出無限多個分?jǐn)?shù)。
生活本身是一個巨大的數(shù)學(xué)課堂,生活中客觀存在著大量有價值的數(shù)學(xué)現(xiàn)象。指導(dǎo)學(xué)生運(yùn)用數(shù)學(xué)知識寫日記,能促使學(xué)生主動地用數(shù)學(xué)的眼光去觀察生活,去思考生活問題,讓生活問題數(shù)學(xué)化。在教學(xué)中注重培養(yǎng)孩子運(yùn)用數(shù)學(xué)的意識,增強(qiáng)學(xué)生運(yùn)用知識解決實(shí)際問題的能力。由此可見,數(shù)學(xué)并不是靠老師教會的,而是在教師的指導(dǎo)下,靠學(xué)生自己學(xué)會的。在教學(xué)中教師要給學(xué)生創(chuàng)造情景、提供機(jī)會,給學(xué)生充足的時間和空間,讓學(xué)生主動探究新知,在探究中發(fā)現(xiàn)規(guī)律、歸納規(guī)律。因此,我們在課堂教學(xué)中,多留些時間給學(xué)生,讓他們動手操作;多留些時間給學(xué)生,自己的`意見;多留些時間給學(xué)生,讓他們質(zhì)疑問難。保證充分的時間和空間,讓學(xué)生再課內(nèi)交流、討論、質(zhì)疑。
這本書教給了我們一種教學(xué)理念,教會了我們一種教學(xué)方法。讀書更是一種好的學(xué)習(xí)手段,它將帶領(lǐng)我們不斷更新、與時俱進(jìn),成為一名學(xué)生喜歡的、有專業(yè)素養(yǎng)的好老師。
數(shù)學(xué)思想方法心得篇二十
學(xué)習(xí)和復(fù)習(xí)的主線不同。學(xué)習(xí)的主線我們應(yīng)該都很熟悉,看一看教材的目錄就非常明確了:高一高二兩年當(dāng)中一定是以章節(jié)為單位,一個知識點(diǎn)接一個知識點(diǎn)按部就班地介紹和學(xué)習(xí)。每個章節(jié)內(nèi)部也是基本遵循“定義—定理—公式—經(jīng)典例題—實(shí)際應(yīng)用—練習(xí)”這樣由簡到繁的內(nèi)容安排。
而二次復(fù)習(xí)如果也采用這樣的模式,導(dǎo)致的直接結(jié)果就是,考生按知識點(diǎn)分塊的模式分章節(jié)去解題會很順利,一旦拿過來一份高考試卷,遇到里面的綜合性題目卻無從下手,這就是平時考生經(jīng)常遇到的問題——沒有解題思路。
初次學(xué)習(xí)和再次復(fù)習(xí)不同。絕大部分考生在高一高二兩年的時間中進(jìn)行的都是新知識新理論的學(xué)習(xí),這是初次認(rèn)識初次接觸的過程,我們稱之為初次學(xué)習(xí),這個過程強(qiáng)調(diào)的是認(rèn)知、接受和掌握。而高三將近一年的時間考生幾乎接觸的都是之前兩年當(dāng)中見過的理解了的但是很多已經(jīng)遺忘的內(nèi)容,我們將這個過程稱之為再次復(fù)習(xí)。
再次復(fù)習(xí)除了恢復(fù)考生對相應(yīng)知識點(diǎn)的記憶之外,更重要的在于將知識點(diǎn)升華為考點(diǎn),這個過程重視的是理解、綜合與應(yīng)用。兩個過程截然不同,必然導(dǎo)致我們應(yīng)對的策略也要有所變化。
數(shù)學(xué)思想方法心得篇二十一
一、初中數(shù)學(xué)思想方法教學(xué)的重要性
長期以來,傳統(tǒng)的數(shù)學(xué)教學(xué)中,只注重知識的傳授,卻忽視知識形成過程中的數(shù)學(xué)思想方法的現(xiàn)象非常普遍,它嚴(yán)重影響了學(xué)生思維發(fā)展和能力培養(yǎng)。隨著教育改革的不斷深入,越來越多的教育工作者,特別是一線的教師們充分認(rèn)識到:中學(xué)數(shù)學(xué)教學(xué),一方面要傳授數(shù)學(xué)知識,使學(xué)生掌握必備數(shù)學(xué)基礎(chǔ)知識;另一方面,更要通過數(shù)學(xué)知識這個載體,挖掘其中蘊(yùn)含的數(shù)學(xué)思想方法,更好地理解數(shù)學(xué),掌握數(shù)學(xué),形成正確的數(shù)學(xué)觀和一定的數(shù)學(xué)意識。事實(shí)上,單純的知識教學(xué),只顯見于學(xué)生知識的積累,是會遺忘甚至于消失的,而方法的掌握,思想的形成,才能使學(xué)生受益終生,正所謂“授之以魚,不如授之以漁”。不管他們將來從事什么職業(yè)和工作,數(shù)學(xué)思想方法,作為一種解決問題的思維策略,都將隨時隨地有意無意地發(fā)揮作用。
二、初中數(shù)學(xué)思想方法的主要內(nèi)容
初中數(shù)學(xué)中蘊(yùn)含的數(shù)學(xué)思想方法很多,最基本最主要的有:轉(zhuǎn)化的思想方法,數(shù)形結(jié)合的思想方法,分類討論的思想方法,函數(shù)與方程的思想方法等。(一)轉(zhuǎn)化的思想方法。轉(zhuǎn)化的思想方法是人們將需要解決的問題,通過某種轉(zhuǎn)化手段,歸結(jié)為另一種相對容易解決的或已經(jīng)有解決方法的問題,從而使原來的問題得到解決。初中數(shù)學(xué)處處都體現(xiàn)出轉(zhuǎn)化的思想方法,例如:在解二元一次方程組中,我們一般都通過代入消元法和加減消元法將它轉(zhuǎn)化為一元一次方程,而在解一元二次方程時,可以通過配方法因成分解法直接開平方法,將它化為一元一次方程來解等。它們都是化未知為已知,體現(xiàn)轉(zhuǎn)化的數(shù)學(xué)思想,又如解方程,我們用換元法來解,也體現(xiàn)轉(zhuǎn)化的數(shù)學(xué)思想。在幾何中很多計算題也同樣體現(xiàn)著轉(zhuǎn)化的數(shù)學(xué)思想。(二)數(shù)形結(jié)合的思想方法。數(shù)學(xué)是研究現(xiàn)實(shí)空間形式和數(shù)量關(guān)系的科學(xué),因而研究總是圍繞著數(shù)與形進(jìn)行的。“數(shù)”就是代數(shù)式、函數(shù)、不等式等表達(dá)式“,形”就是圖形、圖像、曲線等。數(shù)形結(jié)合就是抓住數(shù)與形之間的本質(zhì)上的聯(lián)系,以形直觀地表達(dá)數(shù),以數(shù)精確地研究形?!皵?shù)無形時不直觀,形無數(shù)時難入微?!睌?shù)形結(jié)合是研究數(shù)學(xué)問題的重要思想方法。初中數(shù)學(xué)中,通過數(shù)軸,將數(shù)與點(diǎn)對應(yīng),通過直角坐標(biāo)系,將函數(shù)與圖像對應(yīng),用數(shù)形結(jié)合的思想方法學(xué)習(xí)了相反數(shù)的'概念、絕對值的概念,有理數(shù)大小比較的法則,研究了函數(shù)的性質(zhì)等。特別學(xué)習(xí)一次函數(shù)、二次函數(shù)更進(jìn)一步地把直線和一次函數(shù)聯(lián)系著,任向一條直線對著一個不同一次函數(shù)表達(dá)式,不同的拋物線對著不同的二次函數(shù)表達(dá)式,而用數(shù)形結(jié)合的思想,可以利用二次函數(shù)或二次函數(shù)的圖象簡單的解出一元一次不等式和一元二次不等式和方程,更好地通過形象思維,過渡到抽象思維。大大減輕了學(xué)習(xí)的難度,也會增強(qiáng)學(xué)生學(xué)習(xí)的興趣。
三、分類討論的思想方法
分為不同種類的思想方法。分類是以比較為基礎(chǔ)的,它能揭示數(shù)學(xué)對象之間的內(nèi)在規(guī)律,有助于學(xué)生總結(jié)歸納數(shù)學(xué)知識,解決數(shù)學(xué)問題。初中數(shù)學(xué)從整體上看分為代數(shù)、幾何兩大類,采用不同方法進(jìn)行研究,就是分類思想的體現(xiàn)。具體來說,實(shí)數(shù)的分類,方程的分類、三角形的分類,函數(shù)的分類等,都是分類思想的具體體現(xiàn)。在初中數(shù)學(xué)問題中,不管是代數(shù)問題或者是幾何問題,都體現(xiàn)著分類討論的數(shù)學(xué)思想方法。
四、函數(shù)與方程的思想方法
函數(shù)思想是客觀世界中事物運(yùn)動變化,相互聯(lián)系,相互制約的普遍規(guī)律在數(shù)學(xué)中的反映,它的本質(zhì)是變量之間的對應(yīng)。用變化的觀點(diǎn),把所研究的數(shù)量關(guān)系,用函數(shù)的形式表示出來的,然后用函數(shù)的性質(zhì)進(jìn)行研究,使問題獲解,如果函數(shù)的形式是用解析式的方法表示出來的。在實(shí)中數(shù)學(xué)教材中,其它的思想方法都是隱藏在數(shù)學(xué)知識里,沒有單獨(dú)提出來,而函數(shù)與方程的思想方法,其內(nèi)容和名稱形式一致,單獨(dú)作為章節(jié)系統(tǒng)學(xué)習(xí)。
數(shù)學(xué)思想方法心得篇二十二
豆角是人們喜食的蔬菜之一,但如果吃了沒有煮熟炒熟的豆角會導(dǎo)致中毒。近期外地有豆角中毒事件頻繁發(fā)生。為此,記者近日采訪了市衛(wèi)生監(jiān)督所有關(guān)專家。
據(jù)介紹,食用生豆角或未炒熟的豆角易引起中毒,是由于生豆角中含有兩種對人體有害的物質(zhì):溶血素和毒蛋白。這兩種毒素對胃腸道有強(qiáng)烈的刺激作用,一般食用未熟豆角十幾分鐘到4小時發(fā)病。輕者感到腹部不適、惡心、嘔吐、腹痛、腹瀉;嚴(yán)重者發(fā)生頭暈、頭痛、出冷汗、心慌、胸悶、四肢麻木等中毒癥狀,尤其是兒童。
雖然豆角中的這兩種物質(zhì)對人體有毒,但它有自身的特點(diǎn)和弱點(diǎn),即不耐高溫。所以,做菜時一定要把豆角充分加熱煮熟。兩種毒素在高溫中可被分解而破壞,尤其是集體食堂食用豆角菜時,應(yīng)作為食品衛(wèi)生來強(qiáng)調(diào)執(zhí)行。豆角兩頭及兩旁的絲要去除,因為這些部位的毒素含量較高。
市衛(wèi)生監(jiān)督所專家提醒:一旦發(fā)生豆角中毒,輕癥者對癥治療,及時補(bǔ)充因頻繁嘔吐、腹瀉而丟失的水分。中度以上的中毒者及時送醫(yī)院救治。采取催吐、洗胃、利尿、導(dǎo)瀉、補(bǔ)液等多種方法治療,一般很快恢復(fù)正常,不會造成其他影響。集體中毒事件應(yīng)及時報告衛(wèi)生監(jiān)督部門。
【本文地址:http://mlvmservice.com/zuowen/6615519.html】