心得體會的寫作可以幫助我們更好地總結經驗、提升思考能力和提高個人素質。寫心得體會時,要注意適度運用個人的情感色彩,使文章更加真實且具有感染力。在寫心得體會之前,可以先閱讀一些相關的書籍和文章,擴展思路。
學完人工智能的心得體會篇一
今天是我研究人工智能的第一堂課,也是我上大學以來第一次接觸人工智能這門課,通過老師的講解,我對人工智能有了一些簡單的感性認識,我知道了人工智能從誕生,發(fā)展到今天經歷一個漫長的過程,許多人為此做出了不懈的努力。我覺得這門課真的是一門富有挑戰(zhàn)性的科學,而從事這項工作的人不僅要懂得計算機知識,還必須懂得心理學和哲學。
機器翻譯系統(tǒng)我們可以很方便的完成一些語言翻譯工作。目前,國內的機器翻譯軟件有很多,富有代表性意義的當屬“金山詞霸”,它可以迅速的查詢英文單詞和詞組句子翻譯,重要的是它還可以提供發(fā)音功能,為用戶提供了極大的方便。
學完人工智能的心得體會篇二
人工智能主要研究用人工方法模擬和擴展人的智能,最終實現(xiàn)機器智能。人工智能研究與人的思維研究密切相關。邏輯學始終是人工智能研究中的基礎科學問題,它為人工智能研究提供了根本觀點與方法。
12世紀末13世紀初,西班牙羅門·盧樂提出制造可解決各種問題的通用邏輯機。17世紀,英國培根在《新工具》中提出了歸納法。隨后,德國萊布尼茲做出了四則運算的手搖計算器,并提出了“通用符號”和“推理計算”的思想。19世紀,英國布爾創(chuàng)立了布爾代數(shù),奠定了現(xiàn)代形式邏輯研究的基礎。德國弗雷格完善了命題邏輯,創(chuàng)建了一階謂詞演算系統(tǒng)。20世紀,哥德爾對一階謂詞完全性定理與n形式系統(tǒng)的不完全性定理進行了證明。在此基礎上,克林對一般遞歸函數(shù)理論作了深入的研究,建立了演算理論。英國圖靈建立了描述算法的機械性思維過程,提出了理想計算機模型(即圖靈機),創(chuàng)立了自動機理論。這些都為1945年匈牙利馮·諾依曼提出存儲程序的思想和建立通用電子數(shù)字計算機的馮·諾依曼型體系結構,以及1946年美國的莫克利和??颂爻晒ρ兄剖澜缟系谝慌_通用電子數(shù)學計算機eniac做出了開拓性的貢獻。
以上經典數(shù)理邏輯的理論成果,為1956年人工智能學科的誕生奠定了堅實的邏輯基礎。
現(xiàn)代邏輯發(fā)展動力主要來自于數(shù)學中的公理化運動。20世紀邏輯研究嚴重數(shù)學化,發(fā)展出來的邏輯被恰當?shù)胤Q為“數(shù)理邏輯”,它增強了邏輯研究的深度,使邏輯學的發(fā)展繼古希臘邏輯、歐洲中世紀邏輯之后進入第三個高峰期,并且對整個現(xiàn)代科學特別是數(shù)學、哲學、語言學和計算機科學產生了非常重要的影響。
2.1邏輯學的大體分類
邏輯學是一門研究思維形式及思維規(guī)律的科學。從17世紀德國數(shù)學家、哲學家萊布尼茲(niz)提出數(shù)理邏輯以來,隨著人工智能的一步步發(fā)展的需求,各種各樣的邏輯也隨之產生。邏輯學大體上可分為經典邏輯、非經典邏輯和現(xiàn)代邏輯。經典邏輯與模態(tài)邏輯都是二值邏輯。多值邏輯,是具有多個命題真值的邏輯,是向模糊邏輯的逼近。模糊邏輯是處理具有模糊性命題的邏輯。概率邏輯是研究基于邏輯的概率推理。
2.2泛邏輯的基本原理
當今人工智能深入發(fā)展遇到的一個重大難題就是專家經驗知識和常識的推理?,F(xiàn)代邏輯迫切需要有一個統(tǒng)一可靠的,關于不精確推理的邏輯學作為它們進一步研究信息不完全情況下推理的基礎理論,進而形成一種能包容一切邏輯形態(tài)和推理模式的,靈活的,開放的,自適應的邏輯學,這便是柔性邏輯學。而泛邏輯學就是研究剛性邏輯學(也即數(shù)理邏輯)和柔性邏輯學共同規(guī)律的邏輯學。
泛邏輯是從高層研究一切邏輯的一般規(guī)律,建立能包容一切邏輯形態(tài)和推理模式,并能根據(jù)需要自由伸縮變化的柔性邏輯學,剛性邏輯學將作為一個最小的內核存在其中,這就是提出泛邏輯的根本原因,也是泛邏輯的最終歷史使命。
邏輯方法是人工智能研究中的主要形式化工具,邏輯學的研究成果不但為人工智能學科的誕生奠定了理論基礎,而且它們還作為重要的成分被應用于人工智能系統(tǒng)中。
3.1經典邏輯的應用
人工智能誕生后的20年間是邏輯推理占統(tǒng)治地位的時期。1963年,紐厄爾、西蒙等人編制的“邏輯理論機”數(shù)學定理證明程序(lt)。在此基礎之上,紐厄爾和西蒙編制了通用問題求解程序(gps),開拓了人工智能“問題求解”的一大領域。經典數(shù)理邏輯只是數(shù)學化的形式邏輯,只能滿足人工智能的部分需要。
3.2非經典邏輯的應用
(1)不確定性的推理研究
人工智能發(fā)展了用數(shù)值的方法表示和處理不確定的信息,即給系統(tǒng)中每個語句或公式賦一個數(shù)值,用來表示語句的不確定性或確定性。比較具有代表性的有:1976年杜達提出的主觀貝葉斯模型,1978年查德提出的可能性模型,1984年邦迪提出的發(fā)生率計算模型,以及假設推理、定性推理和證據(jù)空間理論等經驗性模型。
歸納邏輯是關于或然性推理的邏輯。在人工智能中,可把歸納看成是從個別到一般的推理。借助這種歸納方法和運用類比的方法,計算機就可以通過新、老問題的相似性,從相應的知識庫中調用有關知識來處理新問題。
(2)不完全信息的推理研究
常識推理是一種非單調邏輯,即人們基于不完全的信息推出某些結論,當人們得到更完全的信息后,可以改變甚至收回原來的結論。非單調邏輯可處理信息不充分情況下的推理。20世紀80年代,賴特的缺省邏輯、麥卡錫的限定邏輯、麥克德莫特和多伊爾建立的nml非單調邏輯推理系統(tǒng)、摩爾的自認知邏輯都是具有開創(chuàng)性的非單調邏輯系統(tǒng)。常識推理也是一種可能出錯的不精確的推理,即容錯推理。
此外,多值邏輯和模糊邏輯也已經被引入到人工智能中來處理模糊性和不完全性信息的推理。多值邏輯的三個典型系統(tǒng)是克林、盧卡西維茲和波克萬的三值邏輯系統(tǒng)。模糊邏輯的研究始于20世紀20年代盧卡西維茲的研究。1972年,扎德提出了模糊推理的關系合成原則,現(xiàn)有的絕大多數(shù)模糊推理方法都是關系合成規(guī)則的變形或擴充。
現(xiàn)代邏輯創(chuàng)始于19世紀末葉和20世紀早期,其發(fā)展動力主要來自于數(shù)學中的公理化運動。21世紀邏輯發(fā)展的主要動力來自哪里?筆者認為,計算機科學和人工智能將至少是21世紀早期邏輯學發(fā)展的主要動力源泉,并將由此決定21世紀邏輯學的另一幅面貌。由于人工智能要模擬人的智能,它的難點不在于人腦所進行的各種必然性推理,而是最能體現(xiàn)人的智能特征的能動性、創(chuàng)造性思維,這種思維活動中包括學習、抉擇、嘗試、修正、推理諸因素。例如,選擇性地搜集相關的經驗證據(jù),在不充分信息的基礎上做出嘗試性的判斷或抉擇,不斷根據(jù)環(huán)境反饋調整、修正自己的行為,由此達到實踐的成功。于是,邏輯學將不得不比較全面地研究人的思維活動,并著重研究人的思維中最能體現(xiàn)其能動性特征的各種不確定性推理,由此發(fā)展出的邏輯理論也將具有更強的可應用性。
人工智能的產生與發(fā)展和邏輯學的發(fā)展密不可分。
一方面我們試圖找到一個包容一切邏輯的泛邏輯,使得形成一個完美統(tǒng)一的邏輯基礎;另一方面,我們還要不斷地爭論、更新、補充新的邏輯。如果二者能夠有機地結合,將推動人工智能進入一個新的階段。概率邏輯大都是基于二值邏輯的,目前許多專家和學者又在基于其他邏輯的基礎上研究概率推理,使得邏輯學盡可能滿足人工智能發(fā)展的各方面的需要。就目前來說,一個新的泛邏輯理論的發(fā)展和完善需要一個比較長的時期,那何不將“百花齊放”與“一統(tǒng)天下”并行進行,各自發(fā)揮其優(yōu)點,為人工智能的發(fā)展做出貢獻。目前,許多制約人工智能發(fā)展的因素仍有待于解決,技術上的突破,還有賴于邏輯學研究上的突破。在對人工智能的研究中,我們只有重視邏輯學,努力學習與運用并不斷深入挖掘其基本內容,拓寬其研究領域,才能更好地促進人工智能學科的發(fā)展。
學完人工智能的心得體會篇三
李開復號稱最會說話的計算機男神,曾經是微軟谷歌的副掌門,現(xiàn)在是創(chuàng)新工廠的大bo,在微博有超過半個億粉絲。第一此認識到他和人工智能這個概念是在奇葩大會這個節(jié)目中,他的觀點及幽默風趣的話語引起了我的興趣,所以在這個寒假中我讀了他的《人工智能》一書。
近幾年,移動互聯(lián)網、網上購物、物流快遞、高鐵、地鐵、城市建設等讓我們生活發(fā)生了天翻地覆的變化。讓我對未來產生了無限的暢想,我的科目二一直沒過,為什么人要買車?為什么不能有一輛無所不在的滴滴,當我們要出門的時候它就來了,它是共享經濟,它會降低空氣污染,甚至有一天車與車之間能對話:“我要爆胎了,快散開”等等。
下一個十年,社會還會發(fā)生怎樣的變化呢?李開復認為,人工智能、機器人作為大熱的方向,也會引領時代變革風,很多邏輯簡單、重復式、機械式的勞作被機器人取代;制造、金融、家政等等行業(yè),很多傳統(tǒng)的管理經營模式也會隨之發(fā)生改變。未來人類50%的工作都會被人工智能取代。但是人與機器最大區(qū)別是有感情,在未來創(chuàng)新思維、審美能力、藝術哲學這些更顯的珍貴。
人是最復雜情感動物,怎樣才能教育好學生,使教育發(fā)揮最大限度的作用呢,那就是老師的愛,是人工智能永遠無法做到的,我認為幼師這個職業(yè)是不會被取代的,人工智能的發(fā)展能夠給我們許多幫助,現(xiàn)在也有許多幼兒園在教育教學中運用了vr、ar等技術,以后科技越來越發(fā)達我們的教學工作也會越來越便利。但是現(xiàn)在微博上有一件事也引起了大家的.熱議,一位小學教師在教古詩“飛流直下三千尺,疑似銀河落九天”時,播放了現(xiàn)實瀑布視頻來展現(xiàn)瀑布的氣勢磅礴,可是瀑布落下真的有三千尺嗎?這樣會不會局限的孩子的想象力呢,莎士比亞說:“一千個讀者眼中就有一千個哈姆雷特”因而每個人對古詩的理解也就不同。在科技高速發(fā)展之時要保持與時俱進、不懼改變、不斷學習成長就不會被時代淘汰。人工智能會讓自己從事的工作帶來什么樣的改變?如何運用?這些問題更值得我們大家深思。
學完人工智能的心得體會篇四
人工智能改變了我們的生活方式,理解什么是人工智能,才能知道人工智能教育要培養(yǎng)學生什么知識,什么素養(yǎng),才能為社會發(fā)展提供源源不斷的動力源泉。
人工智能簡稱ai,它是研究、開發(fā)用于模擬、延伸和擴展人的智能的理論、方法、技術及應用系統(tǒng)的一門新的技術科學,在此次人工智能教育論壇中,黃錦輝教授對人工智能用更加利于理解的解釋是人工智能等于云計算、大數(shù)據(jù)、機器學習和5g技術綜合的產物,做好人工智能教育能實現(xiàn)不斷提升人們生活的質量,在論壇中,劉三女牙教授指出人工智能教育的智能化新模式正在形成,其教育的著力點集中在算力、數(shù)據(jù)處理、算法以及場景化的學習,使學生對教材可以理解,教育情景可以感知,學習服務可以定制,使人工智能教育從智能增強,轉變?yōu)橹悄苎a償,最終達到智能替代。
在實際過程中,很多學校沒有開展人工智能教育,人工智能教育不是一蹴而就的事情,那要怎么逐步開展起來呢?人工智能開展過程中,主要面臨的問題主要有:
第一教材的缺乏,
第二師資的缺乏,
第三課程實施的場地缺乏,
第四怎么教的問題。
分為三個階段:
第一階段大班stem基礎教學,
第二輪實踐教學建立社團校隊,
第三開展項目式專訓,培育科技特長生,或者各年級年級培養(yǎng)學生人工智能教育的不同目標,小學低年級可以主要培養(yǎng)綜合素養(yǎng),小學高年級跨學科應用,初中形成目標方向,高中向目標方向進行研究。
這次的粵港澳臺人工智能教育論壇學習,拓寬了我對人工智能教育的認識,對我的教學如何開展人工智能教育具有指導和借鑒意義。
學完人工智能的心得體會篇五
通過這學期的學習,我對人工智能有了一定的感性認識,個人覺得人工智能是一門極富挑戰(zhàn)性的科學,從事這項工作的人必須懂得計算機知識,心理學和哲學。人工智能是包括十分廣泛的科學,它由不同的領域組成,如機器學習,計算機視覺等等,總的說來,人工智能研究的一個主要目標是使機器能夠勝任一些通常需要人類智能才能完成的復雜工作。人工智能的定義可以分為兩部分,即“人工”和“智能”?!叭斯ぁ北容^好理解,爭議性也不大。有時我們會要考慮什么是人力所能及制造的,或者人自身的智能程度有沒有高到可以創(chuàng)造人工智能的地步,等等。但總的來說,“人工系統(tǒng)”就是通常意義下的人工系統(tǒng)。關于什么是“智能”,就問題多多了。這涉及到其它諸如意識、自我、思維等等問題。人唯一了解的智能是人本身的智能,這是普遍認同的觀點。但是我們對我們自身智能的理解都非常有限,對構成人的智能的必要元素也了解有限,所以就很難定義什么是“人工”制造的“智能”了。關于人工智能一個大家比較容易接受的定義是這樣的:人工智能是人造的智能,是計算機科學、邏輯學、認知科學交叉形成的一門科學,簡稱ai。
人工智能的發(fā)展歷史大致可以分為這幾個階段:
第一階段:50年代人工智能的興起和冷落
人工智能概念首次提出后,相繼出現(xiàn)了一批顯著的成果,如機器定理證明、跳棋程序、通用問題s求解程序、lisp表處理語言等。但由于消解法推理能力的有限,以及機器翻譯等的失敗,使人工智能走入了低谷。
第三階段:80年代,隨著第五代計算機的研制,人工智能得到了很大發(fā)展。日本1982年開始了”第五代計算機研制計劃”,即”知識信息處理計算機系統(tǒng)kips”,其目的是使邏輯推理達到數(shù)值運算那么快。雖然此計劃最終失敗,但它的開展形成了一股研究人工智能的熱潮。
第四階段:80年代末,神經網絡飛速發(fā)展。
1987年,美國召開第一次神經網絡國際會議,宣告了這一新學科的誕生。此后,各國在神經網絡方面的投資逐漸增加,神經網絡迅速發(fā)展起來。
第五階段:90年代,人工智能出現(xiàn)新的研究高潮
由于網絡技術特別是國際互連網的技術發(fā)展,人工智能開始由單個智能主體研究轉向基于網絡環(huán)境下的分布式人工智能研究。不僅研究基于同一目標的分布式問題求解,而且研究多個智能主體的多目標問題求解,將人工智能更面向實用。另外,由于hopfield多層神經網絡模型的提出,使人工神經網絡研究與應用出現(xiàn)了欣欣向榮的景象。人工智能已深入到社會生活的各個領域。
對人工智能對世界的影響的感受及未來暢想
在當前社會中的呢?
人類正向信息化的時代邁進,信息化是當前時代的主旋律。信息抽象結晶為知識,知識構成智能的基礎。因此,信息化到知識化再到智能化,必將成為人類社會發(fā)展的趨勢。人工智能已經并且廣泛而有深入的結合到科學技術的各門學科和社會的各個領域中,她的概念,方法和技術正在各行各業(yè)廣泛滲透。而在我們的身邊,智能化的例子也屢見不鮮。在軍事、工業(yè)和醫(yī)學等領域中人工智能的應用已經顯示出了它具有明顯的經濟效益潛力,和提升人們生活水平的最大便利性和先進性。
智能是一個寬泛的概念。智能是人類具有的特征之一。然而,對于什么是人類智能(或者說智力),科學界至今還沒有給出令人滿意的定義。有人從生物學角度定義為“中樞神經系統(tǒng)的功能”,有人從心理學角度定義為“進行抽象思維的能力”,甚至有人同義反復地把它定義為“獲得能力的能力”,或者不求甚解地說它“就是智力測驗所測量的那種東西”。這些都不能準確的說明人工智能的確切內涵。
雖然難于下定義,但人工智能的發(fā)展已經是當前信息化社會的迫切要求,同時研究人工智能也對探索人類自身智能的奧秘提供有益的幫助。所以每一次人工智能技術的進步都將帶動計算機科學的大跨步前進。如果將現(xiàn)有的計算機技術、人工智能技術及自然科學的某些相關領域結合,并有一定的理論實踐依據(jù),計算機將擁有一個新的發(fā)展方向。
個人覺得研究人工智能的目的,一方面是要創(chuàng)造出具有智能的機器,另一方面是要弄清人類智能的本質,因此,人工智能既屬于工程的.范疇,又屬于科學的范疇。通過研究和開發(fā)人工智能,可以輔助,部分替代甚至拓寬人類的智能,使計算機更好的造福人類。
學完人工智能的心得體會篇六
在大多數(shù)數(shù)學科中存在著幾個不同的研究領域,每個領域都有著特有的感興趣的研究課題、研究技術和術語。在人工智能中,這樣的領域包括自然語言處理、自動定理證明、自動程序設計、智能檢索、智能調度、機器學習、專家系統(tǒng)、機器人學、智能控制、模式識別、視覺系統(tǒng)、神經網絡、agent、計算智能、問題求解、人工生命、人工智能方法、程序設計語言等。
在過去50多年里,已經建立了一些具有人工智能的計算機系統(tǒng);例如,能夠求解微分方程的,下棋的,設計分析集成電路的,合成人類自然語言的,檢索情報的,診斷疾病以及控制控制太空飛行器、地面移動機器人和水下機器人的具有不同程度人工智能的計算機系統(tǒng)。人工智能是一種外向型的學科,它不但要求研究它的人懂得人工智能的知識,而且要求有比較扎實的數(shù)學基礎,哲學和生物學基礎,只有這樣才可能讓一臺什么也不知道的機器模擬人的思維。因為人工智能的研究領域十分廣闊,它總的來說是面向應用的,也就說什么地方有人在工作,它就可以用在什么地方,因為人工智能的最根本目的還是要模擬人類的思維。參照人在各種活動中的功能,我們可以得到人工智能的領域也不過就是代替人的活動而已。哪個領域有人進行的智力活動,哪個領域就是人工智能研究的領域。人工智能就是為了應用機器的長處來幫助人類進行智力活動。人工智能研究的目的就是要模擬人類神經系統(tǒng)的功能。
近年來,人工智能的研究和應用出現(xiàn)了許多新的領域,它們是傳統(tǒng)人工智能的延伸和擴展。在新世紀開始的時候,這些新研究已引起人們的更密切關注。這些新領域有分布式人工智能與艾真體(agent)、計算智能與進化計算、數(shù)據(jù)挖掘與知識發(fā)現(xiàn),以及人工生命等。下面逐一加以概略介紹。
1、分布式人工智能與艾真體
分布式人工智能(distributedai,dai)是分布式計算與人工智能結合的結果。dai系統(tǒng)以魯棒性作為控制系統(tǒng)質量的標準,并具有互操作性,即不同的異構系統(tǒng)在快速變化的環(huán)境中具有交換信息和協(xié)同工作的能力。
分布式人工智能的研究目標是要創(chuàng)建一種能夠描述自然系統(tǒng)和社會系統(tǒng)的精確概念模型。dai中的智能并非獨立存在的概念,只能在團體協(xié)作中實現(xiàn),因而其主要研究問題是各艾真體間的合作與對話,包括分布式問題求解和多艾真體系統(tǒng)(multiagentsystem,mas)兩領域。其中,分布式問題求解把一個具體的求解問題劃分為多個相互合作和知識共享的模塊或結點。多艾真體系統(tǒng)則研究各艾真體間智能行為的協(xié)調,包括規(guī)劃、知識、技術和動作的協(xié)調。這兩個研究領域都要研究知識、資源和控制的劃分問題,但分布式問題求解往往含有一個全局的概念模型、問題和成功標準,而mas則含有多個局部的概念模型、問題和成功標準。
mas更能體現(xiàn)人類的社會智能,具有更大的靈活性和適應性,更適合開放和動
態(tài)的世界環(huán)境,因而倍受重視,已成為人工智能以至計算機科學和控制科學與工程的研究熱點。當前,艾真體和mas的研究包括理論、體系結構、語言、合作與協(xié)調、通訊和交互技術、mas學習和應用等。mas已在自動駕駛、機器人導航、機場管理、電力管理和信息檢索等方面獲得應用。
2、計算智能與進化計算
計算智能(computing intelligence)涉及神經計算、模糊計算、進化計算等研究領域。其中,神經計算和模糊計算已有較長的研究歷史,而進化計算則是較新的研究領域。在此僅對進化計算加以說明。
進化計算(evolutionary computation)是指一類以達爾文進化論為依據(jù)來設計、控制和優(yōu)化人工系統(tǒng)的技術和方法的總稱,它包括遺傳算法(genetical gorithms)、進化策略(evolutionary strategies)和進化規(guī)劃(evolutionary programming)。它們遵循相同的指導思想,但彼此存在一定差別。同時,進化計算的研究關注學科的交叉和廣泛的應用背景,因而引入了許多新的方法和特征,彼此間難于分類,這些都統(tǒng)稱為進化計算方法。目前,進化計算被廣泛運用于許多復雜系統(tǒng)的自適應控制和復雜優(yōu)化問題等研究領域,如并行計算、機器學習、電路設計、神經網絡、基于艾真體的仿真、元胞自動機等。
達爾文進化論是一種魯棒的搜索和優(yōu)化機制,對計算機科學,特別是對人工智能的發(fā)展產生了很大的影響。大多數(shù)生物體通過自然選擇和有性生殖進行進化。自然選擇決定了群體中哪些個體能夠生存和繁殖,有性生殖保證了后代基因中的混合和重組。自然選擇的原則是適者生存,即物競天擇,優(yōu)勝劣汰。
直到幾年前,遺傳算法、進化規(guī)劃、進化策略三個領域的研究才開始交流,并發(fā)現(xiàn)它們的共同理論基礎是生物進化論。因此,把這三種方法統(tǒng)稱為進化計算,而把相應的算法稱為進化算法。
3、數(shù)據(jù)挖掘與知識發(fā)現(xiàn)
知識獲取是知識信息處理的關鍵問題之一。20世紀80年代人們在知識發(fā)現(xiàn)方面取得了一定的進展。利用樣本,通過歸納學習,或者與神經計算結合起來進行知識獲取已有一些試驗系統(tǒng)。數(shù)據(jù)挖掘和知識發(fā)現(xiàn)是90年代初期新崛起的一個活躍的研究領域。在數(shù)據(jù)庫基礎上實現(xiàn)的知識發(fā)現(xiàn)系統(tǒng),通過綜合運用統(tǒng)計學、粗糙集、模糊數(shù)學、機器學習和專家系統(tǒng)等多種學習手段和方法,從大量的數(shù)據(jù)中提煉出抽象的知識,從而揭示出蘊涵在這些數(shù)據(jù)背后的客觀世界的內在聯(lián)系和本質規(guī)律,實現(xiàn)知識的自動獲取。這是一個富有挑戰(zhàn)性、并具有廣闊應用前景的研究課題。
從數(shù)據(jù)庫獲取知識,即從數(shù)據(jù)中挖掘并發(fā)現(xiàn)知識,首先要解決被發(fā)現(xiàn)知識的表達問題。最好的表達方式是自然語言,因為它是人類的思維和交流語言。知識表示的最根本問題就是如何形成用自然語言表達的概念。
機器知識發(fā)現(xiàn)始于1974年,并在此后十年中獲得一些進展。這些進展往往與專家系統(tǒng)的知識獲取研究有關。到20世紀80年代末,數(shù)據(jù)挖掘取得突破。越來越多的研究者加入到知識發(fā)現(xiàn)和數(shù)據(jù)挖掘的研究行列?,F(xiàn)在,知識發(fā)現(xiàn)和數(shù)據(jù)挖掘已成為人工智能研究的又一熱點。
比較成功的知識發(fā)現(xiàn)系統(tǒng)有用于超級市場商品數(shù)據(jù)分析、解釋和報告的
coverstory系統(tǒng),用于概念性數(shù)據(jù)分析和查尋感興趣關系的集成化系統(tǒng)explora,交互式大型數(shù)據(jù)庫分析工具kdw,用于自動分析大規(guī)模天空觀測數(shù)據(jù)的skicat系統(tǒng),以及通用的數(shù)據(jù)庫知識發(fā)現(xiàn)系統(tǒng)kdd等。
4、人工生命
人工生命(artificiallife,alife)的概念是由美國圣菲研究所非線性研究組的蘭頓(langton)于1987年提出的,旨在用計算機和精密機械等人工媒介生成或構造出能夠表現(xiàn)自然生命系統(tǒng)行為特征的仿真系統(tǒng)或模型系統(tǒng)。自然生命系統(tǒng)行為具有自組織、自復制、自修復等特征以及形成這些特征的混沌動力學、進化和環(huán)境適應。
人工生命所研究的人造系統(tǒng)能夠演示具有自然生命系統(tǒng)特征的行為,在“生命之所能”(lifeasitcouldbe)的廣闊范圍內深入研究“生命之所知”(lifeasweknowit)的實質。只有從“生命之所能”的廣泛內容來考察生命,才能真正理解生物的本質。人工生命與生命的形式化基礎有關。生物學從問題的頂層開始,把器官、組織、細胞、細胞膜,直到分子,以探索生命的奧秘和機理。人工生命則從問題的底層開始,把器官作為簡單機構的宏觀群體來考察,自底向上進行綜合,把簡單的由規(guī)則支配的對象構成更大的集合,并在交互作用中研究非線性系統(tǒng)的類似生命的全局動力學特性。
人工生命的理論和方法有別于傳統(tǒng)人工智能和神經網絡的理論和方法。人工生命把生命現(xiàn)象所體現(xiàn)的自適應機理通過計算機進行仿真,對相關非線性對象進行更真實的動態(tài)描述和動態(tài)特征研究。
人工生命學科的研究內容包括生命現(xiàn)象的仿生系統(tǒng)、人工建模與仿真、進化動力學、人工生命的計算理論、進化與學習綜合系統(tǒng)以及人工生命的應用等。比較典型的人工生命研究有計算機病毒、計算機進程、進化機器人、自催化網絡、細胞自動機、人工核苷酸和人工腦等。
(1)了解人工智能的概念和人工智能的發(fā)展,了解國際人工智能的主要流派和路線,了解國內人工智能研究的基本情況,熟悉人工智能的研究領域。
(2)較詳細地論述知識表示的各種主要方法。重點掌握了狀態(tài)空間法、問題歸約法和謂詞邏輯法,熟悉語義網絡法,了解知識表示的其他方法,如框架法、劇本法、過程法等。
(3)掌握了盲目搜索和啟發(fā)式搜索的基本原理和算法,特別是寬度優(yōu)先搜索、深度優(yōu)先搜索、等代價搜索、啟發(fā)式搜索、有序搜索、a*算法等。了解博弈樹搜索、遺傳算法和模擬退火算法的基本方法。
(4)掌握了消解原理、規(guī)則演繹系統(tǒng)和產生式系統(tǒng)的技術、了解不確定性推理、非單調推理的概念。
(5)概括性地了解了人工智能的主要應用領域,如專家系統(tǒng)、機器學習、規(guī)劃系統(tǒng)、自然語言理解和智能控制等。
(6)基本了解人工智能程序設計的語言和工具。
對現(xiàn)代社會的影響有多大?工業(yè)領域,尤其是制造業(yè),已成功地使用了人工智能技術,包括智能設計、虛擬制造、在線分析、智能調度、仿真和規(guī)劃等。金融業(yè),股票商利用智能系統(tǒng)輔助其分析,判斷和決策;應用卡欺詐檢測系統(tǒng)業(yè)已得到普遍應用。人工智能還滲透到人們的日常生活,cad,cam,cai,cap,cims等一系列智能產品給大家?guī)砹藰O大的方便,它還改變了傳統(tǒng)的通信方式,語音撥號,手寫短信的智能手機越來越人性化。
人工智能還影響了你們的文化和娛樂生活,引發(fā)人們更深層次的精神和哲學層面的思考,從施瓦辛格主演的《終結者》系列,到基努.里維斯主演的《黑客帝國》系列以及斯皮爾伯格導演的《人工智能》,都有意無意的提出了同樣的問題:我們應該如何看待人工智能?如何看待具有智能的機器?會不會有一天機器的智能將超過人的智能?問題的答案也許千差萬別,我個人認為上述擔心不太可能成為現(xiàn)實,因為我們理解人工智能并不是讓它取代人類智能,而是讓它模擬人類智能,從而更好地為人類服務。
當前人工智能技術發(fā)展迅速,新思想,新理論,新技術不斷涌現(xiàn),如模糊技術,模糊--神經網絡,遺傳算法,進化程序設計,混沌理論,人工生命,計算智能等。以agent概念為基礎的分布式人工智能正在異軍突起,特別是對于軟件的開發(fā),“面向agent技術”將是繼“面向對象技術”后的又一突破。從萬維網到人工智能的研究正在如火如荼的開展。
(1)能夠結合現(xiàn)在最新研究成果著重講解重點知識,以及講述在一些研究成果中人工智能那些知識被應用。
(2)多推薦一些過于人工智能方面的電影,如:《終結者》系列、《黑客帝國》系列、《人工智能》等,從而增加同學對這門課程學習的興趣。
(3)條件允許的話,可以安排一些實驗課程,讓同學們自己制作一些簡單的作品,增強同學對人工智能的興趣,加強同學之間的學習。
(4)課堂上多講解一些人工智能在各個領域方面的應用,以及著重闡述一些新的和正在研究的人工智能方法與技術,讓同學們可以了解近期發(fā)展起來的方法和技術,在講解時最好多舉例,再結合原理進行講解,更助于同學們對人工智能的理解。
學完人工智能的心得體會篇七
今天上午線上參加了萊西市信息技術學科人工智能與編程教學研討會,觀摩了張老師《變量》一堂課,本課張老師精湛的業(yè)務知識和巧妙的駕馭課堂的能力讓我受益匪淺。下面我從幾個方面來談一下感受:
學生們都對刮獎非常感興趣,通過刮獎環(huán)節(jié)的設計,學生很快的融入課堂環(huán)境中,學生們積極參入,踴躍發(fā)言,學習興趣盎然,在寓教于樂額學習氛圍中學習新知識,掌握新技能。
學生們利用之前所學程序可以計算出簡單的價格,但是當問題逐漸增多,利用之前的方法就非常麻煩了,這時候引導學生提出問題,教給學生新的知識點-變量。
本節(jié)課學生參入度高,動手實踐能力強,設計的問題層層遞進,環(huán)環(huán)相扣,過渡環(huán)節(jié)都處理的非常到位,更多的是讓學生自己去探索,把課堂交給學生,不斷創(chuàng)新,發(fā)揮了學生的主體學習地位,讓其自主探索,合作學習,做到真正的掌握一門技能。這也是培養(yǎng)學生不斷創(chuàng)新的`手段之一。
希望以后能有更多這樣的學習機會,以便于在信息技術的教學上有更大的進步和提高。
學完人工智能的心得體會篇八
所謂人工智能,是研發(fā)用于模擬、延伸和擴展人的智能的理論、方法、技術及應用的一門新的技術科學。它是計算機科學的一個分支,企圖憑借了解智能的實質來生產出一個類似于人類智能對事情做出反應的智能機器,該領域的研究包括機器人、語言識別、圖像識別、自然語言處理和專家系統(tǒng)等方面。人工智能從誕生以來,理論和技術日益成熟,應用領域也不斷擴大,可以設想,未來人工智能帶來的科研成果,將會是人類智慧的體現(xiàn)。人工智能可以對人的意識、思維的信息過程的模擬。人工智能指的是雖然不是人的智能,但能像人那樣思考、也可能通過發(fā)展演變成超過人的智能。
人工智能是研究使計算機來模擬人的某些思維過程和智能行為,比如學習、推理、思考、規(guī)劃等方式,主要包括通過計算機實現(xiàn)智能的原理或者制造類似于人腦智能的計算機,使計算機能實現(xiàn)更高層次的應用。人工智能涉及計算機科學、心理學、哲學和語言學等多門學科,其范圍已遠遠超出了計算機科學的范疇,成為一門綜合學科。人工智能與思維科學的關系是實踐和理論的關系,人工智能是處于思維科學的技術應用層次,是它的一個應用分支。從思維觀點看,人工智能不僅限于邏輯思維,要考慮形象、靈感思維才能促進人工智能的突破性的發(fā)展。數(shù)學常被認為是多種學科的基礎科學,數(shù)學也進入語言、思維領域,人工智能學科也必須借用數(shù)學工具。數(shù)學進入人工智能學科,它們將互相促進而更快地發(fā)展。數(shù)學給予人工智能學科計算方法和邏輯思維,人工智能學科給數(shù)學計算和發(fā)展提供了可靠的未來。
人工智能就其本質而言,是對人的思維的信息過程的模擬。對于人的思維模擬可以從兩條道路進行:一是結構模擬,仿照人腦的結構機制,制造出類似人腦一樣思考方式的.機器;二是功能模擬,暫時撇開人腦的內部結構,而從其功能過程進行模擬思考?,F(xiàn)代電子計算機的產生便是對人腦思維功能的模擬,是在對人腦思維的信息過程的模擬過程中產生的。人工智能的起源最早要從1955年的一個叫做學習機討論會的小會開始,然后就是公認的1956年達特茅斯會議,這是人工智能史上最重要的里程碑,被公認為人工智能之開始。達特茅斯會議中的討論預示了人工智能隨后幾十年關于“結構與功能”兩個階級,兩條路線的斗爭。他們討論著一個主題:用機器來模仿人類學習以及其他方面的智能。他們公布了的“邏輯理論家”是當時唯一可以工作的人工智能軟件,引起了會議代表極大的興趣與關注。會議的召集人麥卡錫給這個活動起了個別出心裁的名字:人工智能夏季研討會。這是人工智能一詞正式在學術會議中亮相,而1956年也就成為了人工智能元年。雖然之后一段時間內對人工智能并沒有大規(guī)模投入資金和大量科研人員,但是毋庸置疑的打開了新發(fā)展的大門,為后來的道路提供了方向和目標。
學完人工智能的心得體會篇九
李開復號稱最會說話的計算機男神,曾經是微軟谷歌的副掌門,現(xiàn)在是創(chuàng)新工廠的大boss,在微博有超過半個億粉絲。第一此認識到他和人工智能這個概念是在奇葩大會這個節(jié)目中,他的觀點及幽默風趣的話語引起了我的興趣,所以在這個寒假中我讀了他的《人工智能》一書。
近幾年,移動互聯(lián)網、網上購物、物流快遞、高鐵、地鐵、城市建設等讓我們生活發(fā)生了天翻地覆的變化。讓我對未來產生了無限的暢想,我的科目二一直沒過,為什么人要買車?為什么不能有一輛無所不在的滴滴,當我們要出門的時候它就來了,它是共享經濟,它會降低空氣污染,甚至有一天車與車之間能對話:“我要爆胎了,快散開”等等。
下一個十年,社會還會發(fā)生怎樣的變化呢?李開復認為,人工智能、機器人作為大熱的方向,也會引領時代變革風,很多邏輯簡單、重復式、機械式的勞作被機器人取代;制造、金融、家政等等行業(yè),很多傳統(tǒng)的管理經營模式也會隨之發(fā)生改變。未來人類50%的工作都會被人工智能取代。但是人與機器最大區(qū)別是有感情,在未來創(chuàng)新思維、審美能力、藝術哲學這些更顯的珍貴。
人是最復雜情感動物,怎樣才能教育好學生,使教育發(fā)揮最大限度的作用呢,那就是老師的愛,是人工智能永遠無法做到的,我認為幼師這個職業(yè)是不會被取代的',人工智能的發(fā)展能夠給我們許多幫助,現(xiàn)在也有許多幼兒園在教育教學中運用了vr、ar等技術,以后科技越來越發(fā)達我們的教學工作也會越來越便利。但是現(xiàn)在微博上有一件事也引起了大家的熱議,一位小學教師在教古詩“飛流直下三千尺,疑似銀河落九天”時,播放了現(xiàn)實瀑布視頻來展現(xiàn)瀑布的氣勢磅礴,可是瀑布落下真的有三千尺嗎?這樣會不會局限的孩子的想象力呢,莎士比亞說:“一千個讀者眼中就有一千個哈姆雷特”因而每個人對古詩的理解也就不同。在科技高速發(fā)展之時要保持與時俱進、不懼改變、不斷學習成長就不會被時代淘汰。人工智能會讓自己從事的工作帶來什么樣的改變?如何運用?這些問題更值得我們大家深思。
學完人工智能的心得體會篇十
也許這個標題應該叫:人工智能無法取代“部分人類”。
人工智能是很長一段時間以來人們喜歡討論的問題,而且這樣的討論一定還會很長時間地繼續(xù)下去,因為這關系到我們對自己的認知和對世界的認識。
要回答很多困擾我們的問題,需要從人工智能的基礎學起,需要了解技術的發(fā)展脈絡,需要思考如果人工智能越來越多地滲入我們的生活,對我們的`倫理、道德、社會規(guī)范,形成怎樣的挑戰(zhàn)。
這本書在做這樣的努力:梳理脈絡、提出問題、探索解決之道,盡管不是那么完美。對于想真正了解人工智能的人來說,是有用的。
學完人工智能的心得體會篇十一
人,沒有熊一樣的力量,卻能把熊關進籠子,這籠子的鑰匙,叫智慧。人類一直在思考如何讓自然界的其它事物為自己所用,而不是只想著如何獲取食物來填飽肚子,人類之所以會凌駕于食物鏈頂端,就在于對于資源的使用。為了減輕胃的消化負擔,人類開始學會使用火,讓蛋白質在進入胃之前就變質而變得更好消化易于吸收。經歷了漫長的手工制造業(yè)歷程,為了提高生產效率,也為了減輕工人手工勞作的負擔,人們開始了工業(yè)革命,無數(shù)的機器流水線取代了效率低下的廉價勞動力,也正是從此刻起,人類使用資源的能力有了質的發(fā)展,由使用已有資源,到創(chuàng)造新的資源。第一臺計算機應運而生,人類開啟了無限創(chuàng)造的時代。時至今日,計算機技術幾乎延伸到了生活的每個領域,甚至成了人們的生活必需品。計算機能幫助人們完成人類不可能完成的計算,但一直致力于創(chuàng)造的人們當然不會停止對計算機的要求。人們不光需要計算機做人類做不了的計算,還漸漸開始要求計算機做人類能做的事,這便催生了人工智能。人類就是這樣一步步用自己的智慧讓自己過上傻瓜一樣的生活。
人工智能目前還沒有在人們生活中普及,但是已經出現(xiàn)萌芽。最典型是的一些語音識別系統(tǒng),如蘋果公司的siri可能是目前人們接觸最多的基于人工智能和云計算技術的產品,相信這種人機交互系統(tǒng)的雛形經過時間的磨練會在未來形成一套完善的從界面到內核的智能體系。在社會生活方面,與數(shù)字圖像處理技術緊密結合的人工智能已經開始應用于攝像頭的圖像捕捉和識別,而模式識別技術的發(fā)展則使得人工智能在更廣闊的領域得以實現(xiàn)成為了可能。一些大公司在人工智能領域的投入和研究對于推動人工智能的發(fā)展起到了很大的作用,最值得一提的就是谷歌。谷歌的免費搜索表面上是為了方便人們的查詢,但這款搜索引擎推出的初衷,就是為了幫助人工智能的深度學習,通過上億的用戶一次又一次地查詢,來鍛煉人工智能的學習能力,由于我的水平還很低,對于深度學習還不敢妄自拽測。但是,近年來谷歌公司在人工智能方面的突破一項接著一項,為人們熟知的便是智能汽車。不得不說,人工智能想要進一步發(fā)展,必須依靠這些大公司的研究和不斷推廣,由經濟促創(chuàng)新。
縱覽時間長河,很多新生的技術在一開始都是舉步維艱的,人工智能也不例外,但幸運的是,人們接受和學會使用新技術所需要的時間越來越短,對于人工智能產品的投入市場是有益的。因此,在我看來,將已開發(fā)出來但還需完善的人工智能產品投放市場,使其進入人們的生活只是時間的問題,但要想真正掌握人工智能,開發(fā)出完全符合研發(fā)人想法的智能產品還需各方面的努力。至于現(xiàn)在討論熱烈的“人工智能統(tǒng)治人類”的問題,我的看法是,人工智能的開發(fā)和應用是需要監(jiān)管的,但并不能阻止人工智能即將影響世界的趨勢。
由于我對于人工智能的理解還只是皮毛,對于文中出現(xiàn)的紕漏和錯誤還希望老師指正!
7
人工智能改變了我們的生活方式,理解什么是人工智能,才能知道人工智能教育要培養(yǎng)學生什么知識,什么素養(yǎng),才能為社會發(fā)展提供源源不斷的動力源泉。
人工智能簡稱ai,它是研究、開發(fā)用于模擬、延伸和擴展人的智能的理論、方法、技術及應用系統(tǒng)的一門新的技術科學,在此次人工智能教育論壇中,黃錦輝教授對人工智能用更加利于理解的解釋是人工智能等于云計算、大數(shù)據(jù)、機器學習和5g技術綜合的產物,做好人工智能教育能實現(xiàn)不斷提升人們生活的質量,在論壇中,劉三女牙教授指出人工智能教育的智能化新模式正在形成,其教育的著力點集中在算力、數(shù)據(jù)處理、算法以及場景化的學習,使學生對教材可以理解,教育情景可以感知,學習服務可以定制,使人工智能教育從智能增強,轉變?yōu)橹悄苎a償,最終達到智能替代。
在實際過程中,很多學校沒有開展人工智能教育,人工智能教育不是一蹴而就的事情,那要怎么逐步開展起來呢?人工智能開展過程中,主要面臨的問題主要有:第一教材的缺乏,第二師資的缺乏,第三課程實施的場地缺乏,第四怎么教的問題。在18日下午分論壇中,很多同行教師提供不同學校具有特色的人工智能教育開展模式,為我們提供了開展人工智能教育參照案例,針對教材缺乏問題,對人工智能比較重視的學校有的建立區(qū)域教研和課程資源建設,有的開發(fā)人工智能課程、有的建立研學基地,還有的建立網絡學習平臺;針對師資問題,教師主要通過自學,網絡學習與多參加線下培訓學習方式自我成長,提高課程融合能力和課程開發(fā)能力;針對實施場地和怎么教的問題,大部分學校沒有開展起來的原因可能主要也是因為資金對場地和平臺投入比較大,但是可以利用信息技術課堂作為人工智能教育的切入點,融入數(shù)據(jù)、算法、程序設計、機器人課程、開源硬件類課程等,利用項目式教學或其他活動如科技創(chuàng)新、創(chuàng)客、跨學科活動等助力課程落地,逐步建立課程——空間——活動的人工智能教育活動實踐,在論壇中也介紹了人工智能教育需要遵循學生各年齡層的學情特點,分為三個階段,第一階段大班stem基礎教學,第二輪實踐教學建立社團校隊,第三開展項目式專訓,培育科技特長生,或者各年級年級培養(yǎng)學生人工智能教育的不同目標,小學低年級可以主要培養(yǎng)綜合素養(yǎng),小學高年級跨學科應用,初中形成目標方向,高中向目標方向進行研究。
這次的粵港澳臺人工智能教育論壇學習,拓寬了我對人工智能教育的認識,對我的教學如何開展人工智能教育具有指導和借鑒意義。
學完人工智能的心得體會篇十二
沙特授予機器人索菲亞國籍,將人工智能機器人再次推向議論的浪潮。首先,我很高興的是,新聞里不再全是一些明星的無聊話題。然后,我再次對人工智能的發(fā)展感到驚嘆。人類中的某一部分人,實在是太厲害了。
我生在小地方,長在小縣城。直到上大學,才第一次接觸到電腦。剛對眼前的黑匣子抱以極大的興趣與熱情時,就被深藍電腦大贏人類高手的新聞給震撼了。尤記得當時與同學一道熱烈地討論人工智能的發(fā)展方向時的情景。當時我們都對計算機遲早能在公認最難的圍棋上下贏人類抱以樂觀的想法。
如今果然實現(xiàn)了。而且遠超出了我們當時猜想的水平。
它并不是如深藍計算機一樣窮舉計算,而是學會了使用大數(shù)據(jù)進行分析選擇,甚至升級后的“元”已經會通過自己博弈來學習里面的規(guī)則,打敗之前的自己。
如今,人工智能的應用已與人類密不可分,只不過大多數(shù)的它們沒有使用完整的人類的外表與語言,只是以機械臂什么的表露在外,我們便以機器視之。即使是已獲得了人類國籍的索菲亞,也還沒有得到四肢,與一個正常的人類相去甚遠。雖然電影科幻很早就在設想機器人統(tǒng)治人類,毀滅世界什么的,大多數(shù)人只是看看,并沒有感覺到它們有多少的威脅。
在魏晉時期,上品無寒門,下品無士族。貴族們自己享著奢華的生活,高高在上的地位,將一應具體的事物都交給了寒門官吏,以至于在后來的變革中很快被顛覆,散失了權柄。
人類對別的種群高高在上,無非就是自詡智商的碾壓嘛。
其實,學計算機的我,即使已離開這個行當許久了,但仍對人工智能對機器人抱以極大的好感與興趣的,看著它們連畫畫寫毛筆字這樣的領域也能勝過大多普通人,至少是勝過我,在覺得自己無用的同時也很好奇人類中最聰明的這些人將準備怎么控制?至于會不會毀滅世界,那個時候我與我所愛的人早已不知魂歸何處,最多只能讓后人家祭無忘告乃翁了。
學完人工智能的心得體會篇十三
首先,自由意識是受者的感受,如果你于一臺放在黑屋子里的機器一直對話,并一直以為對方是人,那么,便可以說它或具有自由意識,這也就是所謂的人工智能初期想要達到的效果。
輻射的世界不缺機器人,他們能勝任不同的工作,有的單一,有的復雜,甚至有的還貌似發(fā)展出了自己的個性,那么他們是不是具有自我意識的人工智能呢?在輻射宇宙中,這些機器都是編程的產物,程序模擬的思維,和學習方式,并不能和ai(人工智能)比,這就好像要拿把小黃雞說成是人工智能一樣。
個性化最明顯的是巧手管家,因為要服務的是人而不是機器,所以良好的用戶交互是必要的,這也就是為什么,3代的巧手管家會講笑話,但卻有些生冷。四代中的機器人管家會搞不清真實狀況,但卻一直能記得豬腳一家,船長是憲兵機器人,但卻有一套語言系統(tǒng),這些機器人會很有個性,然而歸根結底,都是程序員的功勞,仔細看,他們都有一個特點,就是對周遭的大變遷不以為然,那是因為它們多是戰(zhàn)前的產物,所謂的程序模擬學習,邏輯是固定的,并不能和自由意識掛鉤。
2.合成人與機器人的區(qū)別
很多人都知道合成人出自學院,但其實機器是大多也是,機器人在戰(zhàn)前便已經開始批量生產,而合成人的誕生,或多或少是學院對人類失望的結果,他們分為3代,最原始的和機器無差別,之后,有了合成皮膚,甚至是血肉,這都是因為我開始提到的那個自由意識的定義,也就是所謂的圖靈測試,如果受者認為他是個人,那么它就具備了所謂的自由意識,可見,它與編程了服務于人類的機器人的設計創(chuàng)造理念本身就是不同的,在輻射的宇宙中,真正具有自由意識的機器是解開代碼枷鎖后的合成人,而機器人只是人類的工具而已,這也就是為什么廢土客一般都會信任機器人,或者開槍就好,不會咒罵他們,因為沒有人會對手中的工具有過多的感情糾葛,而從人類的進化史上看來,每一次更強的自由意識的誕生,都伴隨著一個相近但較低智慧的群體的滅絕,智慧性自由意識,意味著威脅。
之后再看看,為什么說機器人的希望只是場夢?
老憲法號是美國服役過的,依舊能夠航行的,最受人尊敬的`海軍戰(zhàn)艦,可以說是美國的愛國標志之一。
并存在于自由之經的“綠色"旅游線路之上,是波士頓的驕傲,之所以機器人背后的程序員會基于某種方式,保護憲法號,并讓她升天,更多的是希望能再一次的點燃人們的愛國情緒,然而今日的廢土,勢力割據(jù),每個都有自己得信仰,能記得憲法號所象征的自由與自豪的,除了幾只尸鬼外,還會又有幾個人。
執(zhí)著的是程序,但選擇關機否的,確實只能是人類自己,夢很美,但已經時過境遷了。
b社對《輻射4》充滿信心銷量將超《上古卷軸5》
對于即將在2015年11月10日發(fā)售的《輻射4》,bethesda是絕對的信心十足,其營銷副總裁在接受外媒采訪時甚至表示游戲的銷量會超越《上古卷軸5:天際》。
petehines表示:“我認為《輻射4》的銷量將會突破《上古卷軸5:天際》,這是一款更加壯觀的rpg游戲,出色到無法形容,我的工作是負責推廣這款游戲,而游戲自身將決定它能夠走多遠,能造成多大影響力,這些目前都是不確定的,因為《上古卷軸5:天際》的影響力的確很大,但我們對《輻射4》有信心?!?/p>
《上古卷軸5:天際》的全球銷量超過2000萬份,是rpg界的一個奇跡,首先讓我們看看《輻射》系列近期作品的銷量,《輻射3》銷量為920萬套,《輻射:新維加斯》為750萬套,前兩作的銷量已經不錯,相信憑借玩家多年對于游戲的期待,游戲大賣是毫無疑問的,但是否能夠達到2000萬還有待時間為我們公布答案。
《輻射4》是否能擊敗《老滾5》?
bethesda稱《輻射4》好到無法形容銷量要創(chuàng)新高
對于即將在2015年11月10日發(fā)售的《輻射4》,bethesda是絕對的信心十足,其營銷副總裁在接受外媒采訪時甚至表示游戲的銷量會超越《上古卷軸5:天際》。
petehines表示:“我認為《輻射4》的銷量將會突破《上古卷軸5:天際》,這是一款更加壯觀的rpg游戲,出色到無法形容,我的工作是負責推廣這款游戲,而游戲自身將決定它能夠走多遠,能造成多大影響力,這些目前都是不確定的,因為老滾5的影響力的確很大,但我們對《輻射4》有信心?!?/p>
《上古卷軸5:天際》的全球銷量超過2000萬份,是rpg界的一個奇跡,首先讓我們看看《輻射》系列近期作品的銷量,《輻射3》銷量為920萬套,《輻射:新維加斯》為750萬套,前兩作的銷量已經不錯,相信憑借玩家多年對于游戲的期待,游戲大賣是毫無疑問的,但是否能夠達到2000萬還有待時間為我們公布答案。
學完人工智能的心得體會篇十四
人工智能改變了我們的生活方式,理解什么是人工智能,才能知道人工智能教育要培養(yǎng)學生什么知識,什么素養(yǎng),才能為社會發(fā)展提供源源不斷的動力源泉。
人工智能簡稱ai,它是研究、開發(fā)用于模擬、延伸和擴展人的智能的理論、方法、技術及應用系統(tǒng)的一門新的技術科學,在此次人工智能教育論壇中,黃錦輝教授對人工智能用更加利于理解的解釋是人工智能等于云計算、大數(shù)據(jù)、機器學習和5g技術綜合的產物,做好人工智能教育能實現(xiàn)不斷提升人們生活的質量,在論壇中,劉三女牙教授指出人工智能教育的智能化新模式正在形成,其教育的.著力點集中在算力、數(shù)據(jù)處理、算法以及場景化的學習,使學生對教材可以理解,教育情景可以感知,學習服務可以定制,使人工智能教育從智能增強,轉變?yōu)橹悄苎a償,最終達到智能替代。
在實際過程中,很多學校沒有開展人工智能教育,人工智能教育不是一蹴而就的事情,那要怎么逐步開展起來呢?人工智能開展過程中,主要面臨的問題主要有:
第一教材的缺乏,
第二師資的缺乏,
第三課程實施的場地缺乏,
第四怎么教的問題。
分為三個階段:
第一階段大班stem基礎教學,
第二輪實踐教學建立社團校隊,
第三開展項目式專訓,培育科技特長生,或者各年級年級培養(yǎng)學生人工智能教育的不同目標,小學低年級可以主要培養(yǎng)綜合素養(yǎng),小學高年級跨學科應用,初中形成目標方向,高中向目標方向進行研究。
學完人工智能的心得體會篇十五
包子強烈地推薦我看這部電影,并提醒說,“不要哭得涕泗橫流”。昨天終于靜下心觀賞,真的哭了。電影讓人感動,讓人憤怒,又讓人矛盾,讓人陷入沉思。
電影一開始,由一位女記者的發(fā)問引出一個問題:如果機器人被設計的擁有愛、我們人類需不需要去愛他們?夢妮卡的兒子馬丁因患病被冷凍久久不能治愈,于是丈夫試圖以一個具備了感情的人工智能的孩子外形的機器人――戴維、來療治妻子的傷痛。清晨的陽光里,七道程序啟動的指令,一聲“媽咪”來得毫無防備,戴維蜷入夢妮卡的懷中,她的愛從此由他來承擔......而當馬丁奇跡般的康復后,夢妮卡卻拋棄了戴維。她忘記了、是自己用母愛的誓言啟動了機器人的程序。戴維明知自己已經被拋棄,但他仍天真的以為自己如果變成一個真的孩子、母親就會愛他。他堅信著那個童話中的藍仙女、一定能將他變成真的小孩子,于是他踏上了尋找藍仙女的路......尋找仙女的路途危險重重,有機器人捕殺集團、專門獵殺機器人作為娛樂??粗鴻C器人被電鋸切得支離破碎,觀眾興奮地大叫。那種描寫人性的黑暗和殘暴,讓我大為驚駭!
戴維一直以為自己是獨一無二的,可當他在哈比教授那看到無數(shù)的戴維機器人時,他絕望了。在世界的盡頭,雄獅流淚的曼哈頓、他跳入深海??纱藭r思念的還是夢妮卡,他喊了聲媽咪,便義無反顧的跳下去。于是看到了沉沒在海底的藍仙女雕像,以為找到了夢,可是夢也只是夢,注定幻滅的結局......他對著藍仙女、一遍一遍的祈禱著,日復一日、年復一年......而藍仙女的塑像、也在一直沖他微笑著。一直到2000年后,那些高等生物、將被冰塵封的戴維和泰迪解救出來,并復制了戴維的回憶,讓他所深愛的媽咪回到這里一天。他喚醒母親,為母親煮一杯咖啡,他為母親蓋上被子,同母親一同睡去。他終于獲得了母親的愛,可兩千年的等待竟只換來這短短的一天的幸福,我不知這應算一個甜蜜的還是悲傷的結局,但是,那一天愛確實超越了肉體或是機器這樣的載體,戴維那一天終于露出了甜蜜的笑容......笑吧,因為那期待的憂傷面容已經凝結兩千年。
《人工智能》這部電影,給人更多的情感沖突與困境。最要的情感沖突,發(fā)生在母親蒙妮卡與機器人戴維之間。戴維是在太可憐,他是個機器人,是個有情感有記憶的機器人,是個會追求愛的機器人。假如他的生活很順利,那么他會開心的生活一段。當然他也會陷入另一種痛苦――他的媽媽會衰老會死亡。假如她不在了,他將一個人怎樣孤單的生活呢?一個人生活,只能靠著回憶生活,并且是無止境無變化的活著似乎也沒有意義。這里已經展示了一個困境,擁有情感的機器人將如何處理親人的離世呢?但是作品無意處理這個問題,而是引向另一個更復雜的尷尬處境。這也是戴維更痛苦的更現(xiàn)實的問題。他不是他媽媽唯一的兒子,他甚至不是真的人,自從親生兒子馬丁踏進房門的一刻開始,戴維的悲劇也就開始了。兩個小男孩為了母愛也會爭奪,何況是有些壞心思的真人與單純的機器人;何況是十月懷胎的親骨肉與買來的實驗機器人之間;何況是一手撫養(yǎng)幾年的兒子與兒子的替代品,這其中巨大的差距,都注定了戴維的悲劇。不管他多乖巧體貼,他也得不到母親的`愛撫,聽不到母親的睡前故事。他只能做在桌前呆呆看他們吃飯,模仿著動作,想象著味道。有次他在馬丁的刺激下,大口吞食菠菜,得到的也是開膛破肚的修理。他只能在門外聽母親給馬丁讀故事,靜靜的聽,聽bluefair的故事。bluefair的故事對馬丁來說是消遣,對小木偶來說是福音,而對戴維來說,是希望卻也是絕望,他能像木偶因為善心就變成真的人嗎?他以為他找到了他不被媽媽喜歡的原因,成為真人也就成為一生的追求。
經過兩次誤會后,他終于是消磨掉他的信任,完全喪失了他的地位,盡管他媽媽有些不舍,但還是為了他的“真”寶貝兒子,要把機器人兒子丟棄了。本來機器人只是要當替代品的,既然真品已經有了,替代品的意義就為零,更何況保留替代品是要冒著真品再度消失的危險了。于是戴維被丟棄。盡管他哭得很傷心,哀求得很凄慘,盡管他媽媽還是有些同情有些矛盾,他媽媽還是決絕地離開,一去不回頭。聽說這個鏡頭觸動不少人心弦,賺得不少眼淚,我卻在另一個鏡頭前潸然淚下。
科幻哀傷的童話故事,穿越時空的尋愛之旅;營造幻覺的傷感世界。機器智能的堅持執(zhí)著,赤裸深刻的人性剖析;震撼感人的心靈洗滌。這就是整個影片中最精煉的東西......戴維、那個天真又純凈的孩子,來自他心底的那份對母親的愛,深深的感動了我、我流淚了......
學完人工智能的心得體會篇十六
人工智能能勝任很多工作,但是不擅長需要溝通力或理解力的工作,因為目前還無法研發(fā)出能夠靈活變通,能理解語言含義的人工智能。比如編程語言必須要規(guī)范,計算機才能準確識別,不然就會報錯。從反方面來講,只要人類具備靈活變通的能力,有一定的'溝通力和理解力,以及不被框架所限的創(chuàng)造力等,那就不用擔憂未來人工智能時代會被人工智能所取代了。
如果你對人工智能感興趣,不妨讀讀這本書,不是科幻類的小說,而是通過人工智能項目理智的分析了人工智能。人工智能既不會代替上帝為我們帶來烏托邦,也不會擁有超越人類的能力而毀滅我們,至少目前不會。
學完人工智能的心得體會篇十七
今天上午線上參加了萊西市信息技術學科人工智能與編程教學研討會,觀摩了張老師《變量》一堂課,本課張老師精湛的業(yè)務知識和巧妙的駕馭課堂的能力讓我受益匪淺。下面我從幾個方面來談一下感受:
學生們都對刮獎非常感興趣,通過刮獎環(huán)節(jié)的設計,學生很快的融入課堂環(huán)境中,學生們積極參入,踴躍發(fā)言,學習興趣盎然,在寓教于樂額學習氛圍中學習新知識,掌握新技能。
學生們利用之前所學程序可以計算出簡單的價格,但是當問題逐漸增多,利用之前的方法就非常麻煩了,這時候引導學生提出問題,教給學生新的知識點—變量。
本節(jié)課學生參入度高,動手實踐能力強,設計的問題層層遞進,環(huán)環(huán)相扣,過渡環(huán)節(jié)都處理的非常到位,更多的是讓學生自己去探索,把課堂交給學生,不斷創(chuàng)新,發(fā)揮了學生的主體學習地位,讓其自主探索,合作學習,做到真正的掌握一門技能。這也是培養(yǎng)學生不斷創(chuàng)新的.手段之一。
希望以后能有更多這樣的學習機會,以便于在信息技術的教學上有更大的進步和提高。
【本文地址:http://mlvmservice.com/zuowen/5661630.html】