專業(yè)大學(xué)數(shù)學(xué)建模論文(案例17篇)

格式:DOC 上傳日期:2023-10-31 01:10:02
專業(yè)大學(xué)數(shù)學(xué)建模論文(案例17篇)
時(shí)間:2023-10-31 01:10:02     小編:薇兒

現(xiàn)代科技給我們的生活帶來(lái)了很多便利,但我們也應(yīng)注意科技對(duì)我們的影響。在寫總結(jié)時(shí),我們可以運(yùn)用一些修辭手法,如類比、對(duì)比和引用等,使文章更具吸引力。在這里,小編為大家推薦了一些值得一讀的總結(jié)范文,希望能夠激發(fā)大家的寫作靈感。

大學(xué)數(shù)學(xué)建模論文篇一

計(jì)算數(shù)學(xué)建模是用數(shù)學(xué)的思考方式,采用數(shù)學(xué)的方法和語(yǔ)言,通過簡(jiǎn)化,抽象的方式來(lái)解決實(shí)際問題的一種數(shù)學(xué)手段。數(shù)學(xué)建模所解決的問題不止現(xiàn)實(shí)的,還包括對(duì)未來(lái)的一種預(yù)見。數(shù)學(xué)建??梢哉f和我們的生活息息相關(guān),尤其是如今科技發(fā)達(dá)的今天。數(shù)學(xué)建模應(yīng)用領(lǐng)域超乎我們的想象,甚至達(dá)到無(wú)所不及的程度,隨著數(shù)學(xué)建模在大學(xué)教學(xué)中的廣泛使用,使數(shù)學(xué)建模不止成為一種學(xué)科,更重要的是指導(dǎo)新生代更好的利用現(xiàn)代科學(xué)技術(shù),成為高科技人才,把我國(guó)人才強(qiáng)國(guó),科教興國(guó)的戰(zhàn)略推向一個(gè)新的高度。

1.數(shù)學(xué)建模對(duì)教學(xué)過程的作用

1.1數(shù)學(xué)建模引進(jìn)大學(xué)數(shù)學(xué)教學(xué)的必要。教學(xué)過程,是教師根據(jù)社會(huì)發(fā)展要求和當(dāng)代學(xué)生身心發(fā)展的特點(diǎn),借助教學(xué)條件,指導(dǎo)學(xué)生通過認(rèn)識(shí)教學(xué)內(nèi)容從而認(rèn)識(shí)客觀世界,并在此基礎(chǔ)之上發(fā)展自身的過程,即教學(xué)活動(dòng)的展開過程。以往高工專的數(shù)學(xué)教學(xué)存在著知識(shí)單一,內(nèi)容陳舊,脫離實(shí)際等缺陷,已經(jīng)不能滿足時(shí)代的發(fā)展,如今的數(shù)學(xué)教學(xué)過程不是單純的傳授數(shù)學(xué)學(xué)科知識(shí),而是通過數(shù)學(xué)教學(xué)過程引導(dǎo)學(xué)生認(rèn)識(shí)科學(xué),理解科學(xué),從而指導(dǎo)實(shí)踐,促進(jìn)學(xué)生的德智體美勞全面的進(jìn)步和發(fā)展。因此數(shù)學(xué)建模成為一門學(xué)科,被各大高等院校廣泛引用和推廣,其實(shí)數(shù)學(xué)建模不止應(yīng)用在大學(xué)數(shù)學(xué)教學(xué)中,其他一切教學(xué)過程多可引進(jìn)數(shù)學(xué)建模。1.2數(shù)學(xué)建模在大學(xué)數(shù)學(xué)教學(xué)中的運(yùn)用。大學(xué)數(shù)學(xué)教師通過這個(gè)數(shù)學(xué)建模過程來(lái)引導(dǎo)學(xué)生解決問題和指導(dǎo)實(shí)踐的能力。再次建模結(jié)果對(duì)現(xiàn)實(shí)生活的指導(dǎo),這是大學(xué)數(shù)學(xué)教學(xué)中數(shù)學(xué)建模所需要達(dá)到的效果和要求。不再停留在理論學(xué)習(xí),而是通過理論指導(dǎo)實(shí)踐,從而為科學(xué)的進(jìn)步和人才綜合水平的提高提供可能。

2.數(shù)學(xué)建模對(duì)當(dāng)代大學(xué)生的作用

2.1數(shù)學(xué)建模對(duì)數(shù)學(xué)學(xué)科和其他學(xué)科學(xué)生的巨大影響力學(xué)習(xí)數(shù)學(xué)建模,能夠使一個(gè)單獨(dú)的數(shù)學(xué)家變成經(jīng)濟(jì)學(xué)家,物理學(xué)家還有金融學(xué)家,甚至是藝術(shù)家,只要正握數(shù)學(xué)建模就能指導(dǎo)學(xué)生通過掌握數(shù)學(xué)建模的思維和方法向其他領(lǐng)域?qū)W習(xí)和進(jìn)步。數(shù)學(xué)建模成為連接數(shù)學(xué)和其他領(lǐng)域的紐帶,是當(dāng)今數(shù)學(xué)科學(xué)在其他領(lǐng)導(dǎo)應(yīng)用的橋梁,是數(shù)學(xué)技術(shù)轉(zhuǎn)化為其他技術(shù)的途徑,數(shù)學(xué)建模在學(xué)生中越來(lái)越受到關(guān)注和歡迎,越來(lái)越多的學(xué)生開始學(xué)習(xí)數(shù)學(xué)建模,尤其是數(shù)學(xué)界和工程界的學(xué)生,這成為當(dāng)今學(xué)生成為現(xiàn)代科技工作者必須掌握的只是能力之一。

2.2數(shù)學(xué)建模對(duì)學(xué)生綜合能力的提高數(shù)學(xué)建模是大學(xué)數(shù)學(xué)教師運(yùn)用數(shù)學(xué)科學(xué)去分析和解決實(shí)際問題,在數(shù)學(xué)建模學(xué)習(xí)的過程中,大學(xué)生的數(shù)學(xué)能力得到提高,其分析問題、解決問題的能力得到提高,這對(duì)大學(xué)生畢業(yè)走向社會(huì)具有著重大意義。通過數(shù)學(xué)建模的學(xué)習(xí)和應(yīng)用,激發(fā)大學(xué)生學(xué)習(xí)數(shù)學(xué)和應(yīng)用數(shù)學(xué)的能力,運(yùn)用數(shù)學(xué)的思維和方法,利用現(xiàn)代計(jì)算機(jī)科學(xué),來(lái)解決數(shù)學(xué)及其他領(lǐng)域的問題。

3.數(shù)學(xué)建模對(duì)大學(xué)數(shù)學(xué)及其他學(xué)科教師的作用

數(shù)學(xué)建模引入大學(xué)數(shù)學(xué)教學(xué),這是時(shí)代的進(jìn)步,是時(shí)代對(duì)當(dāng)代大學(xué)教師提出的新要求,尤其是大學(xué)數(shù)學(xué)教師,其不再停留在以往的單純的數(shù)學(xué)知識(shí)講授方向,而是將數(shù)學(xué)科學(xué)作為基礎(chǔ),引導(dǎo)當(dāng)代大學(xué)生發(fā)散思維,發(fā)揮主觀能動(dòng)性,從而學(xué)習(xí)數(shù)學(xué)科學(xué),并運(yùn)用數(shù)學(xué)科學(xué)解決現(xiàn)實(shí)問題。在這個(gè)過程中大學(xué)教師的專業(yè)知識(shí)得到提高,其創(chuàng)新精神也得到了極大的豐富。大學(xué)數(shù)學(xué)教師不止完成數(shù)學(xué)教學(xué),更重要的是培養(yǎng)了高科技的人才,這對(duì)大學(xué)數(shù)學(xué)教師的社會(huì)地位也有了相應(yīng)的改變,在尊重人才,尊重科學(xué)的氛圍中,大學(xué)數(shù)學(xué)教師及其他學(xué)科的教師得到了鼓舞,得到了進(jìn)步,得到了認(rèn)可。數(shù)學(xué)建模越來(lái)越重要,關(guān)于數(shù)學(xué)建模的各種國(guó)內(nèi)國(guó)際大賽頻頻舉辦,這對(duì)大學(xué)數(shù)學(xué)教師在知識(shí),體力和創(chuàng)新性上都提出新的要求,為了更好的參與數(shù)學(xué)建模比賽,大學(xué)數(shù)學(xué)教師投入更多的時(shí)間和經(jīng)歷在學(xué)生教育和數(shù)學(xué)建模中,他們成為真正的臺(tái)前和幕后的指揮者。

隨著現(xiàn)代大學(xué)學(xué)科的豐富,尤其是計(jì)算機(jī)科學(xué)的廣泛應(yīng)用,大學(xué)數(shù)學(xué)教學(xué)的跨時(shí)代發(fā)展,數(shù)學(xué)建模成為各個(gè)高校數(shù)學(xué)教學(xué)的重點(diǎn)內(nèi)容,數(shù)學(xué)建模教學(xué)吸納數(shù)學(xué)家,計(jì)算機(jī)學(xué)家等多個(gè)學(xué)科專家的意見,從而為培養(yǎng)出綜合行的高科技人才做好充分的準(zhǔn)備??梢哉f數(shù)學(xué)建模教學(xué)是當(dāng)今大學(xué)數(shù)學(xué)教學(xué)的主旋律,是數(shù)學(xué)科學(xué)和其他科學(xué)進(jìn)步發(fā)展的方向和原動(dòng)力。

參考文獻(xiàn):

[1]李進(jìn)華.教育教學(xué)改革與教育創(chuàng)新探索.安徽:安徽大學(xué)出版社,20xx.8.

[2]于駿.現(xiàn)代數(shù)學(xué)思想方法.山東:石油大學(xué)出版社,1997.

大學(xué)數(shù)學(xué)建模論文篇二

數(shù)學(xué)是一切科學(xué)與技術(shù)的基礎(chǔ),它的產(chǎn)生與發(fā)展都是為了推動(dòng)社會(huì)的發(fā)展。因此,數(shù)學(xué)在社會(huì)生活中的地位是不可動(dòng)搖的。然而,很多人都習(xí)慣把數(shù)學(xué)知識(shí)說成理論性的知識(shí),覺得數(shù)學(xué)知識(shí)對(duì)社會(huì)的發(fā)展起不到促進(jìn)作用,故從心底對(duì)數(shù)學(xué)產(chǎn)生了數(shù)學(xué)無(wú)用論的思想。20世紀(jì)70年代,數(shù)學(xué)建模進(jìn)入了一些西方國(guó)家大學(xué),它的出現(xiàn)帶動(dòng)了數(shù)學(xué)領(lǐng)域的發(fā)展,也駁斥了數(shù)學(xué)無(wú)用論的思想,使得數(shù)學(xué)理論很好地實(shí)踐于生活當(dāng)中的各個(gè)領(lǐng)域。20世紀(jì)80年代開始,隨著改革開放,我國(guó)的數(shù)學(xué)建模教學(xué)和數(shù)學(xué)建模競(jìng)賽活動(dòng)也日益蓬勃地發(fā)展起來(lái)。1982年復(fù)旦大學(xué)首先在應(yīng)用數(shù)學(xué)專業(yè)學(xué)生中開設(shè)了數(shù)學(xué)模型課程,隨后很多院校也相繼開設(shè)。由于數(shù)學(xué)建模在各個(gè)高校中成功地引入,1994年教育部高教司決定每年在全國(guó)舉行全國(guó)大學(xué)生數(shù)學(xué)數(shù)模競(jìng)賽。隨著每年數(shù)學(xué)建模競(jìng)賽的發(fā)展,目前數(shù)學(xué)建模課程和競(jìng)賽在本科院校得到了普及,從而推動(dòng)了數(shù)學(xué)教學(xué)的發(fā)展。

隨著數(shù)學(xué)建模競(jìng)賽在本科院校的普及,開始增設(shè)了高校大專組的數(shù)學(xué)建模競(jìng)賽。數(shù)學(xué)建模競(jìng)賽的引入,提高了高職院校數(shù)學(xué)課程的重視度,改變了古板、簡(jiǎn)單地傳授數(shù)學(xué)理論知識(shí)給學(xué)生的課程方式。另外,隨著計(jì)算機(jī)技術(shù)的迅速發(fā)展,數(shù)學(xué)的應(yīng)用不僅在工程技術(shù)、自然科學(xué)等領(lǐng)域發(fā)揮著越來(lái)越重要的作用,而且以空前的廣度和深度向經(jīng)濟(jì)、金融、生物、醫(yī)學(xué)、環(huán)境、地質(zhì)、人口、交通等新的領(lǐng)域滲透,數(shù)學(xué)建模和與之相伴的科學(xué)計(jì)算正在成為眾多領(lǐng)域中的關(guān)鍵工具。

一、數(shù)學(xué)建模的概念及競(jìng)賽模式

用數(shù)學(xué)方法解決科技生產(chǎn)領(lǐng)域的實(shí)際問題,關(guān)鍵第一步是建立相應(yīng)的數(shù)學(xué)模型。也就是說,當(dāng)需要從定量的角度分析或者探究一個(gè)實(shí)際問題時(shí),就要在調(diào)查研究的基礎(chǔ)上,充分了解對(duì)象信息,做出合理的假設(shè),分析其內(nèi)部規(guī)律等,運(yùn)用數(shù)學(xué)的符號(hào)或者語(yǔ)言表示出來(lái),這就是數(shù)學(xué)模型。通過計(jì)算得到的模型結(jié)果來(lái)解釋實(shí)際問題,并接受實(shí)際的檢驗(yàn),這個(gè)建立數(shù)學(xué)模型的全過程就稱為數(shù)學(xué)建模。

一般來(lái)說,數(shù)學(xué)建模過程按照以下步驟來(lái)進(jìn)行:

為了激勵(lì)學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性,提高學(xué)生建立數(shù)學(xué)模型和運(yùn)用計(jì)算機(jī)技術(shù)解決實(shí)際問題的綜合能力,鼓勵(lì)廣大學(xué)生踴躍參加課外科技活動(dòng),開拓知識(shí)而,培養(yǎng)創(chuàng)造精神及合作意識(shí),同時(shí)推動(dòng)大學(xué)數(shù)學(xué)教學(xué)體系、教學(xué)內(nèi)容和方法的改革,國(guó)家教育部高教司和中國(guó)工業(yè)與應(yīng)用數(shù)學(xué)學(xué)會(huì)共同主辦而向全國(guó)大學(xué)生的群眾性科技活動(dòng),即全國(guó)大學(xué)生數(shù)學(xué)建模競(jìng)賽。數(shù)學(xué)建模競(jìng)賽遵循的模式:

1)參賽隊(duì)由三名大學(xué)生和一名指導(dǎo)教師組成,指導(dǎo)教師負(fù)責(zé)學(xué)生的訓(xùn)練,競(jìng)賽時(shí)指導(dǎo)教師不得參與。

2)參賽者從所給的題目當(dāng)中選擇一道題目來(lái)進(jìn)行競(jìng)賽,競(jìng)賽期間可以運(yùn)用各種方式進(jìn)行查閱自己所需要的資料,如:計(jì)算機(jī)網(wǎng)絡(luò),學(xué)校圖書館等等。

3)競(jìng)賽時(shí)間為三天,到時(shí)參賽者須提交一篇有關(guān)數(shù)學(xué)建模競(jìng)賽的論文,其中論文內(nèi)容包括:摘要,問題的重述,問題的分析,模型的假設(shè),符號(hào)說明,模型的建立,模型的求解,模型評(píng)價(jià),參考文獻(xiàn)等。

4)競(jìng)賽期間,時(shí)間由參賽者自由安排,但是不允許參賽者與其他組的參賽者進(jìn)行討論、交流。

二、高職院校進(jìn)行數(shù)學(xué)建模教育存在不足

高職院校教育以培養(yǎng)實(shí)用型、技能型人才為目標(biāo),側(cè)重于培養(yǎng)學(xué)生的應(yīng)用能力。數(shù)學(xué)建模正是運(yùn)用數(shù)學(xué)知識(shí)建立數(shù)學(xué)模型的方式,解決實(shí)際問題。因此,數(shù)學(xué)建模的目的與高職院校教育的目的不謀而合。在高職院校推廣數(shù)學(xué)建模競(jìng)賽,不但可以提高高職院校的競(jìng)爭(zhēng)力,而且符合它的辦學(xué)理念。然而,在許多高職院校中,對(duì)學(xué)生進(jìn)行數(shù)學(xué)建模能力培訓(xùn)重視的力度不夠。

在學(xué)生方面,高職院校的學(xué)生認(rèn)知水平低下,擁有的數(shù)學(xué)基礎(chǔ)比較差、應(yīng)用數(shù)學(xué)軟件能力不強(qiáng)、解決實(shí)際問題的意識(shí)不強(qiáng)等種種因素,導(dǎo)致了學(xué)生害怕數(shù)學(xué),學(xué)習(xí)數(shù)學(xué)只是為了應(yīng)付考試,對(duì)數(shù)學(xué)產(chǎn)生了恐懼感,同時(shí)心里也產(chǎn)生了數(shù)學(xué)無(wú)用論的思想。

在教師方面,師資不足,數(shù)學(xué)教學(xué)方法單一,教學(xué)方式陳舊,只是采取填鴨式的教學(xué)方法。大部分?jǐn)?shù)學(xué)教師對(duì)數(shù)學(xué)建模課程的研究不是很滲透,只是簡(jiǎn)單地了解數(shù)學(xué)建模課程的初等模型.對(duì)于較為深入的模型沒有深入地進(jìn)行研究,以致在教學(xué)方面,沒有能夠很好地帶動(dòng)學(xué)生去學(xué)習(xí)數(shù)學(xué)建模課程,使學(xué)生對(duì)數(shù)學(xué)建模課程產(chǎn)生學(xué)習(xí)的興趣。

在學(xué)校方面,由于學(xué)生數(shù)學(xué)底子較差,有些學(xué)校不開設(shè)高等數(shù)學(xué)和數(shù)學(xué)建模課程。高職院校學(xué)生競(jìng)賽項(xiàng)目較多,很多競(jìng)賽都與本專業(yè)鉤掛,導(dǎo)致學(xué)校較重視與相關(guān)專業(yè)競(jìng)賽的項(xiàng)目,而忽略了數(shù)學(xué)建模競(jìng)賽。學(xué)校對(duì)數(shù)學(xué)建模選修課給予課時(shí)不足,使得學(xué)生只能了解數(shù)學(xué)建模選修課的皮毛,且學(xué)校對(duì)全國(guó)大學(xué)生數(shù)學(xué)建模競(jìng)賽支持的力度不夠。

三、數(shù)學(xué)建模對(duì)高職院校的影響

(一)對(duì)課程教改方面的影響

數(shù)學(xué)教育本質(zhì)上是一種素質(zhì)教育,傳統(tǒng)的數(shù)學(xué)教學(xué)方法僅僅介紹數(shù)學(xué)的理論知識(shí),對(duì)問題的應(yīng)用背景等方面介紹較少,另外高職院校學(xué)生的數(shù)學(xué)底子相對(duì)薄弱,單純地向他們灌輸數(shù)學(xué)的理論知識(shí),不但沒有提升他們的數(shù)學(xué)理論水平,反而使他們對(duì)數(shù)學(xué)知識(shí)失去了學(xué)習(xí)的興趣。然而,在數(shù)學(xué)教學(xué)課程中引入數(shù)學(xué)建模思想,將數(shù)學(xué)建模的思想和方法融入數(shù)學(xué)教學(xué)課程中,為數(shù)學(xué)與外部世界打開了一個(gè)通道,打造了一種以學(xué)生為中心的全新的、有效的數(shù)學(xué)教學(xué)模式,為學(xué)生提供將所學(xué)的知識(shí)應(yīng)用于解決實(shí)際問題的機(jī)會(huì),給學(xué)生以更大的思維空間,提高學(xué)生的思維能力和數(shù)學(xué)素質(zhì),也大大增加了學(xué)生學(xué)習(xí)數(shù)學(xué)理論知識(shí)的興趣。

隨著數(shù)學(xué)建模的`概念以及電子計(jì)算機(jī)的出現(xiàn),數(shù)學(xué)知識(shí)的應(yīng)用已經(jīng)以空前的廣度和深度向其他各個(gè)行業(yè)滲透。數(shù)學(xué)模型這個(gè)詞越來(lái)越多地出現(xiàn)在現(xiàn)代人的生產(chǎn)、工作和社會(huì)活動(dòng)中。例如:公司要根據(jù)產(chǎn)品的需求狀況、生產(chǎn)成本等信息,建立一個(gè)投資方案模型,認(rèn)真核準(zhǔn)投資的收益率和風(fēng)險(xiǎn)損失率,在投資前較好地對(duì)投資進(jìn)行預(yù)測(cè)和評(píng)估,確定投資方案,以取得最佳經(jīng)濟(jì)效益;氣象工作者為了得到準(zhǔn)確的天氣預(yù)報(bào),一刻也離不開根據(jù)氣象衛(wèi)星匯集的氣壓、雨量、風(fēng)速等數(shù)據(jù)建立起來(lái)的數(shù)學(xué)模型等等。高職院校的各個(gè)專業(yè)都是以實(shí)踐性為主要目標(biāo),在各個(gè)專業(yè)教學(xué)中輸入數(shù)學(xué)建模的思想,不但能夠增加學(xué)生學(xué)習(xí)數(shù)學(xué)理論知識(shí)的興趣,而且還可以提高他們對(duì)專業(yè)知識(shí)的理解能力.同時(shí)提升他們分析以及解決問題的能力;另外,數(shù)學(xué)建模思想的引入,改變了原專業(yè)課程的授課方式,相當(dāng)于向?qū)I(yè)課程注入了一個(gè)新鮮的血液,其教學(xué)方式也達(dá)到了促進(jìn)的作用。因此,引入數(shù)學(xué)建模思想,可以有效地?cái)U(kuò)大數(shù)學(xué)的實(shí)用性更好地為專業(yè)課程服務(wù),達(dá)到雙贏的目的。

例如:求汽車在公路上做勻速直線運(yùn)動(dòng)的路程。

相對(duì)于這道題來(lái)說,估計(jì)每個(gè)人都會(huì)求解,都知道答案應(yīng)該為:路程等于速度乘以時(shí)間,即s=v*t。

然而,對(duì)于這樣答案理解的人,也僅僅局限于初中階段。對(duì)于大學(xué)階段,我們還能單一地這樣認(rèn)為嗎?汽車在做直線運(yùn)動(dòng)過程中,每時(shí)每刻的速度都會(huì)一樣嗎?顯然,汽車在做直線運(yùn)動(dòng)過程中,每時(shí)每刻的速度肯定不會(huì)一樣的,上述問題只是一種理想的狀態(tài),它忽略了空氣阻力等其他因素,即在求解汽車在公路上做勻速直線運(yùn)動(dòng)的路程的模型中,首先假設(shè)空氣阻力忽略不計(jì),公路上的阻力都是一致的,這樣我們才可以得出汽車在公路上做勻速直線運(yùn)動(dòng)的數(shù)學(xué)模型:s=v*t。通過學(xué)習(xí)數(shù)學(xué)建模課程,經(jīng)過這樣地處理,既向?qū)W生灌輸了數(shù)學(xué)建模的概念,增加了他們學(xué)習(xí)數(shù)學(xué)的興趣,又使得學(xué)生對(duì)問題的來(lái)龍去脈產(chǎn)生了清晰的認(rèn)識(shí)。因此,在高職院校各個(gè)專業(yè)課中引入數(shù)學(xué)建模思想,不但使得學(xué)生對(duì)知識(shí)有了更清晰的認(rèn)識(shí),而且也可以促進(jìn)專業(yè)課程的改革。

(二)對(duì)學(xué)生的影響

開展數(shù)學(xué)建模活動(dòng),能擴(kuò)大學(xué)生的知識(shí)而。數(shù)學(xué)建模所涉及的內(nèi)容廣泛,用到的知識(shí)而寬廣,運(yùn)用涉及的領(lǐng)域在物理學(xué)、經(jīng)濟(jì)學(xué)、管理學(xué)等各方面。學(xué)生參加數(shù)學(xué)建模課程的培訓(xùn),可以學(xué)習(xí)到多種類型的數(shù)學(xué)模型,比如:線性規(guī)劃模型、人口預(yù)測(cè)模型、層次分析法模型等等。這些模型都是擁有實(shí)際的背景,使得學(xué)生不僅對(duì)問題的實(shí)際背景來(lái)源有了更深地認(rèn)識(shí),而且增加了他們課外知識(shí)的知識(shí)面。其次,建立和解決數(shù)學(xué)建模模型,一般都會(huì)運(yùn)用到數(shù)學(xué)編輯器和數(shù)學(xué)軟件;開展數(shù)學(xué)建模競(jìng)賽活動(dòng),使得學(xué)生對(duì)數(shù)學(xué)編輯器mathtype和數(shù)學(xué)軟件 matlab、lingo產(chǎn)生了了解,熟悉它們基本的運(yùn)用,擴(kuò)展他們的模型解決能力。

開展數(shù)學(xué)建模活動(dòng),有利于培養(yǎng)學(xué)生的自主創(chuàng)新和實(shí)踐能力。數(shù)學(xué)建模是一個(gè)富有創(chuàng)造性思維的活動(dòng),它不等同于簡(jiǎn)單的應(yīng)用題目。對(duì)于給予一道數(shù)學(xué)建模應(yīng)用題目,它沒有絕對(duì)統(tǒng)一的答案,這給予了很大的思維空間。將數(shù)學(xué)建模的方法和思想融入教學(xué)課程中,有助于激發(fā)學(xué)生的原創(chuàng)性沖動(dòng),喚醒學(xué)生對(duì)工作的創(chuàng)造性意識(shí)。通過建立模型,學(xué)生要從錯(cuò)綜復(fù)雜的實(shí)際問題中,抓住問題的本質(zhì),明確問題的要求,將問題與實(shí)際聯(lián)系在一起,做出合理的假設(shè),運(yùn)用所給問題的條件尋求解決問題的最佳方案和途徑,這一過程能充分發(fā)揮學(xué)生豐富的想象力和創(chuàng)新能力。另一方面,數(shù)學(xué)建模是科學(xué)運(yùn)用到實(shí)踐的過程,高職院校當(dāng)中開展數(shù)學(xué)建模活動(dòng)可以有效地培養(yǎng)高職學(xué)生的實(shí)踐能力和動(dòng)手能力以及分析問題和解決問題的能力,為學(xué)生今后從事技術(shù)性工作奠定良好的基礎(chǔ)。

開展數(shù)學(xué)建模活動(dòng),有助于激發(fā)學(xué)生學(xué)習(xí)的興趣。數(shù)學(xué)建模的主要目的是把所學(xué)到的知識(shí)運(yùn)用到實(shí)踐中,數(shù)學(xué)建模的很多題目都與我們自身息息相關(guān)的。例如:的c題目,問題針對(duì)腦卒中(俗稱腦中風(fēng))是目前威脅人類生命的嚴(yán)重疾病之一,為了進(jìn)行疾病的風(fēng)險(xiǎn)評(píng)估,對(duì)腦卒中高危人群能夠及時(shí)采取干預(yù)措施,也讓尚未得病的健康人,或者亞健康人了解自己得腦卒中風(fēng)險(xiǎn)程度,進(jìn)行自我保護(hù)。題目給出了中國(guó)某城市各家醫(yī)院1月至12月的腦卒中發(fā)病病例信息以及相應(yīng)期間當(dāng)?shù)氐闹鹑諝庀筚Y料,讓我們建立數(shù)學(xué)模型研究腦中風(fēng)的發(fā)病率與什么因素有關(guān),我們?nèi)绾晤A(yù)防腦中風(fēng)的發(fā)生。因此,這樣的題目貼近生活,很容易激發(fā)學(xué)生想去進(jìn)一步研究的興趣,想知道究竟何種原因產(chǎn)生這種疾病,這種疾病有何危害,如何去預(yù)防等等。

開展數(shù)學(xué)建模競(jìng)賽活動(dòng),有助于增強(qiáng)學(xué)生之間的團(tuán)結(jié)合作精神。在當(dāng)今世界上,團(tuán)結(jié)合作是每個(gè)人應(yīng)該具備的一種品質(zhì)。在團(tuán)結(jié)合作過程中,我們可以學(xué)會(huì)如何與人相處,如何尊重他人,如何寬容他人,如何培養(yǎng)我們的責(zé)任心。數(shù)學(xué)建模競(jìng)賽由三個(gè)人組成一個(gè)小組,在競(jìng)賽期間,我們要順利、完整地完成一道題目,成員間必須擁有合作的意識(shí),以及分工要合理。因此,學(xué)生參加數(shù)學(xué)建模競(jìng)賽,不僅可以培養(yǎng)同組隊(duì)員之間的默契,而且也可以增強(qiáng)學(xué)生之間的團(tuán)結(jié)合作精神。

四、結(jié)論

數(shù)學(xué)建模已是當(dāng)今時(shí)代所需要的,數(shù)學(xué)建模競(jìng)賽是全國(guó)各個(gè)學(xué)科大競(jìng)賽當(dāng)中參賽者人數(shù)最多的一項(xiàng)比賽。高職院校開設(shè)數(shù)學(xué)建模課程以及參加數(shù)學(xué)建模競(jìng)賽,不但可以提高課程的教學(xué)效果和質(zhì)量,而且還可以有效地提升學(xué)生的基本素質(zhì),激發(fā)他們的潛能。

大學(xué)數(shù)學(xué)建模論文篇三

一、數(shù)學(xué)建模競(jìng)賽概述

競(jìng)賽形式組委會(huì)規(guī)定三名大學(xué)生組成一隊(duì),參賽學(xué)生根據(jù)題目要求可以自由地收集、查閱資料,調(diào)查研究,使用計(jì)算機(jī)、互聯(lián)網(wǎng)和任何軟件,在三天時(shí)間內(nèi)分工合作完成一篇包括模型假設(shè)、模型建立和模型求解、計(jì)算方法的設(shè)計(jì)和計(jì)算機(jī)實(shí)現(xiàn)、結(jié)果的檢驗(yàn)和評(píng)價(jià)、模型的改進(jìn)等方面的論文(即答卷)。競(jìng)賽評(píng)獎(jiǎng)的主要標(biāo)準(zhǔn)為假設(shè)的合理性、建模的創(chuàng)造性、結(jié)果的正確性和文字表述的清晰程度。

二、賽前學(xué)習(xí)內(nèi)容

1.建?;A(chǔ)知識(shí)、常用工具軟件的使用

(1)掌握數(shù)學(xué)建模必備的基礎(chǔ)知識(shí)(如線性代數(shù)、高等數(shù)學(xué)、概率統(tǒng)計(jì)等),還有數(shù)學(xué)建模競(jìng)賽中常用的但尚未學(xué)過的方法,如灰色預(yù)測(cè)、回歸分析、曲線擬合等常用預(yù)測(cè)方法,運(yùn)籌學(xué)中若干優(yōu)化算法。(2)針對(duì)數(shù)學(xué)建模特點(diǎn),結(jié)合典型的問題,重點(diǎn)學(xué)習(xí)幾種常用數(shù)學(xué)軟件(matlab、lindo、lingo、spss)的使用,并且具備一般性開發(fā)能力,尤其應(yīng)注意同一數(shù)學(xué)模型,有時(shí)可以使用多個(gè)軟件進(jìn)行求解。

2.常見數(shù)學(xué)建模的過程及方法

數(shù)學(xué)建模競(jìng)賽是一項(xiàng)非常具有挑戰(zhàn)性和創(chuàng)造性的活動(dòng),不一定用一些條條框框規(guī)定各種實(shí)際問題的模型具體如何建立。但一般來(lái)說,數(shù)學(xué)建模主要涉及兩個(gè)方面:一是將實(shí)際問題轉(zhuǎn)化為理論數(shù)學(xué)模型;二是對(duì)理論數(shù)學(xué)模型進(jìn)行分析和計(jì)算。簡(jiǎn)而言之,就是建立數(shù)學(xué)模型來(lái)解決各種實(shí)際問題的過程。這個(gè)過程可以用如圖1來(lái)表示。

3.數(shù)學(xué)建模常用算法的設(shè)計(jì)

建模與計(jì)算是數(shù)學(xué)模型的兩大核心。當(dāng)數(shù)學(xué)模型建立后,完成相關(guān)數(shù)學(xué)模型的計(jì)算就成為解決問題的關(guān)鍵,而所采用算法的好壞將直接影響運(yùn)算速度的快慢,以及答案的優(yōu)劣。根據(jù)近年來(lái)競(jìng)賽題型特點(diǎn)及以前參賽獲獎(jiǎng)學(xué)生的心得體會(huì),建議多用數(shù)學(xué)軟件如matlab、lindo、lingo、spss等來(lái)設(shè)計(jì)求解的算法,本文列舉了幾種常用的算法。(1)參數(shù)估計(jì)、數(shù)據(jù)擬合、插值等常用數(shù)據(jù)處理算法。在數(shù)學(xué)建模比賽中,通常會(huì)遇到海量的數(shù)據(jù)需要處理,而處理數(shù)據(jù)的關(guān)鍵就在于正確使用這些算法,通常采用matlab作為運(yùn)算工具。(2)線性規(guī)劃、整數(shù)規(guī)劃、多目標(biāo)規(guī)劃、二次規(guī)劃等優(yōu)化類問題。數(shù)學(xué)建模競(jìng)賽大多數(shù)問題是最優(yōu)化問題,很多時(shí)候這些問題可以用數(shù)學(xué)規(guī)劃模型進(jìn)行描述,通常使用lindo、lingo軟件求解。(3)圖論算法主要包括最短路、網(wǎng)絡(luò)流、二分圖等算法,如果涉及到圖論的問題可以用這些方法進(jìn)行求解。(4)最優(yōu)化理論的三大非經(jīng)典算法:神經(jīng)網(wǎng)絡(luò)、模擬退火法、遺傳算法。這些算法通常是用來(lái)解決一些較困難的最優(yōu)化問題的,主要使用lingo、matlab、spss軟件來(lái)實(shí)現(xiàn)。

三、數(shù)學(xué)建模競(jìng)賽中經(jīng)常出現(xiàn)的問題

在國(guó)家數(shù)學(xué)建模競(jìng)賽中常見如下問題:數(shù)學(xué)模型最好明確、合理、簡(jiǎn)潔,但是有些論文不給出明確的模型,只是根據(jù)賽題的情況用“湊”的方法給出結(jié)果,雖然結(jié)果大致是對(duì)的,但是沒有一般性,不是數(shù)學(xué)建模的正確思路;有的論文過于簡(jiǎn)單,該交代的內(nèi)容省略了,難以看懂;有的隊(duì)羅列一系列假設(shè)或模型,又不作比較、評(píng)價(jià),希望碰上“參考答案”或“評(píng)閱思路”,反而弄巧成拙;有的論文參考文獻(xiàn)不全,或引用他人成果不作交代。另外,吃透題意方面不足,沒有抓住和解決主要問題;就事論事,形成數(shù)學(xué)模型的意識(shí)和能力欠缺;對(duì)所用方法一知半解,不管具體條件,套用現(xiàn)成的方法,導(dǎo)致錯(cuò)誤;對(duì)結(jié)果的分析不夠,怎樣符合實(shí)際考慮不周;隊(duì)員之間合作精神差,孤軍奮戰(zhàn);依賴心理重,甚至違紀(jì)。以上情況都需要各參賽隊(duì)引起注意,有則改之,無(wú)則加勉。

四、競(jìng)賽中應(yīng)重視的問題

1.團(tuán)隊(duì)合作是能否獲獎(jiǎng)的關(guān)鍵

通常在數(shù)學(xué)建模競(jìng)賽時(shí),三個(gè)隊(duì)員的分工要明確,其中一個(gè)作為組長(zhǎng),也算是領(lǐng)軍人物,主要是負(fù)責(zé)構(gòu)建整個(gè)問題的框架,并提出有創(chuàng)意的想法,當(dāng)然其他部分如論文寫作、程序設(shè)計(jì)、計(jì)算等也要能參加;第二位是算手,主要進(jìn)行算法設(shè)計(jì)及編程計(jì)算;最后一位是寫手,主要工作在于論文的'寫作和潤(rùn)色上。好的論文要讓評(píng)委一眼就能明了其中的意思,因此寫手的工作也需要一定的技巧。當(dāng)然,要想競(jìng)賽時(shí)達(dá)到這樣的標(biāo)準(zhǔn),需要三個(gè)隊(duì)員在平時(shí)訓(xùn)練時(shí)多加練習(xí)。

2.合理安排競(jìng)賽過程中的時(shí)間

數(shù)學(xué)建模競(jìng)賽中時(shí)間分配很重要,分配不好有可能完不成競(jìng)賽論文,有的隊(duì)伍把問題解答完了,但是發(fā)現(xiàn)沒有時(shí)間進(jìn)行寫作,或者寫的很差勁而不能獲獎(jiǎng),因此要大致做好安排。一般前兩天不要熬的太狠,晚上10:00點(diǎn)前要休息,最后一夜必須熬通宵,否則體力肯定跟不上。之前有些隊(duì)伍,前兩天勁頭很足,晚上做到很晚才休息,但是到了第三天晚上就沒有精力了,這樣一般很難獲獎(jiǎng)。

3.摘要的撰寫很重要

論文的摘要是整篇論文的門面。摘要首先可以強(qiáng)調(diào)一下所做問題的重要性和意義,但不要寫廢話,也不要完全照抄題目的一些話,應(yīng)該直奔主題,主要寫明自己是怎樣分析問題,用什么方法解決問題,最重要的結(jié)論是什么。在中國(guó)的競(jìng)賽中,結(jié)論很重要,評(píng)委肯定會(huì)去和標(biāo)準(zhǔn)答案進(jìn)行比較。如果結(jié)論正確一般能得獎(jiǎng),如果不正確,評(píng)委可能會(huì)繼續(xù)往下看,也可能會(huì)扔在一邊,但不寫結(jié)論的話就一定不會(huì)得獎(jiǎng)了,這一點(diǎn)和美國(guó)競(jìng)賽不同,因此要認(rèn)真把重要結(jié)論寫在摘要上,如果結(jié)論的數(shù)據(jù)太多,也可只寫幾個(gè)代表性的數(shù)據(jù),注明其他數(shù)據(jù)見論文中何處。

4.論文寫作也要規(guī)范

數(shù)學(xué)建模競(jìng)賽的論文有一個(gè)比較固定的模式。論文大致按照如下形式來(lái)寫:摘要、問題重述、模型假設(shè)和符號(hào)說明、問題分析(建立、分析、求解模型)、模型檢驗(yàn)、模型的優(yōu)缺點(diǎn)評(píng)價(jià)、參考文獻(xiàn)、附錄等等。另外,在正文中也可以加入一些圖和表,附錄也可以貼一些算法流程圖或比較大的結(jié)果或圖表等等,近年來(lái)為了防止舞弊,組委會(huì)要求把算法的源程序也必須放在附錄中。

五、結(jié)論

全國(guó)大學(xué)生數(shù)學(xué)建模競(jìng)賽對(duì)于大學(xué)生而言,是一個(gè)富有挑戰(zhàn)的競(jìng)賽。它不但能培養(yǎng)大學(xué)生解決實(shí)際問題的能力,同時(shí)能培養(yǎng)其創(chuàng)造力、團(tuán)隊(duì)合作的能力,而這些能力將會(huì)成為參賽學(xué)生以后成功就業(yè)的重要推動(dòng)力??梢哉f,一次參賽,終身受益。

大學(xué)數(shù)學(xué)建模論文篇四

數(shù)學(xué)是一門應(yīng)用性較強(qiáng)的學(xué)科,與實(shí)際生活具有緊密的聯(lián)系,而數(shù)學(xué)建模主要是指將人們的現(xiàn)實(shí)問題演變?yōu)閷W(xué)生的數(shù)學(xué)學(xué)習(xí)問題的過程中,這種思想在教學(xué)過程中的有效應(yīng)用,有助于培養(yǎng)學(xué)生的數(shù)學(xué)思維能力和創(chuàng)新能力,有效提升數(shù)學(xué)教學(xué)質(zhì)量。所以對(duì)于數(shù)學(xué)建模思想在大學(xué)數(shù)學(xué)教學(xué)過程中應(yīng)用的探索具有重要意義。

一、建模思想在大學(xué)數(shù)學(xué)教學(xué)中應(yīng)用的重要性

(一)激發(fā)學(xué)生的學(xué)習(xí)興趣

建模思想在大學(xué)數(shù)學(xué)教學(xué)中的應(yīng)用,對(duì)于激發(fā)學(xué)生的數(shù)學(xué)學(xué)習(xí)興趣具有重要作用。文中提到,數(shù)學(xué)建模主要是指將人們的現(xiàn)實(shí)問題演變?yōu)閷W(xué)生的數(shù)學(xué)學(xué)習(xí)問題的過程中,通過這種教學(xué)方式,能夠?qū)?shù)學(xué)教學(xué)過程中的數(shù)學(xué)理論與學(xué)生的具體生活實(shí)踐有機(jī)結(jié)合,有利于學(xué)生對(duì)于數(shù)學(xué)理論知識(shí)的理解和把握,激發(fā)了學(xué)習(xí)興趣,增加了學(xué)習(xí)的主動(dòng)性和積極性,提升了學(xué)生解決實(shí)際問題的能力。

(二)推進(jìn)教學(xué)改革

在實(shí)際教學(xué)過程中,大學(xué)數(shù)學(xué)教學(xué)越來(lái)越注重理論性知識(shí)的教學(xué),導(dǎo)致數(shù)學(xué)教學(xué)內(nèi)容比較抽象,使得學(xué)生對(duì)數(shù)學(xué)知識(shí)的理解變得越來(lái)越困難。但是建模思想在數(shù)學(xué)教學(xué)中的應(yīng)用,有效破解了這一問題,將抽象的知識(shí)融合到解決實(shí)際問題中,提升學(xué)生對(duì)于難點(diǎn)知識(shí)的理解,促進(jìn)學(xué)生吸收知識(shí)和消化知識(shí)。這種教學(xué)模式是傳統(tǒng)教學(xué)方法和教學(xué)手段的新突破。并且這種教學(xué)模式還打破了傳統(tǒng)的大學(xué)數(shù)學(xué)教學(xué)模式,對(duì)于推進(jìn)大學(xué)數(shù)學(xué)教學(xué)工作的改革具有重要作用。

(三)培養(yǎng)學(xué)生的數(shù)學(xué)能力

一方面利用建模思想進(jìn)行大學(xué)數(shù)學(xué)教學(xué)時(shí),通過將學(xué)生的實(shí)際生活問題引入到教學(xué)之中,可以搭建起學(xué)生與數(shù)學(xué)知識(shí)之間的情感共鳴,激發(fā)學(xué)生探究數(shù)學(xué)知識(shí)的興趣,使學(xué)生主動(dòng)地融入到課堂教學(xué)之中,從而培養(yǎng)學(xué)生的探索能力和創(chuàng)新精神。另一方面這種教學(xué)模式有利于學(xué)生吸收知識(shí),消化知識(shí),提升今后工作或?qū)W習(xí)中運(yùn)用所學(xué)的數(shù)學(xué)知識(shí)解決實(shí)際問題的能力[1]。

二、建模思想在大學(xué)數(shù)學(xué)教學(xué)中的應(yīng)用探索

(一)注重引導(dǎo)學(xué)生的自主學(xué)習(xí)

實(shí)際應(yīng)用建模思想進(jìn)行大學(xué)數(shù)學(xué)教學(xué)工作時(shí),教師要注重引導(dǎo)學(xué)生進(jìn)行自主學(xué)習(xí),以提高學(xué)生的實(shí)際學(xué)習(xí)質(zhì)量和效率,培養(yǎng)學(xué)生的探索精神和學(xué)習(xí)意識(shí)。當(dāng)前我國(guó)的大學(xué)數(shù)學(xué)教學(xué)中主要有微積分、線性代數(shù)和概率論以及數(shù)理統(tǒng)計(jì)等三門主干課程。在實(shí)際教學(xué)中,教學(xué)框架和教學(xué)模式比較固定,數(shù)學(xué)教學(xué)概念比較抽象,數(shù)學(xué)公式的推導(dǎo)比較嚴(yán)謹(jǐn)。所以在應(yīng)用建模思想進(jìn)行大學(xué)數(shù)學(xué)教學(xué)時(shí),就需要在總體教學(xué)框架下,對(duì)教學(xué)內(nèi)容進(jìn)行適當(dāng)改進(jìn),注重對(duì)學(xué)生自主學(xué)習(xí)的引導(dǎo)。

(二)注重激發(fā)學(xué)生的學(xué)習(xí)興趣

合理激發(fā)學(xué)生的學(xué)習(xí)效果對(duì)于促進(jìn)建模思想在大學(xué)數(shù)學(xué)教學(xué)中的應(yīng)用具有重要作用和意義。在實(shí)際教學(xué)過程中,教師可以針對(duì)學(xué)生感興趣的話題或數(shù)學(xué)知識(shí)點(diǎn),導(dǎo)入相關(guān)的數(shù)學(xué)知識(shí),以激發(fā)學(xué)生的學(xué)習(xí)興趣。例如:教師在進(jìn)行大學(xué)數(shù)學(xué)的數(shù)學(xué)概率及其相關(guān)知識(shí)的實(shí)際教學(xué)工作時(shí),可以引入學(xué)生比較感興趣的緣分話題,引導(dǎo)學(xué)生進(jìn)行擇偶最佳法則的推導(dǎo)。通過這種教學(xué)模式,既能夠滿足學(xué)生的學(xué)習(xí)興趣,同時(shí)又能夠?qū)W(xué)生的數(shù)學(xué)知識(shí)應(yīng)用到實(shí)際的生活之中,可以起到事半功倍的教學(xué)效果,對(duì)于促進(jìn)建模思想在大學(xué)數(shù)學(xué)教學(xué)中的應(yīng)用具有重要作用。

(三)注重改進(jìn)教學(xué)考核形式

在大學(xué)數(shù)學(xué)教學(xué)中應(yīng)用數(shù)學(xué)建模思想,教師還應(yīng)注重對(duì)教學(xué)考核形式的`改革。當(dāng)前大學(xué)的數(shù)學(xué)教學(xué)考核形式大都采用傳統(tǒng)的閉卷考試的考核形式,這種考核方式嚴(yán)重不利于教師對(duì)學(xué)生整體學(xué)習(xí)情況的了解,同時(shí)也沒有突出對(duì)學(xué)生的實(shí)際數(shù)學(xué)應(yīng)用能力和解決問題能力的考核。所以在應(yīng)用建模思想進(jìn)行大學(xué)數(shù)學(xué)教學(xué)時(shí),要注重對(duì)教學(xué)考核形式的改進(jìn)。例如:教師在實(shí)際教學(xué)時(shí)可以突出學(xué)生的平時(shí)成績(jī)考核。教師可以對(duì)學(xué)生的課堂表現(xiàn)以及對(duì)數(shù)學(xué)問題的探索等進(jìn)行記錄,將其作為學(xué)生的考核依據(jù),從而保障教學(xué)考核的有效性[2]。建模思想在大學(xué)數(shù)學(xué)教學(xué)中的引用,對(duì)于激發(fā)學(xué)生的學(xué)習(xí)興趣,提高教學(xué)質(zhì)量和效率具有重要作用。在大學(xué)數(shù)學(xué)教學(xué)大學(xué)未來(lái)發(fā)展中,要更加注重對(duì)建模思想的應(yīng)用和探索,促進(jìn)大學(xué)數(shù)學(xué)教學(xué)工作的未來(lái)發(fā)展。

參考文獻(xiàn):

[1]宋志廣.對(duì)高校數(shù)學(xué)建模方法教學(xué)策略的研究[j].教育,(2):82.

[2]王洋.如何激發(fā)高職院校學(xué)生對(duì)大學(xué)數(shù)學(xué)的學(xué)習(xí)興趣――以數(shù)學(xué)建模為突破口[j].時(shí)代教育,(7):249.

大學(xué)數(shù)學(xué)建模論文篇五

數(shù)學(xué)建模是指利用數(shù)學(xué)符號(hào)對(duì)數(shù)學(xué)實(shí)踐問題以公式形式表述出來(lái),再通過相關(guān)計(jì)算解決實(shí)際問題。數(shù)學(xué)建??梢詾閷W(xué)生創(chuàng)設(shè)適宜的學(xué)習(xí)條件,讓學(xué)生在假設(shè)、研究、分析、比對(duì)中形成學(xué)習(xí)結(jié)論。教師要借助教學(xué)內(nèi)容展開滲透操作,利用實(shí)際問題為學(xué)生創(chuàng)設(shè)實(shí)踐機(jī)會(huì),根據(jù)教法改進(jìn)滲透建模思想,從而促進(jìn)建模思想的全面滲透,提升學(xué)生的數(shù)學(xué)核心素養(yǎng)。

一、借助教學(xué)內(nèi)容滲透建模思想

在數(shù)學(xué)教學(xué)過程中,教師要對(duì)教材內(nèi)容進(jìn)行篩選和剖析,找到文本思維和生本思維的對(duì)接點(diǎn),讓學(xué)生順利介入數(shù)理討論學(xué)習(xí)之中。教師利用教學(xué)內(nèi)容對(duì)學(xué)生滲透數(shù)學(xué)建模思想,利用教輔手段創(chuàng)設(shè)教學(xué)環(huán)境,可以有效喚醒學(xué)生的數(shù)學(xué)思維。利用多媒體創(chuàng)設(shè)教學(xué)情境,運(yùn)用數(shù)學(xué)公式進(jìn)行數(shù)學(xué)推演操作,都涉及數(shù)學(xué)建模思想的滲透。因此,教師要積極整合教學(xué)內(nèi)容。借助教學(xué)內(nèi)容滲透建模思想時(shí),教師要結(jié)合多種教學(xué)調(diào)查情況展開相關(guān)操作。篩選教學(xué)內(nèi)容時(shí),教師需要觀照不同群體學(xué)生的不同學(xué)力基礎(chǔ)。如解讀定積分概念時(shí),教師可以通過推導(dǎo)曲邊梯形的面積公式,鼓勵(lì)學(xué)生對(duì)曲邊梯形進(jìn)行分割、歸類、求和、取極限等實(shí)際操作,建立定積分?jǐn)?shù)學(xué)模型,并讓學(xué)生在實(shí)際操作中完成對(duì)物體體積和質(zhì)量的具體計(jì)算。這些數(shù)學(xué)模型具有廣泛性,學(xué)生在實(shí)踐中再遇到類似情境時(shí),也會(huì)運(yùn)用相關(guān)模型進(jìn)行實(shí)際操作。推演數(shù)學(xué)公式時(shí),教師可引入建模思想,讓學(xué)生參與問題的設(shè)計(jì)、推演、驗(yàn)證,并利用推演結(jié)果反過來(lái)解決實(shí)際問題,給學(xué)生帶去全新的學(xué)習(xí)體驗(yàn)。教師根據(jù)教學(xué)內(nèi)容滲透數(shù)學(xué)建模思想,能夠?yàn)閷W(xué)生提供更清晰的學(xué)習(xí)渠道,能夠促使學(xué)生運(yùn)用現(xiàn)成的數(shù)學(xué)模型來(lái)解決數(shù)學(xué)問題,進(jìn)而加深對(duì)知識(shí)的理解。

二、利用實(shí)際問題滲透建模思想

教師在數(shù)學(xué)建模教學(xué)實(shí)施過程中,需要有接軌生活的意識(shí)。數(shù)學(xué)來(lái)源于生活,教師結(jié)合生活實(shí)際問題滲透建模思想,可以有效提升學(xué)生的數(shù)學(xué)概念意識(shí),并使學(xué)生在假設(shè)、推理、驗(yàn)證過程中形成數(shù)學(xué)能力。利用生活實(shí)際問題滲透數(shù)學(xué)建模思想,符合學(xué)生數(shù)學(xué)認(rèn)知成長(zhǎng)的`實(shí)際需要,教師要結(jié)合學(xué)生的數(shù)學(xué)知識(shí)掌握情況展開設(shè)計(jì),讓學(xué)生利用已知數(shù)學(xué)等量關(guān)系解決實(shí)際問題,這勢(shì)必能促使學(xué)生形成數(shù)理認(rèn)知基礎(chǔ)。高職數(shù)學(xué)教學(xué)中,教師不妨鼓勵(lì)學(xué)生展開質(zhì)疑活動(dòng),讓學(xué)生列舉疑惑問題,對(duì)這些問題進(jìn)行整合優(yōu)化處理,并結(jié)合數(shù)理知識(shí)進(jìn)行實(shí)踐探索。這些也屬于數(shù)學(xué)建模思想的滲透。如教學(xué)“假設(shè)檢驗(yàn)”時(shí),教師可讓學(xué)生展開假設(shè)創(chuàng)設(shè),并通過多重操作實(shí)踐進(jìn)行檢驗(yàn)。另外,教師設(shè)計(jì)課外作業(yè)時(shí),也可滲透數(shù)學(xué)建模思想,讓學(xué)生運(yùn)用建模思想解決實(shí)際問題,以提升學(xué)生的數(shù)學(xué)綜合素質(zhì)。數(shù)學(xué)建模思想不僅是一種數(shù)學(xué)認(rèn)知理論,還是一種解決數(shù)學(xué)問題的方法和措施。學(xué)生結(jié)合生活實(shí)際和學(xué)習(xí)認(rèn)知基礎(chǔ)展開相關(guān)操作,自然能夠促進(jìn)數(shù)學(xué)基本技能的提升。高職數(shù)學(xué)具有較強(qiáng)的抽象性,教師要針對(duì)學(xué)生的學(xué)力基礎(chǔ),為學(xué)生布設(shè)適宜的學(xué)習(xí)任務(wù)。結(jié)合學(xué)生生活實(shí)際提出問題,利用建模思想解決問題,需要關(guān)涉很多專業(yè)理論,教師應(yīng)該進(jìn)行示范操作,讓學(xué)生有學(xué)習(xí)的榜樣,這樣才能提升數(shù)學(xué)課堂教學(xué)效度。

三、借助教法改進(jìn)滲透建模思想

教師要重視數(shù)學(xué)學(xué)法的傳授,增加教學(xué)的靈活性、針對(duì)性和實(shí)踐性。由于高職學(xué)生學(xué)力基礎(chǔ)、學(xué)習(xí)悟性、學(xué)習(xí)習(xí)慣等存在差距,所以教師需要做好學(xué)情調(diào)查,降低數(shù)學(xué)學(xué)習(xí)難度,運(yùn)用簡(jiǎn)單通俗的語(yǔ)言解讀抽象的數(shù)學(xué)概念。這樣,學(xué)生才能聽得明白、學(xué)得好。滲透建模思想時(shí),教師需要鼓勵(lì)學(xué)生主動(dòng)參與數(shù)理討論互動(dòng),這不僅能引導(dǎo)學(xué)生展開質(zhì)疑、釋疑活動(dòng),還有利于學(xué)生樹立數(shù)學(xué)建模理念,形成良性學(xué)習(xí)認(rèn)知。教師打破傳統(tǒng)教法束縛,采用先進(jìn)的計(jì)算工具、數(shù)學(xué)軟件、多媒體等教學(xué)輔助手段,或者利用網(wǎng)絡(luò)搜集平臺(tái)展開教學(xué)設(shè)計(jì),都可以為學(xué)生提供難得的學(xué)習(xí)契機(jī)。高職學(xué)生通常擁有一定的信息技術(shù)應(yīng)用能力,教師可借助信息媒體展開教學(xué)設(shè)計(jì),與學(xué)生的生活認(rèn)知接軌。如翻轉(zhuǎn)課堂的適時(shí)介入,便屬于數(shù)學(xué)建模典范設(shè)計(jì)。多數(shù)學(xué)生都有智能手機(jī),可以隨時(shí)隨地參與網(wǎng)絡(luò)信息共享活動(dòng),因此,教師應(yīng)具備信息共享和網(wǎng)絡(luò)互動(dòng)意識(shí),為學(xué)生布設(shè)相關(guān)學(xué)習(xí)任務(wù),讓學(xué)生在多元互動(dòng)操作中逐漸達(dá)成學(xué)習(xí)共識(shí),進(jìn)而建立數(shù)理綜合認(rèn)知體系。將數(shù)學(xué)建模思想滲透到教學(xué)過程之中,每一個(gè)環(huán)節(jié)都有可能,教師要做好全面考量,針對(duì)學(xué)生實(shí)際進(jìn)行科學(xué)設(shè)計(jì)。教師要加強(qiáng)對(duì)數(shù)學(xué)建模思想方法的研究,并將這些方法與學(xué)生學(xué)習(xí)實(shí)踐相結(jié)合,從而調(diào)動(dòng)學(xué)生的數(shù)理學(xué)習(xí)思維,提升學(xué)生的數(shù)學(xué)應(yīng)用品質(zhì)。總之,高職數(shù)學(xué)教學(xué)中滲透建模思想時(shí),教師需要具備整合意識(shí),對(duì)建模資源信息展開搜集整理,對(duì)學(xué)生學(xué)力基礎(chǔ)進(jìn)行全面判斷,為建模思想的順利滲透創(chuàng)造良好條件。數(shù)學(xué)教學(xué)設(shè)計(jì)應(yīng)不斷更新,教師教學(xué)水平也亟待提升,而建模思想的全面滲透,給教師的教學(xué)帶來(lái)了全新契機(jī)。教師要根據(jù)教學(xué)實(shí)際展開創(chuàng)新設(shè)計(jì),有效提升數(shù)學(xué)課堂教學(xué)效率。

參考文獻(xiàn):

[1]李建杰.數(shù)學(xué)建模思想與高職數(shù)學(xué)教學(xué)[j].河北師范大學(xué)學(xué)報(bào),2013(06).

[2]劉學(xué)才.高職數(shù)學(xué)建模教學(xué)的現(xiàn)狀及對(duì)策[j].湖北職業(yè)技術(shù)學(xué)院學(xué)報(bào),(07).

大學(xué)數(shù)學(xué)建模論文篇六

長(zhǎng)期以來(lái),我國(guó)的數(shù)學(xué)教學(xué)中一直普遍存在著重結(jié)論而輕過程、重形式而輕內(nèi)容、重解法而輕應(yīng)用等弊端,不注重學(xué)生數(shù)學(xué)能力和素質(zhì)的培養(yǎng);過分強(qiáng)調(diào)對(duì)定義、定理、法則、公式等知識(shí)的灌輸與講授,不注重這些知識(shí)的應(yīng)用,割斷了理論與實(shí)際的聯(lián)系,造成學(xué)與用的嚴(yán)重脫節(jié),致使在我們的數(shù)學(xué)教育體制下培養(yǎng)出來(lái)的學(xué)生的能力結(jié)構(gòu)都形成了一種嚴(yán)重的病態(tài),主要表現(xiàn)在:數(shù)學(xué)理論知識(shí)掌握得還可以,但應(yīng)用知識(shí)的能力很差,不能學(xué)以致用,缺乏創(chuàng)造力和解決實(shí)際問題的能力,這些問題使我們的學(xué)生在走向工作崗位時(shí)上手速度慢,面對(duì)新的數(shù)學(xué)問題時(shí)束手無(wú)策,不能將所學(xué)的知識(shí)靈活運(yùn)用到實(shí)際中去。顯然,這種教育體制和理念與現(xiàn)代教育理念是背道而馳的,是必須拋棄的。開展數(shù)學(xué)建模教學(xué)或數(shù)學(xué)建模競(jìng)賽,能夠培養(yǎng)學(xué)生各方面的綜合能力,提高學(xué)生的綜合素質(zhì),對(duì)于當(dāng)前數(shù)學(xué)教育教學(xué)改革有著極為重要的現(xiàn)實(shí)意義。

1數(shù)學(xué)建模能夠豐富和優(yōu)化學(xué)生的知識(shí)結(jié)構(gòu),開拓學(xué)生的視野

數(shù)學(xué)建模所涉及到的許多問題都超出了學(xué)生所學(xué)的專業(yè),例如“基金的最佳適用”、“會(huì)議籌備”、“地震搜索”等許多建模問題,分別屬于不同的學(xué)科與專業(yè),為了解決這些問題,學(xué)生必須查閱和學(xué)習(xí)與該問題相關(guān)的專業(yè)書籍和科技資料,了解這些專業(yè)的相關(guān)知識(shí),從而軟化或削弱了目前教育中僵死的專業(yè)界限,使學(xué)生掌握寬廣而扎實(shí)的基礎(chǔ)知識(shí),使他們不斷拓寬分析問題、解決問題的思路,朝著復(fù)合型人才和具備全面綜合素質(zhì)人才的方向發(fā)展。

2數(shù)學(xué)建模可以培養(yǎng)學(xué)生利用數(shù)學(xué)知識(shí)解決實(shí)際問題的能力

數(shù)學(xué)建模要求建模者利用自己所掌握的數(shù)學(xué)知識(shí)及對(duì)實(shí)際問題的理解,通過積極主動(dòng)的思維,提出適當(dāng)?shù)募僭O(shè),并建立相應(yīng)的數(shù)學(xué)模型,進(jìn)而利用恰當(dāng)?shù)臄?shù)學(xué)方法(現(xiàn)有的或新創(chuàng)造的)求解此模型,并對(duì)解做出評(píng)價(jià),必要時(shí)對(duì)模型做出改進(jìn)。這一過程包括了歸納、整理、推理、深化等活動(dòng),因此把數(shù)學(xué)建模引入課堂教學(xué),必將改變目前數(shù)學(xué)教學(xué)只見定義、定理不見問題背景的局面,必將改變知識(shí)僵化、學(xué)而不用的局面,從而調(diào)動(dòng)了學(xué)生學(xué)習(xí)的積極性,培養(yǎng)了學(xué)生解決實(shí)際問題的能力。

3數(shù)學(xué)建模能夠培養(yǎng)學(xué)生的創(chuàng)造力、想象力、聯(lián)想力和洞察力

數(shù)學(xué)模型來(lái)源于客觀實(shí)際,錯(cuò)綜復(fù)雜,沒有現(xiàn)成的答案和固定的模式,因此學(xué)生在建立和求解這類模型時(shí),必須積極動(dòng)腦,而且常常需要另辟蹊徑,在這里,常常會(huì)迸發(fā)出打破常規(guī)、突破傳統(tǒng)的思維火花,通過這種實(shí)踐活動(dòng),可以培養(yǎng)學(xué)生的創(chuàng)造能力,促使他們?cè)陬^腦中樹立推崇創(chuàng)新、追求創(chuàng)新和以創(chuàng)新為榮的意識(shí)。在從實(shí)際問題中抽象出數(shù)學(xué)模型的過程中,須把實(shí)際關(guān)系轉(zhuǎn)化為數(shù)學(xué)關(guān)系,這要求他們敢于想象和聯(lián)想,此外他們還要從貌似不同的問題中抓住其本質(zhì)的和共性的東西,這將培養(yǎng)他們把握問題內(nèi)在本質(zhì)的能力,即洞察力,可以說,培養(yǎng)學(xué)生的這些能力始終貫穿在數(shù)學(xué)建模的整個(gè)過程。

4數(shù)學(xué)建??梢耘囵B(yǎng)學(xué)生熟練地運(yùn)用計(jì)算機(jī)的能力

5數(shù)學(xué)建??梢栽鰪?qiáng)大學(xué)生的適應(yīng)能力

通過數(shù)學(xué)建模的學(xué)習(xí)及競(jìng)賽訓(xùn)練,他們不僅受到了現(xiàn)代數(shù)學(xué)思維及方法的熏陶,更重要的是對(duì)不同的實(shí)際問題,如何進(jìn)行分析、推理、概括以及如何利用數(shù)學(xué)方法與計(jì)算機(jī)知識(shí),還有各方面的知識(shí)綜合起來(lái)解決它。因此,他們具有較高的素質(zhì),無(wú)論以后到哪個(gè)行業(yè)工作,都能很快適應(yīng)需要。不僅如此,由于建模決不是一件輕而易舉的事,需要學(xué)生對(duì)實(shí)際問題進(jìn)行反復(fù)多次的研究、分析、觀察和對(duì)模型進(jìn)行反復(fù)多次的計(jì)算、論證及修改等,整個(gè)過程是一個(gè)非常艱辛的探索過程,這可以培養(yǎng)學(xué)生高度的責(zé)任感、堅(jiān)韌不拔的毅力、遭遇挫折后較強(qiáng)的心理承受能力以及孜孜不倦、精益求精的探索精神,使他們具有良好的心理素質(zhì)與精神狀態(tài)。同時(shí)數(shù)學(xué)建模一般都是由幾個(gè)人組成的團(tuán)隊(duì)來(lái)完成的,其成功與否,完全取決于大家的密切合作,既要合理分工,又要密切配合,這樣又可以培養(yǎng)學(xué)生的組織管理能力、協(xié)調(diào)能力和相互協(xié)作的團(tuán)隊(duì)精神,這些對(duì)他們今后走向工作崗位都是大有裨益的。

此外,數(shù)學(xué)建模從教育觀念、內(nèi)容、形式和手段都有一定的創(chuàng)新,對(duì)數(shù)學(xué)教學(xué)改革有積極的啟示意義。首先,數(shù)學(xué)建模突出了教與學(xué)的雙主體性關(guān)系。教師要根據(jù)學(xué)生的學(xué)習(xí)興趣、能力及特點(diǎn),不斷修正自己的教育內(nèi)容和方法。學(xué)生要對(duì)教師所給予的信息有批判性地、創(chuàng)造性地、發(fā)展性地能動(dòng)反映,要在相互討論、相互啟發(fā)下尋求更多更好的解答方案。這種雙主體的關(guān)系是對(duì)傳統(tǒng)教學(xué)方式的根本突破。

其次,數(shù)學(xué)建模促進(jìn)了課程體系和教學(xué)內(nèi)容的改革。長(zhǎng)期以來(lái),我們的課程設(shè)置和教學(xué)內(nèi)容都具有強(qiáng)烈的理科特點(diǎn):重基礎(chǔ)理論、輕實(shí)踐應(yīng)用;重傳統(tǒng)的經(jīng)典數(shù)學(xué)內(nèi)容、輕離散的數(shù)值計(jì)算。然而,數(shù)學(xué)建模所要用到的主要數(shù)學(xué)方法和數(shù)學(xué)知識(shí)恰好正是被我們長(zhǎng)期所忽視的那些內(nèi)容。因此,這迫使我們調(diào)整課程體系和教學(xué)內(nèi)容。比如可增加一些應(yīng)用型、實(shí)踐類課程等等;在其余各門課程的教學(xué)中,也要盡量注意到使數(shù)學(xué)理論與應(yīng)用相結(jié)合,增加實(shí)際應(yīng)用方面的內(nèi)容和例題,從而使教學(xué)內(nèi)容也得到了更新。

再次,數(shù)學(xué)建模增加了教師對(duì)新興科技知識(shí)的傳授,拓寬了學(xué)生的知識(shí)面。這些特點(diǎn)對(duì)于目前數(shù)學(xué)教材中存在的內(nèi)容陳舊、知識(shí)面狹窄及形式呆板等問題,具有借鑒作用。數(shù)學(xué)建模的試題通常聯(lián)系新興的學(xué)科,在科學(xué)技術(shù)迅猛發(fā)展的今天,各種新興學(xué)科、邊緣學(xué)科、交叉學(xué)科不斷涌現(xiàn),廣博的知識(shí)面和對(duì)新興科學(xué)技術(shù)的追蹤能力是獲得成功的關(guān)鍵因素之一。

數(shù)學(xué)建模不僅有利于學(xué)生更好的掌握知識(shí)、運(yùn)用知識(shí),也有利于高校的科研和教學(xué),使學(xué)生和教師能在平時(shí)的學(xué)習(xí)、工作中自動(dòng)形成勤于思考的好習(xí)慣,數(shù)學(xué)建模競(jìng)賽與學(xué)生畢業(yè)以后工作時(shí)的條件非常相近,是對(duì)學(xué)生業(yè)務(wù)、能力和素質(zhì)的全面培養(yǎng),特別是開放性思維和創(chuàng)新意識(shí),這項(xiàng)活動(dòng)的開展有利于學(xué)生的全面素質(zhì)的培養(yǎng),既豐富、活躍了廣大學(xué)生的課外生活,也為優(yōu)秀學(xué)員脫穎而出創(chuàng)造了條件。

【參考文獻(xiàn)】

[1]顏筱紅,粱東穎。高職院校數(shù)學(xué)建模教學(xué)的研究[j].廣西教育,2013(2):54,134.

[3]李大潛。中國(guó)大學(xué)生數(shù)學(xué)建模競(jìng)賽[m].2版。北京:高等教育出版社,2001.

[4]謝金星。2008高教社杯全國(guó)大學(xué)生數(shù)學(xué)建模競(jìng)賽[j].工程數(shù)學(xué)學(xué)報(bào),2008(25):1-2.

大學(xué)數(shù)學(xué)建模論文篇七

1、海選和優(yōu)選有機(jī)結(jié)合借助紙質(zhì)宣傳單、大型講座等方式進(jìn)行數(shù)學(xué)建模競(jìng)賽的宣傳,對(duì)其作用以及影響進(jìn)行充分的講解,鼓勵(lì)校園內(nèi)的同學(xué)來(lái)積極的進(jìn)行參加。倘若想要參與其中的同學(xué)人數(shù)過多時(shí),畢竟參賽名額是有一定限制的,可以利用面試的方式對(duì)其進(jìn)行篩選。為不打擊學(xué)生的積極性,在條件允許的情況下,可以盡可能保留更多的參賽者,通過面試成績(jī)把大家劃分為正式參賽隊(duì)和業(yè)余參賽隊(duì)。

2、充分利用現(xiàn)有資源在進(jìn)行數(shù)學(xué)建模競(jìng)賽組隊(duì)時(shí),應(yīng)充分的全面考慮有效利用現(xiàn)有的資源。首先是要掌握不同隊(duì)伍中不同人員屬于什么年級(jí),其次了解她們的每個(gè)人學(xué)習(xí)狀況以及所學(xué)專業(yè)等等,通常來(lái)說,同一隊(duì)伍中的每個(gè)人最理想的狀態(tài)是學(xué)習(xí)不同專業(yè)的,如此一來(lái)大家可以做到取長(zhǎng)補(bǔ)短,理論知識(shí)與實(shí)踐動(dòng)手兩手抓,一個(gè)團(tuán)隊(duì)里需要出眾的知識(shí)更需要過人的文筆。如此一來(lái)才能保證隊(duì)伍的整體實(shí)力,力爭(zhēng)在建模競(jìng)賽中取得好成績(jī)。

3、重點(diǎn)培訓(xùn)在對(duì)學(xué)生進(jìn)行賽前相關(guān)培訓(xùn)時(shí),在培訓(xùn)的過程中,教師可根據(jù)自身的擅長(zhǎng)專題,來(lái)進(jìn)行相關(guān)內(nèi)容的講解,與此同時(shí)結(jié)合不同隊(duì)伍的自身特點(diǎn)劃設(shè)側(cè)重點(diǎn),同學(xué)之間的接受能力也是各不同的,能力強(qiáng)的可以開小灶,沒有相關(guān)競(jìng)賽經(jīng)驗(yàn)的要進(jìn)行重點(diǎn)培訓(xùn),這種因人而異的講解模式確保不同能力的同學(xué),在培訓(xùn)中的過程中都能夠?qū)W有所獲。

4、合理分工密切合作在參加數(shù)學(xué)建模競(jìng)賽的同學(xué)得到競(jìng)賽試題之后,老師應(yīng)該及時(shí)幫助學(xué)生進(jìn)行試題分析與指導(dǎo),根據(jù)團(tuán)隊(duì)內(nèi)不同人員的實(shí)際情況以及試題的具體內(nèi)容難易,進(jìn)行針對(duì)性的講解從而對(duì)同學(xué)們進(jìn)行合理分工,確保每個(gè)人所負(fù)責(zé)的部分都是自己相較于其他人而言是最擅長(zhǎng)的。值得注意的是,雖然進(jìn)行分工,但這并不是絕對(duì)的分割,而是有側(cè)重的合理分工,彼此之間的密切合作才是核心,畢竟建模競(jìng)賽中需要的是團(tuán)隊(duì)協(xié)作,而不是英雄主義。

5、堅(jiān)持可持續(xù)發(fā)展培訓(xùn)師資隊(duì)伍必須要有新鮮血液不斷注入,以老帶新最佳的血液注入方式,面對(duì)朝氣蓬勃的參賽學(xué)生,培訓(xùn)師資隊(duì)伍既要有身經(jīng)百戰(zhàn)經(jīng)驗(yàn)豐富的老師,也要有跟他們擁有更多共同話題的青年教師。在此期間通過不斷的學(xué)習(xí),青年教師跟同學(xué)們共同成長(zhǎng),從而保證師資隊(duì)伍的可持續(xù)發(fā)展。

二、大學(xué)生數(shù)學(xué)建模競(jìng)賽組織和管理方式的探索

1、進(jìn)行課程教學(xué)并給出有效的教學(xué)計(jì)劃每個(gè)學(xué)生的知識(shí)儲(chǔ)備都有著各自的特點(diǎn),借助良好的教育對(duì)學(xué)生們的知識(shí)架構(gòu)進(jìn)行完善,實(shí)現(xiàn)培養(yǎng)出學(xué)生強(qiáng)大能力的目標(biāo),數(shù)學(xué)建模對(duì)學(xué)生來(lái)說裨益良多,被視作是大學(xué)校園中必備課程之一。但是進(jìn)行課程開展的時(shí)候,要根據(jù)不同的培訓(xùn)對(duì)象大致分為以下兩類:第一、以選修課形式開設(shè)數(shù)學(xué)建模競(jìng)賽課程,選修課程所面向的群體為整個(gè)學(xué)校的所有學(xué)生。第二、以必修課的方式開設(shè)數(shù)學(xué)建模競(jìng)賽課程,必修課就要有針對(duì)性,因?yàn)椴⒉皇撬械膶W(xué)生都需要學(xué)習(xí)數(shù)學(xué),所以必修課針對(duì)的群體應(yīng)該是數(shù)學(xué)專業(yè)的學(xué)生。不同性質(zhì)的課程在教授上應(yīng)該有所區(qū)分,內(nèi)容的深淺也要有適當(dāng)?shù)恼{(diào)整。

2、利用建模教學(xué)實(shí)現(xiàn)知識(shí)與能力雙培養(yǎng)有效的教學(xué)是獲得數(shù)學(xué)建模競(jìng)賽好成績(jī)的最佳途徑,但是教學(xué)的過程中要注重?cái)?shù)學(xué)知識(shí)與實(shí)踐能力的均衡共同培養(yǎng),不能過分的注重知識(shí)的灌輸,而忽略了建模相關(guān)能力的培養(yǎng),對(duì)二者的培養(yǎng)必須要并駕齊驅(qū),如此才能真正的'掌握數(shù)學(xué)建模的精髓,從而在競(jìng)賽中取得良好的成績(jī)。

3、數(shù)學(xué)建模競(jìng)賽隊(duì)員的篩選數(shù)學(xué)建模所需要的人才是全方面的人才,除此之外還要對(duì)數(shù)學(xué)建模有足夠的興趣,并且還要有足夠多的時(shí)間來(lái)參加培訓(xùn)。以上述條件為基礎(chǔ),報(bào)名之后通過面試的測(cè)試,然后再?gòu)闹泻Y選出相對(duì)優(yōu)秀的學(xué)生組成參賽隊(duì)伍,在篩選的時(shí)候要充分的考慮到團(tuán)隊(duì)整體知識(shí)的涵蓋面,不同人之間所擅長(zhǎng)的專業(yè)不同為最佳。

4、培訓(xùn)培訓(xùn)工作通常被劃分為不同的階段:首先是初級(jí)階段,這一階段所注重的是對(duì)相關(guān)知識(shí)的培訓(xùn)。從初等模型、簡(jiǎn)單優(yōu)化模型、常微分方程模型等建模的基礎(chǔ)知識(shí)和方法入手由淺入深;其次是拔高階段,主要以專家講座為主,邀請(qǐng)建模專家進(jìn)行系統(tǒng)的講解,并結(jié)合精典范例進(jìn)行深入剖析,在擴(kuò)大學(xué)生的知識(shí)面和視野的同時(shí)提升學(xué)生的建模能力。

三、結(jié)語(yǔ)

通過以上的一系列論述,我們已經(jīng)對(duì)大學(xué)數(shù)學(xué)建模競(jìng)賽的隊(duì)伍組織及管理方式,有了更加清晰的了解和掌握。大學(xué)數(shù)學(xué)建模競(jìng)賽對(duì)于大學(xué)生來(lái)說好處頗多,一方面能夠使學(xué)生們對(duì)學(xué)習(xí)的數(shù)學(xué)知識(shí)有更深的理解與更為靈活的應(yīng)用,另一方面,通過競(jìng)賽中的組隊(duì)讓大家感受到合作的重要性,為以后步入社會(huì)的工作打下基礎(chǔ)。希望這篇文章能夠?qū)︶槍?duì)數(shù)學(xué)建模的研究有一定的借鑒作用!

參考文獻(xiàn):

[1]韓成標(biāo),賈進(jìn)濤、高職院校參加數(shù)學(xué)建模競(jìng)賽大有可為[j]、工程數(shù)學(xué)學(xué)報(bào),(8)

[2]全國(guó)大學(xué)生數(shù)學(xué)建模競(jìng)賽賽題講評(píng)與經(jīng)驗(yàn)交流會(huì)在廣西大學(xué)舉行[j]、數(shù)學(xué)建模及其應(yīng)用,(04)

[3]錢方紅、基于數(shù)學(xué)模型解決數(shù)學(xué)建模競(jìng)賽隊(duì)員選拔和組隊(duì)問題[j]、信息與電腦:理論版,(3)

[4]肖帆,張?zhí)m、高職院校數(shù)學(xué)建模競(jìng)賽培訓(xùn)模式研究[j]、延安職業(yè)技術(shù)學(xué)院學(xué)報(bào),2017(2)

大學(xué)數(shù)學(xué)建模論文篇八

大量的應(yīng)用型技能型人才,有效滿足了社會(huì)各行各業(yè)的用工需求。隨著國(guó)家對(duì)高職教育的重視和不斷投入,提高教育的教學(xué)質(zhì)量勢(shì)在必行[1]。數(shù)學(xué)建模的核心是以數(shù)學(xué)模型為基礎(chǔ)的實(shí)際運(yùn)用,鑒于數(shù)學(xué)建模的這種特點(diǎn),國(guó)內(nèi)高職數(shù)學(xué)教育逐步把數(shù)學(xué)建模理念融入到課題教學(xué)中,提高學(xué)生的應(yīng)用能力。以數(shù)學(xué)建模理念的告知書明確教學(xué)改革要求學(xué)生結(jié)合計(jì)算機(jī)技術(shù),靈活運(yùn)用數(shù)學(xué)的思想和方法獨(dú)立地分析和解決問題,不僅能培養(yǎng)學(xué)生的探索精神和創(chuàng)新意識(shí),而且能培養(yǎng)學(xué)生團(tuán)結(jié)協(xié)作、不怕困難、求實(shí)嚴(yán)謹(jǐn)?shù)淖黠L(fēng)[2]。筆者結(jié)合自身的教學(xué)工作經(jīng)驗(yàn),對(duì)基于數(shù)學(xué)建模理念的高職數(shù)學(xué)教學(xué)改革進(jìn)行了探索,對(duì)教學(xué)實(shí)踐中出現(xiàn)的問題進(jìn)行了分析梳理,以期為高職數(shù)學(xué)教學(xué)改革提供新思路,推動(dòng)高職數(shù)學(xué)教學(xué)水平的不斷提高,培養(yǎng)出具有良好數(shù)學(xué)素養(yǎng)和專業(yè)技能的新型高職人才。

近年來(lái),隨著國(guó)內(nèi)產(chǎn)業(yè)結(jié)構(gòu)的不斷調(diào)整,對(duì)于高等職業(yè)技術(shù)人才需求不斷增大,社會(huì)對(duì)高等職業(yè)技術(shù)教育寄予厚望。但是傳統(tǒng)的高職教育由于專業(yè)設(shè)置不合理,使用教材落后,實(shí)訓(xùn)實(shí)踐場(chǎng)地不足,培養(yǎng)出的學(xué)生動(dòng)手能力差、專業(yè)能力不足,面對(duì)社會(huì)發(fā)展的新形勢(shì),高職教育必須進(jìn)行教學(xué)改革,提高學(xué)生的職業(yè)能力和就業(yè)競(jìng)爭(zhēng)力。高職教育不同于普通本科教育,它有以下幾方面的特點(diǎn)。

1人才培養(yǎng)目標(biāo)不同

高職教育和本科教育人才培養(yǎng)目標(biāo)不同,高職教育是以技術(shù)應(yīng)用型高技能人才為培養(yǎng)目標(biāo),所有的教學(xué)課程設(shè)計(jì)和人才培養(yǎng)體系設(shè)計(jì)都是基于此目標(biāo)展開的,高職教育主要是為了向產(chǎn)業(yè)發(fā)展提供生產(chǎn)、服務(wù)、管理等一線工作的高級(jí)技術(shù)應(yīng)用型人才,專業(yè)能力培養(yǎng)和目標(biāo)職業(yè)匹配度高,所以高職教育教學(xué)成果最直接的評(píng)價(jià)就是畢業(yè)生的就業(yè)競(jìng)爭(zhēng)力和上崗后的適應(yīng)能力。

2兩者的教學(xué)內(nèi)容不同

高職教育的教學(xué)重點(diǎn)是學(xué)生要掌握與實(shí)踐工作關(guān)系較為密切的業(yè)務(wù)處理能力、動(dòng)手能力與交流能力,把學(xué)生的職業(yè)能力建設(shè)列為教學(xué)重點(diǎn),課程設(shè)計(jì)專業(yè)性強(qiáng),一旦就業(yè)能為企業(yè)創(chuàng)造明顯的效益,高職教育各專業(yè)課程差別較大。

3生源情況不同

在當(dāng)前的教育教學(xué)體系下,高職教育的生源普遍較差,大多是沒有希望考上大學(xué),轉(zhuǎn)而進(jìn)入高職學(xué)習(xí),希望通過掌握一定的技術(shù)來(lái)實(shí)現(xiàn)就業(yè),所以高職學(xué)生的基礎(chǔ)知識(shí)普遍較差,學(xué)習(xí)興趣不高。數(shù)學(xué)建模給高職數(shù)學(xué)教學(xué)改革開辟了新思路,數(shù)學(xué)建模為數(shù)學(xué)理論學(xué)習(xí)和工程實(shí)踐應(yīng)用搭建了橋梁,在工學(xué)結(jié)合的基本原則下,采取數(shù)學(xué)建模教學(xué)理念,培養(yǎng)學(xué)生的數(shù)學(xué)素養(yǎng)及動(dòng)手應(yīng)用能力是一個(gè)非常有效的手段[3]。

1數(shù)學(xué)建模的概念數(shù)學(xué)建模是將數(shù)學(xué)理論和現(xiàn)實(shí)問題相結(jié)合的一門科學(xué),它將實(shí)際問題抽象、歸納成為相應(yīng)的數(shù)學(xué)模型,在此基礎(chǔ)上應(yīng)用數(shù)學(xué)概念、數(shù)學(xué)定理、數(shù)學(xué)方法等手段研究處理實(shí)際問題,從定性或者定理的角度給出科學(xué)的結(jié)果[4]。數(shù)學(xué)建模的發(fā)展為數(shù)學(xué)知識(shí)的應(yīng)用提供了途徑,對(duì)于現(xiàn)實(shí)中的特點(diǎn)問題,可以用數(shù)學(xué)語(yǔ)言來(lái)描述其內(nèi)在規(guī)律和問題,運(yùn)用數(shù)學(xué)研究的成果,結(jié)合計(jì)算機(jī)專業(yè)軟件,通過抽象、簡(jiǎn)化、假設(shè)、引進(jìn)變量等處理過程后,將實(shí)際問題用數(shù)學(xué)方式表達(dá),轉(zhuǎn)化成為數(shù)學(xué)問題,借助數(shù)學(xué)思想建立起數(shù)學(xué)模型,從而解決實(shí)際問題。2基于數(shù)學(xué)建模思想的教學(xué)理念基于數(shù)學(xué)建模的這種學(xué)科特點(diǎn),可以把數(shù)學(xué)知識(shí)應(yīng)用化,因此,基于數(shù)學(xué)建模思想的教學(xué)理念可以概括為三個(gè)層次:首先,確立提高學(xué)生數(shù)學(xué)應(yīng)用能力為目標(biāo),以提高學(xué)生數(shù)學(xué)學(xué)習(xí)興趣為手段,以學(xué)習(xí)數(shù)學(xué)建模為途徑;其次,結(jié)合教學(xué)內(nèi)容,開發(fā)相應(yīng)的數(shù)學(xué)建模案例,因地制宜、因生制宜,根據(jù)專業(yè)不同編寫相應(yīng)的校本教材;最后,改進(jìn)教學(xué)方法,創(chuàng)新課堂教學(xué)模式,建立課外數(shù)學(xué)建模學(xué)習(xí)興趣小組,帶領(lǐng)學(xué)生進(jìn)行數(shù)學(xué)應(yīng)用實(shí)踐活動(dòng),鼓勵(lì)學(xué)生參加各種數(shù)學(xué)建模競(jìng)賽[5]。

傳統(tǒng)的數(shù)學(xué)教學(xué)模式以教師課堂講授為中心,學(xué)生只能被動(dòng)的接受,由于學(xué)生的基礎(chǔ)知識(shí)水平不同,掌握新知識(shí)的能力也不同,這種沒有區(qū)分的教學(xué)模式教學(xué)效果差,往往帶來(lái)的結(jié)果是造成基礎(chǔ)差的學(xué)生跟不上,對(duì)數(shù)學(xué)感興趣的學(xué)生失去興趣。基于數(shù)學(xué)建模理念的高職數(shù)學(xué)教學(xué)改革,是以學(xué)生數(shù)學(xué)應(yīng)用能力提高為目標(biāo),以數(shù)學(xué)學(xué)習(xí)興趣培養(yǎng)為出發(fā)點(diǎn),以數(shù)學(xué)建模為途徑,以教學(xué)方式改革為保障,打造高職數(shù)學(xué)教學(xué)改革新模式,全面提高高職教育應(yīng)用型人才培養(yǎng)水平。

1結(jié)合專業(yè)特色,突出數(shù)學(xué)教育的應(yīng)用性

數(shù)學(xué)作為高職教育的基礎(chǔ)性學(xué)科,理論性強(qiáng),體系性強(qiáng),對(duì)于基礎(chǔ)知識(shí)薄弱、學(xué)習(xí)興趣差的高職生來(lái)說感覺難學(xué)、枯燥,這是因?yàn)楦呗殧?shù)學(xué)教育沒有教會(huì)學(xué)生如何在專業(yè)學(xué)習(xí)中和以后的工作中如何去用學(xué)到的數(shù)學(xué)知識(shí),學(xué)生感覺知識(shí)無(wú)用自然也就不會(huì)主動(dòng)去學(xué),之所以引入數(shù)學(xué)建模的思想就是為了讓學(xué)生利用學(xué)到的數(shù)學(xué)知識(shí)去解決實(shí)際問題,讓學(xué)生認(rèn)識(shí)到數(shù)學(xué)不只是紙面上的寫寫算算,數(shù)學(xué)可以把實(shí)際問題抽象化,變成數(shù)學(xué)問題,利用數(shù)學(xué)的研究方法給實(shí)際問題進(jìn)行科學(xué)的指導(dǎo),這樣高職數(shù)學(xué)教育就不再是課堂上的照本宣科,課下的演算作業(yè),將基礎(chǔ)數(shù)學(xué)教育和學(xué)生的專業(yè)教育相結(jié)合,帶來(lái)學(xué)生用數(shù)學(xué)解決專業(yè)問題是大幅度提高學(xué)生專業(yè)能力的有效途徑。

2結(jié)合學(xué)生能力,因材施教、因地制宜

高職學(xué)校的生源不如普通高校,一般學(xué)習(xí)基礎(chǔ)較差,對(duì)于專業(yè)實(shí)訓(xùn)課并不明顯,但是在基礎(chǔ)學(xué)科教學(xué)過程特別突出,很多基礎(chǔ)知識(shí)掌握不牢,甚至一點(diǎn)印象都沒有,教師在上課時(shí)要充分考慮到這種情況,在課堂授課時(shí)給予實(shí)時(shí)的補(bǔ)充,以助于知識(shí)的過渡。因材施教是我國(guó)傳統(tǒng)的教育思想,在掌握學(xué)生知識(shí)水平的基礎(chǔ)上,教師要根據(jù)不同學(xué)習(xí)層次學(xué)生的具體情況,安排教學(xué)內(nèi)容和設(shè)置教學(xué)目標(biāo),對(duì)于基礎(chǔ)知識(shí)水平不高、學(xué)習(xí)興趣較差、學(xué)習(xí)能力較弱的學(xué)生要進(jìn)行課外輔導(dǎo)。高職基礎(chǔ)課教育是專業(yè)課學(xué)習(xí)的基礎(chǔ),授課教師要根據(jù)學(xué)生的專業(yè)學(xué)習(xí)情況和專業(yè)特點(diǎn),把遷移知識(shí)運(yùn)用能力在課堂上結(jié)合學(xué)生的專業(yè)背景進(jìn)行輔導(dǎo),高職數(shù)學(xué)教育不僅僅是為了學(xué)習(xí)數(shù)學(xué),更多的是發(fā)揮數(shù)學(xué)知識(shí)在其專業(yè)能力培養(yǎng)中的作用。

3培養(yǎng)學(xué)生學(xué)習(xí)興趣,促進(jìn)整體教學(xué)質(zhì)量提高

高職學(xué)校的學(xué)生學(xué)習(xí)興趣普遍不高,尤其是對(duì)于學(xué)了十幾年都感覺頭痛的數(shù)學(xué),要想提高數(shù)學(xué)的教學(xué)質(zhì)量,首先必須要培養(yǎng)學(xué)生的學(xué)習(xí)興趣,長(zhǎng)期以來(lái)學(xué)生在數(shù)學(xué)學(xué)習(xí)上已經(jīng)有了根深蒂固的認(rèn)識(shí),培養(yǎng)數(shù)學(xué)學(xué)習(xí)興趣很難,但是如果學(xué)生沒有學(xué)習(xí)興趣,教師授課內(nèi)容、授課方式改革都起不了太大的作用,學(xué)生對(duì)于數(shù)學(xué)學(xué)習(xí)興趣低由于低年級(jí)學(xué)習(xí)時(shí)受到的挫敗感,因此要讓學(xué)生建立學(xué)習(xí)數(shù)學(xué)的自信心,讓他們體驗(yàn)學(xué)會(huì)數(shù)學(xué)的成就感,這樣才能逐步培養(yǎng)他們的學(xué)習(xí)興趣。教師可以采取以點(diǎn)帶面的方式,先選擇有一定基礎(chǔ)的學(xué)生,再?gòu)娜空n程學(xué)習(xí)中發(fā)現(xiàn)表現(xiàn)優(yōu)秀的個(gè)體,組織參加建模競(jìng)賽,進(jìn)行單獨(dú)賽前加強(qiáng)指導(dǎo),用這些榜樣的力量提高全體同學(xué)的學(xué)習(xí)積極性。數(shù)學(xué)建模作為提高高職數(shù)學(xué)教育教學(xué)水平的“點(diǎn)”,能夠以其趣味性強(qiáng),帶動(dòng)學(xué)生的學(xué)習(xí)興趣,促進(jìn)高職數(shù)學(xué)教育教學(xué)水平的全面提高。

4改革教學(xué)及評(píng)價(jià)方式,建立面向應(yīng)用的數(shù)學(xué)教育體系

由于基于數(shù)學(xué)建模思想的高職數(shù)學(xué)教學(xué)改革打破了以往的課堂教學(xué)方式和考核方式,學(xué)生面對(duì)的不再是期末的一張?jiān)嚲?,而是一個(gè)個(gè)數(shù)學(xué)建模案例,需要學(xué)生運(yùn)用本學(xué)期學(xué)到的數(shù)學(xué)知識(shí)解決實(shí)際問題,教師根據(jù)學(xué)生對(duì)案例的理解程度,數(shù)學(xué)模型運(yùn)用能力,實(shí)際過程分析和解題技巧等多方面給出評(píng)價(jià),同時(shí)積極評(píng)價(jià)、鼓勵(lì)學(xué)生的創(chuàng)新思維,并將其納入到考核體系當(dāng)中。通過以上各個(gè)方面評(píng)價(jià)的加權(quán)作為最后的評(píng)價(jià)指標(biāo)。這種以數(shù)學(xué)知識(shí)應(yīng)用為基礎(chǔ),直接面向應(yīng)用的高職數(shù)學(xué)教育模式能極大的激發(fā)學(xué)生的學(xué)習(xí)積極性和知識(shí)應(yīng)用能力,符合高職應(yīng)用型人才培養(yǎng)理念,對(duì)提高高職學(xué)生的專業(yè)能力也打下了堅(jiān)實(shí)的基礎(chǔ)?;跀?shù)學(xué)建模理念的高職數(shù)學(xué)教學(xué)改革是推動(dòng)高職應(yīng)用型人才培養(yǎng)體系建設(shè)的新舉措,也是推動(dòng)高職基礎(chǔ)課教學(xué)水平的重要內(nèi)容,能有效解決學(xué)生學(xué)習(xí)興趣低,基礎(chǔ)知識(shí)掌握不牢,數(shù)學(xué)知識(shí)應(yīng)用能力低等問題,通過“案例驅(qū)動(dòng)法+討論法”,引導(dǎo)學(xué)生再次對(duì)課本知識(shí)進(jìn)行思考和應(yīng)用,有利于培養(yǎng)學(xué)生的創(chuàng)新思維和應(yīng)用能力。引入數(shù)學(xué)建模理念教學(xué),把課堂學(xué)習(xí)的主動(dòng)權(quán)交回給學(xué)生,既保證了高等數(shù)學(xué)原有的知識(shí)體系的完整,也可以提高教學(xué)效率。通過教學(xué)方式和評(píng)價(jià)方式改革,學(xué)生的學(xué)習(xí)主動(dòng)性增強(qiáng),也改變了以往對(duì)于數(shù)學(xué)學(xué)習(xí)的學(xué)習(xí)態(tài)度。高等數(shù)學(xué)作為高職教育學(xué)生必修的基礎(chǔ)課,在培養(yǎng)學(xué)生基本數(shù)學(xué)素養(yǎng)上具有重要作用,是理工類專業(yè)課程體系的重要組成部分,基于數(shù)學(xué)建模理念的高職數(shù)學(xué)教學(xué)改革也為同類基礎(chǔ)理論課改革提供了新思路和范例。

[1]孫麗.在高職數(shù)學(xué)教學(xué)改革中應(yīng)注重?cái)?shù)學(xué)建模思想的滲透[j].科技資訊,20xx(22):188.

大學(xué)數(shù)學(xué)建模論文篇九

為了培養(yǎng)小學(xué)生良好的數(shù)學(xué)學(xué)習(xí)興趣,激發(fā)他們的數(shù)學(xué)潛能,教師需要采取必要的措施注重?cái)?shù)學(xué)建模思想的有效培養(yǎng),促進(jìn)學(xué)生的全面發(fā)展。在制定相關(guān)培養(yǎng)策略的過程中,教師應(yīng)充分考慮小學(xué)生的性格特點(diǎn),提高數(shù)學(xué)建模思想培養(yǎng)的有效性。基于此,文章將從不同的方面對(duì)小學(xué)生數(shù)學(xué)建模思想的培養(yǎng)策略進(jìn)行初步的探討。

作為小學(xué)數(shù)學(xué)教學(xué)中的重要組成部分,數(shù)學(xué)建模思想的滲透及相關(guān)教學(xué)活動(dòng)的順利開展,有利于提高復(fù)雜數(shù)學(xué)問題的處理效率,保持?jǐn)?shù)學(xué)課堂教學(xué)的高效性。要實(shí)現(xiàn)這樣的發(fā)展目標(biāo),增強(qiáng)小學(xué)生數(shù)學(xué)建模思想的實(shí)際培養(yǎng)效果,需要加強(qiáng)對(duì)學(xué)生動(dòng)手實(shí)踐能力的培養(yǎng),激發(fā)學(xué)生的更高興趣。建模的過程涉及問題表述、求解、必要解釋及有效驗(yàn)證,在這四個(gè)環(huán)節(jié)中,可能會(huì)存在一定的問題,影響著數(shù)學(xué)教學(xué)計(jì)劃的實(shí)施。因此,教師需要利用學(xué)生動(dòng)手實(shí)踐能力的作用,實(shí)現(xiàn)數(shù)學(xué)建模思想的有效培養(yǎng),促使小學(xué)生能夠在數(shù)學(xué)建模過程中享受到更多的快樂。比如,在講解“認(rèn)識(shí)角”知識(shí)的過程中,某些學(xué)生認(rèn)為邊越長(zhǎng)角度也越大。為了使學(xué)生能夠?qū)ζ渲械闹R(shí)點(diǎn)有更加正確而全面的認(rèn)識(shí),教師可以通過在黑板上設(shè)置一些能夠活動(dòng)的三角板,讓學(xué)生親自動(dòng)手操作,以此得出角與邊長(zhǎng)的正確關(guān)系,為后續(xù)教學(xué)計(jì)劃的實(shí)施打下堅(jiān)實(shí)的基礎(chǔ)。通過這種教學(xué)方法的合理運(yùn)用,可以激發(fā)出學(xué)生們?cè)跀?shù)學(xué)建模學(xué)習(xí)中的更高興趣,豐富他們的想象力,從而使他們對(duì)數(shù)學(xué)建模思想有一定的了解,在未來(lái)學(xué)習(xí)過程中能夠保持良好的`數(shù)學(xué)建模能力。

通過對(duì)小學(xué)階段各種數(shù)學(xué)實(shí)踐教學(xué)活動(dòng)實(shí)際概況的深入分析,可知構(gòu)建良好的數(shù)學(xué)模型有利于加深學(xué)生對(duì)各知識(shí)(福建省莆田市秀嶼區(qū)東嶠前江小學(xué),福建莆田351164)點(diǎn)的深入理解,增強(qiáng)其主動(dòng)參與數(shù)學(xué)建模教學(xué)活動(dòng)的積極性。因此,為了使小學(xué)生數(shù)學(xué)建模思想培養(yǎng)能夠達(dá)到預(yù)期的效果,教師需要結(jié)合實(shí)際的教學(xué)內(nèi)容,建立必要的數(shù)學(xué)參考模型,提升學(xué)生對(duì)數(shù)學(xué)建模思想的整體認(rèn)知水平。比如,在講授“異分母分?jǐn)?shù)加減法”這部分知識(shí)的過程中,可以設(shè)置“0.8千克+300克”“1.6千克-400克”等問題,向?qū)W生提問是否可以直接計(jì)算,并說出原因。當(dāng)學(xué)生通過對(duì)問題的深入思考,總結(jié)出“單位不同不能直接計(jì)算”的結(jié)論后,繼續(xù)向?qū)W生提問小數(shù)計(jì)算中為什么每一位都要對(duì)齊,實(shí)現(xiàn)“計(jì)數(shù)單位統(tǒng)一后才能計(jì)算”這一數(shù)學(xué)模型的構(gòu)建。在這樣的教學(xué)過程中,學(xué)生可以加深對(duì)知識(shí)點(diǎn)的理解,實(shí)現(xiàn)數(shù)學(xué)建模思想的有效培養(yǎng)。

加強(qiáng)小學(xué)生數(shù)學(xué)建模思想的有效培養(yǎng),需要在具體的教學(xué)活動(dòng)開展中注重對(duì)數(shù)學(xué)思想的靈活運(yùn)用,增強(qiáng)相關(guān)模型構(gòu)建的可靠性,促使學(xué)生在長(zhǎng)期的數(shù)學(xué)學(xué)習(xí)中能夠不斷提高自身的數(shù)學(xué)能力,運(yùn)用各種數(shù)學(xué)知識(shí)處理實(shí)際問題。比如,在“角的度量”這部分內(nèi)容講解的過程中,為了提高學(xué)生對(duì)角的分類及畫角相關(guān)知識(shí)點(diǎn)的深入理解,教師可以將所有的學(xué)生分為不同的小組,讓學(xué)生們通過小組討論的方式,對(duì)角的正確分類及如何畫角有一定的了解,并讓每個(gè)小組代表在講臺(tái)上演示畫角的過程。此時(shí),教師可以通過對(duì)多媒體教學(xué)設(shè)備的合理運(yùn)用,利用動(dòng)態(tài)化的文字與圖片對(duì)其中的知識(shí)要點(diǎn)進(jìn)行展示,確保學(xué)生們能夠在良好的教學(xué)模式中提升自身的認(rèn)知水平,并在不斷的思考過程中逐漸形成良好的創(chuàng)造性思維,強(qiáng)化自身的創(chuàng)新意識(shí)。比如,在講解“圖形變換”中的軸對(duì)稱、旋轉(zhuǎn)知識(shí)點(diǎn)的過程中,教師應(yīng)通過對(duì)學(xué)生的正確引導(dǎo),運(yùn)用三角板、圓柱等教學(xué)輔助工具,讓學(xué)生從不同的角度對(duì)各種軸對(duì)稱圖形、旋轉(zhuǎn)后得到的圖形進(jìn)行深入思考,提高自身數(shù)學(xué)建模過程中的創(chuàng)新能力,從不同的角度深入理解圖像變換過程,對(duì)這部分內(nèi)容有更多的了解。因此,教師應(yīng)注重小學(xué)生數(shù)學(xué)建模思想培養(yǎng)中多方位思考方式的針對(duì)性培養(yǎng),提高學(xué)生的創(chuàng)新能力,優(yōu)化學(xué)生的思維方式,全面提升小學(xué)數(shù)學(xué)建模教學(xué)水平。

總之,加強(qiáng)小學(xué)生數(shù)學(xué)建模思想培養(yǎng)策略的制定與實(shí)施,有利于滿足素質(zhì)教育的更高要求,實(shí)現(xiàn)對(duì)小學(xué)生數(shù)學(xué)能力的有效鍛煉,確保相關(guān)的教學(xué)計(jì)劃能夠在規(guī)定的時(shí)間內(nèi)順利地完成。與此同時(shí),結(jié)合當(dāng)前小學(xué)數(shù)學(xué)教育教學(xué)的實(shí)際發(fā)展概況,可知靈活運(yùn)用各種科學(xué)的數(shù)學(xué)建模思想培養(yǎng)策略,有利于滿足學(xué)生數(shù)學(xué)建模學(xué)習(xí)中的多樣化需求,為相關(guān)教學(xué)目標(biāo)的順利實(shí)現(xiàn)提供可靠的保障。

[1]童小艷.小學(xué)數(shù)學(xué)教學(xué)中培養(yǎng)學(xué)生建模思想的策略[j].學(xué)子(教育新理念),20xx(6).

[2]白寧.先學(xué)而后教——小學(xué)生數(shù)學(xué)建模思想培養(yǎng)的捷徑[j].數(shù)學(xué)學(xué)習(xí)與研究,20xx(16).

大學(xué)數(shù)學(xué)建模論文篇十

隨著社會(huì)的不斷發(fā)展和科學(xué)技術(shù)的進(jìn)步,數(shù)學(xué)在現(xiàn)實(shí)生活中的應(yīng)用越來(lái)越廣泛,尤其是計(jì)算機(jī)技術(shù)的發(fā)展及廣泛應(yīng)用,使數(shù)學(xué)建模思想在解決社會(huì)各個(gè)領(lǐng)域中的實(shí)際問題的應(yīng)用越來(lái)越深入。本文筆者簡(jiǎn)要談?wù)剶?shù)學(xué)建模思想融入大學(xué)數(shù)學(xué)類課程的意義和方法。

所謂數(shù)學(xué)建模就是指構(gòu)造數(shù)學(xué)模型的過程,也就是說用公式、符號(hào)和圖表等數(shù)學(xué)語(yǔ)言來(lái)刻畫和描述一個(gè)實(shí)際問題,再經(jīng)過計(jì)算、迭代等數(shù)學(xué)處理得到定量的結(jié)果,從而供人們分析、預(yù)報(bào)、決策與控制。那么數(shù)學(xué)模型就是利用數(shù)學(xué)術(shù)語(yǔ)對(duì)一部分現(xiàn)實(shí)世界的描述。數(shù)學(xué)建模思想是指理論聯(lián)系實(shí)際,將實(shí)際的事物抽象成數(shù)學(xué)模型,然后利用所學(xué)的理論來(lái)解決問題的一種思想。

在新形勢(shì)下,傳統(tǒng)的數(shù)學(xué)教學(xué)方法已經(jīng)無(wú)法適應(yīng)現(xiàn)在大學(xué)數(shù)學(xué)教育改革的需求,數(shù)學(xué)建模思想與大學(xué)數(shù)學(xué)類課程教育融合成為目前高等院校數(shù)學(xué)教學(xué)改革的突破口。

(1)數(shù)學(xué)知識(shí)在各個(gè)領(lǐng)域的應(yīng)用越來(lái)越廣泛。如今數(shù)學(xué)知識(shí)在各個(gè)領(lǐng)域的應(yīng)用越來(lái)越廣泛,尤其是在經(jīng)濟(jì)學(xué)中的應(yīng)用最為顯著。自從1969年創(chuàng)設(shè)諾貝爾經(jīng)濟(jì)學(xué)獎(jiǎng)以來(lái),就有不少理論成果來(lái)自利用數(shù)學(xué)工具分析經(jīng)濟(jì)問題。事實(shí)上,從1969年到20xx年這35年中,一共產(chǎn)生了53位獲獎(jiǎng)?wù)?,其中擁有?shù)學(xué)學(xué)位的共有19人,所占比例為35.8%;其中擁有理工學(xué)位的有9人,所占比例為17%;二者共計(jì)占52.8%;其中共有29位諾貝爾經(jīng)濟(jì)學(xué)獎(jiǎng)的獲得者是以數(shù)學(xué)方法為主要的研究方法,約占總?cè)藬?shù)的63.1%。然而幾乎所有的諾貝爾經(jīng)濟(jì)學(xué)獎(jiǎng)獲得者都運(yùn)用了數(shù)學(xué)方法來(lái)研究經(jīng)濟(jì)學(xué)理論。除了在經(jīng)濟(jì)領(lǐng)域,數(shù)學(xué)建模思想也廣泛應(yīng)用于生物醫(yī)學(xué),包括超聲波、電磁診斷等方面。同時(shí)數(shù)學(xué)建模還將數(shù)學(xué)與生物學(xué)融合進(jìn)了基因科學(xué),例如基因表達(dá)的定型、基因組測(cè)序、基因分類等等,在生物學(xué)領(lǐng)域需要建立大規(guī)模的模擬以及復(fù)雜的數(shù)學(xué)模型。可見數(shù)學(xué)建模思想的應(yīng)用是非常廣泛的,并對(duì)其他領(lǐng)域的發(fā)展起著重要的推動(dòng)作用。

(2)有利于激發(fā)學(xué)生的學(xué)習(xí)熱情,豐富大學(xué)數(shù)學(xué)課程。一般的數(shù)學(xué)課,通常只是重視理論知識(shí)的講解和傳授,對(duì)知識(shí)點(diǎn)的推理和思想方法的分析較少。而且多數(shù)學(xué)生為了應(yīng)付考試,也只是以“類型題”的方式去復(fù)習(xí)知識(shí)點(diǎn)。這樣的方式雖然能夠讓學(xué)生掌握一部分?jǐn)?shù)學(xué)知識(shí),可是卻不能提高學(xué)生的數(shù)學(xué)素質(zhì),不能提高學(xué)生對(duì)大學(xué)數(shù)學(xué)的學(xué)習(xí)興趣。而數(shù)學(xué)建模思想運(yùn)用數(shù)學(xué)知識(shí)來(lái)解決生活中的實(shí)際問題,這樣就使數(shù)學(xué)活了起來(lái),而不是死的理論知識(shí)。運(yùn)用數(shù)學(xué)建模思想能夠讓學(xué)生在數(shù)學(xué)中感悟生活,在生活中體會(huì)數(shù)學(xué)的價(jià)值,更容易吸引學(xué)生的學(xué)習(xí)興趣。而興趣是學(xué)習(xí)最有效的動(dòng)力,讓學(xué)生主動(dòng)參與學(xué)習(xí)而非被動(dòng)學(xué)習(xí),取得的教學(xué)效果會(huì)更好。

(3)是加強(qiáng)數(shù)學(xué)教學(xué)改革,適應(yīng)時(shí)代發(fā)展的需要。在大學(xué)數(shù)學(xué)教學(xué)活動(dòng)中,許多學(xué)生常常陷入這樣的困惑之中:花費(fèi)了大量的精力,做了很多習(xí)題,但是卻感受不到數(shù)學(xué)的作用和價(jià)值。而教師在教學(xué)中也總是告訴學(xué)生數(shù)學(xué)是一門很有用的課程,但是卻舉不出現(xiàn)實(shí)的例子。并且傳統(tǒng)的教學(xué)方式也只是教會(huì)學(xué)生掌握簡(jiǎn)單的理論知識(shí),并不能提高學(xué)生的數(shù)學(xué)素養(yǎng)和數(shù)學(xué)意識(shí)。而將數(shù)學(xué)建模思想融入到大學(xué)的數(shù)學(xué)類課程之中就能很好地解決這些問題。因?yàn)閷?shù)學(xué)建模思想運(yùn)用到數(shù)學(xué)類課程中,就能夠讓學(xué)生在獨(dú)立思考和探索中感受到數(shù)學(xué)在現(xiàn)實(shí)生活中的實(shí)用價(jià)值,提高學(xué)生運(yùn)用數(shù)學(xué)的眼光去觀察、分析以及表示各種事物的空間關(guān)系、數(shù)量關(guān)系和數(shù)學(xué)信息的能力,提高學(xué)生的創(chuàng)造能力和創(chuàng)新意識(shí)。

(1)教師在教學(xué)過程中較少滲入數(shù)學(xué)建模思想。目前在高校數(shù)學(xué)教學(xué)中數(shù)學(xué)建模的思想應(yīng)用得仍然較少,重視程度不夠。不少高校的教師在開展大學(xué)數(shù)學(xué)類課程時(shí),仍然只是停留在數(shù)學(xué)知識(shí)的教學(xué)方面,并沒有對(duì)學(xué)生進(jìn)行研究性學(xué)習(xí)探索。據(jù)調(diào)查,大多數(shù)高校教師對(duì)日常的教學(xué)工作能夠認(rèn)真完成規(guī)定的教學(xué)任務(wù),但能夠真正創(chuàng)造性地把數(shù)學(xué)建模思想融入到數(shù)學(xué)教學(xué)任務(wù)中的教師較少。大多數(shù)高校數(shù)學(xué)老師都意識(shí)到探索式的數(shù)學(xué)建模教學(xué)很重要,但真正將數(shù)學(xué)建模思想與數(shù)學(xué)教學(xué)融合的嘗試和探索卻很少??梢姸鄶?shù)高校教師雖然明白數(shù)學(xué)建模思想的重要性,但是由于缺乏足夠的數(shù)學(xué)建模教學(xué)的相關(guān)知識(shí)及經(jīng)驗(yàn),在實(shí)際教學(xué)中數(shù)學(xué)建模思想仍未得到充分的運(yùn)用。

(2)開設(shè)的有關(guān)數(shù)學(xué)建模的課程和活動(dòng)較少。雖然數(shù)學(xué)建模思想得到了越來(lái)越廣泛的應(yīng)用,但是在高校中實(shí)際開設(shè)的有關(guān)數(shù)學(xué)建模的課程并不多,尤其是應(yīng)用數(shù)學(xué)、數(shù)學(xué)實(shí)驗(yàn)以及計(jì)算機(jī)應(yīng)用等一些需要滲入數(shù)學(xué)建模思想的課程在實(shí)際的教學(xué)過程中并沒有創(chuàng)造性地運(yùn)用數(shù)學(xué)建模思想。另一方面,校內(nèi)自主開展的有關(guān)數(shù)學(xué)建模競(jìng)賽和活動(dòng)并不多,宣傳力度也不夠,無(wú)法讓更多的學(xué)生了解數(shù)學(xué)建模的意義和價(jià)值,更無(wú)法參與到數(shù)學(xué)建模活動(dòng)中去。

(3)學(xué)生對(duì)數(shù)學(xué)的態(tài)度和觀念還未改變,對(duì)數(shù)學(xué)建模缺乏深入的了解。大學(xué)數(shù)學(xué)是一門較為抽象的學(xué)科,其概念、定理和性質(zhì)都不容易掌握,由于其具有一定的難度,所以不少學(xué)生對(duì)大學(xué)數(shù)學(xué)類課程以及數(shù)學(xué)建模沒有興趣。并且這些學(xué)生在初中和高中階段也學(xué)習(xí)數(shù)學(xué),但是不少學(xué)生是為了應(yīng)付考試,并沒有見識(shí)到數(shù)學(xué)的應(yīng)用性,覺得數(shù)學(xué)是一門純理論的課程,沒有實(shí)用價(jià)值。同時(shí)很多學(xué)生對(duì)數(shù)學(xué)建模思想的運(yùn)用并不夠了解,不知道如何將數(shù)學(xué)知識(shí)和數(shù)學(xué)方法應(yīng)用到實(shí)際的生活中去,覺得數(shù)學(xué)沒有用,也沒有深入學(xué)習(xí)的意義。

(1)提高課堂教學(xué)質(zhì)量,創(chuàng)造性地運(yùn)用數(shù)學(xué)建模思想。大學(xué)的數(shù)學(xué)類課程主要有“線性代數(shù)”、“高等數(shù)學(xué)”、“運(yùn)籌學(xué)”、“數(shù)學(xué)建模”、“概率論與數(shù)理統(tǒng)計(jì)”等,這些課程的核心部分都跟高等數(shù)學(xué)有關(guān),所以要注重提高數(shù)學(xué)類課程的教學(xué)質(zhì)量關(guān)鍵就在于高等數(shù)學(xué),而要提高高等數(shù)學(xué)的教學(xué)質(zhì)量就必須在教學(xué)過程中創(chuàng)造性地應(yīng)用數(shù)學(xué)建模思想。對(duì)于主修數(shù)學(xué)的學(xué)生,要加強(qiáng)對(duì)計(jì)算機(jī)軟件和語(yǔ)言的學(xué)習(xí),系統(tǒng)性地對(duì)數(shù)學(xué)原理進(jìn)行剖解和分析,合理運(yùn)用數(shù)學(xué)知識(shí)和數(shù)學(xué)方法解決社會(huì)實(shí)際問題。在教學(xué)中多引導(dǎo)、啟發(fā)學(xué)生利用對(duì)生活問題和科學(xué)問題的深入研究,主動(dòng)結(jié)合自己的課程理論知識(shí)和數(shù)學(xué)建模,使數(shù)學(xué)建模思想融入到學(xué)生的整個(gè)學(xué)習(xí)過程中去。對(duì)于非數(shù)學(xué)領(lǐng)域的問題,要啟發(fā)學(xué)生運(yùn)用計(jì)算機(jī)軟件建模,從而解決不同領(lǐng)域中的數(shù)學(xué)建模問題。

(2)多開設(shè)跟數(shù)學(xué)建模有關(guān)的數(shù)學(xué)類課程。例如除了開設(shè)跟數(shù)學(xué)建模有關(guān)的必修課,還可以開設(shè)一些跟數(shù)學(xué)建模有關(guān)的選修課,為其他專業(yè)的學(xué)生提供接觸和了解數(shù)學(xué)建模思想的機(jī)會(huì),為學(xué)生拓展知識(shí)領(lǐng)域,為其解決該領(lǐng)域的問題提供有效的方法。例如,經(jīng)濟(jì)學(xué)有關(guān)專業(yè)的學(xué)生就可以通過選修跟數(shù)學(xué)建模有關(guān)的課程,解決其在經(jīng)濟(jì)學(xué)中遇到的問題,因?yàn)楹芏喔?jīng)濟(jì)學(xué)有關(guān)的問題僅僅靠經(jīng)濟(jì)學(xué)的知識(shí)是無(wú)法解決的,像貸款計(jì)算這樣的問題就要將數(shù)學(xué)與經(jīng)濟(jì)學(xué)聯(lián)系起來(lái)才能解決實(shí)際問題。

(3)廣泛宣傳,讓學(xué)生了解數(shù)學(xué)建模的意義和價(jià)值。學(xué)生是教學(xué)過程中的主體,目前,大學(xué)數(shù)學(xué)建模課程開設(shè)效果不佳,學(xué)生參與度低的主要原因就是學(xué)生缺乏對(duì)數(shù)學(xué)建模的深入了解。那么,要提高學(xué)生的參與性,促進(jìn)數(shù)學(xué)建模思想與大學(xué)數(shù)學(xué)類課程的融合就必須加強(qiáng)宣傳,讓學(xué)生深入了解什么是數(shù)學(xué)建模。同時(shí),在課堂上就是也要轉(zhuǎn)變傳統(tǒng)枯燥的教學(xué)方式,多使用啟發(fā)式教學(xué)和探索式教學(xué),吸引學(xué)生的學(xué)習(xí)興趣,讓他們發(fā)現(xiàn)數(shù)學(xué)對(duì)社會(huì)實(shí)際生活的重要作用,轉(zhuǎn)變他們對(duì)數(shù)學(xué)的態(tài)度,并引導(dǎo)學(xué)生對(duì)數(shù)學(xué)建模和數(shù)學(xué)課程感興趣。

(4)轉(zhuǎn)變數(shù)學(xué)教育理念及教育方式。要轉(zhuǎn)變傳統(tǒng)的教育方式,將教學(xué)的重點(diǎn)放在數(shù)學(xué)知識(shí)在生活中的應(yīng)用問題上,而不是將知識(shí)與實(shí)際生活割裂開來(lái)。同時(shí)在教學(xué)中要注重證明和推理,加強(qiáng)學(xué)生對(duì)數(shù)學(xué)方法的掌握注重培養(yǎng)學(xué)生對(duì)實(shí)際問題的邏輯分析、簡(jiǎn)化、抽象并運(yùn)用數(shù)學(xué)語(yǔ)言表達(dá)的能力。也就是說教學(xué)的重點(diǎn)在于提高學(xué)生的數(shù)學(xué)學(xué)習(xí)能力和加強(qiáng)數(shù)學(xué)意識(shí)和數(shù)學(xué)方法的應(yīng)用,這樣才能夠培養(yǎng)出具有創(chuàng)新能力和創(chuàng)新意識(shí)的人才。

(5)多開展數(shù)學(xué)建?;顒?dòng)和競(jìng)賽,提高學(xué)生參與性。在高校內(nèi)部要多開展跟數(shù)學(xué)有關(guān)的活動(dòng)和競(jìng)賽以及專家講座等,一方面加強(qiáng)學(xué)生對(duì)數(shù)學(xué)建模的認(rèn)識(shí),另一方面也提高了學(xué)生的參與性。通過專家講座,不僅可以讓學(xué)生更深入地了解數(shù)學(xué)建模的價(jià)值,也加強(qiáng)了學(xué)術(shù)交流,提高學(xué)生的數(shù)學(xué)建模應(yīng)用能力。通過數(shù)學(xué)建模競(jìng)賽,為學(xué)生提供展示自己智慧、充分發(fā)揮其能力的平臺(tái)。同時(shí),競(jìng)賽也可以讓學(xué)生在競(jìng)賽中發(fā)現(xiàn)自己的不足,在交流中不斷完善自己的缺陷,拓展學(xué)生的思維。而且,在數(shù)學(xué)建模比賽中,通過讓學(xué)生探究跟生活實(shí)際有關(guān)的例子,提高學(xué)生對(duì)數(shù)學(xué)建模的興趣,加強(qiáng)學(xué)生對(duì)模型應(yīng)用的直觀性認(rèn)識(shí),促進(jìn)學(xué)校應(yīng)用型人才的培養(yǎng)。

總之,數(shù)學(xué)建模思想和高校數(shù)學(xué)類課程的融合,對(duì)于高等數(shù)學(xué)教學(xué)改革具有非常重要的意義。把數(shù)學(xué)建模思想融入到高等數(shù)學(xué)教學(xué)中,可以更好地提高學(xué)生的數(shù)學(xué)學(xué)習(xí)能力,提高他們運(yùn)用數(shù)學(xué)思想和數(shù)學(xué)方法分析問題、解決問題和抽象思維的能力。高校教師要加強(qiáng)數(shù)學(xué)建模思想的應(yīng)用,讓學(xué)生初步掌握從實(shí)際問題中總結(jié)數(shù)學(xué)內(nèi)涵的方法,提高學(xué)生的數(shù)學(xué)學(xué)習(xí)興趣,為高校學(xué)生專業(yè)課的學(xué)習(xí)奠定堅(jiān)實(shí)的數(shù)學(xué)基礎(chǔ)。

大學(xué)數(shù)學(xué)建模論文篇十一

摘要:運(yùn)籌學(xué)與數(shù)學(xué)建模2門課程聯(lián)系密切,在運(yùn)籌學(xué)教學(xué)中,適當(dāng)融入數(shù)學(xué)建模思想,能大幅度提高學(xué)生應(yīng)用數(shù)學(xué)解決實(shí)際問題的能力.從運(yùn)籌學(xué)教學(xué)中教學(xué)大綱的改革、教學(xué)環(huán)節(jié)的設(shè)計(jì)等方面進(jìn)行了探索與實(shí)踐.教學(xué)實(shí)踐表明,將數(shù)學(xué)建模思想融入到運(yùn)籌學(xué)教學(xué)中能提高課堂教學(xué)的效果,鍛煉學(xué)生的動(dòng)手實(shí)踐能力.

關(guān)鍵詞:數(shù)學(xué)建模;運(yùn)籌學(xué);教學(xué)實(shí)踐

1運(yùn)籌學(xué)教學(xué)中融入數(shù)學(xué)建模思想的必要性

2數(shù)學(xué)建模思想融入運(yùn)籌學(xué)的教學(xué)改革

3運(yùn)籌學(xué)教學(xué)中融入數(shù)學(xué)建模思想的教學(xué)改革成效

4結(jié)束語(yǔ)

大學(xué)數(shù)學(xué)建模論文篇十二

走美杯”是“走進(jìn)美妙的數(shù)學(xué)花園”的簡(jiǎn)稱。

“走進(jìn)美妙的數(shù)學(xué)花園”中國(guó)青少年數(shù)學(xué)論壇是中國(guó)少年科學(xué)院創(chuàng)新素質(zhì)教育的品牌活動(dòng)。20xx年,由國(guó)際數(shù)學(xué)家大會(huì)組委會(huì)、中國(guó)數(shù)學(xué)會(huì)、中國(guó)教育學(xué)會(huì)、中國(guó)少年科學(xué)院成功舉辦了首屆“走進(jìn)美妙的數(shù)學(xué)花園”中國(guó)少年數(shù)學(xué)論壇,至今已連續(xù)舉辦七屆,全國(guó)三十多個(gè)城市近三十萬(wàn)人參與了此項(xiàng)活動(dòng),在全國(guó)青少年中產(chǎn)生了巨大的影響?!白哌M(jìn)美妙的數(shù)學(xué)花園”中國(guó)青少年數(shù)學(xué)論壇活動(dòng)是一項(xiàng)面對(duì)小學(xué)三年級(jí)至初中二年級(jí)學(xué)生的綜合性數(shù)學(xué)活動(dòng)。通過“趣味數(shù)學(xué)解題技能展示”、“數(shù)學(xué)建模小論文答辯”、“數(shù)學(xué)益智游戲”、“團(tuán)體對(duì)抗賽”等一系列內(nèi)容豐富的活動(dòng)提高廣大中小學(xué)生的數(shù)學(xué)建模意識(shí)和數(shù)學(xué)應(yīng)用能力,培養(yǎng)他們一種正確的思想方法。著名數(shù)學(xué)家陳省身先生兩次為同學(xué)們親筆題詞“數(shù)學(xué)好玩”和“走進(jìn)美妙的數(shù)學(xué)花園”,大大鼓舞了廣大青少年攀登數(shù)學(xué)高峰的熱情和信心,使同學(xué)們自覺地成為學(xué)習(xí)的主人,實(shí)現(xiàn)從“學(xué)數(shù)學(xué)”到“用數(shù)學(xué)”過程的轉(zhuǎn)變,從而進(jìn)一步推動(dòng)我國(guó)數(shù)學(xué)文化的傳播與普及。

“走美”活動(dòng)已連續(xù)舉辦七屆,近30萬(wàn)青少年踴躍參與,已取得良好社會(huì)效果,并被寫入全國(guó)少工委《少先隊(duì)輔導(dǎo)員工作綱要(試行)》,向全國(guó)少年兒童推廣。

“走美”作為數(shù)學(xué)競(jìng)賽中的后起之秀,憑借其新穎的考試形式以及較高的競(jìng)賽難度取得了非常迅速的發(fā)展,近年來(lái)在重點(diǎn)中學(xué)選拔中引起了廣泛的關(guān)注。客觀地說“走美”一、二等獎(jiǎng)對(duì)小升初作用非常大,三等獎(jiǎng)作用不大。

1、活動(dòng)對(duì)象

全國(guó)各地小學(xué)三年級(jí)至初中二年級(jí)學(xué)生

2、總成績(jī)計(jì)算

總成績(jī)=筆試成績(jī)x70%+數(shù)學(xué)小論文x30%

筆試獲獎(jiǎng)率:

一等獎(jiǎng)5%,二等獎(jiǎng)10%,三等獎(jiǎng)15%。

3、筆試時(shí)間

每年3月上、中旬。

報(bào)名截止時(shí)間:每年12月底。

走美杯比賽流程

1、全國(guó)組委會(huì)下發(fā)通知,各地組委會(huì)開始組織工作

2、學(xué)生到當(dāng)?shù)亟M委會(huì)報(bào)名,填寫《報(bào)名表》

3、各地組委會(huì)將報(bào)名學(xué)生名單全部匯總至全國(guó)組委會(huì)

4、全國(guó)“走進(jìn)美妙的數(shù)學(xué)花園”趣味數(shù)學(xué)解題技能展示初賽(全國(guó)統(tǒng)一筆試)

5、學(xué)生撰寫數(shù)學(xué)建模小論文

6、全國(guó)組委會(huì)公布初賽獲獎(jiǎng)名單并頒發(fā)獲獎(jiǎng)證書

7、獲得初賽一、二、三等獎(jiǎng)選手有資格報(bào)名參加暑期赴英國(guó)劍橋大學(xué)數(shù)學(xué)交流活動(dòng)。

8、各地按照組委會(huì)要求提交數(shù)學(xué)建模小論文

9、前各地組委會(huì)上報(bào)參加全國(guó)總論壇學(xué)生名單

10、全國(guó)總論壇和表彰活動(dòng)

大學(xué)數(shù)學(xué)建模論文篇十三

數(shù)學(xué)是在實(shí)際應(yīng)用的需求中產(chǎn)生的,要描述一個(gè)實(shí)際現(xiàn)象可以有很多種方式,為了實(shí)際問題描述的更具邏輯性、科學(xué)性、客觀性和可重復(fù)性,人們采用一種普遍認(rèn)為比較嚴(yán)格的語(yǔ)言來(lái)描述各種現(xiàn)象,這種語(yǔ)言就是數(shù)學(xué)。數(shù)學(xué)建模則是架于數(shù)學(xué)理論和實(shí)際問題之間的橋梁,數(shù)學(xué)模型是對(duì)于現(xiàn)實(shí)生活中的特定對(duì)象,根據(jù)其內(nèi)在的規(guī)律,做出一些必要的假設(shè),為了一個(gè)特定目的,運(yùn)用數(shù)學(xué)工具,得到的一個(gè)數(shù)學(xué)結(jié)構(gòu),用來(lái)解釋現(xiàn)實(shí)現(xiàn)象,預(yù)測(cè)未來(lái)狀況。因此,數(shù)學(xué)建模就是用數(shù)學(xué)語(yǔ)言描述實(shí)際現(xiàn)象的過程。

大部分的獨(dú)立院校的數(shù)學(xué)建模工作純?cè)谝欢ǖ膯栴},主要體現(xiàn)在以下幾個(gè)方面:(一)學(xué)生方面的問題。獨(dú)立院校的大部分學(xué)生的數(shù)學(xué)功底差,對(duì)數(shù)學(xué)的學(xué)習(xí)興趣不大,普遍認(rèn)為數(shù)學(xué)的學(xué)習(xí)對(duì)自身的專業(yè)的幫助不大。從而更不愿意接觸與數(shù)學(xué)有關(guān)的數(shù)學(xué)建模,對(duì)數(shù)學(xué)建模競(jìng)賽的興趣不大。在獨(dú)立院校中,參加數(shù)學(xué)建模競(jìng)賽的大都是低年級(jí)的學(xué)生,而這些學(xué)生的數(shù)學(xué)知識(shí)結(jié)構(gòu)還不完整,他們往往參加了一屆數(shù)學(xué)競(jìng)賽并未獲得獎(jiǎng)項(xiàng)后就不愿意再次參加。而高年級(jí)的同學(xué)忙于其他的就業(yè)、考研等壓力,無(wú)暇參加數(shù)學(xué)建模競(jìng)賽的培訓(xùn)。(二)教資方面的問題。首先。傳統(tǒng)的教學(xué)是知識(shí)為中心、以教師的講解為中心。數(shù)學(xué)建模的教學(xué)要求教師以學(xué)生為中心,培養(yǎng)學(xué)生學(xué)會(huì)學(xué)習(xí)的能力,發(fā)展學(xué)生的創(chuàng)新能力和創(chuàng)造能力。獨(dú)立院校外聘的老師常常對(duì)獨(dú)立院校的學(xué)生不夠了解,這直接影響到教學(xué)成果。其次,數(shù)學(xué)建模涉及的知識(shí)面廣,不但包括數(shù)學(xué)的各個(gè)分支,還包含了其他背景的專業(yè)知識(shí)。獨(dú)立院校的教師一部分是才從大學(xué)畢業(yè)不久的研究生,他們對(duì)于數(shù)學(xué)建模教學(xué)和競(jìng)賽的培訓(xùn)經(jīng)驗(yàn)不足,科研能力不是很強(qiáng),對(duì)數(shù)學(xué)的各個(gè)分支的把控能力不強(qiáng),對(duì)其他專業(yè)的了解不夠全面。(三)教學(xué)實(shí)施方面的問題。大學(xué)生數(shù)學(xué)建模競(jìng)賽的目的決不僅僅是獲獎(jiǎng),更重要的是通過參加大學(xué)生數(shù)學(xué)建模競(jìng)賽活動(dòng),促進(jìn)高校數(shù)學(xué)教學(xué)改革,起到培養(yǎng)全體學(xué)生能力、提高全體學(xué)生素質(zhì)的作用。獨(dú)立院校數(shù)學(xué)建模教學(xué)存在很多的問題。首先,大學(xué)數(shù)學(xué)建模教育在獨(dú)立院校中的普及性不夠。數(shù)學(xué)建模的宣傳力度不大,課程大多開在大一和大二的跨選課,這個(gè)時(shí)候?qū)W生的數(shù)學(xué)知識(shí)結(jié)構(gòu)還不完整。其次就是教材的選取,數(shù)學(xué)建模的相關(guān)教材大都是為了數(shù)學(xué)建模競(jìng)賽而編寫的,對(duì)于獨(dú)立院校的學(xué)生來(lái)說,這些教材的難度系數(shù)大,涉及的知識(shí)面廣,遠(yuǎn)遠(yuǎn)超過了學(xué)生的接受能力。

(一)讓學(xué)生了解數(shù)學(xué)建模,培養(yǎng)學(xué)習(xí)數(shù)學(xué)建模的興趣。數(shù)學(xué)建模課程的開設(shè)有利于培養(yǎng)學(xué)生運(yùn)用數(shù)學(xué)具體解決實(shí)際問題的能力,讓學(xué)生發(fā)現(xiàn)學(xué)習(xí)數(shù)學(xué)的用處,改變學(xué)生學(xué)習(xí)數(shù)學(xué)的態(tài)度,提高學(xué)習(xí)數(shù)學(xué)的能力,認(rèn)識(shí)到數(shù)學(xué)的意義和價(jià)值。獨(dú)立院校學(xué)生的數(shù)學(xué)基礎(chǔ)雖然比較差,但是學(xué)生的動(dòng)手能力強(qiáng)。學(xué)校可以在多開展數(shù)學(xué)建模的講座和課程,讓學(xué)生了解數(shù)學(xué)建模。同時(shí)多向?qū)W生宣傳數(shù)學(xué)建模的成果。(二)在教學(xué)內(nèi)容中滲透數(shù)學(xué)建模思想和方法。1.在日常數(shù)學(xué)教學(xué)中滲透數(shù)學(xué)建模的思想方法。傳統(tǒng)的數(shù)學(xué)教學(xué)重視的是知識(shí)的培養(yǎng)和傳輸,而忽視的是實(shí)際應(yīng)用能力。教師的教學(xué)目標(biāo)是使學(xué)生掌握數(shù)學(xué)理論知識(shí)。一般的教學(xué)方法是:教師引入相關(guān)的的基本概念,證明定理,推導(dǎo)公式,列舉例題,學(xué)生記住公式,套用公式,掌握解題方法與技巧。學(xué)生往往學(xué)習(xí)了不少的純粹的數(shù)學(xué)理論知識(shí),卻不知道如何應(yīng)用到實(shí)際問題中。數(shù)學(xué)建模課程與傳統(tǒng)數(shù)學(xué)課程相比差別較大,學(xué)校開設(shè)的數(shù)學(xué)建??邕x課及數(shù)學(xué)建模培訓(xùn)班,對(duì)培養(yǎng)學(xué)生觀察能力、分析能力、想象力、邏輯能力、解決實(shí)際問題的能力起到了很好的作用。由于學(xué)校開設(shè)的數(shù)學(xué)建模課程大多是選修課程,課時(shí)較少,參選的學(xué)生也有限,數(shù)學(xué)建模的作用不能很好的向?qū)W生傳輸。高等數(shù)學(xué)中的很多內(nèi)容都與數(shù)學(xué)建模的思想有關(guān),因此,在大學(xué)數(shù)學(xué)課程的教學(xué)過程中,教師應(yīng)有意識(shí)地結(jié)合傳統(tǒng)的數(shù)學(xué)課程的特點(diǎn),將數(shù)學(xué)建模的思想和內(nèi)容融入到數(shù)學(xué)課堂教學(xué)中。這樣既可以激發(fā)學(xué)生的學(xué)習(xí)興趣,又能很好的將突出數(shù)學(xué)建模的思想。2.數(shù)學(xué)建模與專業(yè)緊密聯(lián)系,發(fā)揮數(shù)學(xué)對(duì)專業(yè)知識(shí)的服務(wù)作用。數(shù)學(xué)建模與專業(yè)知識(shí)的結(jié)合,不僅可以讓學(xué)生認(rèn)識(shí)到數(shù)學(xué)的重要作用,在專業(yè)知識(shí)學(xué)習(xí)中的地位,還可以培養(yǎng)學(xué)習(xí)數(shù)學(xué)知識(shí)的興趣,增強(qiáng)數(shù)學(xué)學(xué)習(xí)的凝聚力,同時(shí)加深對(duì)專業(yè)知識(shí)的理解。通過專業(yè)知識(shí)作為背景,學(xué)生更愿意嘗試問題的研究。在學(xué)習(xí)中遇到的專業(yè)問題也可以嘗試用數(shù)學(xué)建模的思想進(jìn)行解決。這有利于提高學(xué)生的綜合能力的培養(yǎng)。3.分層次進(jìn)行數(shù)學(xué)建模教育。大體說來(lái)獨(dú)立院校的數(shù)學(xué)建模課程的開設(shè)應(yīng)該分成兩個(gè)階段:(1)第一階段:大學(xué)一年級(jí),在這個(gè)階段,大部分學(xué)生對(duì)數(shù)學(xué)建模沒有了解,這時(shí)候適合開設(shè)一些數(shù)學(xué)建模的講座和活動(dòng),讓學(xué)生了解數(shù)學(xué)建模。同時(shí),在日常的數(shù)學(xué)教學(xué)中選擇簡(jiǎn)單的應(yīng)用問題和改變后的數(shù)學(xué)建模題目,結(jié)合自身的專業(yè)知識(shí)進(jìn)行講解,讓學(xué)生了解數(shù)學(xué)建模的一般含義。基本方法和步驟,讓學(xué)生具備初步的建模能力。(2)中級(jí)層次:大學(xué)二、三年級(jí)。在這個(gè)階段,學(xué)生基本具備了完整的數(shù)學(xué)結(jié)構(gòu),具有了基本的建模能力。這個(gè)時(shí)候應(yīng)該開設(shè)數(shù)學(xué)建模專業(yè)課程,讓學(xué)生處理比較復(fù)雜的數(shù)學(xué)建模問題,讓學(xué)生自己去采集有用的信息,學(xué)會(huì)提出模型的假設(shè),對(duì)數(shù)據(jù)和信息需進(jìn)行整理、分析和判斷,并模型進(jìn)行分析和評(píng)價(jià),最終完成科技論文。

(一)提高數(shù)學(xué)教師自身水平。在數(shù)學(xué)建模教學(xué)過程中,教師扮演著重要的角色。教師水平的高低決定著數(shù)學(xué)建模教學(xué)能否達(dá)到預(yù)期的目的。數(shù)學(xué)建模的教學(xué),不僅要求教師具備較高的專業(yè)水平,還要求教師具備解決實(shí)際問題的能力和豐富的數(shù)學(xué)建模實(shí)踐經(jīng)驗(yàn)。而獨(dú)立院校的教師部分教師是才畢業(yè)不久的研究生,缺乏實(shí)踐經(jīng)驗(yàn)。這就對(duì)獨(dú)立院校的的數(shù)學(xué)建模教學(xué)工作產(chǎn)生了很大的障礙。為了提高教師的水平,可以多派青年教師進(jìn)行專業(yè)培訓(xùn)學(xué)習(xí)和學(xué)術(shù)交流,參加各種學(xué)術(shù)會(huì)議、到名校去做訪問學(xué)者等等。同時(shí)可以多請(qǐng)著名的數(shù)學(xué)專家教授來(lái)到校園做建模學(xué)術(shù)報(bào)告,使師生拓寬視野,增長(zhǎng)知識(shí),了解建模的新趨勢(shì)、新動(dòng)態(tài)。青年教師還需要依據(jù)特定的教學(xué)內(nèi)容、教學(xué)對(duì)象和教學(xué)環(huán)境對(duì)自己的教學(xué)工作作出計(jì)劃、實(shí)施和調(diào)整以及反思和總結(jié)。青年數(shù)學(xué)教師還必須更新教育理念,改變傳統(tǒng)的教學(xué)理念。只有不斷創(chuàng)新,努力提高自身素質(zhì),才能適應(yīng)新的形勢(shì),符合建模發(fā)展的要求。(二)選取合適的教材。數(shù)學(xué)建模教材使用也存在諸多不足之處。絕大部分高校教學(xué)建模課程采用的是理工類專業(yè)數(shù)學(xué)建模教材。這些教材主要涵蓋的數(shù)學(xué)模型的難度系數(shù)大。而獨(dú)立院校的學(xué)生的基礎(chǔ)薄弱,無(wú)法接收這些模型。在教學(xué)過程中,教師可以將具體的案例或是歷年的數(shù)學(xué)建模題目做為教學(xué)內(nèi)容。通過具體的建模實(shí)例,講解建模的思想和方法。一邊講解,一邊讓學(xué)生分組討論,提出對(duì)問題的新的理解和對(duì)魔性的認(rèn)識(shí),嘗試提出新的模型。(三)豐富建?;顒?dòng)。全面開展數(shù)學(xué)建?;顒?dòng)是數(shù)學(xué)建模思想的最重要的形式,它既使課內(nèi)和課外知識(shí)相互結(jié)合,又可以普及建模知識(shí)與提高建模能力結(jié)合,可以培養(yǎng)學(xué)生利用數(shù)學(xué)知識(shí)分析和解決實(shí)際問題的能力,可以有效地提升了學(xué)生的數(shù)學(xué)綜合素質(zhì)。學(xué)??梢远ㄆ诘拈_展數(shù)學(xué)建模宣傳活動(dòng),擴(kuò)大數(shù)學(xué)建模的知名度。學(xué)校還可以邀請(qǐng)有經(jīng)驗(yàn)的專家和獲獎(jiǎng)學(xué)生開展建模講座,提高對(duì)數(shù)學(xué)建模的重視,積極的組織建?;顒?dòng)。實(shí)踐證明,只有根據(jù)獨(dú)立院校的自身特點(diǎn)和培養(yǎng)目標(biāo),對(duì)數(shù)學(xué)建模課程的教學(xué)不斷進(jìn)行改革,才能解決獨(dú)立院校數(shù)學(xué)建模課程教學(xué)的問題,才能真正的讓學(xué)生喜歡上數(shù)學(xué),喜歡上數(shù)學(xué)建模。

[1]李大潛.將數(shù)學(xué)建模思想融入數(shù)學(xué)主干課程[j].中國(guó)大學(xué)教育.20xx.

[2]賈曉峰等.大學(xué)生數(shù)學(xué)建模競(jìng)賽與高等學(xué)校數(shù)學(xué)改革[j].工科數(shù)學(xué).20xx:162.

[3]融入數(shù)學(xué)建模思想的高等數(shù)學(xué)教學(xué)研究[j].科技創(chuàng)新導(dǎo)報(bào).20xx:162.

作者:李雙單位:湖北文理學(xué)院理工學(xué)院

大學(xué)數(shù)學(xué)建模論文篇十四

3.3增強(qiáng)選擇數(shù)學(xué)模型的能力。

選擇數(shù)學(xué)模型是數(shù)學(xué)能力的反映。數(shù)學(xué)模型的建立有多種方法,怎樣選擇一個(gè)最佳的模型,體現(xiàn)數(shù)學(xué)能力的強(qiáng)弱。建立數(shù)學(xué)模型主要涉及到方程、函數(shù)、不等式、數(shù)列通項(xiàng)公式、求和公式、曲線方程等類型。結(jié)合教學(xué)內(nèi)容,以函數(shù)建模為例,以下實(shí)際問題所選擇的數(shù)學(xué)模型列表:

函數(shù)建模類型實(shí)際問題

一次函數(shù)成本、利潤(rùn)、銷售收入等

二次函數(shù)優(yōu)化問題、用料最省問題、造價(jià)最低、利潤(rùn)最大等

冪函數(shù)、指數(shù)函數(shù)、對(duì)數(shù)函數(shù)細(xì)胞分裂、生物繁殖等

三角函數(shù)測(cè)量、交流量、力學(xué)問題等

3.4加強(qiáng)數(shù)學(xué)運(yùn)算能力。

數(shù)學(xué)應(yīng)用題一般運(yùn)算量較大、較復(fù)雜,且有近似計(jì)算。有的盡管思路正確、建模合理,但計(jì)算能力欠缺,就會(huì)前功盡棄。所以加強(qiáng)數(shù)學(xué)運(yùn)算推理能力是使數(shù)學(xué)建模正確求解的關(guān)鍵所在,忽視運(yùn)算能力,特別是計(jì)算能力的培養(yǎng),只重視推理過程,不重視計(jì)算過程的做法是不可取的。

利用數(shù)學(xué)建模解數(shù)學(xué)應(yīng)用題對(duì)于多角度、多層次、多側(cè)面思考問題,培養(yǎng)學(xué)生發(fā)散思維能力是很有益的,是提高學(xué)生素質(zhì),進(jìn)行素質(zhì)教育的一條有效途徑。同時(shí)數(shù)學(xué)建模的`應(yīng)用也是科學(xué)實(shí)踐,有利于實(shí)踐能力的培養(yǎng),是實(shí)施素質(zhì)教育所必須的,需要引起教育工作者的足夠重視。

大學(xué)數(shù)學(xué)建模論文篇十五

摘要:隨著現(xiàn)代社會(huì)的發(fā)展,數(shù)學(xué)的廣泛用途已經(jīng)無(wú)需質(zhì)疑,他深入到我們生活的方方面面。現(xiàn)階段,數(shù)學(xué)建模已經(jīng)成為應(yīng)用數(shù)學(xué)知識(shí)解決日常問題的一個(gè)重要手段。本文通過簡(jiǎn)述數(shù)學(xué)建模的方法與過程,以及應(yīng)用數(shù)學(xué)建模解決實(shí)際經(jīng)濟(jì)問題的應(yīng)用,展現(xiàn)的了數(shù)學(xué)學(xué)習(xí)的重要意義,以及數(shù)學(xué)在經(jīng)濟(jì)問題解決中的重要作用。

關(guān)鍵詞:數(shù)學(xué);數(shù)學(xué)建模;經(jīng)濟(jì);應(yīng)用

經(jīng)濟(jì)現(xiàn)象具有多變性,隨著經(jīng)濟(jì)社會(huì)的發(fā)展,國(guó)際間貿(mào)易往來(lái)的日趨緊密,日常經(jīng)濟(jì)形勢(shì)受到的影響因素越來(lái)越復(fù)雜多變。而日常經(jīng)濟(jì)生活中所遇到的經(jīng)濟(jì)現(xiàn)象同樣存在著諸多的變化的影響因素。如何應(yīng)對(duì)這些難以把控的變量,做好風(fēng)險(xiǎn)的預(yù)估、成本的核算、進(jìn)行最大成本的規(guī)劃,所有這些都可以借助數(shù)學(xué)知識(shí)、應(yīng)用數(shù)學(xué)建模為工具進(jìn)行較為理性的計(jì)算,為經(jīng)濟(jì)決策、企業(yè)規(guī)劃提供重要的幫助。

一、數(shù)學(xué)建模

數(shù)學(xué)建模,其實(shí)就是建立數(shù)學(xué)模型的簡(jiǎn)稱,實(shí)際上數(shù)學(xué)建??梢苑Q之為解決問題的一種思考方法,借助數(shù)學(xué)工具應(yīng)用已知的定理定義進(jìn)行合理的運(yùn)算,推導(dǎo)出一種理性的結(jié)果的過程。數(shù)學(xué)建模是可以聯(lián)系數(shù)學(xué)和外部世界的一個(gè)中介和橋梁,在工業(yè)設(shè)計(jì)、經(jīng)濟(jì)領(lǐng)域、工程建設(shè)等各個(gè)方面,運(yùn)用數(shù)學(xué)的語(yǔ)言和方法進(jìn)行問題的求解和推導(dǎo),實(shí)際上,都是一種數(shù)學(xué)建模的過程。數(shù)學(xué)建模的主要過程可以總結(jié)為如下的框圖形式:實(shí)際上,數(shù)學(xué)模型的最終建立是一個(gè)反復(fù)驗(yàn)證、修改、完善的動(dòng)態(tài)過程,很少能夠通過一次過程就建立起完美適合實(shí)際問題的數(shù)學(xué)模型。通過上述過程的多次循環(huán)執(zhí)行:1.模型準(zhǔn)備:分析問題,明確建模的目的,統(tǒng)計(jì)各種信息數(shù)據(jù);2.模型假設(shè):根據(jù)建模目的,結(jié)合實(shí)際對(duì)象的特性,對(duì)復(fù)雜問題進(jìn)行簡(jiǎn)化,提取主要因素,提煉精確的數(shù)學(xué)語(yǔ)言;3.模型建立:根據(jù)提煉的主要因素,選擇適當(dāng)?shù)臄?shù)學(xué)工具,建立各個(gè)量(變量、常量)間的數(shù)學(xué)關(guān)系,化實(shí)際問題為數(shù)學(xué)語(yǔ)言;4.模型求解:對(duì)上述數(shù)學(xué)關(guān)系進(jìn)行求解(包括解方程、圖形分析、邏輯運(yùn)算等);5.模型分析:將求解結(jié)果與實(shí)際問題結(jié)合,綜合分析,找到模型的缺陷和不足,進(jìn)行數(shù)學(xué)上的優(yōu)化,建立穩(wěn)定模型;6.模型檢驗(yàn):將模型得到的結(jié)果與實(shí)際情況相驗(yàn)證,檢驗(yàn)?zāi)P偷暮侠硇院瓦m用性。

二、經(jīng)濟(jì)問題數(shù)學(xué)模型的建立

經(jīng)濟(jì)類問題因?yàn)槠涮赜械奶攸c(diǎn),可以按照變量的性質(zhì)分為兩類:概率型和確定型。概率型應(yīng)用于處理具有隨機(jī)性情況的模型,可以解決類似風(fēng)險(xiǎn)評(píng)估、最優(yōu)產(chǎn)量計(jì)算、庫(kù)存平衡等問題;確定型則可以基于一定的條件與假設(shè),精確的對(duì)一種特定情況的結(jié)果做出判斷,如成本核算、損失評(píng)估等。對(duì)經(jīng)濟(jì)問題的建模計(jì)算實(shí)際上是一個(gè)從經(jīng)濟(jì)世界進(jìn)入數(shù)學(xué)世界再回到經(jīng)濟(jì)世界的過程。建立經(jīng)濟(jì)數(shù)學(xué)模型,需要首先對(duì)實(shí)際經(jīng)濟(jì)問題和情況有一個(gè)較為深入的認(rèn)識(shí),然后通過細(xì)致的觀察梳理,抽出最為本質(zhì)的特征性的東西。將原始的復(fù)雜的經(jīng)濟(jì)問題簡(jiǎn)化提煉為一個(gè)較為理想的自然模型,然后基于這個(gè)原始模型應(yīng)用數(shù)學(xué)知識(shí)建立完整的數(shù)學(xué)經(jīng)濟(jì)模型。

三、建模舉例

四、結(jié)語(yǔ)

綜上所述,我們可以看到,數(shù)學(xué)建模在經(jīng)濟(jì)中的應(yīng)用可以非常廣泛,對(duì)很多的決策和工作都可以提供參考和指導(dǎo),如提高利潤(rùn)、規(guī)避風(fēng)險(xiǎn)、降低成本、節(jié)省開支等各個(gè)方面。上文只提供了一個(gè)簡(jiǎn)單的例子,和初步的介紹,其深入的理念和概念更加值得我們?nèi)ヅΦ膶W(xué)習(xí)和思考。

大學(xué)數(shù)學(xué)建模論文篇十六

摘要:數(shù)學(xué)作為很多學(xué)科的計(jì)算工具,可以說是現(xiàn)代科學(xué)的基礎(chǔ),要想利用數(shù)學(xué)來(lái)解決實(shí)際問題,首先要建立相應(yīng)的數(shù)學(xué)模型,本文在數(shù)學(xué)建模思想概念和特點(diǎn)的基礎(chǔ)上,從計(jì)算機(jī)軟件、實(shí)際生活中的應(yīng)用等方面,對(duì)其應(yīng)用的發(fā)展進(jìn)行了分析,最后從分析問題、建立模型、校驗(yàn)?zāi)P腿齻€(gè)階段,對(duì)數(shù)學(xué)建模的方法,進(jìn)行了深入的研究。

關(guān)鍵詞:數(shù)學(xué)建模;思想;應(yīng)用;方法;分析

引言

隨著自然科學(xué)的發(fā)展,利用數(shù)學(xué)等思想來(lái)解決實(shí)際問題,越來(lái)越受到人們的重視,數(shù)學(xué)作為一門歷史悠久的自然科學(xué),是在實(shí)際應(yīng)用的基礎(chǔ)上發(fā)展起來(lái),但是隨著理論研究的深入,現(xiàn)在數(shù)學(xué)理論已經(jīng)非常先進(jìn),很多理論都無(wú)法付諸實(shí)踐,在這種背景下,如何利用現(xiàn)有的數(shù)學(xué)理論來(lái)解決實(shí)際問題,成為了很多專家和學(xué)者研究的問題。通過實(shí)際的調(diào)查發(fā)現(xiàn),要想利用數(shù)學(xué)來(lái)解決實(shí)際問題,首先要建立相應(yīng)的數(shù)學(xué)模型,將實(shí)際的問題轉(zhuǎn)化成數(shù)學(xué)符號(hào)的表達(dá)方式,這樣才能夠通過數(shù)學(xué)計(jì)算,來(lái)解決一些實(shí)際問題,從某種意義上來(lái)說,計(jì)算機(jī)就是由若干個(gè)數(shù)學(xué)模型組成的,計(jì)算機(jī)軟件之所以能夠解決實(shí)際問題,就是根據(jù)實(shí)際應(yīng)用的需要,建立了一個(gè)相應(yīng)的數(shù)學(xué)模型,這樣才能夠讓計(jì)算機(jī)來(lái)解決。

1數(shù)學(xué)建模思想分析

1.1數(shù)學(xué)建模思想的概念

數(shù)學(xué)是一門歷史悠久的自然科學(xué),在古時(shí)候,由于實(shí)際應(yīng)用的需要,人們就已經(jīng)開始使用數(shù)學(xué)來(lái)解決實(shí)際問題,但是受到當(dāng)時(shí)技術(shù)條件的限制,數(shù)學(xué)理論的水平比較低,只是利用數(shù)學(xué)來(lái)進(jìn)行計(jì)數(shù)等,隨著經(jīng)濟(jì)和科技水平的提高,尤其是在工業(yè)革命之后,自然科學(xué)得到了極大的發(fā)展,對(duì)于利用自然科學(xué)來(lái)解決實(shí)際問題,也成為了人們研究的重點(diǎn),在市場(chǎng)經(jīng)濟(jì)的推動(dòng)下,人們將這些理論知識(shí)轉(zhuǎn)化成為產(chǎn)品。計(jì)算機(jī)就是在這種背景下產(chǎn)生的,在數(shù)學(xué)理論的基礎(chǔ)上,將電路的通和不通兩種狀態(tài),與數(shù)學(xué)的二進(jìn)制相結(jié)合,這樣就能夠讓計(jì)算機(jī)來(lái)處理實(shí)際問題,從本質(zhì)上來(lái)說,這就是數(shù)學(xué)建模思想的范疇,但是在計(jì)算機(jī)出現(xiàn)的早期,數(shù)學(xué)建模的理論還沒有形成,隨著計(jì)算機(jī)軟件技術(shù)的發(fā)展,人們逐漸的意識(shí)到數(shù)學(xué)建模的重要性,發(fā)現(xiàn)利用數(shù)學(xué)建模思想,可以解決很多實(shí)際的問題,而數(shù)學(xué)建模的概念,就是將遇到的實(shí)際問題,利用特定的數(shù)學(xué)符號(hào)進(jìn)行描述,這樣實(shí)際問題就轉(zhuǎn)化為數(shù)學(xué)問題,可以利用數(shù)學(xué)的計(jì)算方法來(lái)解決。

1.2數(shù)學(xué)建模思想的特點(diǎn)

如何解決實(shí)際問題,從有人類文明開始,就成為了人們研究的重點(diǎn),隨著自然科學(xué)的發(fā)展,出現(xiàn)了很多具體的學(xué)科,利用這些不同的學(xué)科,可以解決不同的實(shí)際問題,而數(shù)學(xué)就是其中最重要的一門學(xué)科,而且是其他學(xué)科的基礎(chǔ),如物理學(xué)科中,數(shù)學(xué)就是一個(gè)計(jì)算的工具,由此可以看出數(shù)學(xué)的重要性,進(jìn)入到信息時(shí)代后,計(jì)算機(jī)得到了普及應(yīng)用,無(wú)論是日常生活中還是工作中,計(jì)算機(jī)都有非常重要的應(yīng)用,而在信息時(shí)代,注重的是解決問題的效率。與其他解決問題的方式相比,數(shù)學(xué)建模顯然更加科學(xué),現(xiàn)在數(shù)學(xué)建模已經(jīng)成為了一門獨(dú)立的學(xué)科,很多高校中都開設(shè)了這門課程,為了培養(yǎng)學(xué)生們利用數(shù)學(xué)解決實(shí)際問題的能力,我國(guó)每年都會(huì)舉辦全國(guó)性的數(shù)學(xué)建模大賽,采用開放式的參賽方式,對(duì)學(xué)生們的數(shù)學(xué)建模能力進(jìn)行考驗(yàn),而大賽的題目,很多都是一些實(shí)際問題,對(duì)于比賽的結(jié)果,每個(gè)參賽隊(duì)伍的建模方式都有一定的差異,其中選出一個(gè)最有效的方式成為冠軍。由此可以看出,對(duì)于一個(gè)實(shí)際的問題,可以建立多個(gè)數(shù)學(xué)模型進(jìn)行解決,但是執(zhí)行的效率具有一定的差異,如有些計(jì)算的步驟較少,而有些計(jì)算的過程比較簡(jiǎn)單,而如何評(píng)價(jià)一個(gè)模型的效率,必須從各個(gè)方面進(jìn)行綜合的考慮。

2數(shù)學(xué)建模思想的應(yīng)用

2.1計(jì)算機(jī)軟件中數(shù)學(xué)建模思想的應(yīng)用

通過深入的分析可以知道,計(jì)算機(jī)之所以能夠解決實(shí)際問題,很大程度上依賴與計(jì)算機(jī)軟件,而計(jì)算機(jī)軟件自身就是一個(gè)或幾個(gè)數(shù)學(xué)模型,在軟件開發(fā)的過程中,首先要進(jìn)行需求的分析,這其實(shí)就是數(shù)學(xué)建模的第一個(gè)環(huán)節(jié),對(duì)問題進(jìn)行分析,在了解到問題之后,就要通過計(jì)算機(jī)語(yǔ)言,對(duì)問題進(jìn)行描述,而計(jì)算機(jī)語(yǔ)言是人與計(jì)算機(jī)進(jìn)行溝通的語(yǔ)言,最終這些語(yǔ)言都要轉(zhuǎn)化成0和1二進(jìn)制的方式,這樣計(jì)算機(jī)才能夠進(jìn)行具體的計(jì)算。由此可以看出,計(jì)算機(jī)就是依靠數(shù)學(xué)來(lái)解決實(shí)際問題,而每個(gè)計(jì)算機(jī)軟件,都可以認(rèn)為是一個(gè)數(shù)學(xué)模型,如在早期的計(jì)算機(jī)程序設(shè)計(jì)中,受到當(dāng)時(shí)計(jì)算機(jī)技術(shù)水平的限制,采用的還是低級(jí)語(yǔ)言,由于低級(jí)語(yǔ)言人們很難理解,因此在程序編寫之前,都會(huì)先建立一個(gè)數(shù)學(xué)模型,然后將這個(gè)模型轉(zhuǎn)化成相應(yīng)的計(jì)算機(jī)語(yǔ)言,這樣計(jì)算機(jī)就可以解決實(shí)際的問題,由于計(jì)算機(jī)能夠自行計(jì)算的特點(diǎn),只要輸入相應(yīng)的參數(shù)后,就可以直接得到結(jié)果,不再需要人為的計(jì)算。

2.2數(shù)學(xué)建模思想直接解決實(shí)際問題

經(jīng)過了多年的發(fā)展,現(xiàn)在數(shù)學(xué)建模自身已經(jīng)非常完善,為了培養(yǎng)我國(guó)的數(shù)學(xué)建模人才,從1992年開始,每年我國(guó)都會(huì)舉辦一屆全國(guó)數(shù)學(xué)建模大賽,所有的高校學(xué)生都可以參加,大賽采用了開放性的參賽方式,通常情況下,對(duì)于題目設(shè)置的也比較靈活,會(huì)有多個(gè)題目提供給隊(duì)員選擇,學(xué)生可以根據(jù)自己的實(shí)際情況,來(lái)選擇一個(gè)最適合自己的問題。而數(shù)學(xué)建模大賽舉辦的主要目的,就是讓學(xué)生們掌握如何利用數(shù)學(xué)理論,來(lái)解決實(shí)際問題,在學(xué)習(xí)數(shù)學(xué)知識(shí)的過程中,很多學(xué)生會(huì)認(rèn)為,數(shù)學(xué)與實(shí)踐的距離很遠(yuǎn),學(xué)習(xí)的都是純理論的知識(shí),學(xué)習(xí)的興趣很低,與一些實(shí)踐密切相關(guān)的學(xué)科相比,選擇數(shù)學(xué)專業(yè)的學(xué)生很少,而數(shù)學(xué)建模的出現(xiàn),在很大程度上改善了這種情況,讓人們真正的了解數(shù)學(xué),并利用數(shù)學(xué)來(lái)解決復(fù)雜的問題。受到特殊的歷史因素影響,我國(guó)自然科學(xué)發(fā)展的起步較晚,在建國(guó)后經(jīng)歷了很長(zhǎng)一段時(shí)間封,閉發(fā)展,與西方發(fā)達(dá)國(guó)家之間的交流比較少,因此對(duì)于數(shù)學(xué)建模等現(xiàn)代科學(xué),研究的時(shí)間比較短,導(dǎo)致目前我國(guó)很少會(huì)利用數(shù)學(xué)建模來(lái)解決實(shí)際問題,相比之下,發(fā)達(dá)國(guó)家在很多領(lǐng)域中,經(jīng)常會(huì)用到數(shù)學(xué)建模的知識(shí),如在企業(yè)日常運(yùn)營(yíng)中,需要進(jìn)行市場(chǎng)調(diào)研等工作,而對(duì)于這些調(diào)研工作的處理,在進(jìn)行之前都會(huì)建立一個(gè)數(shù)學(xué)模型,然后按照這個(gè)建立的模型來(lái)處理。

2.3數(shù)學(xué)建模思想應(yīng)用的發(fā)展

從本質(zhì)上來(lái)說,數(shù)學(xué)是在實(shí)際應(yīng)用的基礎(chǔ)上,逐漸形成的一門學(xué)科,但是受到當(dāng)時(shí)技術(shù)水平的限制,雖然人們已經(jīng)懂得去計(jì)算,卻并知道自己使用的是數(shù)學(xué)知識(shí),隨著自然科學(xué)的發(fā)展,對(duì)數(shù)學(xué)的應(yīng)用越來(lái)越多,而數(shù)學(xué)自身理論的發(fā)展速度很快,遠(yuǎn)遠(yuǎn)超過了實(shí)際應(yīng)用的范圍,同時(shí)隨著其他學(xué)科的發(fā)展,數(shù)學(xué)變成了一種計(jì)算的工具,因此數(shù)學(xué)應(yīng)用的第一個(gè)階段中,主要是作為一種工具。隨著電子計(jì)算機(jī)的出現(xiàn),對(duì)數(shù)學(xué)的應(yīng)用達(dá)到了一個(gè)極限,人們?cè)跀?shù)學(xué)和物理的基礎(chǔ)上,制作出了能夠自動(dòng)計(jì)算的機(jī)器,在計(jì)算機(jī)出現(xiàn)的早期,受到性能和體積上的限制,只能進(jìn)行一些簡(jiǎn)單的數(shù)學(xué)計(jì)算,還不能解決實(shí)際的問題,但是計(jì)算機(jī)語(yǔ)言和軟件技術(shù)的.發(fā)展,使其在很多領(lǐng)域得到了應(yīng)用,在計(jì)算的基礎(chǔ)上,能夠解決很多問題,而軟件程序的開發(fā),其實(shí)就是建立數(shù)學(xué)模型的過程,由此可以看出,數(shù)學(xué)建模思想應(yīng)用的第二階段中,主要是以現(xiàn)代計(jì)算機(jī)等電子設(shè)備的方式,來(lái)解決實(shí)際的問題。

3數(shù)學(xué)建模思想應(yīng)用的方法

3.1分析問題

數(shù)學(xué)模型的應(yīng)用都是為了解決實(shí)際問題,雖然很多問題都可以通過建模的方式來(lái)解決,但是并不是所有的問題,因此在遇到實(shí)際問題時(shí),首先要對(duì)問題進(jìn)行具體的分析,首先就是看是否能夠轉(zhuǎn)化成數(shù)學(xué)符號(hào),如果能夠直接用數(shù)學(xué)語(yǔ)言來(lái)進(jìn)行描述,那么就可以容易的建立相應(yīng)的數(shù)學(xué)模型,但是通過實(shí)際的調(diào)查發(fā)現(xiàn),隨著經(jīng)濟(jì)和科技的發(fā)展,遇到的問題越來(lái)越復(fù)雜,其中很多都無(wú)法直接用數(shù)學(xué)語(yǔ)言來(lái)描述,這就增加了數(shù)學(xué)建模的難度。由此可以看出,分析問題作為數(shù)學(xué)建模的第一個(gè)環(huán)節(jié),也是最重要的一個(gè)環(huán)節(jié),如果問題分析的不夠具體,那么將無(wú)法建立出數(shù)學(xué)模型,同時(shí)對(duì)數(shù)學(xué)模型的建立也具有非常重要的影響,通過實(shí)際的調(diào)查發(fā)現(xiàn),能夠建立高效率的數(shù)學(xué)模型,都是對(duì)問題分析的比較徹底,甚至有些獨(dú)特的理解,只有這樣才能夠采用建立一個(gè)最簡(jiǎn)單的模型,而隨著數(shù)學(xué)建模自身的發(fā)展,現(xiàn)在建立模型的過程中,對(duì)于一個(gè)實(shí)際的問題,經(jīng)常需要建立多個(gè)模型,這樣通過多個(gè)數(shù)學(xué)模型協(xié)同來(lái)解決一個(gè)問題。

3.2數(shù)學(xué)模型的建立

在分析實(shí)際問題后,就要用數(shù)學(xué)符號(hào)來(lái)描述要解決的問題,這是建立數(shù)學(xué)模型的準(zhǔn)備環(huán)節(jié),要想利用數(shù)學(xué)來(lái)解決實(shí)際問題,無(wú)論采用哪種方式,都要轉(zhuǎn)化成數(shù)學(xué)語(yǔ)言,然后才能夠通過計(jì)算的方式解決,而數(shù)學(xué)模型的過程,就是在描述完成后,建立相應(yīng)的數(shù)學(xué)表達(dá)式,通常情況下,在分析問題時(shí),都能夠發(fā)現(xiàn)某種內(nèi)在的規(guī)律,這個(gè)規(guī)律是數(shù)學(xué)建模的基礎(chǔ)。如果無(wú)法找到這個(gè)規(guī)律,顯然就不能利用現(xiàn)有的一些數(shù)學(xué)定律,從而建立相應(yīng)的表達(dá)式,最后解決相應(yīng)的問題,由此可以看出,分析問題的內(nèi)在規(guī)律,是影響數(shù)學(xué)建模的重要因素,而這個(gè)規(guī)律的發(fā)現(xiàn),除了在現(xiàn)有的數(shù)學(xué)知識(shí)外,也可以結(jié)合其他學(xué)科的知識(shí),尤其是現(xiàn)在遇到的問題越來(lái)越復(fù)雜,對(duì)于以往簡(jiǎn)單的問題,只需要建立一個(gè)簡(jiǎn)單的模型即可解決,而現(xiàn)在復(fù)雜的問題,經(jīng)常需要建立多個(gè)模型。因此現(xiàn)在數(shù)學(xué)建模的難度越來(lái)越大,從近些年全國(guó)數(shù)學(xué)建模大賽的題目就可以看出,對(duì)于問題的描述越來(lái)越模糊,甚至出現(xiàn)了一些歷史上的難題,而不同學(xué)生根據(jù)自己的理解,建立的模型也具有很大的差異,其中一些模型非常新穎,為實(shí)際問題的解決提供了良好的參考,目前我國(guó)對(duì)數(shù)學(xué)建模的研究有限,尤其是與西方發(fā)達(dá)國(guó)家相比,實(shí)踐的機(jī)會(huì)還比較少。

3.3數(shù)學(xué)模型的校驗(yàn)

在數(shù)學(xué)模型建立之后,對(duì)于這個(gè)模型是否能夠解決實(shí)際問題,具體的執(zhí)行效率如何,都需要進(jìn)行校驗(yàn),因此檢驗(yàn)是數(shù)學(xué)模型建立最后的一個(gè)環(huán)節(jié),也是非常重要的一個(gè)步驟,通常情況下,經(jīng)過校驗(yàn)都能夠發(fā)現(xiàn)模型中存在的一些問題,從而進(jìn)行完善,這樣才能夠保證嚴(yán)謹(jǐn)性,在實(shí)際校驗(yàn)的過程中,要對(duì)數(shù)學(xué)模型的每個(gè)部分進(jìn)行驗(yàn)證,通過輸入特定的數(shù)據(jù),看得到的結(jié)果是否符合理論值,如果沒有問題,就說明該模型可以解決實(shí)際問題。除了檢驗(yàn)?zāi)P偷臏?zhǔn)確外,校驗(yàn)還有另外一個(gè)作用,就是優(yōu)化模型,在選定數(shù)據(jù)后,能夠看到數(shù)學(xué)模型計(jì)算的整個(gè)過程,這時(shí)就可以對(duì)具體的細(xì)節(jié)進(jìn)行優(yōu)化,如哪部分可以減少計(jì)算的步驟,或者簡(jiǎn)化計(jì)算的方式等,這樣可以使整個(gè)模型更加科學(xué)、合理,由此可以看出,校驗(yàn)工作對(duì)于數(shù)學(xué)模型的建立,具有非常重要的意義。

4結(jié)語(yǔ)

通過全文的分析可以知道,對(duì)于數(shù)學(xué)理論的應(yīng)用,從很久之前就已經(jīng)開始了,但是數(shù)學(xué)建模思想的出現(xiàn),卻是隨著計(jì)算機(jī)技術(shù)的發(fā)展,逐漸形成的一門學(xué)科,電子計(jì)算機(jī)的出現(xiàn),在很大程度上改變了處理事情的方式,利用計(jì)算機(jī)軟件,只要輸入相應(yīng)的參數(shù),就可以直接得到結(jié)果,這正是數(shù)學(xué)模型完成的任務(wù),只是計(jì)算機(jī)的出現(xiàn),省略了中間的計(jì)算過程,因此計(jì)算機(jī)軟件的方式,是數(shù)學(xué)建模思想最好的應(yīng)用方法,要想解決不同的問題,只要建立不同的模型,然后編寫相應(yīng)的程序。

大學(xué)數(shù)學(xué)建模論文篇十七

信息化時(shí)代,數(shù)學(xué)科學(xué)與其他學(xué)科交叉融合,使得數(shù)學(xué)技術(shù)變成了一種普適性的關(guān)鍵技術(shù)。大學(xué)加強(qiáng)數(shù)學(xué)課程的應(yīng)用功能,不但可以為學(xué)生提供解決問題的思想和方法,而且更為重要的是可以培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)科學(xué)進(jìn)行定量化、精確化思維的意識(shí),學(xué)會(huì)創(chuàng)造性地解決問題的應(yīng)用能力。數(shù)學(xué)建模課程將數(shù)學(xué)的基本原理、現(xiàn)代優(yōu)化算法以及程序設(shè)計(jì)知識(shí)很好地融合在一起,有助于培養(yǎng)學(xué)生綜合應(yīng)用數(shù)學(xué)知識(shí)將現(xiàn)實(shí)問題化為數(shù)學(xué)問題,并進(jìn)行求解運(yùn)算的能力,激發(fā)學(xué)生對(duì)解決現(xiàn)實(shí)問題的探索欲望,強(qiáng)化數(shù)學(xué)課程本身的應(yīng)用功能,凸顯數(shù)學(xué)課程的教育價(jià)值,適應(yīng)大學(xué)數(shù)學(xué)課程以培養(yǎng)學(xué)生創(chuàng)新意識(shí)為宗旨的教育改革需要。

大學(xué)傳統(tǒng)的數(shù)學(xué)主干課程,如高等數(shù)學(xué)、線性代數(shù)、概率論與數(shù)理統(tǒng)計(jì)在奠定學(xué)生的數(shù)學(xué)基礎(chǔ)、培養(yǎng)自學(xué)能力以及為后續(xù)課程的學(xué)習(xí)在基礎(chǔ)方面發(fā)揮奠基作用。但是,這種原有的教學(xué)模式重在突出培養(yǎng)學(xué)生嚴(yán)格的邏輯思維能力,而對(duì)數(shù)學(xué)的應(yīng)用重視不夠,這使得學(xué)生即使掌握了較為高深的數(shù)學(xué)理論,卻并不能將其靈活應(yīng)用于現(xiàn)實(shí)生活解決實(shí)際問題,更是缺乏將數(shù)學(xué)應(yīng)用于專業(yè)研究和軍事工程的能力,與創(chuàng)新教育的基本要求差距甚遠(yuǎn)。教育轉(zhuǎn)型要求數(shù)學(xué)教學(xué)模式從傳統(tǒng)的傳授知識(shí)為主向以培養(yǎng)能力素質(zhì)為主轉(zhuǎn)變,特別是將數(shù)學(xué)建模的思想方法融入到數(shù)學(xué)主干課程之中,在教學(xué)過程中引導(dǎo)學(xué)生將數(shù)學(xué)知識(shí)內(nèi)化為學(xué)生的應(yīng)用能力,充分發(fā)揮數(shù)學(xué)建模思想在數(shù)學(xué)教學(xué)過程中的引領(lǐng)作用。數(shù)學(xué)課程教學(xué)改革要適應(yīng)這一教學(xué)模式轉(zhuǎn)型需要,深入探究融入式教學(xué)模式的理論與方式,是推進(jìn)數(shù)學(xué)教育改革的重要舉措。

2.1理清數(shù)學(xué)建模思想方法與數(shù)學(xué)主干課程的關(guān)系。數(shù)學(xué)主干課程提供了大學(xué)數(shù)學(xué)的基礎(chǔ)理論與基本原理,將數(shù)學(xué)建模的思想方法有機(jī)地融入到數(shù)學(xué)主干課程中,不但可以有效地提升數(shù)學(xué)課程的應(yīng)用功能,而且有利于深化學(xué)生對(duì)數(shù)學(xué)本原知識(shí)的理解,培養(yǎng)學(xué)生的綜合應(yīng)用能力。深入研究數(shù)學(xué)主干課程的功能定位,主要從課程目標(biāo)上的一致性、課程內(nèi)容上的互補(bǔ)性、學(xué)習(xí)形式上的互促性、功能上的整體優(yōu)化性等方面,研究數(shù)學(xué)建模本身所承載的思想、方法與數(shù)學(xué)主干課程的內(nèi)容與邏輯關(guān)系,闡述數(shù)學(xué)建模思想方法對(duì)提高學(xué)生創(chuàng)新能力和對(duì)數(shù)學(xué)教育改革的重要意義,探索開展融入式教學(xué)及創(chuàng)新數(shù)學(xué)課程教學(xué)模式的有效途徑。

2.2探索融入式教學(xué)模式提升數(shù)學(xué)主干課程應(yīng)用功能的方式。融入式教學(xué)主要有輕度融入、中度融入和完全融入三種方式。根據(jù)主干課程的基本特點(diǎn),對(duì)課程體系進(jìn)行調(diào)整,在問題解決過程中安排需要融入的知識(shí)體系,按照三種方式融入數(shù)學(xué)建模的思想與方法。以學(xué)生能力訓(xùn)練為主導(dǎo),在培養(yǎng)深厚的數(shù)學(xué)基礎(chǔ)和嚴(yán)格的邏輯思維能力的基礎(chǔ)上,充分發(fā)揮數(shù)學(xué)建模思想方法對(duì)學(xué)生思維方式的培養(yǎng)功能和引導(dǎo)作用,培養(yǎng)學(xué)生敏銳的分析能力、深刻的'歸納演繹能力以及將數(shù)學(xué)知識(shí)應(yīng)用于工程問題的創(chuàng)新能力。

2.3建立數(shù)學(xué)建模思想方法融入數(shù)學(xué)主干課程的評(píng)價(jià)方式。融入式教學(xué)是處于探索中的教學(xué)模式,教學(xué)成效有待于實(shí)踐檢驗(yàn)。選取開展融入式教學(xué)的實(shí)驗(yàn)班級(jí),對(duì)數(shù)學(xué)建模思想方法融入主干課程進(jìn)行教學(xué)效果實(shí)踐驗(yàn)證。設(shè)計(jì)相應(yīng)的考察量表,從運(yùn)用直覺思維深入理解背景知識(shí)、符號(hào)翻譯開展邏輯思維、依托圖表理順數(shù)量關(guān)系、大膽嘗試進(jìn)行建模求解等多方面對(duì)實(shí)驗(yàn)課程的教學(xué)效果進(jìn)行檢驗(yàn),深入分析融入式教學(xué)模式的成效與不足,為探索有效的教學(xué)模式提出改進(jìn)的對(duì)策。

3.1改革課程教學(xué)內(nèi)容,滲透數(shù)學(xué)建模的思想方法。傳統(tǒng)的數(shù)學(xué)主干課程教學(xué)內(nèi)容,將數(shù)學(xué)看作嚴(yán)謹(jǐn)?shù)难堇[體系,教學(xué)過程中著力于對(duì)學(xué)生傳授大學(xué)數(shù)學(xué)的基礎(chǔ)知識(shí),而對(duì)應(yīng)用能力的培養(yǎng)卻重視不夠。使得本應(yīng)能夠發(fā)揮應(yīng)用功能的數(shù)學(xué)知識(shí)則淪為僵死的教條性數(shù)學(xué)原理,這失去了教學(xué)的活力。學(xué)生即使掌握了再高深的數(shù)學(xué)知識(shí),仍難以學(xué)會(huì)用數(shù)學(xué)的基本方法解決現(xiàn)實(shí)問題?,F(xiàn)行的大學(xué)數(shù)學(xué)課程教學(xué)內(nèi)容中,適當(dāng)?shù)貪B透一些應(yīng)用性比較廣泛的數(shù)學(xué)方法,如微元法、迭代法及最佳逼近等方法,有利于促進(jìn)學(xué)生對(duì)數(shù)學(xué)基礎(chǔ)知識(shí)的掌握,同時(shí)理解數(shù)學(xué)原理所蘊(yùn)涵的思想與方法。

這樣,在解決實(shí)際問題的時(shí)候,學(xué)生就會(huì)有意識(shí)地從數(shù)學(xué)的角度進(jìn)行思考,嘗試建立相應(yīng)的數(shù)學(xué)模型并進(jìn)行求解,拓展了數(shù)學(xué)知識(shí)的深度與廣度,提升了學(xué)生的數(shù)學(xué)應(yīng)用能力四、結(jié)語(yǔ)數(shù)學(xué)建模是數(shù)學(xué)科學(xué)在科技、經(jīng)濟(jì)、軍事等領(lǐng)域廣泛應(yīng)用的接口,是數(shù)學(xué)科學(xué)轉(zhuǎn)化成科學(xué)技術(shù)的重要途徑。在數(shù)學(xué)主干課程中融入數(shù)學(xué)建模的思想與方法,可以推動(dòng)大學(xué)數(shù)學(xué)教育改革的深入發(fā)展,加深學(xué)生對(duì)相關(guān)知識(shí)的理解和掌握,有助于從思維方式上培養(yǎng)學(xué)生的創(chuàng)新意識(shí)與創(chuàng)新能力。

此外,數(shù)學(xué)建模思想方法融入教學(xué)主干課程還涉及到許多問題,比如數(shù)學(xué)建模與計(jì)算技術(shù)如何有效結(jié)合以進(jìn)行模擬仿真、融入式教學(xué)模式的基本理論、構(gòu)建新的課程體系等問題,仍將有待于更深入的研究。

【本文地址:http://mlvmservice.com/zuowen/5528394.html】

全文閱讀已結(jié)束,如果需要下載本文請(qǐng)點(diǎn)擊

下載此文檔