總結(jié)是對自己付出的一種回報,也是對自己成長的見證。在寫總結(jié)過程中,我們可以尋求他人的意見和建議,從不同角度思考問題。以下是一些寫作技巧和經(jīng)驗,希望對大家的總結(jié)寫作有所幫助。
指數(shù)函數(shù)的概念說課稿篇一
一、本課時在教材中的地位及作用
函數(shù)作為初等數(shù)學(xué)的核心內(nèi)容,貫穿于整個初等數(shù)學(xué)體系之中。本章節(jié)9個課時,函數(shù)這一章在高中數(shù)學(xué)中,起著承上啟下的作用,它是對初中函數(shù)概念的承接與深化。在初中,只停留在具體的幾個簡單類型的函數(shù)上,把函數(shù)看成變量之間的依賴關(guān)系,而高中階段不僅把函數(shù)看成變量之間的依賴關(guān)系,更是從“變量說”到“對應(yīng)說”,這是對函數(shù)本質(zhì)特征的進一步認識,也是學(xué)生認識上的一次飛躍。這一章內(nèi)容滲透了函數(shù)的思想,集合的思想以及數(shù)學(xué)建模的思想等內(nèi)容,這些內(nèi)容的學(xué)習(xí),無疑對學(xué)生今后的學(xué)習(xí)起著深刻的影響。
二、教學(xué)目標
理解函數(shù)的概念,會用函數(shù)的定義判斷函數(shù),會求一些最基本的函數(shù)的定義域、值域。
通過對實際問題分析、抽象與概括,培養(yǎng)學(xué)生抽象、概括、歸納知識以及邏輯思維、建模等方面的能力。
通過對函數(shù)概念形成的探究過程,培養(yǎng)學(xué)生發(fā)現(xiàn)問題,探索問題,不斷超越的創(chuàng)新品質(zhì)。
三、重難點分析確定
一、教學(xué)基本思路及過程
本節(jié)課《函數(shù)的概念》是函數(shù)這一章的起始課。概念是數(shù)學(xué)的基礎(chǔ),只有對概念做到深刻理解,才能正確靈活地加以應(yīng)用。本課(借助小黑板)從集合間的對應(yīng)來描繪函數(shù)概念,起到了上承集合,下引函數(shù)的作用,也為進一步學(xué)習(xí)函數(shù)這一章的其它內(nèi)容提供了方法和依據(jù)。
二、學(xué)情分析
一方面學(xué)生在初中已經(jīng)學(xué)習(xí)了變量觀點下的函數(shù)定義,并具體研究了幾類最簡單的函數(shù),對函數(shù)已經(jīng)有了一定的感性認識;另一方面在本書第一章學(xué)生已經(jīng)學(xué)習(xí)了集合的概念,這為學(xué)習(xí)函數(shù)的現(xiàn)代定義打下了基礎(chǔ)。
函數(shù)在初中雖已講過,不過較為膚淺,本課主要是從兩個集合間對應(yīng)來描繪函數(shù)概念,是一個抽象過程,要求學(xué)生的抽象、分析、概括的能力比較高,學(xué)生學(xué)起來有一定的難度,加上學(xué)生數(shù)學(xué)基礎(chǔ)較差,理解能力,運算能力等參差不齊等。
三、教法、學(xué)法
1、本節(jié)課采用的方法有:
直觀教學(xué)法、啟發(fā)教學(xué)法、課堂討論法。
2、采用這些方法的理論依據(jù):
我一方面精心設(shè)計問題情景,引導(dǎo)學(xué)生主動探索,另一方面,依據(jù)本節(jié)為概念學(xué)習(xí)的特點,以問題的提出、問題的解決為主線,設(shè)置問題,倡導(dǎo)學(xué)生主動參與,通過不斷探究、發(fā)現(xiàn),在師生互動、生生互動中,讓學(xué)習(xí)過程成為學(xué)生心靈愉悅的主動認知過程,充分體現(xiàn)“教師為主導(dǎo),學(xué)生為主體”的教學(xué)原則。
指數(shù)函數(shù)的概念說課稿篇二
教學(xué)目標:
1、進一步理解的概念,能從簡單的實際事例中,抽象出關(guān)系,列出解析式;
2、使學(xué)生分清常量與變量,并能確定自變量的取值范圍.
3、會求值,并體會自變量與值間的對應(yīng)關(guān)系.
4、使學(xué)生掌握解析式為只含有一個自變量的簡單的整式、分式、二次根式的的自變量的取值范圍的求法.
5、通過的教學(xué)使學(xué)生體會到事物是相互聯(lián)系的.是有規(guī)律地運動變化著的.
教學(xué)重點:了解的意義,會求自變量的取值范圍及求值.
教學(xué)難點:概念的抽象性.
教學(xué)過程:
(一)引入新課:
上一節(jié)課我們講了的概念:一般地,設(shè)在一個變化過程中有兩個變量x、y,如果對于x的每一個值,y都有唯一的值與它對應(yīng),那么就說x是自變量,y是x的.
生活中有很多實例反映了關(guān)系,你能舉出一個,并指出式中的自變量與嗎?
1、學(xué)校計劃組織一次春游,學(xué)生每人交30元,求總金額y(元)與學(xué)生數(shù)n(個)的關(guān)系.
2、為迎接新年,班委會計劃購買100元的小禮物送給同學(xué),求所能購買的總數(shù)n(個)與單價(a)元的關(guān)系.
解:1、y=30n
y是,n是自變量
2、,n是,a是自變量.
(二)講授新課
剛才所舉例子中的,都是利用數(shù)學(xué)式子即解析式表示的.這種用數(shù)學(xué)式子表示時,要考慮自變量的取值必須使解析式有意義.如第一題中的學(xué)生數(shù)n必須是正整數(shù).
例1、求下列中自變量x的取值范圍.
(1) (2)
(3) (4)
(5) (6)
分析:在(1)、(2)中,x取任意實數(shù), 與 都有意義.
(3)小題的 是一個分式,分式成立的條件是分母不為0.這道題的分母是 ,因此要求 .
同理(4)小題的 也是分式,分式成立的條件是分母不為0,這道題的分母是 ,因此要求 且 .
同理,第(6)小題 也是二次根式, 是被開方數(shù),
.
解:(1)全體實數(shù)
(2)全體實數(shù)
(3)
(4) 且
(5)
(6)
小結(jié):從上面的例題中可以看出的解析式是整數(shù)時,自變量可取全體實數(shù);的解析式是分式時,自變量的取值應(yīng)使分母不為零;的解析式是二次根式時,自變量的取值應(yīng)使被開方數(shù)大于、等于零.
注意:有些同學(xué)沒有真正理解解析式是分式時,自變量的取值應(yīng)使分母不為零,片面地認為,凡是分母,只要 即可.教師可將解題步驟設(shè)計得細致一些.先提問本題的分母是什么?然后再要求分式的分母不為零.求出使成立的自變量的取值范圍.二次根式的問題也與次類似.
但象第(4)小題,有些同學(xué)會犯這樣的錯誤,將答案寫成 或 .在解一元二次方程時,方程的兩根用“或者”聯(lián)接,在這里就直接拿過來用.限于初中學(xué)生的接受能力,教師可聯(lián)系日常生活講清“且”與“或”.說明這里 與 是并且的關(guān)系.即2與-1這兩個值x都不能取.
指數(shù)函數(shù)的概念說課稿篇三
教材是課程標準的具體化,是課堂知識呈現(xiàn)的載體,對于教材的深入理解是上好一堂課前提。本課選自人教版,高中數(shù)學(xué)必修一第二章第六節(jié)。在漫長的高中數(shù)學(xué)學(xué)習(xí)的過程中,函數(shù)的學(xué)習(xí)貫穿始終。從教材的書寫邏輯上看,之前的教材內(nèi)容已經(jīng)對于函數(shù)的一般性質(zhì)進行了排布。而本節(jié)課指數(shù)函數(shù)的學(xué)習(xí)則對接下來對數(shù)函數(shù)等復(fù)雜函數(shù)的深入學(xué)習(xí)奠定了堅實的基礎(chǔ)??梢哉f,指數(shù)函數(shù)的學(xué)習(xí)對于高中函數(shù)的學(xué)習(xí)起到了承上啟下的重要作用。
新的學(xué)生觀告訴我們,我們要在課堂中充分發(fā)揮學(xué)生的主體地位,因此對于學(xué)生的情況了解也是十分重要的。從思維層面上看,高中的學(xué)生已經(jīng)具備了比較成熟的抽象邏輯思維能力,有著較強的理解力,這對于我們課堂的開展是十分有幫助的。而這個階段的學(xué)生好勝心比較強,容易產(chǎn)生負面情緒,這對于我們課堂的教學(xué)也帶來了一定的挑戰(zhàn)。從經(jīng)驗上看,在之前的學(xué)習(xí)中,學(xué)生已經(jīng)對于“指數(shù)”“函數(shù)”等概念有了深刻的認識,為本節(jié)課程的開展提供了幫助,而指數(shù)函數(shù)相對比較抽象,對于學(xué)生的學(xué)習(xí)、老師的教授都提出了較高的要求,因此合理的教法學(xué)法選擇顯得尤為重要。
教學(xué)目標是教育教學(xué)活動的出發(fā)點和依據(jù),結(jié)合新課改的思想和新課標的要求,本節(jié)課我所制定的三維教學(xué)目標如下:
知識與技能目標:掌握指數(shù)函數(shù)的概念,圖像性質(zhì);能夠利用指數(shù)函數(shù)的概念解決實際問題。
過程與方法目標:通過分組討論參與發(fā)現(xiàn)的過程,培養(yǎng)學(xué)生觀察,聯(lián)想,類比,猜測,歸納的能力。
情感態(tài)度與價值觀目標:通過教學(xué)互動,促進師生情感,激發(fā)學(xué)生的學(xué)習(xí)興趣,提高學(xué)生的抽象概括,分析,綜合的能力,培養(yǎng)學(xué)生聯(lián)系觀點看問題,領(lǐng)會數(shù)學(xué)科學(xué)的應(yīng)用價值。
而本節(jié)課,我將重難點確立為:指數(shù)函數(shù)的圖像和性質(zhì),以及它與底數(shù)a的關(guān)系。
正如蘇霍姆林斯基所說:只有能夠激發(fā)學(xué)生去進行自我教育的教育,才是真正的教育。在滿足學(xué)習(xí)者需求的基礎(chǔ)之上,我將制定適合本階段學(xué)生的教法來展開教學(xué),以體現(xiàn)教師的主導(dǎo)性。分別以圖片展示、討論、講授、參與練習(xí)等相結(jié)合的方式進行教學(xué)。同時我將采用誘思探究和自主學(xué)習(xí)相結(jié)合的方式,以激發(fā)學(xué)生的學(xué)習(xí)主動性,充分地體現(xiàn)學(xué)生的主體地位。
以上所有的準備都是為了更好的呈現(xiàn)我的課堂,下面來談一談我對于教學(xué)過程的設(shè)計。
首先創(chuàng)設(shè)情境,導(dǎo)入新課我將用電腦展示兩個實例:計算機價格下降問題和生物中細胞分裂的例子。我會請同學(xué)們仔細觀察并分組討論,分別寫出計算機價格y與經(jīng)過月份x的關(guān)系以及細胞個數(shù)y與分裂次數(shù)x的關(guān)系,用所學(xué)知識結(jié)合探究法,分析出指數(shù)函數(shù)底數(shù)討論的必要性以及分類方法。通過這樣的實例,可以很好地激發(fā)學(xué)生的學(xué)習(xí)興趣,培養(yǎng)學(xué)生思維的主動性,為接下來的學(xué)習(xí)做好準備。
其次啟發(fā)誘導(dǎo),探求新知我會給出兩個簡單的指數(shù)函數(shù),并要求學(xué)生畫出它們的圖像,并在準備好的小黑板上規(guī)范地畫出這兩個指數(shù)函數(shù)的圖像,同時板書出指數(shù)函數(shù)的性質(zhì)。同學(xué)們通過動手,促進學(xué)生對本課內(nèi)容的理解學(xué)習(xí),并借助小黑板演示其規(guī)范性。利用多媒體將指數(shù)函數(shù)的圖像加以展示,利于觀察圖像總結(jié)所學(xué)知識的性質(zhì),也能對于接下來的知識點導(dǎo)入起到自然結(jié)合的作用。當(dāng)然學(xué)生通過我的引導(dǎo)交流討論會很快畫出兩個簡單的指數(shù)函數(shù),歸納出函數(shù)的性質(zhì)涉及方面,總結(jié)出它的性質(zhì)。
接著鞏固新知,反饋回授我會板書出例一及例二第一問,并介紹相關(guān)考古知識,本著實踐為主的原則,完成學(xué)生學(xué)習(xí):實踐到認識再到實踐的過程。通過練習(xí)實現(xiàn)教師的再指導(dǎo)和學(xué)生的漸進式提高。這個環(huán)節(jié)介紹的化學(xué)知識在考古中的應(yīng)用,這樣的設(shè)計既開拓了學(xué)生的視野,又為下一步學(xué)習(xí):計算分期付款的利率等問題埋下伏筆,因此學(xué)生能夠了解解題的規(guī)范步驟,并完成例題,拓展視野體會數(shù)學(xué)的應(yīng)用價值。緊接著我會帶領(lǐng)學(xué)生進行歸納,總結(jié)升華我會將同學(xué)們進行分組討論、探究,引導(dǎo)學(xué)生對指數(shù)函數(shù)的知識進行梳理和深化認知。知識與技能目標設(shè)置分組pk機制,引導(dǎo)學(xué)生對課堂知識進行分類討論、數(shù)形結(jié)合等數(shù)學(xué)方法的歸納。最后我會布置課后作業(yè)以幫助學(xué)生鞏固練習(xí),溫故而知新。
當(dāng)然一堂完整的課程離不開簡潔明了的板書設(shè)計,我的板書設(shè)計如下:在黑板中間的正上方,我會寫下今天的課題:指數(shù)函數(shù),我會在黑板的中間擺上小黑板以展示其規(guī)范性。在黑板的左面,我會在練習(xí)過程中寫下今天練習(xí)的,計算步驟。黑板的右面,我會寫下例題一以及例題二的第一問。這樣的設(shè)計,可以幫助學(xué)生更好地學(xué)習(xí)本課的內(nèi)容。以上就是我所有的授課內(nèi)容,感謝各位老師的聆聽。
指數(shù)函數(shù)的概念說課稿篇四
一、說課內(nèi)容:
九年級數(shù)學(xué)下冊第27章第一節(jié)的二次函數(shù)的概念及相關(guān)習(xí)題(華東師范大學(xué)出版社)
二、教材分析:
1、教材的地位和作用
這節(jié)課是在學(xué)生已經(jīng)學(xué)習(xí)了一次函數(shù)、正比例函數(shù)、反比例函數(shù)的基礎(chǔ)上,來學(xué)習(xí)二次函數(shù)的概念。二次函數(shù)是初中階段研究的最后一個具體的函數(shù),也是最重要的,在歷年來的中考題中占有較大比例。同時,二次函數(shù)和以前學(xué)過的一元二次方程、一元二次不等式有著密切的聯(lián)系。進一步學(xué)習(xí)二次函數(shù)將為它們的解法提供新的方法和途徑,并使學(xué)生更為深刻的理解數(shù)形結(jié)合的重要思想。而本節(jié)課的二次函數(shù)的概念是學(xué)習(xí)二次函數(shù)的'基礎(chǔ),是為后來學(xué)習(xí)二次函數(shù)的圖象做鋪墊。所以這節(jié)課在整個教材中具有承上啟下的重要作用。
2、教學(xué)目標和要求:
(1)知識與技能:使學(xué)生理解二次函數(shù)的概念,掌握根據(jù)實際問題列出二次函數(shù)關(guān)系式的方法,并了解如何根據(jù)實際問題確定自變量的取值范圍。
(2)過程與方法:復(fù)習(xí)舊知,通過實際問題的引入,經(jīng)歷二次函數(shù)概念的探索過程,提高學(xué)生解決問題的能力.
(3)情感、態(tài)度與價值觀:通過觀察、操作、交流歸納等數(shù)學(xué)活動加深對二次函數(shù)概念的理解,發(fā)展學(xué)生的數(shù)學(xué)思維,增強學(xué)好數(shù)學(xué)的愿望與信心.
3、教學(xué)重點:對二次函數(shù)概念的理解。
4、教學(xué)難點:抽象出實際問題中的二次函數(shù)關(guān)系。
三、教法學(xué)法設(shè)計:
1、從創(chuàng)設(shè)情境入手,通過知識再現(xiàn),孕伏教學(xué)過程
2、從學(xué)生活動出發(fā),通過以舊引新,順勢教學(xué)過程
3、利用探索、研究手段,通過思維深入,領(lǐng)悟教學(xué)過程
四、教學(xué)過程:
(一)復(fù)習(xí)提問
1.什么叫函數(shù)?我們之前學(xué)過了那些函數(shù)?
(一次函數(shù),正比例函數(shù),反比例函數(shù))
2.它們的形式是怎樣的?
(y=kx+b,ky=kx,ky=,k0)
【設(shè)計意圖】復(fù)習(xí)這些問題是為了幫助學(xué)生弄清自變量、函數(shù)、常量等概念,加深對函數(shù)定義的理解.強調(diào)k0的條件,以備與二次函數(shù)中的a進行比較.
(二)引入新課
函數(shù)是研究兩個變量在某變化過程中的相互關(guān)系,我們已學(xué)過正比例函數(shù),反比例函數(shù)和一次函數(shù)??聪旅嫒齻€例子中兩個變量之間存在怎樣的關(guān)系。
例1、(1)圓的半徑是r(cm)時,面積與半徑之間的關(guān)系是什么?
解:s=0)
解:y=x(20/2-x)=x(10-x)=-x2+10x(0
解:y=100(1+x)2
=100(x2+2x+1)
=100x2+200x+100(0
教師提問:以上三個例子所列出的函數(shù)與一次函數(shù)有何相同點與不同點?
(三)講解新課
以上函數(shù)不同于我們所學(xué)過的一次函數(shù),正比例函數(shù),反比例函數(shù),我們就把這種函數(shù)稱為二次函數(shù)。
二次函數(shù)的定義:形如y=ax2+bx+c(a0,a,b,c為常數(shù))的函數(shù)叫做二次函數(shù)。
鞏固對二次函數(shù)概念的理解:
1、強調(diào)形如,即由形來定義函數(shù)名稱。二次函數(shù)即y是關(guān)于x的二次多項式(關(guān)于的x代數(shù)式一定要是整式)。
2、在y=ax2+bx+c中自變量是x,它的取值范圍是一切實數(shù)。但在實際問題中,自變量的取值范圍是使實際問題有意義的值。(如例1中要求r0)
3、為什么二次函數(shù)定義中要求a?
(若a=0,ax2+bx+c就不是關(guān)于x的二次多項式了)
4、在例3中,二次函數(shù)y=100x2+200x+100中,a=100,b=200,c=100.
5、b和c是否可以為零?
由例1可知,b和c均可為零.
若b=0,則y=ax2+c;
若c=0,則y=ax2+bx;
若b=c=0,則y=ax2.
注明:以上三種形式都是二次函數(shù)的特殊形式,而y=ax2+bx+c是二次函數(shù)的一般形式.
判斷:下列函數(shù)中哪些是二次函數(shù)?哪些不是二次函數(shù)?若是二次函數(shù),指出a、b、c.
(1)y=3(x-1)2+1(2)s=3-2t2
(3)y=(x+3)2-x2(4)s=10r2
(5)y=22+2x(6)y=x4+2x2+1(可指出y是關(guān)于x2的二次函數(shù))
(四)鞏固練習(xí)
1.已知一個直角三角形的兩條直角邊長的和是10cm。
(1)當(dāng)它的一條直角邊的長為4.5cm時,求這個直角三角形的面積;
(2)設(shè)這個直角三角形的面積為scm2,其中一條直角邊為xcm,求s關(guān)
于x的函數(shù)關(guān)系式。
【設(shè)計意圖】此題由具體數(shù)據(jù)逐步過渡到用字母表示關(guān)系式,讓學(xué)生經(jīng)歷由具體到抽象的過程,從而降低學(xué)生學(xué)習(xí)的難度。
2.已知正方體的棱長為xcm,它的表面積為scm2,體積為vcm3。
(1)分別寫出s與x,v與x之間的函數(shù)關(guān)系式子;
(2)這兩個函數(shù)中,那個是x的二次函數(shù)?
【設(shè)計意圖】簡單的實際問題,學(xué)生會很容易列出函數(shù)關(guān)系式,也很容易分辨出哪個是二次函數(shù)。通過簡單題目的練習(xí),讓學(xué)生體驗到成功的歡愉,激發(fā)他們學(xué)習(xí)數(shù)學(xué)的興趣,建立學(xué)好數(shù)學(xué)的信心。
五、評價分析
本節(jié)的一個知識點就是二次函數(shù)的概念,教學(xué)中教師不能直接給出,而要讓學(xué)生自己在分析、揭示實際問題的數(shù)量關(guān)系并把實際問題轉(zhuǎn)化為數(shù)學(xué)模型的過程中,使學(xué)生感受函數(shù)是刻畫現(xiàn)實世界數(shù)量關(guān)系的有效模型,增加對二次函數(shù)的感性認識,側(cè)重點通過兩個實際問題的探究引導(dǎo)學(xué)生自己歸納出這種新的函數(shù)二次函數(shù),進一步感受數(shù)學(xué)在生活中的廣泛應(yīng)用。對于最大面積問題,可給學(xué)生留為課下探究問題,發(fā)展學(xué)生的發(fā)散思維,方法不拘一格,只要合理均應(yīng)鼓勵。
指數(shù)函數(shù)的概念說課稿篇五
三角函數(shù)的有關(guān)概念(b).
理解任意角的概念;理解終邊相同的角的意義;了解弧度的意義,并能進行弧度與角度的互化.
理解任意角三角函數(shù)(正弦、余弦、正切)的定義;初步了解有向線段的概念,會利用單位圓中的三角函數(shù)線表示任意角的正弦、余弦、正切.
終邊相同的角的意義和任意角三角函數(shù)(正弦、余弦、正切)的定義.
一、問題.
1、角的概念是什么?角按旋轉(zhuǎn)方向分為哪幾類?
2、在平面直角坐標系內(nèi)角分為哪幾類?與 終邊相同的角怎么表示?
3、什么是弧度和弧度制?弧度和角度怎么換算?弧度和實數(shù)有什么樣的關(guān)系?
4、弧度制下圓的弧長公式和扇形的面積公式是什么?
5、任意角的三角函數(shù)的定義是什么?在各象限的符號怎么確定?
6、你能在單位圓中畫出正弦、余弦和正切線嗎?
7、同角三角函數(shù)有哪些基本關(guān)系式?
二、練習(xí).
1.給出下列命題:
(1)小于 的角是銳角;
(2)若 是第一象限的角,則 必為第一象限的角;
(3)第三象限的角必大于第二象限的角;
(4)第二象限的角是鈍角;
(5)相等的角必是終邊相同的角;終邊相同的角不一定相等;
(6)角2 與角 的終邊不可能相同;
2.設(shè)p 點是角終邊上一點,且滿足 則 的值是
4.若 則角 的終邊在 象限。
5.在直角坐標系中,若角 與角 的終邊互為反向延長線,則角 與角 之間的關(guān)系是
6.若 是第三象限的角,則- , 的終邊落在何處?
例1.如圖, 分別是角 的終邊.
(1)求終邊落在陰影部分(含邊界)的所有角的集合;
(2)求終邊落在陰影部分、且在 上所有角的集合;
(3)求始邊在om位置,終邊在on位置的所有角的集合.
例2.
(1)已知角的終邊在直線 上,求 的值;
(2)已知角的終邊上有一點a ,求 的值。
例3.若 ,則 在第 象限.
1、若銳角 的終邊上一點的坐標為 ,則角 的弧度數(shù)為 .
2、若 ,又 是第二,第三象限角,則 的取值范圍是 .
3、一個半徑為 的扇形,如果它的周長等于弧所在半圓的弧長,那么該扇形的圓心角度數(shù)是 弧度或角度,該扇形的面積是 .
4、已知點p 在第三象限,則 角終邊在第 象限.
5、設(shè)角 的終邊過點p ,則 的值為 .
6、已知角 的終邊上一點p 且 ,求 和 的值.
1、經(jīng)過3小時35分鐘,分針轉(zhuǎn)過的角的弧度是 .時針轉(zhuǎn)過的角的弧度數(shù)是 .
2、若點p 在第一象限,則在 內(nèi) 的取值范圍是 .
3、若點p從(1,0)出發(fā),沿單位圓 逆時針方向運動 弧長到達q點,則q點坐標為 .
4、如果 為小于360 的正角,且角 的7倍數(shù)的角的終邊與這個角的終邊重合,求角 的值.
指數(shù)函數(shù)的概念說課稿篇六
教材的地位及前后聯(lián)系
本節(jié)課是《中等職業(yè)教育規(guī)劃教材數(shù)學(xué)》第一冊第四章第二節(jié)《指數(shù)函數(shù)》。本節(jié)課是學(xué)生在已掌握了函數(shù)的一般性質(zhì)之后系統(tǒng)學(xué)習(xí)的第一個函數(shù),通過學(xué)習(xí)可進一步深化學(xué)生對函數(shù)概念的理解與認識,使學(xué)生得到較系統(tǒng)的函數(shù)知識和研究函數(shù)的方法,也為今后進一步研究函數(shù)的性質(zhì)特別是后面的對數(shù)函數(shù)打下堅實的基礎(chǔ),同時也培養(yǎng)了學(xué)生對函數(shù)的應(yīng)用意識。因此本課有十分重要地位和作用,它對知識起到了承上啟下的作用。
教學(xué)目標:
知識目標:
1、掌握指數(shù)函數(shù)的概念,并能根據(jù)定義判斷一個函數(shù)是否為指數(shù)函數(shù);
2、掌握指數(shù)函數(shù)的圖像和性質(zhì);
3、能根據(jù)單調(diào)性解決比較大小的問題。
能力目標:
1、培養(yǎng)學(xué)生觀察、分析、分類、歸納、探索發(fā)現(xiàn)解決問題的能力,體會從特殊到一般的研究方法和分類討論思想。
2、提高學(xué)生運用現(xiàn)代信息化手段解決數(shù)學(xué)問題的能力。
情感目標
1、通過問題的解決,樹立學(xué)生的自信心,體會成功與快樂;
3、通過學(xué)習(xí)讓學(xué)生感受到數(shù)學(xué)與現(xiàn)實生活的聯(lián)系,讓學(xué)生發(fā)現(xiàn)生活中的函數(shù)問題。
教材的重點和難點:
教學(xué)重點:指數(shù)函數(shù)的概念、圖像和性質(zhì);
教學(xué)難點:如何由圖像歸納指數(shù)函數(shù)的性質(zhì)以及性質(zhì)的應(yīng)用。
根據(jù)這幾年的教學(xué)我發(fā)現(xiàn)學(xué)生在后面學(xué)習(xí)中一遇到指對數(shù)問題就發(fā)蒙,原因是什么呢?問題就出在學(xué)生剛剛學(xué)完第三章函數(shù)的性質(zhì),應(yīng)用的又是初中比較熟悉的一元二次函數(shù)。一下子出現(xiàn)了一個非常陌生的函數(shù)而且需要記很多性質(zhì),學(xué)生感覺很吃力。對于我任教的12財會班的學(xué)生整體理論知識水平參差不齊,學(xué)生缺乏自主探索、發(fā)現(xiàn)的意識。但是性格活潑、興趣廣泛,樂于實踐。因此我在備課時以學(xué)生為本,以學(xué)生活動為主線,從興趣出發(fā),由xx年春節(jié)晚會的魔術(shù)引出本節(jié)課的'指數(shù)函數(shù),讓學(xué)生從特殊到一般去認識指數(shù)函數(shù),然后通過多媒體課件的充分展示讓學(xué)生分組討論、歸納出指數(shù)函數(shù)的性質(zhì)。
教學(xué)方法:啟發(fā)、合作探究、講練結(jié)合等教學(xué)方法。充分遵循“教師為主導(dǎo),學(xué)生為主體”的教學(xué)原則,采用多媒體輔助教學(xué)手段,借助多媒體,演示指數(shù)函數(shù)的圖像形成過程,便于總結(jié)函數(shù)的性質(zhì)。
學(xué)習(xí)方法:采用自主探究、小組合作、觀察歸納的學(xué)習(xí)方法。
教學(xué)流程:
教學(xué)流程設(shè)計
1、創(chuàng)設(shè)情境,導(dǎo)入新課
2、構(gòu)建模型,形成概念
3、深入探究,發(fā)現(xiàn)性質(zhì)
4、講練結(jié)合,鞏固提高
5、課堂小結(jié),構(gòu)建體系
6、作業(yè)布置,延伸課堂
教學(xué)過程:
1、創(chuàng)設(shè)情境,導(dǎo)入新課
通過春節(jié)的撕報紙的魔術(shù)調(diào)動學(xué)生的興趣,教師接著引導(dǎo)學(xué)生分析撕報紙得到的分數(shù)與撕報紙的次數(shù)之間的函數(shù)關(guān)系,分析出撕報紙得到的每一分小報紙的面積與撕報紙的次數(shù)之間得到的函數(shù)關(guān)系,從而建立一個關(guān)于指數(shù)函數(shù)的數(shù)學(xué)模型,為學(xué)生提出問題;提高學(xué)生學(xué)習(xí)新知識的積極性以及體會數(shù)學(xué)與生活密切相關(guān)。
2、構(gòu)建模型,形成概念
通過兩個具體的指數(shù)函數(shù)模型,給出指數(shù)函數(shù)概念,讓學(xué)生體會由特殊到一般的思想,并通過練習(xí)一判斷一個函數(shù)是否是指數(shù)函數(shù),加深學(xué)生對指數(shù)函數(shù)概念的理解。
3、深入探究,發(fā)現(xiàn)性質(zhì)
在這個環(huán)節(jié),函數(shù)圖像的性質(zhì)是本節(jié)課的重點也是難點,我準備采用多媒體技術(shù)輔助教學(xué)突破重點、難點,這一環(huán)節(jié)關(guān)鍵是弄清楚底數(shù)a的變化對函數(shù)圖像及性質(zhì)的影響,利用多媒體動感顯示,通過顏色的區(qū)別,加深感性認識,非常直觀形象地演示a的變化與圖像的變化規(guī)律,突破靜態(tài)思維,使難點迎刃而解。
華羅庚先生曾說:“數(shù)缺形時少直觀,形缺數(shù)時難入微。”探究指數(shù)函數(shù)的性質(zhì)從“數(shù)”的角度用解析式不易解決,轉(zhuǎn)而由“形”——圖像突破,體會數(shù)形結(jié)合的思想。通過兩個指數(shù)函數(shù)的作圖過程鞏固學(xué)生作圖能力,讓學(xué)生初步發(fā)現(xiàn)圖像規(guī)律。緊接著同時通過軟件讓學(xué)生舉出4個指數(shù)函數(shù),通過軟件快速畫出四個具體的指數(shù)函數(shù)圖像,充分引導(dǎo)學(xué)生通過觀察圖像發(fā)現(xiàn)指數(shù)函數(shù)的圖像規(guī)律,從而歸納指數(shù)函數(shù)的一般性質(zhì),經(jīng)歷一個由特殊到一般的探究過程。讓學(xué)生在研究出指數(shù)函數(shù)的一般性質(zhì)后進行總結(jié)歸納函數(shù)的其他性質(zhì),從而對函數(shù)進行較為系統(tǒng)的研究。
4、講練結(jié)合,鞏固提高
教師通過對例題一比較兩個函數(shù)值的大小、例題二求函數(shù)的定義域引導(dǎo)學(xué)生如何使用函數(shù)的性質(zhì)解決問題,同時通過學(xué)生進行一些鞏固練習(xí)使學(xué)生對函數(shù)能進行較為基本的應(yīng)用。
5、課堂小結(jié),構(gòu)建體系
小結(jié)環(huán)節(jié),讓學(xué)生自己總結(jié)函數(shù)的概念和性質(zhì),讓學(xué)生建立研究函數(shù)的知識體系
6、作業(yè)布置,延伸課堂
作業(yè)布置環(huán)節(jié)必做題鞏固學(xué)生上課內(nèi)容,選做題“古蓮子年齡之謎”的問題為學(xué)習(xí)能力較強的同學(xué)更大的發(fā)揮空間,因材施教,分層作業(yè),鞏固提高,為后續(xù)的學(xué)習(xí)奠定基礎(chǔ),同時也拓展學(xué)生的知識視野。
指數(shù)函數(shù)的概念說課稿篇七
函數(shù)是高中數(shù)學(xué)的重要內(nèi)容之一,函數(shù)的基礎(chǔ)知識在數(shù)學(xué)和其他許多學(xué)科中有著廣泛的應(yīng)用;函數(shù)與代數(shù)式、方程、不等式等內(nèi)容聯(lián)系非常密切;函數(shù)是近一步學(xué)習(xí)數(shù)學(xué)的重要基礎(chǔ)知識;函數(shù)的概念是運動變化和對立統(tǒng)一等觀點在數(shù)學(xué)中的具體體現(xiàn);函數(shù)概念及其反映出的數(shù)學(xué)思想方法已廣泛滲透到數(shù)學(xué)的各個領(lǐng)域,《函數(shù)》教學(xué)設(shè)計。
對函數(shù)概念本質(zhì)的理解,首先應(yīng)通過與初中定義的比較、與其他知識的聯(lián)系以及不斷地應(yīng)用等,初步理解用集合與對應(yīng)語言刻畫的函數(shù)概念.其次在后續(xù)的學(xué)習(xí)中通過基本初等函數(shù),引導(dǎo)學(xué)生以具體函數(shù)為依托、反復(fù)地、螺旋式上升地理解函數(shù)的本質(zhì)。
教學(xué)重點是函數(shù)的概念,難點是對函數(shù)概念的本質(zhì)的理解。
學(xué)生現(xiàn)狀
學(xué)生在第一章的時候已經(jīng)學(xué)習(xí)了集合的概念,同時在初中時已學(xué)過一次函數(shù)、反比例函數(shù)和二次函數(shù),那么如何用集合知識來理解函數(shù)概念,結(jié)合原有的知識背景,活動經(jīng)驗和理解走入今天的課堂,如何有效地激活學(xué)生的學(xué)習(xí)興趣,讓學(xué)生積極參與到學(xué)習(xí)活動中,達到理解知識、掌握方法、提高能力的目的,使學(xué)生獲得有益有效的學(xué)習(xí)體驗和情感體驗,是在教學(xué)設(shè)計中應(yīng)思考的。
1、知識與技能(重點和難點)
(1)、通過實例讓學(xué)生能夠進一步體會到函數(shù)是描述變量之間的依賴關(guān)系的重要數(shù)學(xué)模型。并且在此基礎(chǔ)上學(xué)習(xí)應(yīng)用集合與對應(yīng)的語言來刻畫函數(shù),體會對應(yīng)關(guān)系在刻畫函數(shù)概念中的作用。不但讓學(xué)生能完成本節(jié)知識的學(xué)習(xí),還能較好的復(fù)習(xí)前面內(nèi)容,前后銜接。
(2)、了解構(gòu)成函數(shù)的三要素,缺一不可,會求簡單函數(shù)的定義域、值域、判斷兩個函數(shù)是否相等等。
(3)、掌握定義域的表示法,如區(qū)間形式等。
(4)、了解映射的概念。
2、過程與方法
函數(shù)的概念及其相關(guān)知識點較為抽象,難以理解,學(xué)習(xí)中應(yīng)注意以下問題:
(1)、首先通過多媒體給出實例,在讓學(xué)生以小組的形式開展討論,運用猜想、觀察、分析、歸納、類比、概括等方法,探索發(fā)現(xiàn)知識,找出不同點與相同點,實現(xiàn)學(xué)生在教學(xué)中的主體地位,培養(yǎng)學(xué)生的創(chuàng)新意識。
(2)、面向全體學(xué)生,根據(jù)課本大綱要求授課。
(3)、加強學(xué)法指導(dǎo),既要讓學(xué)生學(xué)會本節(jié)知識點,也要讓學(xué)生會自我主動學(xué)習(xí)。
3、情感態(tài)度與價值觀
(2)、讓學(xué)生自己討論給出結(jié)論,培養(yǎng)學(xué)生的自我動手能力和小組團結(jié)能力。
多媒體ppt課件
教學(xué)內(nèi)容教師活動學(xué)生活動設(shè)計意圖
為了使學(xué)生了解函數(shù)概念產(chǎn)生的背景,豐富函數(shù)的感性認識,獲得認識客觀世界的體驗,本課采用"突出主題,循序漸進,反復(fù)應(yīng)用"的方式,在不同的場合考察問題的不同側(cè)面,由淺入深。本課在教學(xué)時采用問題探究式的教學(xué)方法進行教學(xué),逐層深入,這樣使學(xué)生對函數(shù)概念的理解也逐層深入,從而準確理解函數(shù)的概念。函數(shù)引入中的三種對應(yīng),與初中時學(xué)習(xí)函數(shù)內(nèi)容相聯(lián)系,這樣起到了承上啟下的作用。這三種對應(yīng)既是函數(shù)知識的生長點,又突出了函數(shù)的本質(zhì),為從數(shù)學(xué)內(nèi)部研究函數(shù)打下了基礎(chǔ)。
在培養(yǎng)學(xué)生的能力上,本課也進行了整體設(shè)計,通過探究、思考,培養(yǎng)了學(xué)生的實踐能力、觀察能力、判斷能力;通過揭示對象之間的內(nèi)在聯(lián)系,培養(yǎng)了學(xué)生的辨證思維能力;通過實際問題的解決,培養(yǎng)了學(xué)生的'分析問題、解決問題和表達交流能力;通過案例探究,培養(yǎng)了學(xué)生的創(chuàng)新意識與探究能力。
雖然函數(shù)概念比較抽象,難以理解,但是通過這樣的教學(xué)設(shè)計,學(xué)生基本上能很好地理解了函數(shù)概念的本質(zhì),達到了課程標準的要求,體現(xiàn)了課改的教學(xué)理念。
指數(shù)函數(shù)的概念說課稿篇八
一、本課時在教材中的地位及作用
教材采用北師大版(數(shù)學(xué))必修1,函數(shù)作為初等數(shù)學(xué)的核心內(nèi)容,貫穿于整個初等數(shù)學(xué)體系之中。本章節(jié)9個課時,函數(shù)這一章在高中數(shù)學(xué)中,起著承上啟下的作用,它是對初中函數(shù)概念的承接與深化。在初中,只停留在具體的幾個簡單類型的函數(shù)上,把函數(shù)看成變量之間的依賴關(guān)系,而高中階段不僅把函數(shù)看成變量之間的依賴關(guān)系,更是從“變量說”到“對應(yīng)說”,這是對函數(shù)本質(zhì)特征的進一步認識,也是學(xué)生認識上的一次飛躍。這一章內(nèi)容滲透了函數(shù)的思想,集合的思想以及數(shù)學(xué)建模的思想等內(nèi)容,這些內(nèi)容的學(xué)習(xí),無疑對學(xué)生今后的學(xué)習(xí)起著深刻的影響。
二、教學(xué)目標
理解函數(shù)的概念,會用函數(shù)的定義判斷函數(shù),會求一些最基本的函數(shù)的定義域、值域。
通過對實際問題分析、抽象與概括,培養(yǎng)學(xué)生抽象、概括、歸納知識以及邏輯思維、建模等方面的能力。
通過對函數(shù)概念形成的探究過程,培養(yǎng)學(xué)生發(fā)現(xiàn)問題,探索問題,不斷超越的創(chuàng)新品質(zhì)。
三、重難點分析確定
一、教學(xué)基本思路及過程
本節(jié)課《函數(shù)的概念》是函數(shù)這一章的起始課。概念是數(shù)學(xué)的基礎(chǔ),只有對概念做到深刻理解,才能正確靈活地加以應(yīng)用。本課(借助小黑板)從集合間的對應(yīng)來描繪函數(shù)概念,起到了上承集合,下引函數(shù)的作用,也為進一步學(xué)習(xí)函數(shù)這一章的其它內(nèi)容提供了方法和依據(jù)。
二、學(xué)情分析
一方面學(xué)生在初中已經(jīng)學(xué)習(xí)了變量觀點下的函數(shù)定義,并具體研究了幾類最簡單的函數(shù),對函數(shù)已經(jīng)有了一定的感性認識;另一方面在本書第一章學(xué)生已經(jīng)學(xué)習(xí)了集合的概念,這為學(xué)習(xí)函數(shù)的現(xiàn)代定義打下了基礎(chǔ)。
函數(shù)在初中雖已講過,不過較為膚淺,本課主要是從兩個集合間對應(yīng)來描繪函數(shù)概念,是一個抽象過程,要求學(xué)生的抽象、分析、概括的能力比較高,學(xué)生學(xué)起來有一定的難度,加上學(xué)生數(shù)學(xué)基礎(chǔ)較差,理解能力,運算能力等參差不齊等。
三、教法、學(xué)法
1、本節(jié)課采用的方法有:
直觀教學(xué)法、啟發(fā)教學(xué)法、課堂討論法。
2、采用這些方法的理論依據(jù):
我一方面精心設(shè)計問題情景,引導(dǎo)學(xué)生主動探索,另一方面,依據(jù)本節(jié)為概念學(xué)習(xí)的特點,以問題的提出、問題的解決為主線,設(shè)置問題,倡導(dǎo)學(xué)生主動參與,通過不斷探究、發(fā)現(xiàn),在師生互動、生生互動中,讓學(xué)習(xí)過程成為學(xué)生心靈愉悅的主動認知過程,充分體現(xiàn)“教師為主導(dǎo),學(xué)生為主體”的教學(xué)原則。
指數(shù)函數(shù)的概念說課稿篇九
大家好,今天我說課的題目是函數(shù)的概念,將從以下七個方面來進行說課。
函數(shù)的概念是人教a版實驗教科書必修一第三章第一節(jié)的內(nèi)容,我們在初中階段學(xué)過的一次函數(shù)反比例函數(shù)二次函數(shù)為我們在高中學(xué)習(xí)函數(shù)的概念,這一內(nèi)容進行了鋪墊,而函數(shù)的概念又為后續(xù)學(xué)習(xí)函數(shù)的性質(zhì)做了鋪墊,因此,本節(jié)課的內(nèi)容在整個教科書中起著承上啟下的作用。
在學(xué)琴方面,從知識和能力兩方面入手,目前學(xué)生處于高一階段,在中學(xué)已經(jīng)初步探討了函數(shù)的相關(guān)問題,為重新定義函數(shù)提供了理論基礎(chǔ),并且通過以前的學(xué)習(xí),同學(xué)們已經(jīng)具備了分析,推理和概括的能力,并具備了學(xué)習(xí)函數(shù)概念的基本能力。
根據(jù)課程標準,
教學(xué)
內(nèi)容,及學(xué)生學(xué)情,我制定了如下三維教學(xué)目標,知識與技能方面,理解函數(shù)的概念能對具體函數(shù)指出定義域值域?qū)?yīng)法則能夠正確,使用區(qū)間符號表示,某些函數(shù)的定義域和值域,過程與方法方面,通過實例進一步體會函數(shù)是描述變量之間的依賴關(guān)系的重要數(shù)學(xué)模型,在此基礎(chǔ)上,用集合與對應(yīng)語言來刻畫函數(shù),體會對應(yīng)關(guān)系在刻畫函數(shù)概念中的進步作用,加深數(shù)學(xué)思想方法,情感態(tài)度,價值觀方面,在自主探究中感受到成功的喜悅,激發(fā)數(shù)學(xué)學(xué)習(xí)興趣。根據(jù)課程標準,教學(xué)內(nèi)容教學(xué)重點為,函數(shù)的模型化思想函數(shù)的三要素,根據(jù)教學(xué)內(nèi)容,學(xué)生學(xué)情,教學(xué)難點為函數(shù)符號fx的含義,函數(shù)的定義,域值域和區(qū)間表示,從具體實例中抽象出函數(shù)概念。
多樣化的教學(xué)方法是突破重難點的關(guān)鍵,我們因此本節(jié)課我將采用,領(lǐng)導(dǎo)發(fā)現(xiàn)練習(xí)鞏固分組討論的教學(xué)方法,充分調(diào)動學(xué)生學(xué)習(xí)的積極性,主動性,使課堂氣氛更加活躍,培養(yǎng)學(xué)生自主學(xué)習(xí),動手探究的能力,培養(yǎng)學(xué)生對數(shù)學(xué)知識的應(yīng)用能力和意識,提高學(xué)生分析問題和解決問題的能力,培養(yǎng)學(xué)生對數(shù)學(xué)知識的探索精神和團隊協(xié)作精神,更能讓學(xué)生體驗成功的樂趣。
根據(jù)上面的教學(xué)方法以及新課程倡導(dǎo)的自主合作探究的學(xué)習(xí)方式,在本節(jié)課的教學(xué)中,教會學(xué)生動手嘗試,仔細觀察開動腦筋分析問題,這樣有利于學(xué)生發(fā)揮學(xué)習(xí)的主動性,使學(xué)生的學(xué)習(xí)過程成為教師引導(dǎo)下再創(chuàng)造過程,并使學(xué)生從中體會到學(xué)習(xí)的樂趣,下面我將著重談一談我對教學(xué)過程的設(shè)計,首先,創(chuàng)設(shè)情境引入課題,例如,正方形的周長也要與邊長x的對應(yīng)關(guān)系是l=4 x,而且對于每一個x都有唯一的l與之對應(yīng),所以l是x的函數(shù),這個函數(shù)與y=4 x相同嗎?又如你能用已有的知識判斷y=x與y=x/x^2是否相同嗎?要解決這些問題,就需要進一步學(xué)習(xí)函數(shù)的概念,此部分我設(shè)計的意圖是利用初中所學(xué)知識引入課題,由熟悉到陌生,便于學(xué)生理解與接受,符合學(xué)生邏輯思維,接下來,引導(dǎo)探求以書上的四個實例高速列車時間與路程關(guān)系,電器維修工人工作天數(shù)與工資的關(guān)系,時間與空氣質(zhì)量指數(shù)之間的關(guān)系,以及八五計劃以來,我國城鎮(zhèn)居民的恩格爾系數(shù)與時間的變化關(guān)系,這四個實力為例,讓同學(xué)們探究其對應(yīng)變量之間的關(guān)系,以及變量的變化范圍,目的是讓學(xué)生體會函數(shù),是描述客觀事物變化規(guī)律的數(shù)學(xué)模型的思想,第三部分,歸納
總結(jié)
形成知識,讓學(xué)生總結(jié)第一到第四中的函數(shù)有哪些共同特征,由此概括出函數(shù)概念的本質(zhì)特征,設(shè)計意圖為使學(xué)生進行分組討論,學(xué)會分析歸納共同點,在分組討論的過程中,體會到團隊協(xié)作的精神,第四部分變式訓(xùn)練鞏固知識,思考反比例,函數(shù)y=k/x的定義域值域和對應(yīng)關(guān)系各是什么?請用函數(shù)定義描述這個函數(shù),這是為了通過變式使同學(xué)們靈活運用所學(xué)知識,有舉一反三的,能更加使學(xué)生鞏固所學(xué)知識,第五部分,深化知識習(xí)題訓(xùn)練,為了鞏固所學(xué)知識,激發(fā)學(xué)生的求知欲,我將布置三道不同類型,不同難度的做作業(yè),以滿足不同層次的學(xué)生需求,第一題,第二題為基礎(chǔ)題,第三題為選做題,習(xí)題訓(xùn)練復(fù)習(xí)鞏固很重要,樹立夯實基礎(chǔ)目標,堅持事求是,腳踏實地。基于以上教學(xué)過程,我設(shè)計了如下板書,我的說課到此完畢,謝謝大家,敬請各位老師批評指正。
《函數(shù)概念》說課稿
函數(shù)概念教學(xué)設(shè)計
函數(shù)的概念教學(xué)反思
高中數(shù)學(xué)《函數(shù)的概念》教學(xué)設(shè)計
《函數(shù)的奇偶性》說課稿
指數(shù)函數(shù)的概念說課稿篇十
尊敬的評委老師:
大家好,我是今天的5號考生,今天我說課的題目是《指數(shù)函數(shù)》。
為了更好的呈現(xiàn)我的教學(xué)思路,我將以教什么、怎么教以及為什么這么教為思路,具體從教材分析、教學(xué)目標分析、學(xué)情分析、教法、學(xué)法以及教學(xué)過程等幾個方面展開我的說課。
教材是課程標準的具體化,是課堂知識呈現(xiàn)的載體,對于教材的深入理解是上好一堂課前提。本課選自人教版,高中數(shù)學(xué)必修一第二章第六節(jié)。在漫長的高中數(shù)學(xué)學(xué)習(xí)的過程中,函數(shù)的學(xué)習(xí)貫穿始終。從教材的書寫邏輯上看,之前的教材內(nèi)容已經(jīng)對于函數(shù)的一般性質(zhì)進行了排布。而本節(jié)課指數(shù)函數(shù)的學(xué)習(xí)則對接下來對數(shù)函數(shù)等復(fù)雜函數(shù)的深入學(xué)習(xí)奠定了堅實的基礎(chǔ)??梢哉f,指數(shù)函數(shù)的學(xué)習(xí)對于高中函數(shù)的學(xué)習(xí)起到了承上啟下的重要作用。
新的學(xué)生觀告訴我們,我們要在課堂中充分發(fā)揮學(xué)生的主體地位,因此對于學(xué)生的情況了解也是十分重要的。從思維層面上看,高中的學(xué)生已經(jīng)具備了比較成熟的抽象邏輯思維能力,有著較強的理解力,這對于我們課堂的開展是十分有幫助的。而這個階段的學(xué)生好勝心比較強,容易產(chǎn)生負面情緒,這對于我們課堂的教學(xué)也帶來了一定的挑戰(zhàn)。從經(jīng)驗上看,在之前的學(xué)習(xí)中,學(xué)生已經(jīng)對于“指數(shù)”“函數(shù)”等概念有了深刻的認識,為本節(jié)課程的開展提供了幫助,而指數(shù)函數(shù)相對比較抽象,對于學(xué)生的學(xué)習(xí)、老師的教授都提出了較高的要求,因此合理的教法學(xué)法選擇顯得尤為重要。
教學(xué)目標是教育教學(xué)活動的出發(fā)點和依據(jù),結(jié)合新課改的思想和新課標的要求,本節(jié)課我所制定的三維教學(xué)目標如下:
知識與技能目標:掌握指數(shù)函數(shù)的概念,圖像性質(zhì);能夠利用指數(shù)函數(shù)的概念解決實際問題。
過程與方法目標:通過分組討論參與發(fā)現(xiàn)的過程,培養(yǎng)學(xué)生觀察,聯(lián)想,類比,猜測,歸納的能力。
情感態(tài)度與價值觀目標:通過教學(xué)互動,促進師生情感,激發(fā)學(xué)生的學(xué)習(xí)興趣,提高學(xué)生的抽象概括,分析,綜合的能力,培養(yǎng)學(xué)生聯(lián)系觀點看問題,領(lǐng)會數(shù)學(xué)科學(xué)的應(yīng)用價值。
而本節(jié)課,我將重難點確立為:指數(shù)函數(shù)的圖像和性質(zhì),以及它與底數(shù)a的關(guān)系。
正如蘇霍姆林斯基所說:只有能夠激發(fā)學(xué)生去進行自我教育的教育,才是真正的教育。在滿足學(xué)習(xí)者需求的基礎(chǔ)之上,我將制定適合本階段學(xué)生的`教法來展開教學(xué),以體現(xiàn)教師的主導(dǎo)性。分別以圖片展示、討論、講授、參與練習(xí)等相結(jié)合的方式進行教學(xué)。同時我將采用誘思探究和自主學(xué)習(xí)相結(jié)合的方式,以激發(fā)學(xué)生的學(xué)習(xí)主動性,充分地體現(xiàn)學(xué)生的主體地位。
以上所有的準備都是為了更好的呈現(xiàn)我的課堂,下面來談一談我對于教學(xué)過程的設(shè)計。
首先創(chuàng)設(shè)情境,導(dǎo)入新課我將用電腦展示兩個實例:計算機價格下降問題和生物中細胞分裂的例子。我會請同學(xué)們仔細觀察并分組討論,分別寫出計算機價格y與經(jīng)過月份x的關(guān)系以及細胞個數(shù)y與分裂次數(shù)x的關(guān)系,用所學(xué)知識結(jié)合探究法,分析出指數(shù)函數(shù)底數(shù)討論的必要性以及分類方法。通過這樣的實例,可以很好地激發(fā)學(xué)生的學(xué)習(xí)興趣,培養(yǎng)學(xué)生思維的主動性,為接下來的學(xué)習(xí)做好準備。
其次啟發(fā)誘導(dǎo),探求新知我會給出兩個簡單的指數(shù)函數(shù),并要求學(xué)生畫出它們的圖像,并在準備好的小黑板上規(guī)范地畫出這兩個指數(shù)函數(shù)的圖像,同時板書出指數(shù)函數(shù)的性質(zhì)。同學(xué)們通過動手,促進學(xué)生對本課內(nèi)容的理解學(xué)習(xí),并借助小黑板演示其規(guī)范性。利用多媒體將指數(shù)函數(shù)的圖像加以展示,利于觀察圖像總結(jié)所學(xué)知識的性質(zhì),也能對于接下來的知識點導(dǎo)入起到自然結(jié)合的作用。當(dāng)然學(xué)生通過我的引導(dǎo)交流討論會很快畫出兩個簡單的指數(shù)函數(shù),歸納出函數(shù)的性質(zhì)涉及方面,總結(jié)出它的性質(zhì)。
接著鞏固新知,反饋回授我會板書出例一及例二第一問,并介紹相關(guān)考古知識,本著實踐為主的原則,完成學(xué)生學(xué)習(xí):實踐到認識再到實踐的過程。通過練習(xí)實現(xiàn)教師的再指導(dǎo)和學(xué)生的漸進式提高。這個環(huán)節(jié)介紹的化學(xué)知識在考古中的應(yīng)用,這樣的設(shè)計既開拓了學(xué)生的視野,又為下一步學(xué)習(xí):計算分期付款的利率等問題埋下伏筆,因此學(xué)生能夠了解解題的規(guī)范步驟,并完成例題,拓展視野體會數(shù)學(xué)的應(yīng)用價值。緊接著我會帶領(lǐng)學(xué)生進行歸納,總結(jié)升華我會將同學(xué)們進行分組討論、探究,引導(dǎo)學(xué)生對指數(shù)函數(shù)的知識進行梳理和深化認知。知識與技能目標設(shè)置分組pk機制,引導(dǎo)學(xué)生對課堂知識進行分類討論、數(shù)形結(jié)合等數(shù)學(xué)方法的歸納。最后我會布置課后作業(yè)以幫助學(xué)生鞏固練習(xí),溫故而知新。
當(dāng)然一堂完整的課程離不開簡潔明了的板書設(shè)計,我的板書設(shè)計如下:在黑板中間的正上方,我會寫下今天的課題:指數(shù)函數(shù),我會在黑板的中間擺上小黑板以展示其規(guī)范性。在黑板的左面,我會在練習(xí)過程中寫下今天練習(xí)的,計算步驟。黑板的右面,我會寫下例題一以及例題二的第一問。這樣的設(shè)計,可以幫助學(xué)生更好地學(xué)習(xí)本課的內(nèi)容。以上就是我所有的授課內(nèi)容,感謝各位老師的聆聽。
指數(shù)函數(shù)的概念說課稿篇十一
1、 教材的地位和作用
“棱錐”這節(jié)教材是《立體幾何》的第2.2節(jié),它是在學(xué)生學(xué)習(xí)了直線和平面的基礎(chǔ)知識,掌握了棱柱的概念和性質(zhì)的基礎(chǔ)上進一步研究多面體的又一常見幾何體。它既是線面關(guān)系的具體化,又為以后進一步學(xué)習(xí)棱臺的概念和性質(zhì)奠定了基礎(chǔ)。因此掌握好棱錐的概念和性質(zhì)尤其是正棱錐的概念和性質(zhì)意義非常重要,同時,這節(jié)課也是進一步培養(yǎng)高一學(xué)生的空間想象能力和邏輯思維能力的重要內(nèi)容。
2、 教學(xué)內(nèi)容
本節(jié)課的主要教學(xué)內(nèi)容是棱錐、正棱錐的概念和性質(zhì)以及運用正棱錐的性質(zhì)解決有關(guān)計算和證明問題。通過觀察具體幾何體模型引出棱錐的概念;通過棱柱與棱錐類比引入正棱錐的概念;通過對具體問題的研究,逐步探索和發(fā)現(xiàn)正棱錐的性質(zhì),從而找到解決正棱錐問題的一般數(shù)學(xué)思想方法,這樣做,學(xué)生會感到自然,好接受。對教材的內(nèi)容則有所增減,處理方式也有適當(dāng)改變。
3、 教學(xué)目標
根據(jù)教學(xué)大綱的要求,本節(jié)教材的特點和高一學(xué)生對空間圖形的認知特點,我把本節(jié)課的教學(xué)目標確定為:
(1)知識目標:使學(xué)生理解棱錐以及正棱錐的概念,掌握正棱錐的性質(zhì),領(lǐng)會應(yīng)用正棱錐的性質(zhì)解題的一般方法初步學(xué)會應(yīng)用性質(zhì)解決相關(guān)問題。
(2)能力目標:通過對正棱錐中相關(guān)元素的相互轉(zhuǎn)化的研究,培養(yǎng)學(xué)生知識遷移的能力及數(shù)學(xué)表達能力,提高學(xué)生的空間想象能力以及空間問題向平面轉(zhuǎn)化的能力。
(3)德育、美育目標:通過教學(xué)進行辯證唯物主義思想教育,數(shù)學(xué)審美教育,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性。
4、教學(xué)重點,難點,關(guān)鍵
對于高一學(xué)生來說,空間觀念正逐步形成。而實際生活中,遇到的往往是正棱錐,它的性質(zhì)用處較多。因此,本節(jié)課的教學(xué)重點是通過對具體問題的分析和探索,自然而然地引出正棱錐的最重要性質(zhì)及其實質(zhì);而如何將空間問題轉(zhuǎn)化為平面問題來解決?本節(jié)課則通過抓住正棱錐中的基本圖形這一難點實現(xiàn)突破,教學(xué)的關(guān)鍵是正確認識正棱錐的線線,線面垂直關(guān)系。
由于本節(jié)課安排在立體幾何學(xué)習(xí)的中期,正是進一步培養(yǎng)學(xué)生形成空間觀念和提高學(xué)生邏輯思維能力的最佳時機,因此,在教學(xué)中,一方面通過電教手段,把某些概念,性質(zhì)或知識關(guān)鍵點制成了投影片,既節(jié)省時間,又增加其直觀性和趣味性,起到事半功倍的作用;另一方面,在教學(xué)中并沒有采取把正棱錐性質(zhì)同時全部講授給學(xué)生的做法,而是通過具體問題的分析與處理,將正棱錐最重要的性質(zhì)這一知識點發(fā)現(xiàn)的全過程逐步展現(xiàn)給學(xué)生,讓學(xué)生體會知識發(fā)生、發(fā)展的過程及其規(guī)律,從而提高學(xué)生分析和解決實際問題的能力。因此我把本節(jié)的教法確定為:類比聯(lián)想、研究探討、直觀想象、啟發(fā)誘導(dǎo)、建立模型、學(xué)會應(yīng)用、發(fā)展?jié)撃?、形成能力、提高素質(zhì)的啟發(fā)式教學(xué)。
教學(xué)矛盾的主要方面是學(xué)生的學(xué)。學(xué)是中心,會學(xué)是目的。因此,在教學(xué)中要不斷指導(dǎo)學(xué)生學(xué)會學(xué)習(xí)。根據(jù)立體幾何教學(xué)的特點,這節(jié)課主要是教給學(xué)生“動手做,動腦想;嚴格證,多訓(xùn)練,勤鉆研?!钡难杏懯綄W(xué)習(xí)方法。這樣做,增加了學(xué)生主動參與的機會,增強了參與意識,教給學(xué)生獲取知識的途徑;思考問題的方法。使學(xué)生真正成為教學(xué)的主體。也只有這樣做,才能使學(xué)生“學(xué)”有新“思”,“思”有所“得”,“練”有所“獲”。學(xué)生才會逐步感到數(shù)學(xué)美,會產(chǎn)生一種成功感,從而提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣;也只有這樣做,才能適應(yīng)素質(zhì)教育下培養(yǎng)“創(chuàng)新型”人才的需要。
指數(shù)函數(shù)的概念說課稿篇十二
各位專家、各位老師:
大家好!
今天我說課的題目是《函數(shù)的概念》,本課題是人教a版必修1中1.2的內(nèi)容,計劃安排兩個課時,本課時的內(nèi)容為:函數(shù)的概念、三要素及簡單函數(shù)的定義域及值域的求法。下面我將以“學(xué)什么、怎么學(xué)、學(xué)了有何用”為思路,從教材、教法、學(xué)法、教學(xué)評價、教學(xué)過程設(shè)計、板書設(shè)計等幾個方面對本節(jié)課的教學(xué)加以說明。
一、教學(xué)目標
1、課程標準
課節(jié)內(nèi)容的課標要求是:
(1)通過豐富實例,進一步體會函數(shù)是描述變量之間的依賴關(guān)系的重要數(shù)學(xué)模型,在此基礎(chǔ)上學(xué)習(xí)用集合與對應(yīng)的語言來刻畫函數(shù),體會對應(yīng)關(guān)系在刻畫函數(shù)概念中的作用;了解構(gòu)成函數(shù)的要素,會求一些簡單函數(shù)的定義域和值域;了解映射的概念。
(2)在實際情景中,會根據(jù)不同的需要選擇恰當(dāng)?shù)姆椒ǎㄈ鐖D像法、列表法、解析法)表示函數(shù)。
(3)通過具體實例,了解簡單的分段函數(shù),并能簡單應(yīng)用。
(4)通過已學(xué)過的函數(shù)特別是二次函數(shù),理解函數(shù)的單調(diào)性、最大(小)值及其幾何意義;結(jié)合具體函數(shù),了解奇偶性的含義。
(5)學(xué)會運用函數(shù)圖像理解和研究函數(shù)的性質(zhì)。
2、課標解讀
關(guān)于函數(shù)內(nèi)容的整體定位和基本要求解讀:
(2)強調(diào)對函數(shù)本質(zhì)的認識和理解,因此要求在高中數(shù)學(xué)學(xué)習(xí)中多次接觸、螺旋上升;
(3)關(guān)注背景、應(yīng)用、增加了函數(shù)模型及其應(yīng)用;
(4)削弱和淡化了一些內(nèi)容,如函數(shù)的定義域、值域、反函數(shù)、復(fù)合函數(shù)等;
(5)注重思想和聯(lián)系——增加了函數(shù)與方程、用二分法求方程的近似根。
(6)合理地使用信息技術(shù),旨在幫助學(xué)生更好地認識和理解函數(shù)及其性質(zhì)。
【依據(jù)意圖】
(1)教材如此要求的根本目的是希望幫助學(xué)生更好地從整體上認識和理解函數(shù)的本質(zhì),而真正理解函數(shù)概念是不容易的。因此,不要在過于細枝末節(jié)的非本質(zhì)問題上作過多的訓(xùn)練,有了定義域和對應(yīng)關(guān)系,值域自然就定了。此外,“課標”建議先講函數(shù)再講映射,也是為了幫助學(xué)生把注意力集中在函數(shù)的本質(zhì)理解。
(2)希望通過方程根與函數(shù)零點的內(nèi)在聯(lián)系,加強對函數(shù)概念、函數(shù)思想及函數(shù)這一主線在高中數(shù)學(xué)中的地位作用的認識和理解。并通過用二分法求方程近似根將函數(shù)思想以及方程的根與函數(shù)零點之間的聯(lián)系具體化。
(3)二分法是求方程近似根的常用方法,更為一般、簡單,能很好地體現(xiàn)函數(shù)思想,“大綱”只是用“三個二”解決根的分布問題。
(4)現(xiàn)代信息技術(shù)不能替代艱苦的學(xué)習(xí)和人腦精密的思考,信息技術(shù)只是作為達到目的的一種手段,一種快速計算的工具。
3、教材分析
(1)地位作用
函數(shù)內(nèi)容是高中數(shù)學(xué)學(xué)習(xí)的一條主線,它貫穿整個高中數(shù)學(xué)學(xué)習(xí)中,其重要性體現(xiàn)在以下幾個方面:
3、這一節(jié)所學(xué)習(xí)的函數(shù)概念既是對初中所學(xué)函數(shù)概念的一次升華和再認識、對集合語言的一次重要應(yīng)用;又是以后繼續(xù)學(xué)習(xí)函數(shù)的性質(zhì)、數(shù)列等等知識的必備理論基礎(chǔ),在函數(shù)學(xué)習(xí)中是承上啟下的關(guān)鍵章節(jié)。
(2)內(nèi)容與課時劃分
本課題是高中數(shù)學(xué)人教a版必修1中1.2節(jié),計劃教學(xué)2個課時,第一課時內(nèi)容包括函數(shù)的概念、函數(shù)的三要素、簡單函數(shù)的定義域及值域的求法;第二課時內(nèi)容為:區(qū)間表示、較復(fù)雜函數(shù)的定義域及值域的求法、分段函數(shù)、函數(shù)圖象等。本節(jié)《函數(shù)的概念》是函數(shù)這一章的起始課。概念是數(shù)學(xué)的基礎(chǔ),只有對概念做到深刻理解,才能正確靈活地加以應(yīng)用。
4、學(xué)情分析
(1)學(xué)生在初中已經(jīng)在初中學(xué)習(xí)過函數(shù)的概念。
(2)本班級學(xué)生個體差異較明顯。
基于以上分析,我把本節(jié)課的教學(xué)目標和教學(xué)重難點制定如下:
5、教學(xué)目標
【依據(jù)意圖】:教學(xué)目標的設(shè)計,要簡潔明了,具有較強的可操作性,容易檢測目標的達成度,同時也要體現(xiàn)出新課標下對素質(zhì)教育的要求?;谝陨戏治鲎鳛橐罁?jù),課時目標分解如下:
【課時分解目標】
1、能夠列舉生活中具有函數(shù)關(guān)系的實例;
2、能用集合與對應(yīng)的語言描述函數(shù)的定義,能對具體函數(shù)指出定義域、對應(yīng)法則、值域;
3、會求一些簡單函數(shù)(帶根號,分式)的定義域和值域;
4、能夠從函數(shù)的三要素的角度去判定兩個函數(shù)是否是同一個函數(shù)。
二、教學(xué)重難點
重點:讓學(xué)生體會函數(shù)是描述變量之間的相互依賴關(guān)系的重要數(shù)學(xué)模型,正確理解形成函數(shù)的概念。
難點:引導(dǎo)學(xué)生從具體實例抽象出函數(shù)概念。
[意圖依據(jù)]:本課時是概念課,重在概念的理解和形成,但教師應(yīng)把重點放在讓學(xué)生形成概念的過程中,聯(lián)系舊知、突破難點、生長新知。為此通過教學(xué)目標和難重點的展示,讓學(xué)生明確本節(jié)課的任務(wù)及精髓,帶著目標去學(xué)習(xí),才能達到事半功倍的效果。
三、教法
問題式教學(xué)法(實例情境、啟發(fā)引導(dǎo)、合作交流、歸納抽象)
由于本課題是從集合與對應(yīng)的角度揭示函數(shù)的本質(zhì),無論難度還是跨度都有質(zhì)的飛躍。根據(jù)學(xué)生的心理特征和認知規(guī)律,我通過以問題為主線,以學(xué)生為主體,以教師為主導(dǎo)的教學(xué)理念。采用一系列的設(shè)問、引導(dǎo)、啟發(fā)、發(fā)現(xiàn),讓學(xué)生歸納、概括出函數(shù)概念的本質(zhì),并靈活應(yīng)用多媒體、黑板呈現(xiàn)、展示、交流。
[意圖依據(jù)]:函數(shù)的`概念的教學(xué)要注重以下幾個方面:(1)把集合作為一種語言;(2)對函數(shù)本質(zhì)的理解不能一步到位,要注重螺旋上升;(3)重視信息技術(shù)的使用。為此,教師要在課堂上搭建一個平臺,通過展示實例、學(xué)生舉例、典例分析、小結(jié)歸納等環(huán)節(jié)穿插若干問題,引起思考,達成教學(xué)目標。
四、學(xué)法
自主探究、合作交流 、展示互評
我們知道越是基礎(chǔ)性的概念,其統(tǒng)攝性就越強,學(xué)生從中領(lǐng)悟到的數(shù)學(xué)就越本質(zhì);但事物總有兩面性,這些概念的理解和掌握往往難度大、時間長,需要更多的經(jīng)驗積累.因此本節(jié)課在學(xué)法上我重視學(xué)生在列舉大量實際背景的前提下對所給出實例觀察,類比,歸納,分析,探究,合作,提煉,感悟函數(shù)概念的“本來面目”,以此培養(yǎng)學(xué)生發(fā)現(xiàn)問題、研究問題和分析解決問題的能力;同時在預(yù)習(xí)環(huán)節(jié)有學(xué)生的自主學(xué)習(xí)、在互動環(huán)節(jié)有學(xué)生的合作交流、在課后拓展環(huán)節(jié)有學(xué)生的探究學(xué)習(xí)。這樣做,增加了學(xué)生主動參與的機會,增強了參與意識,教給學(xué)生獲取知識的途徑以及思考問題的方法,使學(xué)生真正成為教學(xué)的主體。也只有這樣做,才能使學(xué)生“學(xué)”有所“思”,“思”有所“獲”,“獲”有所“用”。也恰好能夠體現(xiàn)我以“學(xué)什么、怎么學(xué)、學(xué)了有何用”來設(shè)計本課題的整體思路。
[意圖依據(jù)]:本課時是以問題為主線的教學(xué)過程,著重讓學(xué)生經(jīng)過對大量實例的剖析、了解、歸納而形成概念。在這個過程中,教師的作用是引導(dǎo),經(jīng)過一系列問題的提出、解決讓學(xué)生在思考、交流的基礎(chǔ)上層層深入的理解函數(shù)概念。
五、教學(xué)過程設(shè)計
本節(jié)內(nèi)容的教學(xué)過程我設(shè)計為以下逐層推進六個步驟:
1、課前預(yù)習(xí)、生成問題:
2、創(chuàng)境設(shè)問、引入課題:
3、觀察分析、探索新知:
4、思考辨析、深刻理解:
5、提煉總結(jié)、分享收獲:
6、布置作業(yè)、拓展延伸.
指數(shù)函數(shù)的概念說課稿篇十三
在職人才引進:
業(yè)務(wù)定義
在職人才引進申報:符合當(dāng)在職人才引進申報政策的人員,可辦理在職人才引進申報。具體參看當(dāng)政策。
政策依據(jù):
深圳市人才引進實施辦法(深府辦函[2013]37號)《深圳市人才引進綜合評價指標及分值表》(深人社規(guī)〔2013〕5號)
在職人才引進的條件:
(一)符合以下基本條件,且人才引進積分分值達到100分的,可以申請辦理人才引進手續(xù):
1.年齡在18周歲以上,48周歲以下;
2.身體健康;
3.已在我市辦理居住證和繳納社保;
4.符合《深圳經(jīng)濟特區(qū)人口與計劃生育條例》的規(guī)定;
5.未參加國家禁止的組織及活動,無刑事犯罪記錄。
(二)符合上款基本條件的第2、4、5項,且符合以下條件之一,可直接申請辦理人才引進手續(xù):
1.兩院院士;
6.取得《深圳市出國留學(xué)人員資格證明》,且年齡不超過48周歲的留學(xué)回國人員。
(三)根據(jù)我市戶籍遷入規(guī)定,以下人員申請人才引進年齡上限可放寬:
本款第2至5項所規(guī)定人員,須在最近連續(xù)3個納稅內(nèi)具備與申請事由相適應(yīng)的身份資格;納稅額超過以上規(guī)定納稅額一倍以上的,其年齡可放寬至55周歲。
(四)市政府對高層次專業(yè)人才及其配偶、獲得特殊獎項或表彰人員、投資納稅人員、隨軍家屬、機關(guān)事業(yè)單位或駐深單位人員等引進另有規(guī)定的,按其規(guī)定執(zhí)行。
指數(shù)函數(shù)的概念說課稿篇十四
(1)關(guān)于的定義按照課本上說法它是一種形式定義即解析式的特征必須是的樣子,不能有一點差異,諸如,等都不是。
(2)對底數(shù)的限制條件的理解與認識也是認識的重要內(nèi)容。如果有可能盡量讓學(xué)生自己去研究對底數(shù),指數(shù)都有什么限制要求,教師再給予補充或用具體例子加以說明,因為對這個條件的認識不僅關(guān)系到對的認識及性質(zhì)的分類討論,還關(guān)系到后面對數(shù)函數(shù)中底數(shù)的認識,所以一定要真正了解它的由來。
關(guān)于圖象的繪制,雖然是用列表描點法,但在具體教學(xué)中應(yīng)避免描點前的盲目列表計算,也應(yīng)避免盲目的連點成線,要把表列在關(guān)鍵之處,要把點連在恰當(dāng)之處,所以應(yīng)在列表描點前先把函數(shù)的性質(zhì)作一些簡單的討論,取得對要畫圖象的存在范圍,大致特征,變化趨勢的大概認識后,以此為指導(dǎo)再列表計算,描點得圖象。
指數(shù)函數(shù)的概念說課稿篇十五
“棱錐”這節(jié)教材是《立體幾何》的第2.2節(jié)它是在學(xué)生學(xué)習(xí)了直線和平面的基礎(chǔ)知識,掌握若干基本圖形以及棱柱的概念和性質(zhì)的基礎(chǔ)上進一步研究多面體的又一常見幾何體。它既是線面關(guān)系的具體化,又為以后進一步學(xué)習(xí)棱臺的概念和性質(zhì)奠定了基礎(chǔ)。因此掌握好棱錐的概念和性質(zhì)尤其是正棱錐的概念和性質(zhì)意義非常重要,同時,這節(jié)課也是進一步培養(yǎng)高一學(xué)生的空間想象能力和邏輯思維能力的重要內(nèi)容。
本節(jié)課的主要教學(xué)內(nèi)容是棱錐、正棱錐的概念和性質(zhì)以及運用正棱錐的性質(zhì)解決有關(guān)計算和證明問題。通過觀察具體幾何體模型引出棱錐的概念;通過棱柱與棱錐類比引入正棱錐的概念;通過對具體問題的研究,逐步探索和發(fā)現(xiàn)正棱錐的性質(zhì),從而找到解決正棱錐問題的一般數(shù)學(xué)思想方法,這樣做,學(xué)生會感到自然,好接受。對教材的內(nèi)容則有所增減,處理方式也有適當(dāng)改變。
根據(jù)教學(xué)大綱的'要求,本節(jié)教材的特點和高一學(xué)生對空間圖形的認知特點,我把本節(jié)課的教學(xué)目的確定為:
(1)通過棱錐,正棱錐概念的教學(xué),培養(yǎng)學(xué)生知識遷移的能力及數(shù)學(xué)表達能力;
(2)領(lǐng)會應(yīng)用正棱錐的性質(zhì)解題的一般方法,初步學(xué)會應(yīng)用性質(zhì)解決相關(guān)問題;
(4)進行辯證唯物主義思想教育,數(shù)學(xué)審美教育,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性。
對于高一學(xué)生來說,空間觀念正逐步形成。而實際生活中,遇到的往往是正棱錐,它的性質(zhì)用處較多。因此,本節(jié)課的教學(xué)重點是通過對具體問題的分析和探索,自然而然地引出正棱錐的最重要性質(zhì)及其實質(zhì);而如何將空間問題轉(zhuǎn)化為平面問題來解決?本節(jié)課則通過抓住正棱錐中的基本圖形這一難點實現(xiàn)突破,教學(xué)的關(guān)鍵是正確認識正棱錐的線線,線面垂直關(guān)系。
二、教法分析
類比聯(lián)想、研究探討、直觀想象、啟發(fā)誘導(dǎo)、建立模型、學(xué)會應(yīng)用、發(fā)展?jié)撃?、形成能力、提高素質(zhì)。
由于本節(jié)課安排在立體幾何學(xué)習(xí)的中期,正是進一步培養(yǎng)學(xué)生形成空間觀念和提高學(xué)生邏輯思維能力的最佳時機,因此,在教學(xué)中,一方面通過電教手段,把某些概念,性質(zhì)或知識關(guān)鍵點制成了投影片,既節(jié)省時間,又增加其直觀性和趣味性,起到事半功倍的作用;另一方面,在教學(xué)中并沒有采取把正棱錐性質(zhì)同時全部講授給學(xué)生的做法,而是通過具體問題的分析與處理,將正棱錐最重要的性質(zhì)這一知識點發(fā)現(xiàn)的全過程逐步展現(xiàn)給學(xué)生,讓學(xué)生體會知識發(fā)生、發(fā)展的過程及其規(guī)律,從而提高學(xué)生分析和解決實際問題的能力。
三、學(xué)法指導(dǎo)
教學(xué)矛盾的主要方面是學(xué)生的學(xué)。學(xué)是中心,會學(xué)是目的。因此,在教學(xué)中要不斷指導(dǎo)學(xué)生學(xué)會學(xué)習(xí)。根據(jù)立體幾何教學(xué)的特點,這節(jié)課主要是教給學(xué)生“動手做,動腦想;嚴格證,多訓(xùn)練,勤鉆研?!钡难杏懯綄W(xué)習(xí)方法。這樣做,增加了學(xué)生主動參與的機會,增強了參與意識,教給學(xué)生獲取知識的途徑;思考問題的方法。使學(xué)生真正成為教學(xué)的主體。也只有這樣做,才能使學(xué)生“學(xué)”有新“思”,“思”有所“得”,“練”有所“獲”。學(xué)生才會逐步感到數(shù)學(xué)美,會產(chǎn)生一種成功感,從而提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣;也只有這樣做,才能適應(yīng)素質(zhì)教育下培養(yǎng)“創(chuàng)新型”人才的需要。
四、教學(xué)流程
1、課題引入
(可將金字塔,帳篷的圖片以及不同棱錐的模型依次出示給學(xué)生)
將現(xiàn)實生活的實例抽象成數(shù)學(xué)模型,獲得新的幾何體――棱錐。(板書課題)
2、引導(dǎo)啟發(fā)
請同學(xué)們描述一下棱錐的本質(zhì)特征?(學(xué)生觀察模型,提示學(xué)生可以從底面,側(cè)面的形狀特點加以描述)
結(jié)論:(1)有一個面是多邊形;
(2)其余各面是三角形且有一個公共頂點。
由滿足(1)、(2)的面所圍成的幾何體叫做棱錐。
(設(shè)計意圖:由觀察具體事物,經(jīng)過積極思維,歸納、抽象出事的本質(zhì)屬性,形成概念,培養(yǎng)學(xué)生抽象思維能力,提高學(xué)習(xí)效果。)
指數(shù)函數(shù)的概念說課稿篇十六
教材的地位和作用:
集合是學(xué)習(xí)高中數(shù)學(xué)的重要工具之一,起著承前啟后的作用。本小節(jié)首先從初中代數(shù)與幾何涉及的集合實例人手,引出集合與集合的元素的概念,并且結(jié)合實例對集合的概念作了說明.然后,介紹了集合的常用表示方法,包括列舉法、描述法等,還給出了畫圖表示集合的例子.從教材我歸納出本節(jié)內(nèi)容的教學(xué)重點和難點。
(一)教學(xué)重點:集合的基本概念和表示方法,集合元素的特征
(一)知識目標:
(1)使學(xué)生初步理解集合的概念,知道常用數(shù)集的概念及其記法;
(2)使學(xué)生初步了解“屬于”關(guān)系的意義;
(3)使學(xué)生初步了解有限集、無限集、空集的意義
(二)能力目標:
(1)重視基礎(chǔ)知識的教學(xué)、基本技能的訓(xùn)練和能力的培養(yǎng);
(3)通過教師指導(dǎo),發(fā)現(xiàn)知識結(jié)論,培養(yǎng)學(xué)生抽象概括能力和邏輯思維能力;
(三)德育目標:激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和積極性,陶冶學(xué)生的情
操,培養(yǎng)學(xué)生堅忍不拔的意志,實事求是的科學(xué)學(xué)習(xí)態(tài)度和勇于創(chuàng)新的精神。
針對現(xiàn)在的學(xué)生知識遷移能力差、計算能力差的`特點,第一節(jié)課的內(nèi)容不要求學(xué)生太多的計算,通過大量的舉例讓學(xué)生充分掌握集合的基礎(chǔ)知識。
為了突出重點、突破難點,本節(jié)課主要采用觀察、分析、類比、歸納的方法讓學(xué)生參與學(xué)習(xí),將學(xué)生置于主體位置,發(fā)揮學(xué)生的主觀能動性,將知識的形成過程轉(zhuǎn)化為學(xué)生親自探索類比的過程,使學(xué)生獲得發(fā)現(xiàn)的成就感。在這個過程中力求把握好以下幾點:
(1)通過實例,讓學(xué)生去發(fā)現(xiàn)規(guī)律。讓學(xué)生在問題情景中,經(jīng)歷知識的形成和發(fā)展,力求使學(xué)生學(xué)會用類比的思想去看待問題。
(2)營造民主的教學(xué)氛圍,使學(xué)生參與教學(xué)全過程。
(3)力求反饋的全面性、及時性,通過精心設(shè)計的提問,讓學(xué)生的思維動起來,針對學(xué)生回答的問題,老師進行適當(dāng)?shù)狞c評。
(4)給學(xué)生思考的時間和空間,不急于把結(jié)果拋給學(xué)生,讓學(xué)生自己去觀察,分析,類比得出結(jié)果,提高學(xué)生的推理能力。
(一)復(fù)習(xí)導(dǎo)入
(1)簡介數(shù)集的發(fā)展,復(fù)習(xí)最大公約數(shù)和最小公倍數(shù),質(zhì)數(shù)與和數(shù);
(2)教材中的章頭引言;
(3)教材中例子(p4)。
(二)講解新課
(1)集合的有關(guān)概念
(2)常用集合及表示方法
(3)元素對于集合的隸屬關(guān)系
(4)集合中元素的特性
(三)課堂練習(xí)
1下列各組對象能確定一個集合嗎?
(1)所有很大的實數(shù)的集合(不確定)
(2)好心的人的集合(不確定)
(3){1,2,2,3,4,5}(有重復(fù))
(4)所有直角三角形的集合(是的)
(5)高一(12)班全體同學(xué)的集合(是的)
(6)參加2008年奧運會的中國代表團成員的集合(是的)
2、教材p5練習(xí)1、2
1.本節(jié)主要學(xué)習(xí)了集合的基本概念、表示符號;一些常用數(shù)集及其記法;集合的元素與集合之間的關(guān)系;以及集合元素具有的特征.
2.我們在進一步復(fù)習(xí)鞏固集合有關(guān)概念的基礎(chǔ)上,又學(xué)習(xí)了集合的表示方法和有限集、無限集、空集的概念,同學(xué)們要熟練掌握.
指數(shù)函數(shù)的概念說課稿篇十七
函數(shù)作為初等數(shù)學(xué)的核心內(nèi)容,貫穿于整個初等數(shù)學(xué)體系之中。函數(shù)這一章在高中數(shù)學(xué)中,起著承上啟下的作用,它是對初中函數(shù)概念的承接與深化。在初中,只停留在具體的幾個簡單類型的函數(shù)上,把函數(shù)看成變量之間的依賴關(guān)系,而高中階段不僅把函數(shù)看成變量之間的依賴關(guān)系,更是從“變量說”到“對應(yīng)說”,這是對函數(shù)本質(zhì)特征的進一步認識,也是學(xué)生認識上的一次飛躍。這一章內(nèi)容滲透了函數(shù)的思想,集合的思想以及數(shù)學(xué)建模的思想等內(nèi)容,這些內(nèi)容的學(xué)習(xí),無疑對學(xué)生今后的學(xué)習(xí)起著深刻的影響。
本節(jié)《函數(shù)的概念》是函數(shù)這一章的起始課。概念是數(shù)學(xué)的基礎(chǔ),只有對概念做到深刻理解,才能正確靈活地加以應(yīng)用。本課從集合間的對應(yīng)來描繪函數(shù)概念,起到了上承集合,下引函數(shù)的作用。也為進一步學(xué)習(xí)函數(shù)這一章的其它內(nèi)容提供了方法和依據(jù)。
二、重難點分析
根據(jù)對上述對教材的分析及新課程標準的要求,確定函數(shù)的概念既是本節(jié)課的重點,也應(yīng)該是本章的難點。
三、學(xué)情分析
1、有利因素:一方面學(xué)生在初中已經(jīng)學(xué)習(xí)了變量觀點下的函數(shù)定義,并具體研究了幾類最簡單的函數(shù),對函數(shù)已經(jīng)有了一定的感性認識;另一方面在本書第一章學(xué)生已經(jīng)學(xué)習(xí)了集合的概念,這為學(xué)習(xí)函數(shù)的現(xiàn)代定義打下了基礎(chǔ)。
2、不利因素:函數(shù)在初中雖已講過,不過較為膚淺,本課主要是從兩個集合間對應(yīng)來描繪函數(shù)概念,是一個抽象過程,要求學(xué)生的抽象、分析、概括的能力比較高,學(xué)生學(xué)起來有一定的難度。
四、目標分析
1、理解函數(shù)的概念,會用函數(shù)的定義判斷函數(shù),會求一些最基本的函數(shù)的定義域、值域。
2、通過對實際問題分析、抽象與概括,培養(yǎng)學(xué)生抽象、概括、歸納知識以及邏輯思維、建模等方面的能力。
3、通過對函數(shù)概念形成的探究過程,培養(yǎng)學(xué)生發(fā)現(xiàn)問題,探索問題,不斷超越的創(chuàng)新品質(zhì)。
五、教法學(xué)法
本節(jié)課的教學(xué)以學(xué)生為主體、教師是數(shù)學(xué)課堂活動的組織者、引導(dǎo)者和參與者,我一方面精心設(shè)計問題情景,引導(dǎo)學(xué)生主動探索。另一方面,依據(jù)本節(jié)為概念學(xué)習(xí)的特點,以問題的提出、問題的解決為主線,始終在學(xué)生知識的“最近發(fā)展區(qū)”設(shè)置問題,倡導(dǎo)學(xué)生主動參與,通過不斷探究、發(fā)現(xiàn),在師生互動、生生互動中,讓學(xué)習(xí)過程成為學(xué)生心靈愉悅的主動認知過程。
學(xué)法方面,學(xué)生通過對新舊兩種函數(shù)定義的對比,在集合論的觀點下初步建構(gòu)出函數(shù)的概念。在理解函數(shù)概念的基礎(chǔ)上,建構(gòu)出函數(shù)的定義域、值域的概念,并初步掌握它們的求法。
六、教學(xué)過程
(一)創(chuàng)設(shè)情景,引入新課
情景1:提供一張表格,把上次運動會得分前10的情況填入表格,我報名次,學(xué)生提供分數(shù)。
名次(得分)
情景3:某市一天24小時內(nèi)的氣溫變化圖:(圖略)
提問(1):這三個例子中都涉及到了幾個變化的量?(兩個)
提問(2):當(dāng)其中一個變量取值確定后,另一個變量將如何?(它的值也隨之唯一確定)
提問(3):這樣的關(guān)系在初中稱之為什么?(函數(shù))引出課題
[設(shè)計意圖]在創(chuàng)設(shè)本課開頭情境1、2的時候,我并沒有運用書中的前兩個例子。第一個例子我改成提供給學(xué)生一張運動會成績統(tǒng)計單。是為了創(chuàng)設(shè)和學(xué)生或者生活相近的情境,從而引起學(xué)生的興趣,調(diào)節(jié)課堂氣氛,引人入勝,第二個例子我改成一道簡單的速度與時間問題,是因為學(xué)生對重力加速度的問題還不是很熟悉。同時這兩個例子并沒有改變課本用三個實例分別代表三種表示函數(shù)方法的意圖。這樣學(xué)生可以從熟悉的情景引入,提高學(xué)生的參與程度。符合學(xué)生的認知特點。
(二)探索新知,形成概念
1、引導(dǎo)分析,探求特征
思考:如何用集合的語言來闡述上述三個問題的共同特征?
[設(shè)計意圖]并不急著讓學(xué)生回答此問,為引導(dǎo)學(xué)生改變思路,換個角度思考問題,進入本節(jié)課的重點。這里也是教師作為教學(xué)的引導(dǎo)者的體現(xiàn),及時對學(xué)生進行指引。
提問(4):觀察上述三問題,它們分別涉及到了哪些集合?(每個問題都涉及到了兩個集合,具體略)
[設(shè)計意圖]引導(dǎo)學(xué)生觀察,培養(yǎng)觀察問題,分析問題的能力。
提問(5):兩個集合的元素之間具有怎樣的關(guān)系?(對應(yīng))
及時給出單值對應(yīng)的定義,并嘗試用輸入值,輸出值的概念來表達這種對應(yīng)。
2、抽象歸納,引出概念
提問(6):現(xiàn)在你能從集合角度說說這三個問題的共同點嗎?
[設(shè)計意圖]學(xué)生相互討論,并回答,引出函數(shù)的概念。訓(xùn)練學(xué)生的歸納能力。
板書:函數(shù)的概念
上述一系列問題,始終在學(xué)生知識的“最近發(fā)展區(qū)”,倡導(dǎo)學(xué)生主動參與,通過不斷探究、發(fā)現(xiàn),在師生互動,生生互動中,在學(xué)生心情愉悅的氛圍中,突破本節(jié)課的重點。
3、探求定義,提出注意
提問(7):你覺得這個定義中應(yīng)注意哪些問題?
[設(shè)計意圖]剖析概念,使學(xué)生抓住概念的本質(zhì),便于理解記憶。
4、例題剖析,強化概念
例1、判斷下列對應(yīng)是否為函數(shù):
[設(shè)計意圖]通過例1的教學(xué),使學(xué)生體會單值對應(yīng)關(guān)系在刻畫函數(shù)概念中的核心作用。
例2、(1);(2)y=x-1;(3);[設(shè)計意圖]首先對求函數(shù)的定義域進行方法引導(dǎo),偶次方根必需注意的地方,其次,通過(2)(3)兩道題,強調(diào)只有對應(yīng)法則與定義域相同的兩個函數(shù),才是相同的函數(shù)。而與函數(shù)用什么字母表示無關(guān),進一步理解函數(shù)符號的本質(zhì)內(nèi)涵。
例3、試求下列函數(shù)的定義域與值域:
[設(shè)計意圖]讓學(xué)體會理解函數(shù)的三要素。
5、鞏固練習(xí),運用概念
書本練習(xí)p24:1,2,3,4
6、課堂小結(jié),提升思想
引導(dǎo)學(xué)生進行回顧,使學(xué)生對本節(jié)課有一個整體把握,將對學(xué)生形成的知識系統(tǒng)產(chǎn)生積極的影響。
七、教學(xué)評價
1、我通過對一系列問題情景的設(shè)計,讓學(xué)生在問題解決的過程中體驗成功的樂趣,實現(xiàn)對本課重難點的突破。
2、為使課堂形式更加豐富,也可將某些問題改成判斷題。
4。本節(jié)課的起始,可以借助于多媒體技術(shù),為學(xué)生創(chuàng)設(shè)更理想的教學(xué)情景。
指數(shù)函數(shù)的概念說課稿篇十八
“棱錐”這節(jié)教材是《立體幾何》的第2.2節(jié)它是在學(xué)生學(xué)習(xí)了直線和平面的基礎(chǔ)知識,掌握若干基本圖形以及棱柱的概念和性質(zhì)的基礎(chǔ)上進一步研究多面體的又一常見幾何體。它既是線面關(guān)系的具體化,又為以后進一步學(xué)習(xí)棱臺的概念和性質(zhì)奠定了基礎(chǔ)。因此掌握好棱錐的概念和性質(zhì)尤其是正棱錐的概念和性質(zhì)意義非常重要,同時,這節(jié)課也是進一步培養(yǎng)高一學(xué)生的空間想象能力和邏輯思維能力的重要內(nèi)容。
本節(jié)課的主要教學(xué)內(nèi)容是棱錐、正棱錐的概念和性質(zhì)以及運用正棱錐的性質(zhì)解決有關(guān)計算和證明問題。通過觀察具體幾何體模型引出棱錐的概念;通過棱柱與棱錐類比引入正棱錐的概念;通過對具體問題的研究,逐步探索和發(fā)現(xiàn)正棱錐的性質(zhì),從而找到解決正棱錐問題的一般數(shù)學(xué)思想方法,這樣做,學(xué)生會感到自然,好接受。對教材的內(nèi)容則有所增減,處理方式也有適當(dāng)改變。
根據(jù)教學(xué)大綱的要求,本節(jié)教材的特點和高一學(xué)生對空間圖形的認知特點,我把本節(jié)課的教學(xué)目的確定為:
(1)通過棱錐,正棱錐概念的教學(xué),培養(yǎng)學(xué)生知識遷移的'能力及數(shù)學(xué)表達能力;
(2)領(lǐng)會應(yīng)用正棱錐的性質(zhì)解題的一般方法,初步學(xué)會應(yīng)用性質(zhì)解決相關(guān)問題;
(4)進行辯證唯物主義思想教育,數(shù)學(xué)審美教育,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性。
對于高一學(xué)生來說,空間觀念正逐步形成。而實際生活中,遇到的往往是正棱錐,它的性質(zhì)用處較多。因此,本節(jié)課的教學(xué)重點是通過對具體問題的分析和探索,自然而然地引出正棱錐的最重要性質(zhì)及其實質(zhì);而如何將空間問題轉(zhuǎn)化為平面問題來解決?本節(jié)課則通過抓住正棱錐中的基本圖形這一難點實現(xiàn)突破,教學(xué)的關(guān)鍵是正確認識正棱錐的線線,線面垂直關(guān)系。
類比聯(lián)想、研究探討、直觀想象、啟發(fā)誘導(dǎo)、建立模型、學(xué)會應(yīng)用、發(fā)展?jié)撃?、形成能力、提高素質(zhì)。
由于本節(jié)課安排在立體幾何學(xué)習(xí)的中期,正是進一步培養(yǎng)學(xué)生形成空間觀念和提高學(xué)生邏輯思維能力的最佳時機,因此,在教學(xué)中,一方面通過電教手段,把某些概念,性質(zhì)或知識關(guān)鍵點制成了投影片,既節(jié)省時間,又增加其直觀性和趣味性,起到事半功倍的作用;另一方面,在教學(xué)中并沒有采取把正棱錐性質(zhì)同時全部講授給學(xué)生的做法,而是通過具體問題的分析與處理,將正棱錐最重要的性質(zhì)這一知識點發(fā)現(xiàn)的全過程逐步展現(xiàn)給學(xué)生,讓學(xué)生體會知識發(fā)生、發(fā)展的過程及其規(guī)律,從而提高學(xué)生分析和解決實際問題的能力。
教學(xué)矛盾的主要方面是學(xué)生的學(xué)。學(xué)是中心,會學(xué)是目的。因此,在教學(xué)中要不斷指導(dǎo)學(xué)生學(xué)會學(xué)習(xí)。根據(jù)立體幾何教學(xué)的特點,這節(jié)課主要是教給學(xué)生“動手做,動腦想;嚴格證,多訓(xùn)練,勤鉆研?!钡难杏懯綄W(xué)習(xí)方法。這樣做,增加了學(xué)生主動參與的機會,增強了參與意識,教給學(xué)生獲取知識的途徑;思考問題的方法。使學(xué)生真正成為教學(xué)的主體。也只有這樣做,才能使學(xué)生“學(xué)”有新“思”,“思”有所“得”,“練”有所“獲”。學(xué)生才會逐步感到數(shù)學(xué)美,會產(chǎn)生一種成功感,從而提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣;也只有這樣做,才能適應(yīng)素質(zhì)教育下培養(yǎng)“創(chuàng)新型”人才的需要。
(可將金字塔,帳篷的圖片以及不同棱錐的模型依次出示給學(xué)生)
將現(xiàn)實生活的實例抽象成數(shù)學(xué)模型,獲得新的幾何體――棱錐。(板書課題)
請同學(xué)們描述一下棱錐的本質(zhì)特征?(學(xué)生觀察模型,提示學(xué)生可以從底面,側(cè)面的形狀特點加以描述)
結(jié)論:(1)有一個面是多邊形;
(2)其余各面是三角形且有一個公共頂點。
由滿足(1)、(2)的面所圍成的幾何體叫做棱錐。
(設(shè)計意圖:由觀察具體事物,經(jīng)過積極思維,歸納、抽象出事的本質(zhì)屬性,形成概念,培養(yǎng)學(xué)生抽象思維能力,提高學(xué)習(xí)效果。)
――棱錐的頂點
――棱錐的側(cè)棱
――棱錐的底面
棱錐的高――――
觀察圖1:依次逐個介紹棱錐各個部分
名稱及表示法。表示法:棱錐s-abcde
或棱錐s-ac。與棱柱相似,棱錐可以按
底面多邊形的邊數(shù)分為三棱錐,四棱錐、
五棱錐,···,n棱錐。
(設(shè)計意圖:從簡處理棱錐的表示法,
分類等,為后面重點解決正棱錐的性質(zhì)問
題節(jié)省時間。)
由于實際生活中,遇到的往往是一種
特殊的棱錐――正棱錐,它的性質(zhì)用處較多。
所以下面重點研究正棱錐的概念及性質(zhì)。
通過對比正棱柱的定義,讓學(xué)生描述正棱錐。
(拿出各式各樣的棱錐模型讓學(xué)生辨認)
討論:底面是正多邊形的棱錐對嗎?聯(lián)想正棱柱的定義,棱柱補充幾點后才是正棱柱?
結(jié)論:底面是正多邊形,并且頂點在底面射影是底面中心。為什么?
(設(shè)計意圖:采用觀察、聯(lián)想、類比、猜想、發(fā)現(xiàn)的方法引出正棱錐的定義比課本直接給出顯得自然,學(xué)生好接受)
正棱錐的頂點在底面的射影是底面下多邊形中心,這是正棱錐的本質(zhì)特征。它決定了正棱錐的其他性質(zhì)。下面以正五棱錐為例,請同學(xué)們說出其側(cè)棱,各側(cè)面有何性質(zhì)?(將圖2出示給學(xué)生)
結(jié)論:各棱相等,各側(cè)面是全等的等腰三角形。
為什么?
(學(xué)生口答證明)(略)
如果我們把等腰三角形底邊上的高叫做正棱錐
的斜高,請在圖2中作出兩條斜高。(學(xué)生作出。)(略)
結(jié)論:兩條斜高相等。為什么?(學(xué)生回答)
想一想:正棱錐的斜高與高有什么關(guān)系?
結(jié)論:斜高大于高,為什么?(可啟發(fā)學(xué)生聯(lián)系
垂線段,斜線段的有關(guān)知識,然后回答)
小結(jié):對于一般棱錐其側(cè)面不一定是等腰三角形。棱錐的高是指頂點到底面的距離,垂足可以在底面多邊形內(nèi),也可以在底面多邊形外,我們剛才所得到的性質(zhì)都是對正棱錐而言的。
(設(shè)計意圖:再次讓學(xué)生領(lǐng)會類比、觀察、猜想等合情合理得到正棱錐的性質(zhì)之一并加以證明,培養(yǎng)學(xué)生的直覺思維能力的同時,訓(xùn)練學(xué)生數(shù)學(xué)思維的嚴謹性。)
指數(shù)函數(shù)的概念說課稿篇十九
導(dǎo)數(shù)是研究現(xiàn)代科學(xué)技術(shù)必不可少的工具,是進一步學(xué)習(xí)數(shù)學(xué)和其他自然科學(xué)的基礎(chǔ),在物理學(xué)、經(jīng)濟學(xué)等領(lǐng)域都有廣泛的應(yīng)用。對于中學(xué)階段而言,導(dǎo)數(shù)是研究函數(shù)的有力工具,在求函數(shù)的單調(diào)性、極值、曲線的切線以及一些優(yōu)化問題時有著廣泛的應(yīng)用,同時對研究幾何、不等式起著重要作用.導(dǎo)數(shù)的概念毫無疑問是教學(xué)的關(guān)鍵,考慮到學(xué)生的可接受性,教材中并沒有引進極限概念,而是通過實例引導(dǎo)學(xué)生經(jīng)歷由平均變化率到瞬時變化率的過程,直至建立起導(dǎo)數(shù)的數(shù)學(xué)模型。而從平均變化率到瞬時變化率,教材中所選取的實例是曲線上一點處的切線和瞬時速度、瞬時加速度,筆者以為從學(xué)生的知識背景出發(fā),與其用切線來引入導(dǎo)數(shù),還不如將之視為導(dǎo)數(shù)知識的.幾何解釋,因此教學(xué)處理時采用數(shù)值逼近、幾何直觀感受、解析式抽象三種方式實現(xiàn)由平均變化率到瞬時變化率的過渡。
教學(xué)時需關(guān)注:一是邏輯主線是以問題為背景,按照“問題情境—建立模型—解釋應(yīng)用與拓展”的程序展開;二是學(xué)生極限思想的形成,需設(shè)計活動讓學(xué)生經(jīng)歷從平均變化率到瞬時變化率的過程,先通過求物體在某一時刻的平均速度的極限去得出瞬時速度,再由此抽象出函數(shù)在某點的平均變化率的極限就是瞬時變化率的的模型,并將瞬時變化率定義為導(dǎo)數(shù);三是從特殊到一般,通過若干個特殊時刻的瞬時速度過渡到任意時刻的瞬時速度;從物體運動的平均速度的極限是瞬時速度過渡到函數(shù)的平均變化率的極限是瞬時變化率。
1、知識與技能目標:
理解并能復(fù)述導(dǎo)數(shù)的概念,掌握利用求函數(shù)在某點的平均變化率的極限實現(xiàn)求導(dǎo)數(shù)的基本步驟,初步學(xué)會求解簡單函數(shù)在一點處的切線方程。
2、過程與方法目標:
通過數(shù)值逼近計算的方法經(jīng)歷從平均變化率到瞬時變化率的過程,并在歸納抽象的過程中建構(gòu)導(dǎo)數(shù)的概念,嘗試幾何解釋的過程中領(lǐng)悟數(shù)學(xué)發(fā)現(xiàn)的全過程。
3、情感、態(tài)度、價值觀目標:
通過數(shù)學(xué)建模的過程感受數(shù)學(xué)研究方法,并在使用手持技術(shù)過程中改善學(xué)習(xí)方法,即初步形成向技術(shù)學(xué)數(shù)學(xué)的基本理念。
教學(xué)重點
數(shù)值逼近法生成建構(gòu)導(dǎo)數(shù)概念及導(dǎo)數(shù)的計算。
教學(xué)難點
導(dǎo)數(shù)的幾何解釋及切線概念的形成。
本節(jié)課需要用到的知識儲備包括平均變化率、直線的斜率、物理中物體運動的瞬時速度、解析幾何中的切線等,而所要用到的歸納、概括、類比、抽象思維能力等也已具備,特別地實驗班的學(xué)生均能熟練操作圖形計算器,也多次經(jīng)歷過數(shù)學(xué)再創(chuàng)造的過程,對“問題情境—建立模型—解釋應(yīng)用與拓展”這樣的學(xué)習(xí)程序并不陌生,這些都是開展本節(jié)課學(xué)習(xí)的基礎(chǔ)。
指數(shù)函數(shù)的概念說課稿篇二十
等比數(shù)列前n項和一節(jié)是人教社高中數(shù)學(xué)必修教材試驗修訂本第一冊第三章第五節(jié)的內(nèi)容,教學(xué)對象為高一學(xué)生,教學(xué)時數(shù)2課時。
第三章《數(shù)列》是高中數(shù)學(xué)的重要內(nèi)容之一,之所以在新大綱里保留下來,這是由其在整個高中數(shù)學(xué)領(lǐng)域里的重要地位和作用決定的。
1、數(shù)列有著廣泛的實際應(yīng)用。例如產(chǎn)品的規(guī)格設(shè)計、儲蓄、分期付款的有關(guān)計算等。
2、數(shù)列有著承前啟后的作用。數(shù)列是函數(shù)的延續(xù),它實質(zhì)上是一種特殊的函數(shù);學(xué)習(xí)數(shù)列又為進一步學(xué)習(xí)數(shù)列的極限等內(nèi)容打下基礎(chǔ)。
3、數(shù)列是培養(yǎng)提高學(xué)生思維能力的好題材。學(xué)習(xí)數(shù)列要經(jīng)常觀察、分析、猜想,還要綜合運用前面的知識解決數(shù)列中的一些問題,這些都有利于學(xué)生數(shù)學(xué)能力的提高。
本節(jié)課既是本章的重點,同時也是教材的重點。等比數(shù)列前n項和前面承接了數(shù)列的定義、等差數(shù)列的知識內(nèi)容,又是后面學(xué)習(xí)數(shù)列求和、數(shù)列極限的基礎(chǔ)。
本節(jié)的重點是等比數(shù)列前n項和公式及應(yīng)用,難點是公式的推導(dǎo)。
二、教學(xué)目標
1、知識目標:理解等比數(shù)列前n項和公式的推導(dǎo)方法,掌握等比數(shù)列前n項和公式及應(yīng)用。
2、能力目標:培養(yǎng)學(xué)生觀察問題、思考問題的能力,并能靈活運用基本概念分析問題解決問題的能力,鍛煉數(shù)學(xué)思維能力。
3、思想目標:培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性,鍛煉學(xué)生遇到困難不氣餒的堅強意志和勇于創(chuàng)新的精神。
三、教學(xué)程序設(shè)計
1、導(dǎo)言:
這樣引入課題有以下三點好處:
(1)利用學(xué)生求知好奇心理,以一個小故事為切入點,便于調(diào)動學(xué)生學(xué)習(xí)本節(jié)課的趣味性和積極性。
(2)故事內(nèi)容緊扣本節(jié)課教學(xué)內(nèi)容的主題與重點。
(3)有利于知識的遷移,使學(xué)生明確知識的現(xiàn)實應(yīng)用性。
2、講授新課:
本節(jié)課有兩項主要內(nèi)容,等比數(shù)列的前n項和公式的推導(dǎo)和等比數(shù)列的前n項和公式及應(yīng)用。
等比數(shù)列的前n項和公式的推導(dǎo)是本節(jié)課的難點。
依據(jù)如下:
(1)從認知領(lǐng)域上講,它在陳述性知識、程序性知識與策略性知識的分類中,屬于學(xué)生最高需求層次的掌握策略與方法的策略性知識。
(2)從學(xué)科知識上講,推導(dǎo)屬于學(xué)科邏輯中的“瓶頸”,突破這一“瓶頸”則后面的問題迎刃而解。
(3)從心理學(xué)上講,學(xué)生對這項學(xué)習(xí)內(nèi)容的“熟悉度”不高,原有知識薄弱,不易理解。
突破難點方法:
(1)明確難點、分解難點,采用層層推導(dǎo)延伸法,利用學(xué)生已有的知識切入,淺化知識內(nèi)容。比如可以先求麥粒的總數(shù),通過設(shè)問使學(xué)生得到麥粒的總數(shù)為,然后引導(dǎo)學(xué)生觀察上式的特點,發(fā)現(xiàn)上式中,每一項乘以2后都得它的后一項,即有,發(fā)現(xiàn)兩式右邊有62項相同,啟發(fā)同學(xué)們找到解決問題的關(guān)鍵是等式左右同時乘以2,相減得和。從而得知求等比數(shù)列前n項和……+的關(guān)鍵也應(yīng)是等式左右各項乘以公比q,兩式相減去掉相同項,得求和公式,也掌握了這種常用的數(shù)列求和方法——錯位相減法,說明這種方法的用途。
(2)值得一提的是公式的證明還有兩種方法:
方法二:由等比數(shù)列的定義得:運用連比定理,
后兩種方法可以啟發(fā)引導(dǎo)學(xué)生自行完成。這樣學(xué)生從各種途徑,用多種方法推導(dǎo)公式,從而培養(yǎng)學(xué)生的創(chuàng)造性思維。
等比數(shù)列前n項和公式及應(yīng)用是本節(jié)課的重點內(nèi)容。
依據(jù)如下:
(1)新大綱中有較高層次的要求。
(2)教學(xué)地位重要,是教學(xué)中全部學(xué)習(xí)任務(wù)中必須優(yōu)先完成的任務(wù)。
(3)這項知識內(nèi)容有廣泛的實際應(yīng)用,很多問題都要轉(zhuǎn)化為等比數(shù)列的求和上來。
突出重點方法:
(1)明確重點。利用高一學(xué)生求知積極性和初步具有的數(shù)學(xué)思維能力,運用比較法來突出公式的內(nèi)容(彩色粉筆板書):,強調(diào)公式的應(yīng)用范圍:中可知三求二。
(2)運用糾錯法對公式中學(xué)生容易出錯的地方,即公式的條件,以精練的語言給予強調(diào),并指出q=1時,。再有就是有些數(shù)列求和的項數(shù)易錯,例如的項數(shù)是n+1而不是n。
(3)創(chuàng)設(shè)條件、充分保證。設(shè)置低、中、高三個層次的例題,即公式的直接應(yīng)用、公式的變形應(yīng)用和實際應(yīng)用來突出這一重點。對應(yīng)用題師生要共同分析討論,從問題中抽象出等比數(shù)列,然后用公式求和。
四、習(xí)題訓(xùn)練
本節(jié)課設(shè)置如下兩種類型的習(xí)題:
1.中知三求二的解答題;
2.實際應(yīng)用題.
這樣設(shè)置主要依據(jù):
(1)練習(xí)題與大綱中規(guī)定的教學(xué)目標與任務(wù)及本節(jié)課的重點、難點有相對應(yīng)的匹配關(guān)系。
(2)遵循鞏固性原則和傳授——反饋——再傳授的教學(xué)系統(tǒng)的思想確立這樣的習(xí)題。
(3)應(yīng)用題比較切合對智力技能進行檢測,有利于數(shù)學(xué)能力的提高。同時,它可以使學(xué)生在后半程學(xué)習(xí)中保持興趣的持續(xù)性和學(xué)習(xí)的主動性。
五、策略、方法與手段
根據(jù)高一學(xué)生心理特點、教材內(nèi)容、遵循因材施教原則和啟發(fā)性教學(xué)思想,本節(jié)課的教學(xué)策略與方法我采用規(guī)則學(xué)習(xí)和問題解決策略,即“案例—公式—應(yīng)用”,簡稱“例—規(guī)”法。
案例為淺層次要求,使學(xué)生有概括印象。
公式為中層次要求,由淺入深,重難點集中推導(dǎo)講解,便于突破。
應(yīng)用為綜合要求,多角度、多情境中消化鞏固所學(xué),反饋驗證本節(jié)教學(xué)目標的落實。
其中,案例是基礎(chǔ),是學(xué)生感知教材;公式為關(guān)鍵,是學(xué)生理解教材;練習(xí)為應(yīng)用,是學(xué)生鞏固知識,舉一反三。
在這三步教學(xué)中,以啟發(fā)性強的小設(shè)問層層推導(dǎo),輔之以學(xué)生的分組小討論并充分運用直觀完整的板書、棋盤教具和計算機課件等教輔用具、手段,改變教師講、學(xué)生聽的填鴨式教學(xué)模式,充分體現(xiàn)學(xué)生是主體,教師教學(xué)服務(wù)于學(xué)生的思路,而且學(xué)生通過“案例—公式—應(yīng)用”,由淺入深,由感性到理性,由直觀到抽象,加深了學(xué)生理解鞏固與應(yīng)用,有利于培養(yǎng)學(xué)生思維能力,落實好教學(xué)任務(wù)。
六、個人見解
在提倡教育改革的今天,對學(xué)生進行思維技能培養(yǎng)已成了我們非常重要的一項教學(xué)任務(wù)。研究性學(xué)習(xí)已在全國范圍內(nèi)展開,等比數(shù)列就是一個進行研究性學(xué)習(xí)的好題材。在我們學(xué)校可以按照intel未來教育計劃培訓(xùn)的模式,學(xué)完本節(jié)課后,教師可以給學(xué)生布置一個研究分期付款的課題,讓學(xué)生利用網(wǎng)絡(luò)資源,多方查找資料,并通過完成多媒體演示文稿和網(wǎng)頁制作來共同解決這一問題。這樣不僅培養(yǎng)了學(xué)生主動探究問題、解決問題的能力,而且還提高了他們的創(chuàng)新意識和團結(jié)協(xié)作的精神。
指數(shù)函數(shù)的概念說課稿篇二十一
尊敬的評委老師,大家好,我是今天的5號考生,今天我說課的題目是《指數(shù)函數(shù)》。
教材分析
教材是課程標準的具體化,是課堂知識呈現(xiàn)的載體,對于教材的深入理解是上好一堂課前提。本課選自人教版,高中數(shù)學(xué)必修一第二章第六節(jié)。在漫長的高中數(shù)學(xué)學(xué)習(xí)的過程中,函數(shù)的學(xué)習(xí)貫穿始終。從教材的書寫邏輯上看,之前的教材內(nèi)容已經(jīng)對于函數(shù)的一般性質(zhì)進行了排布。而本節(jié)課指數(shù)函數(shù)的學(xué)習(xí)則對接下來對數(shù)函數(shù)等復(fù)雜函數(shù)的深入學(xué)習(xí)奠定了堅實的基礎(chǔ)??梢哉f,指數(shù)函數(shù)的學(xué)習(xí)對于高中函數(shù)的學(xué)習(xí)起到了承上啟下的重要作用。
學(xué)情分析
新的學(xué)生觀告訴我們,我們要在課堂中充分發(fā)揮學(xué)生的主體地位,因此對于學(xué)生的情況了解也是十分重要的。從思維層面上看,高中的學(xué)生已經(jīng)具備了比較成熟的抽象邏輯思維能力,有著較強的'理解力,這對于我們課堂的開展是十分有幫助的。而這個階段的學(xué)生好勝心比較強,容易產(chǎn)生負面情緒,這對于我們課堂的教學(xué)也帶來了一定的挑戰(zhàn)。從經(jīng)驗上看,在之前的學(xué)習(xí)中,學(xué)生已經(jīng)對于“指數(shù)”“函數(shù)”等概念有了深刻的認識,為本節(jié)課程的開展提供了幫助,而指數(shù)函數(shù)相對比較抽象,對于學(xué)生的學(xué)習(xí)、老師的教授都提出了較高的要求,因此合理的教法學(xué)法選擇顯得尤為重要。
教學(xué)目標
教學(xué)目標是教育教學(xué)活動的出發(fā)點和依據(jù),結(jié)合新課改的思想和新課標的要求,本節(jié)課我所制定的三維教學(xué)目標如下:
知識與技能目標:掌握指數(shù)函數(shù)的概念,圖像性質(zhì);能夠利用指數(shù)函數(shù)的概念解決實際問題。
過程與方法目標:通過分組討論參與發(fā)現(xiàn)的過程,培養(yǎng)學(xué)生觀察,聯(lián)想,類比,猜測,歸納的能力。
情感態(tài)度與價值觀目標:通過教學(xué)互動,促進師生情感,激發(fā)學(xué)生的學(xué)習(xí)興趣,提高學(xué)生的抽象概括,分析,綜合的能力,培養(yǎng)學(xué)生聯(lián)系觀點看問題,領(lǐng)會數(shù)學(xué)科學(xué)的應(yīng)用價值。
而本節(jié)課,我將重難點確立為:指數(shù)函數(shù)的圖像和性質(zhì),以及它與底數(shù)a的關(guān)系。
教學(xué)教法
正如蘇霍姆林斯基所說:只有能夠激發(fā)學(xué)生去進行自我教育的教育,才是真正的教育。在滿足學(xué)習(xí)者需求的基礎(chǔ)之上,我將制定適合本階段學(xué)生的教法來展開教學(xué),以體現(xiàn)教師的主導(dǎo)性。分別以圖片展示、討論、講授、參與練習(xí)等相結(jié)合的方式進行教學(xué)。同時我將采用誘思探究和自主學(xué)習(xí)相結(jié)合的方式,以激發(fā)學(xué)生的學(xué)習(xí)主動性,充分地體現(xiàn)學(xué)生的主體地位。
教學(xué)過程
以上所有的準備都是為了更好的呈現(xiàn)我的課堂,下面來談一談我對于教學(xué)過程的設(shè)計。
首先創(chuàng)設(shè)情境,導(dǎo)入新課我將用電腦展示兩個實例:計算機價格下降問題和生物中細胞分裂的例子。我會請同學(xué)們仔細觀察并分組討論,分別寫出計算機價格y與經(jīng)過月份x的關(guān)系以及細胞個數(shù)y與分裂次數(shù)x的關(guān)系,用所學(xué)知識結(jié)合探究法,分析出指數(shù)函數(shù)底數(shù)討論的必要性以及分類方法。通過這樣的實例,可以很好地激發(fā)學(xué)生的學(xué)習(xí)興趣,培養(yǎng)學(xué)生思維的主動性,為接下來的學(xué)習(xí)做好準備。
其次啟發(fā)誘導(dǎo),探求新知我會給出兩個簡單的指數(shù)函數(shù),并要求學(xué)生畫出它們的圖像,并在準備好的小黑板上規(guī)范地畫出這兩個指數(shù)函數(shù)的圖像,同時板書出指數(shù)函數(shù)的性質(zhì)。同學(xué)們通過動手,促進學(xué)生對本課內(nèi)容的理解學(xué)習(xí),并借助小黑板演示其規(guī)范性。利用多媒體將指數(shù)函數(shù)的圖像加以展示,利于觀察圖像總結(jié)所學(xué)知識的性質(zhì),也能對于接下來的知識點導(dǎo)入起到自然結(jié)合的作用。當(dāng)然學(xué)生通過我的引導(dǎo)交流討論會很快畫出兩個簡單的指數(shù)函數(shù),歸納出函數(shù)的性質(zhì)涉及方面,總結(jié)出它的性質(zhì)。
接著鞏固新知,反饋回授我會板書出例一及例二第一問,并介紹相關(guān)考古知識,本著實踐為主的原則,完成學(xué)生學(xué)習(xí):實踐到認識再到實踐的過程。通過練習(xí)實現(xiàn)教師的再指導(dǎo)和學(xué)生的漸進式提高。這個環(huán)節(jié)介紹的化學(xué)知識在考古中的應(yīng)用,這樣的設(shè)計既開拓了學(xué)生的視野,又為下一步學(xué)習(xí):計算分期付款的利率等問題埋下伏筆,因此學(xué)生能夠了解解題的規(guī)范步驟,并完成例題,拓展視野體會數(shù)學(xué)的應(yīng)用價值。緊接著我會帶領(lǐng)學(xué)生進行歸納,總結(jié)升華我會將同學(xué)們進行分組討論、探究,引導(dǎo)學(xué)生對指數(shù)函數(shù)的知識進行梳理和深化認知。知識與技能目標設(shè)置分組pk機制,引導(dǎo)學(xué)生對課堂知識進行分類討論、數(shù)形結(jié)合等數(shù)學(xué)方法的歸納。最后我會布置課后作業(yè)以幫助學(xué)生鞏固練習(xí),溫故而知新。
板書設(shè)計
當(dāng)然一堂完整的課程離不開簡潔明了的板書設(shè)計,我的板書設(shè)計如下:在黑板中間的正上方,我會寫下今天的課題:指數(shù)函數(shù),我會在黑板的中間擺上小黑板以展示其規(guī)范性。在黑板的左面,我會在練習(xí)過程中寫下今天練習(xí)的,計算步驟。黑板的右面,我會寫下例題一以及例題二的第一問。這樣的設(shè)計,可以幫助學(xué)生更好地學(xué)習(xí)本課的內(nèi)容。以上就是我所有的授課內(nèi)容,感謝各位老師的聆聽。
指數(shù)函數(shù)的概念說課稿篇二十二
說教材分析:
“指數(shù)函數(shù)”是在學(xué)生系統(tǒng)地學(xué)習(xí)了函數(shù)概念及性質(zhì),掌握了指數(shù)與指數(shù)冪的運算性質(zhì)的基礎(chǔ)上展開研究的。作為重要的基本初等函數(shù)之一,指數(shù)函數(shù)既是函數(shù)近代定義及性質(zhì)的第一次應(yīng)用,也為今后研究其他函數(shù)提供了方法和模式,為后續(xù)的學(xué)習(xí)奠定基礎(chǔ)。指數(shù)函數(shù)在知識體系中起了承上啟下的作用,同時在生活及生產(chǎn)實際中有著廣泛的應(yīng)用,因此它也是對學(xué)生進行情感價值觀教育的好素材,所以指數(shù)函數(shù)應(yīng)重點研究。
說學(xué)情分析:
通過初中階段的學(xué)習(xí)和高中對函數(shù)、指數(shù)的運算等知識的系統(tǒng)學(xué)習(xí),學(xué)生對函數(shù)已經(jīng)有了一定的認識,學(xué)生對用“描點法”描繪出函數(shù)圖象的方法已基本掌握,已初步了解數(shù)形結(jié)合的思想。另外,學(xué)生對由特殊到一般再到特殊的數(shù)學(xué)活動過程已有一定的體會。
說教學(xué)目標:
知識與技能:理解指數(shù)函數(shù)的概念和意義,能正確作出其圖象,掌握指數(shù)函數(shù)的性質(zhì)并能自覺、靈活地應(yīng)用其性質(zhì)(單調(diào)性、中介值)比較大小。
說過程與方法:
(2)從數(shù)和形兩方面理解指數(shù)函數(shù)的性質(zhì),體會數(shù)形結(jié)合、分類討論的數(shù)學(xué)思想方法,提高思維的靈活性,培養(yǎng)學(xué)生直觀、嚴謹?shù)乃季S品質(zhì)。
說情感、態(tài)度與價值觀:
(2)讓學(xué)生在數(shù)形結(jié)合中感悟數(shù)學(xué)的統(tǒng)一美、和諧美,進一步培養(yǎng)學(xué)生的學(xué)習(xí)興趣。
說教學(xué)重點:
指數(shù)函數(shù)的圖象和性質(zhì)
說教學(xué)難點:
指數(shù)函數(shù)概念的引入及指數(shù)函數(shù)性質(zhì)的應(yīng)用
說教法研究:
本節(jié)課準備由實際問題引入指數(shù)函數(shù)的概念,這樣可以讓學(xué)生知道指數(shù)函數(shù)的概念來源于客觀實際,便于學(xué)生接受并有利于培養(yǎng)學(xué)生用數(shù)學(xué)的意識。
本節(jié)課使用的教學(xué)方法有:直觀教學(xué)法、啟發(fā)引導(dǎo)法、發(fā)現(xiàn)法
說教學(xué)過程:
一、問題情境:
分析可知,函數(shù)的關(guān)系式分別是與
這就需要對函數(shù)的定義域進行擴充,結(jié)合指數(shù)概念的的擴充,我們也可以將函數(shù)的定義域擴充至全體實數(shù),這樣就得到了一個新的函數(shù)——指數(shù)函數(shù)。
二、數(shù)學(xué)建構(gòu):
1]定義:
一般地,函數(shù)叫做指數(shù)函數(shù),其中。
問題4:為什么規(guī)定?
問題5:你能舉出指數(shù)函數(shù)的例子嗎?
閱讀材料(“放射性碳法”測定古物的年代):
在動植物體內(nèi)均含有微量的放射性,動植物死亡后,停止了新陳代謝,不在產(chǎn)生,且原有的會自動衰變。經(jīng)過5740年(的半衰期),它的殘余量為原來的一半。經(jīng)過科學(xué)測定,若的原始含量為1,則經(jīng)過x年后的殘留量為=。
這種方法經(jīng)常用來推算古物的年代。
練習(xí)1:判斷下列函數(shù)是否為指數(shù)函數(shù)。
(1)(2)
(3)(4)
說明:指數(shù)函數(shù)的解析式y(tǒng)=中,的系數(shù)是1。
有些函數(shù)貌似指數(shù)函數(shù),實際上卻不是,如y=+k(a0且a1,kz);
問題6:我們研究函數(shù)的性質(zhì),通常都研究哪些性質(zhì)?一般如何去研究?
函數(shù)的定義域,值域,單調(diào)性,奇偶性等;
利用函數(shù)圖象研究函數(shù)的性質(zhì)
問題7:作函數(shù)圖象的一般步驟是什么?
列表,描點,作圖
探究活動1:用列表描點法作出,的圖像(借助幾何畫板演示),觀察、比較這兩個函數(shù)的圖像,我們可以得到這兩個函數(shù)哪些共同的性質(zhì)?請同學(xué)們仔細觀察。
引導(dǎo)學(xué)生分析圖象并總結(jié)此時指數(shù)函數(shù)的性質(zhì)(底數(shù)大于1):
(1)定義域?r
(2)值域?函數(shù)的值域為
(3)過哪個定點?恒過點,即
(4)單調(diào)性?時,為上的增函數(shù)
(5)何時函數(shù)值大于1?小于1?當(dāng)時,;當(dāng)時,
(引導(dǎo)學(xué)生自我分析和反思,培養(yǎng)學(xué)生的反思能力和解決問題的能力)。
根據(jù)學(xué)生的發(fā)現(xiàn),再總結(jié)當(dāng)?shù)讛?shù)小于1時指數(shù)函數(shù)的相關(guān)性質(zhì)并作比較。
問題9:到現(xiàn)在,你能自制一份表格,比較及兩種不同情況下的圖象和性質(zhì)嗎?
(學(xué)生完成表格的設(shè)計,教師適當(dāng)引導(dǎo))
【本文地址:http://mlvmservice.com/zuowen/5436035.html】