教案是教師為了教學(xué)目標(biāo),根據(jù)教學(xué)內(nèi)容和要求,編寫的教學(xué)計(jì)劃和指導(dǎo)材料。教案應(yīng)該根據(jù)教學(xué)內(nèi)容和學(xué)習(xí)目標(biāo)選擇適合的教學(xué)方法。以下是小編為大家收集的教案范文,僅供參考,希望對大家有所幫助。
解簡單的方程教案篇一
教學(xué)目標(biāo):
1、讓學(xué)生初步經(jīng)歷列方程解決一步計(jì)算的實(shí)際問題的學(xué)習(xí)過程,掌握列方程解決實(shí)際問題的一般步驟貨物方法,會列方程解決一些簡單的實(shí)際問題。
2、讓學(xué)生在學(xué)習(xí)活動中初步感受方程思想,豐富解題策略,發(fā)展數(shù)學(xué)思考,培養(yǎng)分析問題、解決問題的能力。
3、讓學(xué)生進(jìn)一步感受數(shù)學(xué)在解決現(xiàn)實(shí)問題中的作用,體驗(yàn)用新的`策略解決生活中數(shù)學(xué)問題的快樂,增強(qiáng)學(xué)習(xí)數(shù)學(xué)的信心。
教學(xué)過程:
一、導(dǎo)入:
我們已經(jīng)認(rèn)識了方程,學(xué)會解只含有加、減法和乘、除法一步計(jì)算的過程。在實(shí)際生活中,用列方程、解方程的方法也能把一些分析數(shù)量關(guān)系比較困難的問題,很容易解決。這節(jié)課我們就學(xué)習(xí)列方程解決簡單的實(shí)際問題。(板書課題)
二、新課:
1、教學(xué)例題
(1)出示例題。
師:列方程解決實(shí)際問題和我們過去解決實(shí)際問題一樣,首先要審題。(板書:審題)
題中告訴我們哪些已知信息?要我們解決什么問題?
(2)過去我們解決實(shí)際問題時,審題后要分析數(shù)量關(guān)系,列方程解決實(shí)際問題也要分析數(shù)量關(guān)系,所不同的是,現(xiàn)在我們要找一個數(shù)量關(guān)系式。(板書:找等量關(guān)系式)
(3)過去我們解決問題時是想怎樣從已知的推算出未知的,現(xiàn)在我們可以把未知的數(shù)設(shè)為x。(板書:設(shè)未知數(shù))可以這樣寫:先寫“解”字,表示下面是解題的過程,而設(shè)小軍的跳高成績?yōu)閤米這句話必須寫下來,否則,人家就不知道你下面列出的方程是什么意思。
(4)誰能根據(jù)我們找到的等量關(guān)系式列出方程?(板書:列方程)
(5)下面我們用解方程的方法就可以找到問題的答案了。(板書:解方程)
請學(xué)生上黑板板書。
強(qiáng)調(diào):因?yàn)樵谠O(shè)的前面已經(jīng)寫上了“解”字,所以在接方程時不再需要寫“解”字了。
(6)、因?yàn)檫@里是解決實(shí)際問題,在求出答案后,還應(yīng)該像過去解決實(shí)際問題一樣寫上答句。(板書:寫答句)
(7)、在問題解決后要檢驗(yàn)答案是否正確、合理。突出兩點(diǎn):第一是看方程列的是否合理,第二是看解方程是否正確。(板書:檢驗(yàn))
2、練一練:第一題
3、找出題中的等量關(guān)系式。
(3)、一個正方形的周長是27.2厘米,這個正方形的邊長是多少厘米?
4、試一試:
藍(lán)鯨是世界上最大的動物。一頭藍(lán)鯨重165噸,大約是一頭非洲象的33倍。這頭非洲象大約重多少噸?(列方程解答)
5、練一練:第二題
三、全課總結(jié):
1、列方程解決實(shí)際問題的步驟是什么?解題的關(guān)鍵是什么?
2、通過這節(jié)課的學(xué)習(xí)你還有那些收獲?還有什么問題?
解簡單的方程教案篇二
本課的教學(xué)內(nèi)容是一個數(shù)(已知)是另一個數(shù)的幾倍多(或少)幾,求另一個數(shù)。教學(xué)注重的是解決問題的過程,也就是要讓學(xué)生經(jīng)歷尋找實(shí)際問題中數(shù)量關(guān)系并列方程解答的全過程。讓學(xué)生明確正確找出題中的等量關(guān)系是最為關(guān)鍵的。通過學(xué)習(xí),增強(qiáng)學(xué)生用方程解決實(shí)際問題的意識和能力,進(jìn)一步豐富解決問題的策略,幫助學(xué)生加深理解方程是一種重要的數(shù)學(xué)思想方法。
反思這一節(jié)課,做得好的方面是:一是從學(xué)生的認(rèn)知水平出發(fā),循序漸進(jìn),通過“句――式――方程”的思維過程,讓學(xué)生感受方程解題的基本方法:即找到了等量關(guān)系,方程就自然而然,水到渠成了。二是練習(xí)形式多樣,練習(xí)有層次。由簡到難,有坡度,但目的只有一樣,就是讓學(xué)生通過這些練習(xí)能很快找到等量關(guān)系,正確列出方程。
不足的方面是:練習(xí)的重點(diǎn)在于找準(zhǔn)數(shù)量關(guān)系式。課堂上大量提問了學(xué)生應(yīng)用題的數(shù)量關(guān)系式是什么,并進(jìn)行了專項(xiàng)訓(xùn)練,但在進(jìn)行列方程解應(yīng)用題時,只滿足了讓學(xué)生說出數(shù)量關(guān)系式是什么,應(yīng)該讓中下學(xué)生再再說說關(guān)鍵句是什么,是根據(jù)哪句話找出來的,分析題時可先用鉛筆畫出來,分清已知量和未知量,用相應(yīng)的未知數(shù)和具體數(shù)字表示出來,轉(zhuǎn)化成等式,從而把實(shí)際問題轉(zhuǎn)化成數(shù)學(xué)問題,再利用已有知識解決問題。
解簡單的方程教案篇三
四年級(下冊)用字母表示數(shù)教學(xué)含有字母的式子,學(xué)生初步學(xué)會了寫式子的方法。五年級(下冊)方程教學(xué)了方程的意義、用等式的性質(zhì)解一步計(jì)算的方程,學(xué)生能夠列方程解答簡單的實(shí)際問題。本單元繼續(xù)教學(xué)方程,要解類似于axb=c、axbx=c的方程,并用于解決稍復(fù)雜的實(shí)際問題。教學(xué)內(nèi)容的編排有以下特點(diǎn)。
第一,把解方程和列方程解決實(shí)際問題的教學(xué)融為一體,同步進(jìn)行,這是和以前教材的不同編排。在例1里,解2x-22=64這個方程是新知識,用它解答實(shí)際問題也是新知識。在例2里,解方程x+3x=290是新授內(nèi)容,解決的實(shí)際問題也是新授內(nèi)容。這兩道例題,既教學(xué)解方程的思路與方法,又教學(xué)列方程的相等關(guān)系和技巧。這樣編排,能較好地體現(xiàn)數(shù)學(xué)內(nèi)容和現(xiàn)實(shí)生活的聯(lián)系。一方面分析實(shí)際問題里的數(shù)量關(guān)系,抽象成方程,形成知識與技能的教學(xué)內(nèi)容;另一方面,利用方程解決實(shí)際問題,使知識技能的教學(xué)具有現(xiàn)實(shí)意義,成為數(shù)學(xué)思考、解決問題、情感態(tài)度有效發(fā)展的載體。
第二,突出思想方法,通過舉一反三培養(yǎng)能力。全單元編排的兩道例題、兩個練習(xí),涵蓋了很寬的知識面。先看解方程。例 1教學(xué)ax-b=c這樣的方程,練習(xí)一里還要解ax+b=c、a+bx=c這些形式的方程。從例題到習(xí)題,雖然方程的結(jié)構(gòu)變了,但應(yīng)用等式的性質(zhì)解方程是不變的。也就是說,解方程的策略是一致的,知識與方法的具體應(yīng)用是靈活的。再看列方程。例1把一個數(shù)比另一個數(shù)的2倍少22作為相等關(guān)系,練一練和練習(xí)一里陸續(xù)出現(xiàn)一個數(shù)比另一個數(shù)的幾倍多幾、三角形的面積計(jì)算公式以及其他的相等關(guān)系。實(shí)際問題變了,尋找相等關(guān)系是解題的關(guān)鍵步驟始終不變。在例2和練習(xí)二里也有類似的安排。無論教學(xué)解方程還是列方程,例題講的是思想方法,以不變的思想方法應(yīng)對多變的實(shí)際情況,有利于形成解決問題的策略,培養(yǎng)創(chuàng)新精神和實(shí)踐能力。
全單元內(nèi)容分成三部分,例1和練習(xí)一教學(xué)一般的分兩步解的方程;例2和練習(xí)二教學(xué)特殊的需兩步解的方程;整理與練習(xí)回憶、整理、應(yīng)用全單元的教學(xué)內(nèi)容,反思、評價教學(xué)過程和效果。
兩道例題里的方程都要分兩步解,通過第一步運(yùn)算,把稍復(fù)雜的方程轉(zhuǎn)化成五年級(下冊)里教學(xué)的簡單方程,使新知識植根于已有經(jīng)驗(yàn)和能力的基礎(chǔ)上?;瘡?fù)雜為簡單、變未知為已知是人們解決新穎問題的常用策略。這兩道例題突出轉(zhuǎn)化的過程,不僅使學(xué)生掌握解稍復(fù)雜的方程的方法,還讓他們充分體驗(yàn)轉(zhuǎn)化思想,發(fā)展解決問題的策略。
1. 從各個方程的特點(diǎn)出發(fā),使用不同的轉(zhuǎn)化方法。
解形如axb=c的方程,一般根據(jù)等式兩邊同時加上或減去同一個數(shù),結(jié)果仍然是等式的性質(zhì)化簡。例1在列出方程2x-22=64以后,教材里寫出了解這個方程的第一步: 2x-22+22=64+22。教學(xué)要讓學(xué)生理解為什么等號的兩邊都加上22,體會這樣做是應(yīng)用了等式的性質(zhì),感受這樣做的目的是把稍復(fù)雜的方程化簡。過去教材里強(qiáng)調(diào)把a(bǔ)x看成一個數(shù),是為了應(yīng)用加、減法中各部分的關(guān)系解方程,新教材應(yīng)用等式的性質(zhì)解方程,突出轉(zhuǎn)化的思想和方法。
解形如axbx=c的方程,一般應(yīng)用運(yùn)算律或相應(yīng)的知識化簡。axbx可以改寫成
(ab)x,這已經(jīng)在四年級(下冊)用字母表示數(shù)時掌握了,現(xiàn)在只要計(jì)算ab,就能實(shí)現(xiàn)化簡原方程的目的。教學(xué)時仍然要讓學(xué)生理解為什么可以這樣改寫,以及這樣改寫的目的。
2. 轉(zhuǎn)化后的簡單方程,教法不同。
例1讓學(xué)生算出2x=?,并求出x的值。這是因?yàn)閷W(xué)生具有解2x=86這個方程的能力。教學(xué)這樣安排,是把轉(zhuǎn)化思想和方法放在突出位置上,促進(jìn)新舊知識的銜接,有效地使用教學(xué)資源。把求得的x的值代入原方程進(jìn)行檢驗(yàn),在五年級(下冊)已經(jīng)教學(xué)。例1提出檢驗(yàn)的要求,不僅是培養(yǎng)良好的習(xí)慣,還要通過結(jié)果是正確的,確認(rèn)解稍復(fù)雜方程的策略和方法是正確的。
例2把原方程化簡成4x=290,沒有讓學(xué)生接著解。教材寫出x=72.5并繼續(xù)算出3x=217.5,是因?yàn)?2.5米和217.5米是實(shí)際問題的兩個答案。學(xué)生以往解答的問題,一般只有一個問題,這道例題有兩個問題,需要完整呈現(xiàn)解題過程,在步驟、書寫格式上作出示范,便于學(xué)生掌握。另外,檢驗(yàn)的思路也有拓展。由于題目的.特點(diǎn),不能局限于對解方程的檢驗(yàn),還要聯(lián)系實(shí)際問題里的數(shù)量關(guān)系,檢驗(yàn)算得的陸地面積和水面面積是不是一共290公頃,水面面積是不是陸地面積的3倍。教學(xué)時要注意到這一點(diǎn),既保障解方程是正確的,更保障列出的方程符合實(shí)際問題里的數(shù)量關(guān)系。
3. 加強(qiáng)解方程的練習(xí)。
前面曾經(jīng)說到,例1和例2都有列方程和解方程兩個教學(xué)內(nèi)容,列出的方程必須正確地解,才可能得到正確的答案。因此,兩個練習(xí)的第1題都安排了解方程。練習(xí)一在例1解方程的基礎(chǔ)上向兩個方向擴(kuò)展,一是引出了a+bx=c、ax-b=c等結(jié)構(gòu)與例題不完全相同的方程,二是把小數(shù)及運(yùn)算納入了方程。只要體會了例題里解方程的轉(zhuǎn)化思想和轉(zhuǎn)化方法,會進(jìn)行小數(shù)四則計(jì)算,就能夠適應(yīng)這兩個方面的擴(kuò)展。要注意的是,小學(xué)階段不要求解形如a-bx=c的方程。因?yàn)榻膺@個方程,如果等式的兩邊都減a,就會出現(xiàn)-bx=c-a,不但等號左邊是負(fù)數(shù),而且右邊c比a??;如果等式的兩邊都加bx,就出現(xiàn)a=c+bx,這些都是現(xiàn)在難以解決的問題。練習(xí)二在例2解方程的基礎(chǔ)上帶出形如ax-bx=c的方程,解方程涉及的除法計(jì)算都控制在三位數(shù)除以兩位數(shù)以及相應(yīng)的小數(shù)除法范圍內(nèi),學(xué)生一般不會有困難。
還有一點(diǎn)要提及,整理與練習(xí)中安排小組討論像3.4x+1.8=8.6、5x-x=24這樣的方程各應(yīng)怎樣解,表明教材十分重視引導(dǎo)學(xué)生組建認(rèn)知結(jié)構(gòu)。如果既從兩個方程的特點(diǎn)回顧解法的不同,又從策略角度進(jìn)行整理,對學(xué)生是有好處的。練習(xí)中出現(xiàn)的方程15x2=60,是為應(yīng)用三角形面積公式解決實(shí)際問題服務(wù)的。
列方程解決實(shí)際問題要找到相等關(guān)系,方程是依據(jù)相等關(guān)系列的。其實(shí),某個實(shí)際問題為什么選擇列方程的方法解答,或者為什么選擇列算式的方法解答,經(jīng)常是由相等關(guān)系決定的。所以,兩道例題的教學(xué),都是先找出相等關(guān)系。
相等關(guān)系是一種數(shù)學(xué)模型,它把數(shù)量關(guān)系表達(dá)成等式。列算式解決實(shí)際問題要分析數(shù)量關(guān)系,這時的分析著眼于挖掘已知條件之間的聯(lián)系,溝通已知與未知的聯(lián)系,通常把條件作為一個方面,問題作為另一個方面,因而用已知數(shù)量組成的算式求得問題的答案。實(shí)際問題里的相等關(guān)系也是數(shù)量間的關(guān)系,它的最大特點(diǎn)是將已知與未知有機(jī)聯(lián)系起來,通過已知數(shù)量和未知數(shù)量共同組成的等式,反映實(shí)際問題里最主要的數(shù)量關(guān)系。學(xué)生在五年級(下冊)初步感受了相等關(guān)系,能找出簡單問題的相等關(guān)系。本冊教學(xué)尋找較復(fù)雜問題的相等關(guān)系,就應(yīng)充分利用學(xué)生已有的知識經(jīng)驗(yàn)。
1. 靈活開展思維活動,找出相等關(guān)系。
較復(fù)雜的問題之所以復(fù)雜,在于它的數(shù)量關(guān)系錯綜復(fù)雜。例1里大雁塔的高度比小雁塔的2倍少22米,其中既有倍數(shù)關(guān)系,也有相差關(guān)系,是兩種關(guān)系的復(fù)合。例2里已知頤和園水面面積與陸地面積一共290公頃,還已知水面面積大約是陸地面積的3倍,這是兩個并列的條件。因此,尋找復(fù)雜問題的相等關(guān)系,要梳理數(shù)量關(guān)系,分清主次和先后。
尋找相等關(guān)系沒有固定的模式照搬、照套,教材從實(shí)際問題的結(jié)構(gòu)特點(diǎn)和學(xué)生的思維發(fā)展水平出發(fā),靈活設(shè)計(jì)尋找相等關(guān)系的教學(xué)方法。學(xué)生在二年級(下冊)已經(jīng)能解決類似紅花有10朵,求紅花朵數(shù)的2倍少4朵是幾朵的問題,對幾倍少幾這樣的數(shù)量關(guān)系已有初步的理解。因此,例1要求學(xué)生找出大雁塔與小雁塔高度之間的相等關(guān)系,讓他們利用已有的倍數(shù)概念和相差概念,通過推理,把比小雁塔的2倍少22米改寫成數(shù)學(xué)式子小雁塔高度2-22,從而得到相等關(guān)系。例1為什么提出還可以怎樣列方程,這是由于同一個幾倍少幾的關(guān)系,可以寫出不同的相等關(guān)系式,如小雁塔的高度2-大雁塔的高度=22、小雁塔的高度2=大雁塔的高度+22等。在小組里交流想法是尊重學(xué)生的思考,允許學(xué)生按自己的想法解題。要注意的是,這里不是要求學(xué)生一題多解。要組織學(xué)生對各種解法進(jìn)行比較,體會它們在概念上是一致的,僅是表現(xiàn)形式不同;還要引導(dǎo)學(xué)生體會例題里呈現(xiàn)的等量關(guān)系,得出答案時的思考比較順,從而自覺應(yīng)用這樣的等量關(guān)系。對于學(xué)生中未出現(xiàn)的相等關(guān)系,不必提及,以免搞亂思路。
怎樣合理利用例2里的兩個并列的已知條件?教材選擇了線段圖。先在表示水面面積的線段上填3x,再在線段圖的右邊括號里填290,在圖上感受水面面積和陸地面積之間的倍數(shù)關(guān)系和相并關(guān)系。然后通過填空寫出等量關(guān)系,體會水面面積和陸地面積一共290公頃是這個實(shí)際問題里的等量關(guān)系。
2. 加強(qiáng)寫式練習(xí),進(jìn)一步把握數(shù)量關(guān)系,為列方程打基礎(chǔ)。
含有字母的式子是方程的重要組成部分,根據(jù)數(shù)量關(guān)系列方程時,都要寫出含有字母的式子。是否具有用字母表示數(shù)的意識,能否順利寫出含有字母的式子,對列方程解答實(shí)際問題是至關(guān)重要的。因此,教材加強(qiáng)寫式的練習(xí)。
練習(xí)一第2題寫出表示梨樹棵數(shù)的式子3x+15,表示鳊魚尾數(shù)的式子4x-80,都是解答幾倍多幾、幾倍少幾實(shí)際問題所需要的基本技能。安排寫式練習(xí),使學(xué)生進(jìn)一步理解數(shù)量關(guān)系,養(yǎng)成順著梨樹比桃樹的3倍多15棵、鳊魚比鯽魚的4倍少80尾這些數(shù)量關(guān)系的表述進(jìn)行思考,并轉(zhuǎn)化成數(shù)學(xué)式子的習(xí)慣,從而選擇最適當(dāng)?shù)南嗟汝P(guān)系解決實(shí)際問題。所以,這道練習(xí)題既是寫式訓(xùn)練,也是思路引導(dǎo)。
練習(xí)二第2題是和倍、差倍問題的專項(xiàng)訓(xùn)練。根據(jù)黃花x朵和紅花朵數(shù)是黃花的3倍,先寫出紅花有3x朵,用含有字母的式子表示紅花的朵數(shù),再用x+3x(或4x)表示兩種花一共的朵數(shù),用3x-x(或2x)表示紅花比黃花多的朵數(shù),發(fā)展聯(lián)想能力。聯(lián)想到的式子,正是方程里等號左邊的部分,這道題也在寫式訓(xùn)練的同時,進(jìn)行思路引導(dǎo)。
3. 列方程解答新穎的問題,拓展等量關(guān)系。
本單元安排兩節(jié)練習(xí)課,分別教學(xué)練習(xí)一第6~13題、練習(xí)二第6~11題。著重解答一些與例題不同的實(shí)際問題,找到這些問題的等量關(guān)系是教學(xué)重點(diǎn),也是難點(diǎn),對發(fā)展數(shù)學(xué)思考非常有益。
練習(xí)一第7題起拓展等量關(guān)系的作用。第(1)小題畫出了三角形,學(xué)生看到圖上的高和底,就能想到三角形的面積計(jì)算公式,于是把底高2=三角形的面積作為解題時的等量關(guān)系。第(2)小題利用熟悉的括線表示19.8元的意思,形象顯示了3枝鉛筆的錢+1個文具盒的錢=一共的錢是問題里的等量關(guān)系。教材的意圖是通過這些題打開思路,讓學(xué)生體會不同的問題里有不同的等量關(guān)系,兩個部分?jǐn)?shù)之和往往是可利用的等量關(guān)系。這就為繼續(xù)解答第8、9、12題作了有益的鋪墊。至于第13題,把兩種溫度的換算公式作為等量關(guān)系。公式在題中已經(jīng)揭示,只要在它上面體會已知華氏溫度求攝氏溫度,列方程解答比較好。反之,已知攝氏溫度求華氏溫度,依據(jù)公式能直接列出算式。
例2和練一練分別是典型的和倍、差倍問題,已知的總數(shù)或相差數(shù)是等量關(guān)系的生長點(diǎn)。練習(xí)二第7~11題的題材和例題不同,且各有特點(diǎn)。但是,等量關(guān)系的載體仍然是已知的總數(shù)與相差數(shù)。第7題用線段圖配合展示題意,便于學(xué)生發(fā)現(xiàn)小麗走的米數(shù)+小明走的米數(shù)=兩地相距的米數(shù)這一等量關(guān)系,并把這個經(jīng)驗(yàn)遷移到解答后面的習(xí)題中去。
解簡單的方程教案篇四
教科書第12~13頁,“回顧與整理”、“練習(xí)與應(yīng)用”第1~4題。
1、通過回顧與整理,使學(xué)生進(jìn)一步加深等式與方程的意義,等式的性質(zhì)的理解。幫助學(xué)生理清知識的脈絡(luò),建立合理的認(rèn)知結(jié)構(gòu)。
2、通過練習(xí)與運(yùn)用,使學(xué)生進(jìn)一步掌握方程的方法和一般步驟,會列方程解決簡單實(shí)際問題。
一、回顧與整理
1、談話引入。本單元我們學(xué)習(xí)了哪些內(nèi)容?你能說說什么是等式的性質(zhì)嗎?什么是方程?什么是解方程呢?在小組中互相說說。
2、組織討論。
(1)出示討論題。
(2)小組交流,巡視指導(dǎo)。
(3)匯報交流。
你是怎么獲得這個知識的?我們在學(xué)習(xí)這個知識時運(yùn)用了什么方法?
3、小結(jié)。同學(xué)們對這一單元的知識點(diǎn)掌握得很好,我們不僅要理解概念和意義,還要會熟練地運(yùn)用。
二、練習(xí)與應(yīng)用
1、完成第1題。
(1)獨(dú)立完成計(jì)算。
(2)匯報與展示,說說錯誤的原因及改正的方法。
2、完成第2題。
(1)學(xué)生獨(dú)立完成。
(2)你用怎樣的方法連線的?(解方程求出未知數(shù)的值;把x的值代入方程。)
3、完成第3題。
(1)列出方程,不解答。
(2)你是怎樣列的?怎么想的?大家同意嗎?
(3)完成計(jì)算。
4、完成第4題。單價、數(shù)量、總價之間有怎樣的數(shù)量關(guān)系?指出:抓住基本關(guān)系列方程,y也可以表示未知數(shù)。
三、課堂總結(jié)
通過回顧與整理,大家共同復(fù)習(xí)了有關(guān)方程的知識,你還有什么疑問嗎?
解簡單的方程教案篇五
教科書p17第9~15題。思考題。
1.通過練習(xí),使學(xué)生進(jìn)一步掌握列方程解決實(shí)際問題的思考方法,提高列方程解決問題的能力。
2.在練習(xí)中,使學(xué)生進(jìn)一步感受方程的思想方法和應(yīng)用價值,獲得成功的體驗(yàn),進(jìn)一步樹立學(xué)好數(shù)學(xué)的自信心,產(chǎn)生對數(shù)學(xué)的興趣。
掌握列方程解決實(shí)際問題的基本思考方法。
根據(jù)情境,學(xué)生自己提出問題、解決問題。
一、基本練習(xí)
1.先設(shè)要求的數(shù)為x,再列出方程。(口答且不解答)
(1)一個數(shù)的12倍是84,求這個數(shù)。
(2)2.9比什么數(shù)少1.5?
(3)什么數(shù)與2.4和是6?
2.根據(jù)題意說出等量關(guān)系式并列方程
(1)果園里有124棵梨樹和桃樹,梨樹是桃樹棵數(shù)的3倍。桃樹梨樹各有多少棵?
(2)書架上層有36本書,比下層少8本。書架下層有多少本書?
提問:每一題的數(shù)量關(guān)系式分別根據(jù)哪一個條件列的?
師生交流。
二、指導(dǎo)練習(xí)
1.p17第9題
(1)引導(dǎo)學(xué)生說一說數(shù)量關(guān)系式。
天鵝只數(shù)+丹頂鶴只數(shù)=960
(2)根據(jù)關(guān)系式列方程
x+2.2x=960
(3)解方程
2.p17第10題
(1)引導(dǎo)學(xué)生說一說數(shù)量關(guān)系式。
六年級植樹棵數(shù)-五年級植樹棵樹=24
(2)根據(jù)關(guān)系式列方程
1.5x-x=24
(3)解方程
3.p17第13題
(1)引導(dǎo)學(xué)生說一說數(shù)量關(guān)系式。
歷史故事總價+森林歷險記總價=83
(2)根據(jù)關(guān)系式列方程
7x+124=83
(3)解方程
三、綜合練習(xí)
1.p17第11~12題
(1)學(xué)生先說一說數(shù)量關(guān)系式。
(2)根據(jù)關(guān)系式列方程
(4)解方程
(5)集體評講
四、思考題
(1)引導(dǎo)學(xué)生說一說等量關(guān)系式
速度差追擊時間=路程差
甲路程-乙路程=路程差
(2)列方程
(280-240)x=400
280x-240x=400
(3)解方程
五、課堂小結(jié)
今天這節(jié)課是練習(xí)課,有誰來簡單總結(jié)一下呢?還有什么問題嗎?
板書設(shè)計(jì):
列方程解決實(shí)際問題練習(xí)課
天鵝只數(shù)+丹頂鶴只數(shù)=960六年級植樹棵數(shù)-五年級植樹棵樹=24
x+2.2x=9601.5x-x=24
歷史故事總價+森林歷險記總價=83速度差追擊時間=路程差甲路程-乙路程=路程差
7x+124=83(280-240)x=400280x-240x=400
解簡單的方程教案篇六
教科書第12~13頁,“回顧與整理”、“練習(xí)與應(yīng)用”第1~4題。
1、通過回顧與整理,使學(xué)生進(jìn)一步加深等式與方程的意義,等式的`性質(zhì)的理解。幫助學(xué)生理清知識的脈絡(luò),建立合理的認(rèn)知結(jié)構(gòu)。
2、通過練習(xí)與運(yùn)用,使學(xué)生進(jìn)一步掌握方程的方法和一般步驟,會列方程解決簡單實(shí)際問題。
一、回顧與整理
1、談話引入。本單元我們學(xué)習(xí)了哪些內(nèi)容?你能說說什么是等式的性質(zhì)嗎?什么是方程?什么是解方程呢?在小組中互相說說。
2、組織討論。
(1)出示討論題。
(2)小組交流,巡視指導(dǎo)。
(3)匯報交流。
你是怎么獲得這個知識的?我們在學(xué)習(xí)這個知識時運(yùn)用了什么方法?
3、小結(jié)。同學(xué)們對這一單元的知識點(diǎn)掌握得很好,我們不僅要理解概念和意義,還要會熟練地運(yùn)用。
二、練習(xí)與應(yīng)用
1、完成第1題。
(1)獨(dú)立完成計(jì)算。
(2)匯報與展示,說說錯誤的原因及改正的方法。
2、完成第2題。
(1)學(xué)生獨(dú)立完成。
(2)你用怎樣的方法連線的?(解方程求出未知數(shù)的值;把x的值代入方程。)
3、完成第3題。
(1)列出方程,不解答。
(2)你是怎樣列的?怎么想的?大家同意嗎?
(3)完成計(jì)算。
4、完成第4題。單價、數(shù)量、總價之間有怎樣的數(shù)量關(guān)系?指出:抓住基本關(guān)系列方程,y也可以表示未知數(shù)。
三、課堂總結(jié)
通過回顧與整理,大家共同復(fù)習(xí)了有關(guān)方程的知識,你還有什么疑問嗎?
解簡單的方程教案篇七
教科書第12~13頁,“回顧與整理”、“練習(xí)與應(yīng)用”第1~4題。
1、通過回顧與整理,使學(xué)生進(jìn)一步加深等式與方程的意義,等式的性質(zhì)的理解。幫助學(xué)生理清知識的脈絡(luò),建立合理的認(rèn)知結(jié)構(gòu)。
2、通過練習(xí)與運(yùn)用,使學(xué)生進(jìn)一步掌握方程的方法和一般步驟,會列方程解決簡單實(shí)際問題。
一、回顧與整理
1、談話引入。本單元我們學(xué)習(xí)了哪些內(nèi)容?你能說說什么是等式的性質(zhì)嗎?什么是方程?什么是解方程呢?在小組中互相說說。
2、組織討論。
(1)出示討論題。
(2)小組交流,巡視指導(dǎo)。
(3)匯報交流。
你是怎么獲得這個知識的?我們在學(xué)習(xí)這個知識時運(yùn)用了什么方法?
3、小結(jié)。同學(xué)們對這一單元的知識點(diǎn)掌握得很好,我們不僅要理解概念和意義,還要會熟練地運(yùn)用。
二、練習(xí)與應(yīng)用
1、完成第1題。
(1)獨(dú)立完成計(jì)算。
(2)匯報與展示,說說錯誤的原因及改正的方法。
2、完成第2題。
(1)學(xué)生獨(dú)立完成。
(2)你用怎樣的方法連線的?(解方程求出未知數(shù)的值;把x的值代入方程。)
3、完成第3題。
(1)列出方程,不解答。
(2)你是怎樣列的?怎么想的?大家同意嗎?
(3)完成計(jì)算。
4、完成第4題。單價、數(shù)量、總價之間有怎樣的數(shù)量關(guān)系?指出:抓住基本關(guān)系列方程,y也可以表示未知數(shù)。
三、課堂總結(jié)
通過回顧與整理,大家共同復(fù)習(xí)了有關(guān)方程的知識,你還有什么疑問嗎?
《方程》教案匯編九篇
親情方程式作文
九年級上冊化學(xué)方程式課件
提高學(xué)生化學(xué)方程式學(xué)習(xí)效率初探論文
對不確定系數(shù)化學(xué)方程式的探討論文
虛位移原理到拉格朗日方程-物理學(xué)畢業(yè)論文
《繁星》教案
《感恩》教案
《孔乙己》教案
《鳥語》教案
解簡單的方程教案篇八
(學(xué)生活動)解下列方程:
(1)2x2+x=0(用配方法)(2)3x2+6x=0(用公式法)
老師點(diǎn)評:(1)配方法將方程兩邊同除以2后,x前面的系數(shù)應(yīng)為12,12的一半應(yīng)為14,因此,應(yīng)加上(14)2,同時減去(14)2.(2)直接用公式求解.
(學(xué)生活動)請同學(xué)們口答下面各題.
(老師提問)(1)上面兩個方程中有沒有常數(shù)項(xiàng)?
(2)等式左邊的各項(xiàng)有沒有共同因式?
(學(xué)生先答,老師解答)上面兩個方程中都沒有常數(shù)項(xiàng);左邊都可以因式分解.
因此,上面兩個方程都可以寫成:
(1)x(2x+1)=0(2)3x(x+2)=0
因?yàn)閮蓚€因式乘積要等于0,至少其中一個因式要等于0,也就是(1)x=0或2x+1=0,所以x1=0,x2=-12.
(2)3x=0或x+2=0,所以x1=0,x2=-2.(以上解法是如何實(shí)現(xiàn)降次的?)
因此,我們可以發(fā)現(xiàn),上述兩個方程中,其解法都不是用開平方降次,而是先因式分解使方程化為兩個一次式的乘積等于0的形式,再使這兩個一次式分別等于0,從而實(shí)現(xiàn)降次,這種解法叫做因式分解法.
例1解方程:
思考:使用因式分解法解一元二次方程的'條件是什么?
解:略(方程一邊為0,另一邊可分解為兩個一次因式乘積.)
練習(xí):下面一元二次方程解法中,正確的是()
c.(x+2)2+4x=0,∴x1=2,x2=-2
d.x2=x,兩邊同除以x,得x=1
教材第14頁練習(xí)1,2.
本節(jié)課要掌握:
(1)用因式分解法,即用提取公因式法、十字相乘法等解一元二次方程及其應(yīng)用.
(2)因式分解法要使方程一邊為兩個一次因式相乘,另一邊為0,再分別使各一次因式等于0.
教材第17頁習(xí)題6,8,10,11
解簡單的方程教案篇九
教學(xué)內(nèi)容:
教科書第p4~p5例5~例6、p5試一試、練一練p6~p7練習(xí)一第6~8題
教學(xué)目標(biāo):
1.使學(xué)生進(jìn)一步理解并掌握等式的性質(zhì),即在等式兩邊同時乘或除以同一個不等于0的數(shù),結(jié)果仍然是等式。
2.使學(xué)生掌握利用相應(yīng)的性質(zhì)解一步計(jì)算的方程。
教學(xué)重點(diǎn):
使學(xué)生進(jìn)一步理解并掌握等式的性質(zhì),即在等式兩邊同時乘或除以同一個不等于0的數(shù),結(jié)果仍然是等式。
教學(xué)難點(diǎn):
使學(xué)生掌握利用相應(yīng)的性質(zhì)解一步計(jì)算的方程。
教學(xué)過程:
1.前一節(jié)課我們學(xué)習(xí)了等式的性質(zhì),誰還記得?
3.生自由猜想,指名說說自己的理由。
4.那么,下面我們就通過學(xué)習(xí)來驗(yàn)證一下我們的猜想。
1.引導(dǎo)學(xué)生仔細(xì)觀察p4例5圖,并看圖填空。
2.集體核對
3.通過這些圖和算式,你有什么發(fā)現(xiàn)?
x=202x=202
3x3x3=603
5.通過剛才的活動,你又有什么發(fā)現(xiàn)?
6.引導(dǎo)學(xué)生初步總結(jié)等式的性質(zhì)(關(guān)于乘除的)乘或除以0行嗎?
7.等式性質(zhì)二
等式兩邊同時乘或除以同一個不等于0的數(shù),所得結(jié)果仍然是等式。
8.p5試一試
(1)指名讀題
(2)你是根據(jù)什么來填寫的?
1.出示p5例6教學(xué)掛圖。
指名讀題,同時要求學(xué)生仔細(xì)觀察例6圖
2.長方形的面積怎樣計(jì)算?
3.根據(jù)題意怎樣列出方程?你是怎么想的?板書:40x=960
4.在計(jì)算時,方程兩邊都要除以幾?為什么?
解簡單的方程教案篇十
1.通過求做勻速圓周運(yùn)動的質(zhì)點(diǎn)的參數(shù)方程,掌握求一般曲線的參數(shù)方程的基本步驟.
2.熟悉圓的參數(shù)方程,進(jìn)一步體會參數(shù)的意義。
1.在直角坐標(biāo)系中圓的.標(biāo)準(zhǔn)方程和一般方程是什么?
探究新知(預(yù)習(xí)教材p12~p16,找出疑惑之處)
如圖:設(shè)圓的半徑是,
即
應(yīng)用示例
例1.圓的半徑為2,是圓上的動點(diǎn),是軸上的定點(diǎn),是的中點(diǎn),當(dāng)點(diǎn)繞作勻速圓周運(yùn)動時,求點(diǎn)的軌跡的參數(shù)方程.
(教材p24例2)
解簡單的方程教案篇十一
教學(xué)目標(biāo):
1.知識與技能:結(jié)合具體的問題,使同學(xué)們學(xué)會用解方程和用方程解決具體的問題。
2.過程與方法:結(jié)合課本內(nèi)容和實(shí)際問題來使同學(xué)們形成用方程解決問題的觀念。
3.情感態(tài)度價值觀:在學(xué)習(xí)方程解決問題的過程中培養(yǎng)同學(xué)們對于學(xué)習(xí)數(shù)學(xué)的興趣,培養(yǎng)同學(xué)們克服困難的品質(zhì),培養(yǎng)同學(xué)們探索新知的勇氣和信心。
教學(xué)過程:
一、回顧與交流。
1.復(fù)習(xí)方程概念。
什么是方程?你能舉出方程的例子嗎?(老師板書出方程的例子)這里用字母表示等式里的什么?指出:字母還可以表示等式里的未知數(shù)。含有未知數(shù)的等式就叫方程。(板書定義)
判斷下面是不是方程:
3x+5
6+8=14
6x=15
7x+315
(通過這個教學(xué)使學(xué)生充分理解方程的定義)
讓學(xué)生先獨(dú)立解課本p61.t1.兩道解方程的題目再讓學(xué)生說說是怎樣解的。
通過這里的兩道練習(xí)復(fù)習(xí)小學(xué)所學(xué)習(xí)的解方程的方法(即根據(jù)等式的性質(zhì)來解。)
2.解簡易方程。
復(fù)習(xí)61頁第二題
首先讓學(xué)生找出這三個題的等量關(guān)系,讓學(xué)生分小組討論討論,在小組內(nèi)說一說怎樣找的等量關(guān)系。然后請學(xué)生在班內(nèi)匯報一下。再請三位同學(xué)演板,并請演板的同學(xué)解釋自己的做法。
(在這個過程中,讓學(xué)生首先學(xué)會找出題目的等量關(guān)系,再根據(jù)等量關(guān)系去列方程,使學(xué)生養(yǎng)成用方程解決問題的時候,要懂得方程是根據(jù)等量關(guān)系列出的。)
集體訂正:解(1)方程是怎樣想的,檢查解方程時每一步依據(jù)什么做的。(2)方程與(1)有什么不同,解方程時有什么不同?師生共同小結(jié)解方程的一般步驟(略)。怎樣檢驗(yàn)方程的解對不對?增加找數(shù)量關(guān)系練習(xí)。
1.六一班有50人,其中男生有28人,女生有多少人?
2.六一班有22名女生,男生比女生的2倍少16人,男生有多少人?
首先讓學(xué)生獨(dú)立找出題目中的等量關(guān)系,然后讓同桌2人互相說一說,然后再解答。
二、鞏固與應(yīng)用。
引導(dǎo)學(xué)生做課本鞏固練習(xí)題
1.解方程。組織學(xué)生獨(dú)立完成,然后讓學(xué)生上去講一講解題的方法。
2.看圖列出方程,并求出方程的解。首先讓學(xué)生在小組內(nèi)說一說解決的方法,再請學(xué)生匯報交流。
3.看圖理解題意,引導(dǎo)學(xué)生分析數(shù)量關(guān)系,再列方程解答。請學(xué)生演板,演板后組織學(xué)生討論。
4.理解文字題,根據(jù)數(shù)量關(guān)系列出方程并求解。請學(xué)生找出題中的等量關(guān)系,再讓學(xué)生完成。
三、總結(jié)提高。
通過這節(jié)課的學(xué)習(xí),你解決了那些問題,還有那些困惑?
(通過學(xué)生的匯報,查漏補(bǔ)缺,找出這節(jié)課可能沒有涉及到的問題加以解決。)
四、習(xí)題設(shè)計(jì)。
1.課本62頁第5題。這里的兩個小題,第1小題是用字母表示,學(xué)生要想用字母表示出來,必須先找出題目的等量關(guān)系。第2小題是用方程解決問題,除了要找出等量關(guān)系外還要列出方程并解答。
2.課本62頁第6題。這是一道拓展性的習(xí)題,是數(shù)與形的結(jié)合,通過這道題的練習(xí),除了鍛煉學(xué)生用方程解決問題的能力,同時也復(fù)習(xí)了有關(guān)幾何的知識。
解簡單的方程教案篇十二
了解一元二次方程的概念;一般式ax2+bx+c=0(a0)及其派生的概念;應(yīng)用一元二次方程概念解決一些簡單題目.
1.通過設(shè)置問題,建立數(shù)學(xué)模型,模仿一元一次方程概念給一元二次方程下定義.
2.一元二次方程的一般形式及其有關(guān)概念.
3.解決一些概念性的題目.
4.通過生活學(xué)習(xí)數(shù)學(xué),并用數(shù)學(xué)解決生活中的問題來激發(fā)學(xué)生的學(xué)習(xí)熱情.
1.重點(diǎn):一元二次方程的概念及其一般形式和一元二次方程的有關(guān)概念并用這些概念解決問題.
2.難點(diǎn)關(guān)鍵:通過提出問題,建立一元二次方程的數(shù)學(xué)模型,再由一元一次方程的概念遷移到一元二次方程的概念.
學(xué)生活動:列方程.
如果假設(shè)門的高為x尺,那么,這個門的寬為_______尺,根據(jù)題意,得________.
整理、化簡,得:__________.
問題(2)如圖,如果,那么點(diǎn)c叫做線段ab的黃金分割點(diǎn).
如果假設(shè)ab=1,ac=x,那么bc=________,根據(jù)題意,得:________.
整理得:_________.
如果假設(shè)剪后的正方形邊長為x,那么原來長方形長是________,寬是_____,根據(jù)題意,得:_______.
整理,得:________.
老師點(diǎn)評并分析如何建立一元二次方程的數(shù)學(xué)模型,并整理.
學(xué)生活動:請口答下面問題.
(1)上面三個方程整理后含有幾個未知數(shù)?
(2)按照整式中的多項(xiàng)式的規(guī)定,它們最高次數(shù)是幾次?
(3)有等號嗎?或與以前多項(xiàng)式一樣只有式子?
老師點(diǎn)評:(1)都只含一個未知數(shù)x;(2)它們的最高次數(shù)都是2次的;(3)都有等號,是方程.
因此,像這樣的方程兩邊都是整式,只含有一個未知數(shù)(一元),并且未知數(shù)的最高次數(shù)是2(二次)的方程,叫做一元二次方程.
一般地,任何一個關(guān)于x的一元二次方程,經(jīng)過整理,都能化成如下形式ax2+bx+c=0(a0).這種形式叫做一元二次方程的一般形式.
一個一元二次方程經(jīng)過整理化成ax2+bx+c=0(a0)后,其中ax2是二次項(xiàng),a是二次項(xiàng)系數(shù);bx是一次項(xiàng),b是一次項(xiàng)系數(shù);c是常數(shù)項(xiàng).
例1.將方程(8-2x)(5-2x)=18化成一元二次方程的一般形式,并寫出其中的二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)及常數(shù)項(xiàng).
分析:一元二次方程的一般形式是ax2+bx+c=0(a0).因此,方程(8-2x)(5-2x)=18必須運(yùn)用整式運(yùn)算進(jìn)行整理,包括去括號、移項(xiàng)等.
解:去括號,得:
移項(xiàng),得:4x2-26x+22=0
其中二次項(xiàng)系數(shù)為4,一次項(xiàng)系數(shù)為-26,常數(shù)項(xiàng)為22.
例2.(學(xué)生活動:請二至三位同學(xué)上臺演練)將方程(x+1)2+(x-2)(x+2)=1化成一元二次方程的一般形式,并寫出其中的二次項(xiàng)、二次項(xiàng)系數(shù);一次項(xiàng)、一次項(xiàng)系數(shù);常數(shù)項(xiàng).
分析:通過完全平方公式和平方差公式把(x+1)2+(x-2)(x+2)=1化成ax2+bx+c=0(a0)的形式.
解:去括號,得:x2+2x+1+x2-4=1
移項(xiàng),合并得:2x2+2x-4=0
其中:二次項(xiàng)2x2,二次項(xiàng)系數(shù)2;一次項(xiàng)2x,一次項(xiàng)系數(shù)2;常數(shù)項(xiàng)-4.
教材p32練習(xí)1、2
例3.求證:關(guān)于x的方程(m2-8m+17)x2+2mx+1=0,不論m取何值,該方程都是一元二次方程.
分析:要證明不論m取何值,該方程都是一元二次方程,只要證明m2-8m+170即可.
證明:m2-8m+17=(m-4)2+1
∵(m-4)20
(m-4)2+10,即(m-4)2+10
不論m取何值,該方程都是一元二次方程.
本節(jié)課要掌握:
(1)一元二次方程的概念;(2)一元二次方程的一般形式ax2+bx+c=0(a0)和二次項(xiàng)、二次項(xiàng)系數(shù),一次項(xiàng)、一次項(xiàng)系數(shù),常數(shù)項(xiàng)的概念及其它們的運(yùn)用.
解簡單的方程教案篇十三
2.培養(yǎng)學(xué)生觀察潛力,提高他們分析問題和解決問題的潛力;
3.使學(xué)生初步養(yǎng)成正確思考問題的良好習(xí)慣.
一元一次方程解簡單的應(yīng)用題的方法和步驟.
一、從學(xué)生原有的認(rèn)知結(jié)構(gòu)提出問題
為了回答上述這幾個問題,我們來看下面這個例題.
例1某數(shù)的3倍減2等于某數(shù)與4的和,求某數(shù).
(首先,用算術(shù)方法解,由學(xué)生回答,教師板書)
解法1:(4+2)÷(3-1)=3.
答:某數(shù)為3.
(其次,用代數(shù)方法來解,教師引導(dǎo),學(xué)生口述完成)
解法2:設(shè)某數(shù)為x,則有3x-2=x+4.
解之,得x=3.
答:某數(shù)為3.
二、師生共同分析、研究一元一次方程解簡單應(yīng)用題的方法和步驟
師生共同分析:
1.本題中給出的已知量和未知量各是什么?
2.已知量與未知量之間存在著怎樣的相等關(guān)系?(原先重量-運(yùn)出重量=剩余重量)
上述分析過程可列表如下:
解:設(shè)原先有x千克面粉,那么運(yùn)出了15%x千克,由題意,得
x-15%x=42500,
所以x=50000.
答:原先有50000千克面粉.
(還有,原先重量=運(yùn)出重量+剩余重量;原先重量-剩余重量=運(yùn)出重量)
(2)例2的解方程過程較為簡捷,同學(xué)應(yīng)注意模仿.
依據(jù)例2的分析與解答過程,首先請同學(xué)們思考列一元一次方程解應(yīng)用題的.方法和步驟;然后,采取提問的方式,進(jìn)行反饋;最后,根據(jù)學(xué)生總結(jié)的狀況,教師總結(jié)如下:
(2)根據(jù)題意找出能夠表示應(yīng)用題全部含義的一個相等關(guān)系.(這是關(guān)鍵一步);
(4)求出所列方程的解;
(仿照例2的分析方法分析本題,如學(xué)生在某處感到困難,教師應(yīng)做適當(dāng)點(diǎn)撥.解答過程請一名學(xué)生板演,教師巡視,及時糾正學(xué)生在書寫本題時可能出現(xiàn)的各種錯誤.并嚴(yán)格規(guī)范書寫格式)
解:設(shè)第一小組有x個學(xué)生,依題意,得
3x+9=5x-(5-4),
解這個方程:2x=10,
所以x=5.
其蘋果數(shù)為3×5+9=24.
答:第一小組有5名同學(xué),共摘蘋果24個.
學(xué)生板演后,引導(dǎo)學(xué)生探討此題是否可有其他解法,并列出方程.
(設(shè)第一小組共摘了x個蘋果,則依題意,得)
三、課堂練習(xí)
2.我國城鄉(xiāng)居民1988年末的儲蓄存款到達(dá)3802億元,比1978年末的儲蓄存款的18倍還多4億元.求1978年末的儲蓄存款。
3.某工廠女工人占全廠總?cè)藬?shù)的35%,男工比女工多252人,求全廠總?cè)藬?shù).
四、師生共同小結(jié)
首先,讓學(xué)生回答如下問題:
1.本節(jié)課學(xué)習(xí)了哪些資料?
2.列一元一次方程解應(yīng)用題的方法和步驟是什么?
3.在運(yùn)用上述方法和步驟時應(yīng)注意什么?
依據(jù)學(xué)生的回答狀況,教師總結(jié)如下:
(2)以上步驟同學(xué)應(yīng)在理解的基礎(chǔ)上記憶.
五、作業(yè)
1.買3千克蘋果,付出10元,找回3角4分.問每千克蘋果多少錢?
5.把1400獎金分給22名得獎?wù)?,一等獎每?00元,二等獎每人50元.求得到一等獎與二等獎的人數(shù)。
解簡單的方程教案篇十四
1.探索具體問題中的數(shù)量關(guān)系和變化規(guī)律,并用方程進(jìn)行描述,進(jìn)而讓學(xué)生初步體驗(yàn)方程是刻畫現(xiàn)實(shí)世界的一種有效模型。
2.通過觀察所列的方程的特點(diǎn),掌握一元一次方程的概念并能夠熟練識別一元一次方程
3.進(jìn)一步培養(yǎng)學(xué)生觀察、思考、分析問題、解決問題的能力,滲透建模的數(shù)學(xué)思想。
4.感受數(shù)學(xué)與生活的緊密聯(lián)系,體會數(shù)學(xué)的價值,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
分析與確定問題中的等量關(guān)系,能用方程來描述和刻畫事物間的等量關(guān)系。
問題一:
如果設(shè)面值為1元的郵票買了x張,那么面值為2元的郵票買了_______張.
買面值為1元的郵票的錢+買面值為2元的郵票的錢=50元.
可得方程____________________
1、學(xué)生自主歸納:如何從問題到方程?
2、自主歸納一元一次方程的特點(diǎn),并舉例說明
根據(jù)實(shí)際問題的意義列出方程
3.一個長方形足球場的周長是300m,它的長比寬多30m,求這個足球場的長.
1、從實(shí)際問題到方程,一般要經(jīng)歷哪些過程?
2、列方程的關(guān)鍵是什么?
班級姓名學(xué)號
1.下列方程是一元一次方程的是()
a.b.c.d.
2.根據(jù)下列條件能列出方程的是()
a.一個數(shù)的與另一個數(shù)的的和b.與1的差的4倍是8
c.和的60%d.甲的3倍與乙的差的2倍
3.七年級二班共有學(xué)生48人,已知男生比女生少2人,問七年級二班男生、女生各有多少人?設(shè)七年級二班男生有男生x人,則下列方程中錯誤的是()
a.b.c.d.
4.課外興趣小組的女生人數(shù)占全組人數(shù)的,再加入6名女生后,女生人數(shù)就占原來人數(shù)的一半,課外興趣小組原有多少人?若設(shè)原有x人,則下列方程正確的是()
a.b.c.d.
5.根據(jù)“x的5倍比它的35%少28”列出方程為________.
6.一年三班55人,一年八班29人,因植樹需要從三班中抽出x人到八班,使得兩班人數(shù)相同,則根據(jù)題意可列方程為_____________.
9.三個連續(xù)奇數(shù)的和為57,求這三個數(shù)。
12.議一議:育紅學(xué)校七年級學(xué)生步行到郊外旅行,1班的學(xué)生組成前隊(duì),步行的速度為4千米/小時,2班的學(xué)生組成后隊(duì),速度為6千米/小時,前隊(duì)出發(fā)1小時后,后隊(duì)出發(fā),同時后隊(duì)派一名聯(lián)絡(luò)員騎自行車在兩隊(duì)之間不間斷地來回進(jìn)行聯(lián)絡(luò),他騎車的速度為12千米/小時。
問題1:后隊(duì)追上前隊(duì)用了多長時間?
問題2:后隊(duì)追上前隊(duì)時聯(lián)絡(luò)員行了多少路程?
問題3:聯(lián)絡(luò)員第一次追上前隊(duì)時用了多長時間?
問題4:當(dāng)后隊(duì)追上前隊(duì)時,他們已經(jīng)行進(jìn)了多少路程?
你能根據(jù)題意再提出兩個問題嗎?和你的同學(xué)交流一下
解簡單的方程教案篇十五
教學(xué)內(nèi)容:
p53――54練習(xí)十一1,2,3
教學(xué)目標(biāo):
1、通過觀察天平演示,使學(xué)生初步理解方程的意義;
2、使學(xué)生能夠判斷一個式子是不是方程,并能解決簡單的實(shí)際問題;
3、培養(yǎng)學(xué)生觀察、描述、分類、抽象、概括、應(yīng)用等能力。
教學(xué)重點(diǎn):
判斷一個式子是不是方程;初步理解方程的意義。
課前準(zhǔn)備:
課件,習(xí)題板
教學(xué)過程:
一、復(fù)習(xí)舊知,激趣導(dǎo)入
同學(xué)們,我們上節(jié)課學(xué)了用含有字母的式子表示一些數(shù)量關(guān)系,現(xiàn)在老師要考考你們,已知我們學(xué)校有88位同學(xué),再加上所有老師,你能用一個式子來表示師生一共有多少人嗎?(板書:88+x)。學(xué)得真不錯,今天我們要進(jìn)一步來研究這些含有未知數(shù)的式子所隱藏的數(shù)學(xué)奧秘,想知道嗎?請你用飽滿的姿態(tài)告訴老師!
二、出示學(xué)習(xí)目標(biāo)
1、初步理解方程的意義,會判斷一個式子是否是方程
2、按要求用方程表示出數(shù)量關(guān)系,培養(yǎng)學(xué)生觀察、比較、分析概括的能力。
三、學(xué)習(xí)過程。
(一)認(rèn)識天平
(二)新課學(xué)習(xí)
自學(xué)指導(dǎo)(一)。
自學(xué)p53,分別說一說圖1,圖2,,顯示的信息。
圖1天平兩邊平衡,一個空杯重100克。
圖2在空杯里加一杯水后天平不平衡了。
再看圖3說說圖3顯示的信息。
天平1杯子和里面的水比200克法碼重
天平2杯子和里面的水比300克法碼輕
請用算式表示圖3數(shù)量關(guān)系。
天平1、100+x200
天平2、100+x300
再看圖4說說圖4顯示的信息,請用算式表示圖4數(shù)量關(guān)系
100+x=250
觀察比較下列算式說說你的發(fā)現(xiàn)
觀察比較
100+x200
100+x300
100+x=250
前面兩個算式兩邊不相等,后面一個算式兩邊是相等的。
教師總結(jié):像這樣兩邊相等的算式我們把它叫做等式。(板書)
寫出幾個等式
請學(xué)生把這里的等式分類,并說說你們是如何分類的?
20+30=50
20+χ=100
50×2=100
14―8=6
3y=180
78×3=234
100+2y=3×50
學(xué)生匯報后讓學(xué)生說出分類的理由。(有的含有未知數(shù),有的沒有未知數(shù))
教師總結(jié):含有未知數(shù)的等式,稱為方程。(板書)
請大家寫出幾個方程。
四、小結(jié):回答什么是方程?
解簡單的方程教案篇十六
教科書第13~14頁,“練習(xí)與應(yīng)用”第5~7題,“探索與實(shí)踐”第8~9題及“與反思”。
1、通過練習(xí)與應(yīng)用,使學(xué)生進(jìn)一步掌握列方程解決實(shí)際問題的方法與步驟,提高列方程解決實(shí)際問題的意識和能力。
2、通過小組合作,進(jìn)一步培養(yǎng)學(xué)生探索的意識,發(fā)展思維能力。
3、通過與反思,使學(xué)生養(yǎng)成良好的學(xué)習(xí)習(xí)慣,獲得成功體驗(yàn),增強(qiáng)學(xué)好數(shù)學(xué)的信心。
1、談話引入這節(jié)課我們繼續(xù)對列方程解決實(shí)際問題進(jìn)行練習(xí)。板書課題。
2、指導(dǎo)練習(xí)。獨(dú)立完成5~7題。展示交流。集體評講。你是根據(jù)什么等量關(guān)系列出方程的?在解方程時要注意什么?(步驟、格式、檢驗(yàn))
1、完成第8題。理解題意,完成填寫。小組中交流第一個問題。匯報自己發(fā)現(xiàn)。把得到的和分別除以3,看看可以發(fā)現(xiàn)什么?可以得出什么結(jié)論?獨(dú)立解答第二個問題。你是怎么解答第二個問題的?指導(dǎo)解答第三個問題。試著連續(xù)寫出5個奇數(shù),看看有什么發(fā)現(xiàn)?怎樣求n的值呢?5個連續(xù)偶數(shù)的和有這樣的規(guī)律嗎?試試看。
在小組中說說自己對每次指標(biāo)的理解。自我反思與。說說自己的優(yōu)點(diǎn)與不足。
【本文地址:http://mlvmservice.com/zuowen/5125442.html】