精選平方差公式教案及板書設(shè)計(案例17篇)

格式:DOC 上傳日期:2023-10-30 00:18:15
精選平方差公式教案及板書設(shè)計(案例17篇)
時間:2023-10-30 00:18:15     小編:靈魂曲

教案可以促使教師在教學(xué)中注意因材施教,因地制宜。教案應(yīng)當(dāng)注重培養(yǎng)學(xué)生的綜合能力和創(chuàng)新思維。接下來是一些教師編寫的優(yōu)秀教案,供大家參考和借鑒。

平方差公式教案及板書設(shè)計篇一

一、教學(xué)目標(biāo):

1、使學(xué)生理解和掌握平方差公式,并會用公式進(jìn)行計算;

2、注意培養(yǎng)學(xué)生分析、綜合和抽象、概括以及運算能力,培養(yǎng)應(yīng)用數(shù)學(xué)的意識;

3、在緊張而輕松地教學(xué)氛圍內(nèi),進(jìn)一步激發(fā)學(xué)生的學(xué)習(xí)興趣熱情。

二、重點、難點:

重點是掌握公式的結(jié)構(gòu)特征及正確運用公式。難點是公式推導(dǎo)的理解及字母的廣泛含義。

三、教學(xué)方法

以教師的精講、引導(dǎo)為主,輔以引導(dǎo)發(fā)現(xiàn)、合作交流。

四、教學(xué)過程

(一)創(chuàng)設(shè)問題情境,引入新課

1、你會做嗎?

(1)(x+1)(x—1)=_____=()

(3)(3x+2)(3x—2)=_____=()()

2、能否用簡便方法運算:×(這里需要用到平方差公式,設(shè)疑激發(fā)學(xué)生興趣。)

(二)探索規(guī)律,歸納平方差公式

交流上面第1題的答案,引導(dǎo)學(xué)生進(jìn)一步思考:

(合作交流,探究新知:兩數(shù)之和與這兩數(shù)之差相乘時,積是二項式。這是因為具備這樣特點的兩個二項式相乘,積的四項中,會出現(xiàn)互為相反數(shù)的兩項,合并這兩項的結(jié)果為零,于是就剩下兩項了。而它們的積等于這兩個數(shù)的平方差。)

我們把(a+b)(a—b)=a—b叫做乘法的平方差公式。再遇到類似形式的多項式相乘時,就可以直接運用公式進(jìn)行計算。(在此基礎(chǔ)上,讓學(xué)生用語言敘述公式,并讓學(xué)生熟記。)

(三)嘗試探究

(四)鞏固練習(xí)

1、運用平方差公式計算:

(l)(x+a)(x—a)

(2)(m+n)(m—n)(3)(a+3b)(a—3b)

(4)(1—5y)(l+5y)(5)998×1002

(6)395×405

2、直接寫出答案:

(l)(—a+b)(a+b)

(2)(a—b)(b+a)

(3)(—a—b)(—a+b)

(4)(a—b)(—a—b)(5)999×1001

(6)×(讓學(xué)生獨立完成,互評互改。)

(五)小結(jié)

1.什么是平方差公式?

2.運用公式要注意什么?

(1)要符合公式特征才能運用平方差公式;

(2)有些式子表面不能應(yīng)用公式,但實質(zhì)能應(yīng)用公式,要注意分清a、b。

(學(xué)生回答,教師總結(jié))

(六)作業(yè)

p106習(xí)題1—5題

七、板書設(shè)計:

教學(xué)反思

通過精心備課,本節(jié)課在教學(xué)中是比較成功的。成功之處在于整個教學(xué)流程環(huán)環(huán)相扣,層層遞進(jìn),抓住了學(xué)生思維這條主線,遵循由淺入深,由特殊到一般的認(rèn)知規(guī)律,引起學(xué)生的興趣。使他們能夠積極參與其中,同時,使他們的思維得到了鍛煉和發(fā)展。不足之處:時間安排不是很合理,前松后緊。課堂上沒有給更多的學(xué)生提供展示自己思考結(jié)果的機(jī)會,過于注重“收”,而“放”不夠。

平方差公式教案及板書設(shè)計篇二

1、了解完全平方公式的特征,會用完全平方公式進(jìn)行因式分解.

2、通過整式乘法逆向得出因式分解方法的過程,發(fā)展學(xué)生逆向思維能力和推理能力.

3、通過猜想、觀察、討論、歸納等活動,培養(yǎng)學(xué)生觀察能力,實踐能力和創(chuàng)新能力.

學(xué)習(xí)建議教學(xué)重點:

平方差公式教案及板書設(shè)計篇三

平方差公式是多項式乘法運算中一個重要的公式,是特殊的多項式與多項式相乘的一種簡便計算。通過復(fù)習(xí)多項式乘以多項式的計算導(dǎo)入新課,為探究新知識奠定基礎(chǔ)。在重難點處設(shè)計問題:“觀察以上3個算式的特點和運算結(jié)果的特點,對比等號兩邊代數(shù)式的結(jié)構(gòu),你發(fā)現(xiàn)了什么?”讓學(xué)生發(fā)現(xiàn)規(guī)律并嘗試運用自己的語言來描述。

問題提出后,學(xué)生能積極進(jìn)行分組討論、交流,各組小組長闡述自己小組討論的結(jié)果。大多數(shù)的學(xué)生能找出規(guī)律,說出大概意思,但是無法用精準(zhǔn)的語言完整的描述出來,語言表達(dá)無條理、含糊。針對這種情況,在以后的課堂教學(xué)過程中要注意加強對學(xué)生的邏輯思維能力和語言表達(dá)能力的.培養(yǎng)。最后經(jīng)過師生的共同努力,得出了平方差公式以及公式的特征。

在例題展示環(huán)節(jié)中,我通過2道例題的運算,訓(xùn)練學(xué)生正確應(yīng)用公式進(jìn)行計算,體會公式在簡化運算中的作用。實踐練習(xí)的設(shè)計,使學(xué)生從不同角度認(rèn)識平方差公式,進(jìn)一步加強學(xué)生對公式的理解。在運用公式時,學(xué)生基本掌握運用平方差公式的步驟:首先要判斷算式是否符合平方差公式特征,然后再尋找算式中的a,b項,最后運用平方差公式運算。

拓展延伸環(huán)節(jié)中,學(xué)生通過尋找算式中的a,b項,慢慢發(fā)現(xiàn)a,b項不僅可以代表數(shù),也可以代表單項式、多項式等代數(shù)式,這樣設(shè)計可以進(jìn)一步深化學(xué)生對字母含義的理解。在學(xué)生獨立完成練習(xí)和堂測中,經(jīng)過巡視,我發(fā)現(xiàn)近三分之一的學(xué)生對較復(fù)雜的多項式不能準(zhǔn)確找出a,b項,特別是b項代表多項式時,負(fù)數(shù)去括號時出錯較多。

最后通過設(shè)計遞進(jìn)式的問題串,引導(dǎo)學(xué)生自己一步步總結(jié)出本節(jié)課所學(xué)的知識內(nèi)容,從而培養(yǎng)他們的歸納總結(jié)和語言表達(dá)能力。

本節(jié)課采用學(xué)習(xí)小組討論、交流的學(xué)習(xí)方式,讓學(xué)優(yōu)生帶動學(xué)困生,整體教學(xué)效果良好,學(xué)生基本掌握平方差公式的運用,對于較復(fù)雜的a、b項的運算,在自習(xí)課上將加強練習(xí)。

平方差公式教案及板書設(shè)計篇四

引例講解:將下列各式分解因式。

1、x2+6x+92、4x2-20x+25

問題:這兩題首先怎么分析?

生14:將9改寫成32,6x正好是x與3的乘積的2倍。(學(xué)生回答,教師板書)

生15:將4x2寫成(2x)2,25寫成52,20x寫成2×2x×5

x2+6x+9=x2+2×x×3+32=(x+3)2

4x2-20x+25=(2x)2-2×2x×5+52=(2x-5)2

(聯(lián)系字母表達(dá)式用箭頭對應(yīng)表示,加深學(xué)生印象。)

生16:由符號來決定。

師:能不能具體點。

生16:由中間一項的符號決定,就是兩個數(shù)乘積2倍這項的符號決定,是正,就是兩個數(shù)的和;是負(fù),就是兩個數(shù)的差。

師:總之,在分解完全平方式時,要根據(jù)第二項的符號來選擇運用哪一個完全平方公式。

例題1:把25x4+10x2+1分解因式。

師:這道題目能否運用以前所學(xué)的方法分解?就題目本身有什么特點?可以怎么分解?

生17:題目符合完全平方式的特點,可以將25x4改寫成(5x2)2,1就是12,10x2改寫成2×5x2×1。(此學(xué)生板演,過程略)

例題2:把-x2-4y2+4xy分解因式。

師:按照常規(guī)我們首先怎么辦?

生齊答:提取負(fù)號。〔教師板書:-(x2+4y2-4xy)〕以下過程學(xué)生板演。

師:如果是這道題:4xy-x2-4y2怎么分解呢?(教師改變剛才題型)

提示:從項的特征進(jìn)行考慮,怎樣轉(zhuǎn)化比較合理?四人小組討論。

生18:同樣還是將負(fù)號提取改變成完全平方式的形式。

師:從這里我們可以發(fā)現(xiàn),只要三項式中能改寫成平方的兩項是同號,且另一項為兩底數(shù)積的2倍,我們都能利用這個公式分解,若這兩項同為正則可直接分解,若同為負(fù)則先提取負(fù)號再分解。

練習(xí)題:課本p21練習(xí):第1題,學(xué)生板演,教師講解,學(xué)生板演的同時,教師提示注意點、多項式的特征;第2題,學(xué)生口答。

例題3:把3ax2+6axy+3ay2分解因式。

師:先觀察,再選擇適當(dāng)?shù)姆椒ā?學(xué)生板演,教師點評)

練習(xí):課本p22第3題分兩組學(xué)生板演,教師評講、適當(dāng)提示注意點。

師:這一堂課我們一起研究了完全平方式的有關(guān)知識,同學(xué)們先自查一下自己的收獲,然后請同學(xué)發(fā)表自己的見解。(學(xué)生小聲討論)

生甲:我學(xué)到了如何將完全平方式分解因式,遇到三項式中有兩項符號相同且能化成平方的形式,另一項為這兩個數(shù)的積的2倍的形式,如果能化成平方項是負(fù)的,首先將負(fù)號提取再分解。第二項是正的就是兩數(shù)的和的平方,第二項是負(fù)的就是兩數(shù)差的平方。

生乙:有公因式可提取的先提取公因式,然后再分解,同時根據(jù)第二項的符號來選用合適的公式。

教師布置課堂作業(yè):課本p23習(xí)題8.2a組4~5偶數(shù)題

課外作業(yè):課本p23習(xí)題8.2a組4~5奇數(shù)題

下課!

平方差公式教案及板書設(shè)計篇五

教學(xué)目標(biāo)

1、使學(xué)生理解完全平方公式的意義,弄清完全平方公式的形式和特點;使學(xué)生知道把完全平方公式反過來就可以得到相應(yīng)的因式分解。

2、掌握運用完全平方公式分解因式的`方法,能正確運用完全平方公式把多項式分解因式(直接用公式不超過兩次)

教學(xué)方法:對比發(fā)現(xiàn)法課型新授課教具投影儀

教師活動:學(xué)生活動

新課講解:

(投影)我們把形如a2+2ab+b2與a2-2ab+b2叫做完全平方式,和平方差公式一樣,我們也可以利用它把一些多項式因式分解。例如:

a2+8a+16=a2+2×4a+42=(a+4)2

a2-8a+16=a2-2×4a+42=(a-4)2

(要強調(diào)注意符號)

首先我們來試一試:(投影:牛刀小試)

1.把下列各式分解因式:

(1)x2+8x+16;;(2)25a4+10a2+1

(3)(m+n)2-4(m+n)+4

(教師強調(diào)步驟的重要性,注意發(fā)現(xiàn)學(xué)生易錯點,及時糾正)

2.把81x4-72x2y2+16y4分解因式

(本題用了兩次乘法公式,難度稍大,教師要鼓勵學(xué)生大膽嘗試,敢于創(chuàng)新)

將乘法公式反過來就得到多項式因式分解的公式。運用這些公式把一個多項式分解因式的方法叫做運用公式法。

練習(xí):第88頁練一練第1、2題

平方差公式教案及板書設(shè)計篇六

《平方差公式》是一節(jié)公式定理課,是各位老師非常熟悉的一個課題,對大家更熟悉,我深深感到一種壓力。但是,無論如何,“新”、“實”是我追求的目標(biāo)。為此,我作了如下努力:

1、把數(shù)學(xué)問題“蘊藏”在游戲中。

導(dǎo)入新課,是課堂教學(xué)的重要一環(huán)?!昂玫拈_始是成功的一半”,首先是一個智力搶答,學(xué)生通過搶答初步感知平方差公式,接下來,采用小組合作學(xué)習(xí)的方式,利用“四問”讓學(xué)生進(jìn)行試驗操作,學(xué)生選擇的字母有很多種,讓它們都有其共性。由此,學(xué)生在探索中驗證自己的猜想,同時也感受和認(rèn)識知識的發(fā)生和發(fā)展的過程,得出(a+b)(a-b)=a2-b2.經(jīng)過不斷的嘗試小組合作學(xué)習(xí)方式的教學(xué),我發(fā)現(xiàn)也真正體會到,只要我們給學(xué)生創(chuàng)造一個自由活動的空間,學(xué)生便會還給我們一個意外的驚喜。

2、充分重視“自主、合作、探究”的教學(xué)方式的運用。

把探究的機(jī)會留給學(xué)生,讓學(xué)生在動腦思考中構(gòu)建知識,真正成為教學(xué)活動的主體。使他們在活動中進(jìn)行規(guī)律的總結(jié),并且通過交流練習(xí)、應(yīng)用,深化了對規(guī)律的理解。學(xué)生對知識的掌握往往通過練習(xí)來達(dá)到目的。新授后要有針對性強的有效訓(xùn)練,讓學(xué)生對所學(xué)知識建立初步的表象,以達(dá)到對知識的理解、掌握及應(yīng)用,實現(xiàn)從感性認(rèn)識到理性認(rèn)識的升華。在此設(shè)計了三個層次的有效訓(xùn)練,讓學(xué)生體會平方差公式的特點:第一層次是直接運用公式,第二層次是將式子進(jìn)行適當(dāng)變形后應(yīng)用公式,第三個層次是平方差公式的靈活應(yīng)用。通過做題學(xué)生歸納出平方差公式的運用技巧。

3、自置懸念,享受成功

以四人小組為單位,各小組出兩道具有平方差公式的結(jié)構(gòu)特征的題目,看誰出得有水平。學(xué)生每人都設(shè)計了題目,任意叫了四位學(xué)生在黑板上寫,經(jīng)評價結(jié)果都對了。這種方法,不僅令人耳目一新,而且把學(xué)生引入不協(xié)調(diào)——探究——發(fā)現(xiàn)——解決問題的一個學(xué)習(xí)過程,使學(xué)生獲得思維之趣,參與之樂,成功之悅。

4、切實落在實效上

本節(jié)課在采用小組學(xué)習(xí)之后,為了讓學(xué)生的鞏固有效果,采用了學(xué)生上臺講解、作業(yè)實物投影的方式來進(jìn)行,多種方式的選擇,讓學(xué)生暴露出自己的問題,然后通過生生互動、師生互動解決問題,實現(xiàn)問題及時處理,學(xué)習(xí)效果不錯。

5、值得注意的是:

1、節(jié)奏的把握上

這一節(jié)我覺得不是很順,尤其在從幾何角度解釋平方差公式、例2⑵的其他計算方法等問題上,花了不少時間,節(jié)奏把握的不是很好。

2、充分發(fā)揮學(xué)生的主體地位上

這節(jié)課上,我覺得學(xué)生的積極性不很高,回答問題沒有激情,說明我背學(xué)生還不夠,自己想象的比現(xiàn)實的好。

平方差公式教案及板書設(shè)計篇七

學(xué)習(xí)目標(biāo):

1、能推導(dǎo)平方差公式,并會用幾何圖形解釋公式;

2、能用平方差公式進(jìn)行熟練地計算;

3、經(jīng)歷探索平方差公式的推導(dǎo)過程,發(fā)展符號感,體會“特殊——一般——特殊”的認(rèn)識規(guī)律.

學(xué)習(xí)重難點:

重點:能用平方差公式進(jìn)行熟練地計算;

難點:探索平方差公式,并用幾何圖形解釋公式.

學(xué)習(xí)過程:

一、自主探索

1、計算:(1)(m+2)(m-2)(2)(1+3a)(1-3a)

(3)(x+5y)(x-5y)(4)(y+3z)(y-3z)

2、觀察以上算式及其運算結(jié)果,你發(fā)現(xiàn)了什么規(guī)律?再舉兩例驗證你的發(fā)現(xiàn).

3、你能用自己的語言敘述你的發(fā)現(xiàn)嗎?

4、平方差公式的特征:

(1)、公式左邊的兩個因式都是二項式。必須是相同的兩數(shù)的和與差?;蛘哒f兩個二項式必須有一項完全相同,另一項只有符號不同。

(2)、公式中的a與b可以是數(shù),也可以換成一個代數(shù)式。

二、試一試

平方差公式教案及板書設(shè)計篇八

學(xué)生已經(jīng)掌握了多項式與多項式相乘,但是對于某些特殊的多項式相乘,可以寫成公式的形式,直接寫出結(jié)果,乘法公式應(yīng)用十分廣泛,也是本章重點內(nèi)容之一。

平方差公式是第一個乘法公式,教學(xué)時,我是這樣引入新課的,先計算下列各題,看誰做的又對又快?(1)(x+1)(x―1)=_____,(2)(m+2)(m―2)=_____,(3)(2x+1)(2x―1)=____,(4)(y+3z)(y―3z)=_____。激發(fā)學(xué)生的好勝心并為進(jìn)一步探索新知搭建好有力的平臺,然后我又讓學(xué)生討論交流上面幾個等式左、右兩邊各有什么特點,你能用字母表示你發(fā)現(xiàn)的規(guī)律嗎?你能用語言敘述這個規(guī)律嗎?給學(xué)生充分的觀察、分析、討論交流的時間,老師應(yīng)及時的給與必要的指導(dǎo)、鼓勵和由衷的贊美,這一點我做的還很不夠,今后要多多注意。

然后我有設(shè)計了這樣一道題:下列多項式乘法中可以用平方差公式計算的是(1)(x+1)(1+x),(2)(2x+y)(y―2x),(3)(a―b)(―a+b),(4)(―a―b)(―a+b)幫助學(xué)生理解公式的特征,掌握公式的。特征是正確運用公式的關(guān)鍵,除了掌握公式的特征外還有必要理解公式中的字母a、b具有廣泛的含義,幾字母a、b可以表示具體的數(shù)、也可以表示單項式或多項式,由于學(xué)生的認(rèn)知能力有一個過程,教學(xué)中應(yīng)由易到難逐步安排學(xué)習(xí)這方面的內(nèi)容。

平方差公式教案及板書設(shè)計篇九

進(jìn)一步使學(xué)生理解掌握平方差公式,并通過小結(jié)使學(xué)生理解公式數(shù)學(xué)表達(dá)式與文字表達(dá)式在應(yīng)用上的差異.

教學(xué)重點和難點:公式的應(yīng)用及推廣.

1.(1)用較簡單的代數(shù)式表示下圖紙片的面積.

(2)沿直線裁一刀,將不規(guī)則的右圖重新拼接成一個矩形,并用代數(shù)式表示出你新拼圖形的面積.

講評要點:

沿hd、gd裁開均可,但一定要讓學(xué)生在裁開之前知道

hd=bc=gd=fe=a-b,

這樣裁開后才能重新拼成一個矩形.希望推出公式:

a2-b2=(a+b)(a-b)

2.(1)敘述平方差公式的數(shù)學(xué)表達(dá)式及文字表達(dá)式;

(2)試比較公式的兩種表達(dá)式在應(yīng)用上的差異.

說明:平方差公式的數(shù)學(xué)表達(dá)式在使用上有三個優(yōu)點.(1)公式具體,易于理解;(2)公式的特征也表現(xiàn)得突出,易于初學(xué)的人“套用”;(3)形式簡潔.但數(shù)學(xué)表達(dá)式中的a與b有概括性及抽象性,這樣也就造成對具體問題存在一個判定a、b的`問題,否則容易對公式產(chǎn)生各種主觀上的誤解.

依照公式的文字表達(dá)式可寫出下面兩個正確的式子:

經(jīng)對比,可以讓人們體會到公式的文字表達(dá)式抽象、準(zhǔn)確、概括.因而也就“欠”明確(如結(jié)果不知是誰與誰的平方差).故在使用平方差公式時,要全面理解公式的實質(zhì),靈活運用公式的兩種表達(dá)式,比如用文字公式判斷一個題目能否使用平方差公式,用數(shù)學(xué)公式確定公式中的a與b,這樣才能使自己的計算即準(zhǔn)確又靈活.

3.判斷正誤:

(1)(4x+3b)(4x-3b)=4x2-3b2;(×)(2)(4x+3b)(4x-3b)=16x2-9;(×)

(3)(4x+3b)(4x-3b)=4x2+9b2;(×)(4)(4x+3b)(4x-3b)=4x2-9b2;(×)

例1運用平方差公式計算:

(1)102×98;(2)(y+2)(y-2)(y2+4).

解:(1)102×98(2)(y+2)(y-2)(y2+4)

=(100+2)(100-2)=(y2-4)(y2+4)

=9996;

2.運用平方差公式計算:

(1)103×97;(2)(x+3)(x-3)(x2+9);

(3)59.8×60.2;(4)(x-)(x2+)(x+).

3.請每位同學(xué)自編兩道能運用平方差公式計算的題目.

例2填空:

思考題:什么樣的二項式才能逆用平方差公式寫成兩數(shù)和與這兩數(shù)的差的積?

(某兩數(shù)平方差的二項式可逆用平方差公式寫成兩數(shù)和與這兩數(shù)的差的積)

練習(xí)

填空:

1.x2-25=()();

2.4m2-49=(2m-7)();

3.a4-m4=(a2+m2)()=(a2+m2)()();

例3計算:

(1)(a+b-3)(a+b+3);(2)(m2+n-7)(m2-n-7).

解:(1)(a+b-3)(a+b+3)(2)(m2+n-7)(m2-n-7)

=[(a+b)-3][(a+b)+3]=[(m2-7)+n][(m2-7)-n]

=(a+b)2-9=a2+2ab+b2-9.=(m2-7)2-n2

=m4-14m2+49-n2.

1.什么是平方差公式?一般兩個二項式相乘的積應(yīng)是幾項式?

2.平方差公式中字母a、b可以是那些形式?

3.怎樣判斷一個多項式的乘法問題是否可以用平方差公式?

1.運用平方差公式計算:

(1)(a2+b)(a2-b);(2)(-4m2+5n)(4m2+5n);

(3)(x2-y2)(x2+y2);(4)(9a2+7b2)(7b2-9a2).

2.運用平方差公式計算:

(1)69×71;(2)53×47;(3)503×497;(4)40×39.

平方差公式教案及板書設(shè)計篇十

1會推導(dǎo)平方差公式,并能運用公式進(jìn)行簡單的計算.

2.經(jīng)歷探索平方差公式的過程,認(rèn)識“特殊”與“一般”的關(guān)系,了解“特殊到一般”的認(rèn)識規(guī)律和數(shù)學(xué)發(fā)現(xiàn)方法,平方差公式第一課時教學(xué)反思。

重點:公式的理解與正確運用(考點:此公式很關(guān)鍵,一定要搞清楚特征,在以后的學(xué)習(xí)中還繼續(xù)應(yīng)用)

難點:公式的理解與正確運用

教法:自主探究和合作交流

(1)(x+2)(x-2)(2)(1+2y)(1-2y)(3)(x+3y)(x-3y)

=x2-22=12-(2y)2=x2-(3y)2

學(xué)生分組討論,交流,小組長回答問題。

師生共同總結(jié)歸納:

平方差公式:(a+b)(a-b)=a2-b2

即兩數(shù)和與兩數(shù)差的積,等于它們的平方差。

平方差公式特征:

(1)一組完全相同的項;

(2)一組互為相反數(shù)的項

2.例題

(1)(5+6x)(5-6x)(2)(-m+n)(-m-n)

3.公式應(yīng)用

(1)(a+2)(a-2)(2)(-x+2y)(-x-3y)

兩個學(xué)生板演,其余學(xué)生在練習(xí)本上自己獨立完成

老師巡視,輔導(dǎo)學(xué)困生。

1.計算(1)(a+1)(a-1)(a2+1)(2)(a+b)(a-b)(a2+b2)

師生共同分析:此題特征,兩次利用平方差公式,教學(xué)反思《平方差公式第一課時教學(xué)反思》。

學(xué)生在練習(xí)本上獨立完成,同桌互相檢查。

2.(ab)(-ab)=?能用平方差公式嗎?它的a和b分別是什么?

學(xué)生分組討論交流,獨立完成運算。

1、(ab+8)(ab-8)2、(5m-n)(-5m-n)

3、(3x+4y-z)(3x-4y+z)4、(a+b)(a-b)(a2+b2)

1、什么是平方差公式?

2、運用公式要注意的.問題:

(1)平方差公式運用的條件是什么?

(2)公式中的a、b可以代表什么?

平方差公式(1)

一、檢測導(dǎo)入

二、例題展示

三、拓展延伸

四、達(dá)標(biāo)堂測

五、歸納小結(jié)

平方差公式:(a+b)(a-b)=a2-b2

即兩數(shù)和與兩數(shù)差的積,等于它們的平方差。

六、布置作業(yè)

p21:習(xí)題1.91、2

平方差公式教案及板書設(shè)計篇十一

平方差公式是在學(xué)習(xí)多項式乘法等知識的基礎(chǔ)上,自然過渡到具有特殊形式的多項式的乘法,體現(xiàn)教材從一般到特殊的意圖。教材為學(xué)生在教學(xué)活動中獲得數(shù)學(xué)的思想方法、能力、素質(zhì)提供了良好的契機(jī)。對它的學(xué)習(xí)和研究,不僅得到了特殊的多項式乘法的簡便算法,而且為以后的因式分解,分式的化簡、二次根式中的分母有理化、解一元二次方程、函數(shù)等內(nèi)容奠定了基礎(chǔ),同時也為完全平方公式的學(xué)習(xí)提供了方法,因此,平方差公式在教材中有承上啟下的作用,是初中階段一個重要的公式。

學(xué)生是在學(xué)習(xí)積的乘方和多項式乘多項式后學(xué)習(xí)平方差公式的,但在進(jìn)行積的乘方的運算時,底數(shù)是數(shù)與幾個字母的積時往往把括號漏掉,在進(jìn)行多項式乘法運算時常常會確定錯某些次符號及漏項等問題。學(xué)生學(xué)習(xí)平方差公式的困難在于對公式的結(jié)構(gòu)特征以及公式中字母的廣泛的理解,當(dāng)公式中a、b是式時,要把它括號在平方。

重點:平方差公式的推導(dǎo)和應(yīng)用.

難點:理解掌握平方差公式的結(jié)構(gòu)特點以及靈活運用平方差公式解決實際問題.

平方差公式教案及板書設(shè)計篇十二

1、使學(xué)生了解運用公式法分解因式的意義;

2、使學(xué)生掌握用平方差公式分解因式

重點:掌握運用平方差公式分解因式。

難點:將單項式化為平方形式,再用平方差公式分解因式;

學(xué)習(xí)方法:歸納、概括、總結(jié)

創(chuàng)設(shè)問題情境,引入新課

在前兩學(xué)時中我們學(xué)習(xí)了因式分解的定義,即把一個多項式分解成幾個整式的積的形式,還學(xué)習(xí)了提公因式法分解因式,即在一個多項式中,若各項都含有相同的因式,即公因式,就可以把這個公因式提出來,從而將多項式化成幾個因式乘積的形式。

如果一個多項式的各項,不具備相同的因式,是否就不能分解因式了呢?當(dāng)然不是,只要我們記住因式分解是多項式乘法的相反過程,就能利用這種關(guān)系找到新的因式分解的方法,本學(xué)時我們就來學(xué)習(xí)另外的一種因式分解的方法——公式法。

1、請看乘法公式

(a+b)(a-b)=a2-b2(1)

左邊是整式乘法,右邊是一個多項式,把這個等式反過來就是

a2-b2=(a+b)(a-b)(2)

利用平方差公式進(jìn)行的因式分解,第(2)個等式可以看作是因式分解中的平方差公式。

a2-b2=(a+b)(a-b)

2、公式講解

如x2-16

=(x)2-42

=(x+4)(x-4)。

9m2-4n2

=(3m)2-(2n)2

=(3m+2n)(3m-2n)

例1、把下列各式分解因式:

例2、把下列各式分解因式:

(1)9(m+n)2-(m-n)2;(2)2x3-8x.

補充例題:判斷下列分解因式是否正確。

(1)(a+b)2-c2=a2+2ab+b2-c2.

(2)a4-1=(a2)2-1=(a2+1)(a2-1)。

1、教科書習(xí)題

2、分解因式:x4-16x3-4x4x2-(y-z)2

3、若x2-y2=30,x-y=-5求x+y

平方差公式教案及板書設(shè)計篇十三

本課的學(xué)習(xí)目的主要是熟練掌握整式的運算,并且這些知識是以后學(xué)習(xí)分式、根式運算以及函數(shù)等知識的基礎(chǔ),同時也是學(xué)習(xí)物理、化學(xué)等學(xué)科及其他科學(xué)技術(shù)不可或缺的數(shù)學(xué)工具。而本節(jié)是整式乘法中乘法公式的首要內(nèi)容,學(xué)生只有熟練掌握了包括平方差公式在內(nèi)的乘法公式及它的推導(dǎo)過程,才能實現(xiàn)本節(jié)乃至本章作為數(shù)學(xué)工具的重要作用。因此,在教學(xué)安排上,我選擇從學(xué)生熟悉的求多邊形面積入手,遵循從感性認(rèn)識上升為理性思維的認(rèn)知規(guī)律,得出抽象的。概念,并在多項式乘法的基礎(chǔ)上,再次推導(dǎo)公式,使原本枯燥的數(shù)學(xué)概念具有一定的實際意義和說理性;之后安排了一系列的例題和練習(xí)題,把新知運用到實戰(zhàn)中去,解決簡單的實際問題,這樣既調(diào)動了學(xué)生學(xué)習(xí)的主動性,又鍛煉了思維,整個過程由淺入深,在對所得結(jié)論不斷觀察、討論、分析中,加深對概念的理解,增強學(xué)生應(yīng)用知識解決問題的能力,從而達(dá)到較好的授課效果。

數(shù)學(xué)是一門抽象的學(xué)科,但數(shù)學(xué)是來源于實際生活的。因此,數(shù)學(xué)教育的目的是將數(shù)學(xué)運用到實際生活中去,讓學(xué)生深切感受到數(shù)學(xué)是有價值的科學(xué),來源于生活,是其他科學(xué)的基礎(chǔ)。本節(jié)公式中字母的含義對學(xué)生來講很抽象,是本節(jié)的難點,也是學(xué)生運用公式解決實際問題的最大障礙,通過鞏固練習(xí),讓學(xué)生逐步體會,為今后學(xué)習(xí)其他乘法公式做好準(zhǔn)備。乘法公式的逆用就是因式分解的重要方法,因此,在本節(jié)補充練習(xí)中,已經(jīng)開始滲透這部分知識,為后面學(xué)習(xí)因式分解做好鋪墊。

但是,我在教本章內(nèi)容時卻始終感到困惑。本以為這一章很簡單,由于教材安排存在一定問題,如將同底數(shù)冪乘法、冪的乘方、積的乘方、單項式乘以單項式、單項式乘以多項式、多項式乘以多項式這么多的內(nèi)容安排在一起,造成學(xué)生沒掌握好、消化好,知識間相互混淆,設(shè)置了障礙。所以很多學(xué)生出現(xiàn)下列錯誤(3x?2)(3x?2)?3x象我們想象中掌握的那么好。

本章教材編者在此安排不太合理,沒有考慮到學(xué)生的認(rèn)知規(guī)律,不利于學(xué)生很好掌握,所以,我感覺以后上這章的時候不能按照教材課時安排走。否則還會出現(xiàn)今天的問題。

平方差公式教案及板書設(shè)計篇十四

教學(xué)目標(biāo):

一、知識與技能

1、參與探索平方差公式的過程,發(fā)展學(xué)生的推理能力2、會運用公式進(jìn)行簡單的`乘法運算。

二、過程與方法

1、經(jīng)歷探索過程,學(xué)會歸納推導(dǎo)出某種特種特定類型乘法并用簡單的

數(shù)學(xué)式子表達(dá)出,即給出公式。

2、在探索過程的教學(xué)中,培養(yǎng)學(xué)生觀察、歸納的能力,發(fā)展學(xué)生的符

號感和語言描述能力。

三、情感與態(tài)度

以探索、歸納公式和簡單運用公式這一數(shù)學(xué)情景,加深學(xué)生的體驗,增加學(xué)習(xí)數(shù)學(xué)和使用的信心。培養(yǎng)學(xué)生由觀察-發(fā)現(xiàn)-歸納-驗證-使用這一數(shù)學(xué)方法的逐步形成.

教學(xué)重點:公式的簡單運用

教學(xué)難點:公式的推導(dǎo)

教學(xué)方法:學(xué)生探索歸納與教師講授結(jié)合

課前準(zhǔn)備:投影儀、幻燈片

平方差公式教案及板書設(shè)計篇十五

一、教學(xué)目標(biāo):

1、使學(xué)生理解和掌握平方差公式,并會用公式進(jìn)行計算;

2、注意培養(yǎng)學(xué)生分析、綜合和抽象、概括以及運算能力,培養(yǎng)應(yīng)用數(shù)學(xué)的意識;

在緊張而輕松地教學(xué)氛圍內(nèi),進(jìn)一步激發(fā)學(xué)生的學(xué)習(xí)興趣熱情。

3、二、重點、難點:

重點是掌握公式的結(jié)構(gòu)特征及正確運用公式。難點是公式推導(dǎo)的理解及字母的廣泛含義。

三、教學(xué)方法

以教師的精講、引導(dǎo)為主,輔以引導(dǎo)發(fā)現(xiàn)、合作交流。

四、教學(xué)過程

(一)創(chuàng)設(shè)問題情境,引入新課

1、你會做嗎?

(1)(x+1)(x-1)=_____=()()

(3)(3x+2)(3x-2)=_____=()()

2、能否用簡便方法運算:59.8×60.2(這里需要用到平方差公式,設(shè)疑激發(fā)學(xué)生興趣。)

(二)探索規(guī)律,歸納平方差公式

交流上面第1題的答案,引導(dǎo)學(xué)生進(jìn)一步思考:

(合作交流,探究新知:兩數(shù)之和與這兩數(shù)之差相乘時,積是二項式。這是因為具備這樣特點的兩個二項式相乘,積的四項中,會出現(xiàn)互為相反數(shù)的兩項,合并這兩項的結(jié)果為零,于是就剩下兩項了。而它們的積等于這兩個數(shù)的平方差。)

我們把(a+b)(a-b)=a-b叫做乘法的平方差公式。再遇到類似形式的多項式相乘時,就可以直接運用公式進(jìn)行計算。(在此基礎(chǔ)上,讓學(xué)生用語言敘述公式,并讓學(xué)生熟記。)

(三)嘗試探究

例1計算:

(1)(2x+y)(2x-y)

(2)(-5a+3b)(-5a-3b)

解:(2x+y)(2x-y)

解:(-5a+3b)(-5a-3b)

=(2x)-y=(-5a)-(3b)=4x-y=25a-3b

(教師引導(dǎo)學(xué)生分析題目條件是否符合平方差公式特征,并讓學(xué)生說出本題中a,b分別表示什么。)

例2用平方差計算:

(1)99×101

(2)59.8×60.222

222

解:99×101

解:59.8×60.2=(100+1)(100-1)

=(60+0.2)(60-0.2)

=(100)-(1)

=(60)-(0.2)2

2=9999

=3599.96(教師引導(dǎo),學(xué)生發(fā)現(xiàn),運用平方差公式進(jìn)行計算。)

(四)鞏固練習(xí)

1、運用平方差公式計算:

(l)(x+a)(x-a)

(2)(m+n)(m-n)(3)(a+3b)(a-3b)

(4)(1-5y)(l+5y)(5)998×1002

(6)395×4052、直接寫出答案:

(l)(-a+b)(a+b)

(2)(a-b)(b+a)

(3)(-a-b)(-a+b)

(4)(a-b)(-a-b)(5)999×1001

(6)39.8×40.2(讓學(xué)生獨立完成,互評互改.)

(五)小結(jié)

1.什么是平方差公式?

2.運用公式要注意什么?

(1)要符合公式特征才能運用平方差公式;

(2)有些式子表面不能應(yīng)用公式,但實質(zhì)能應(yīng)用公式,要注意分清a、b。

(學(xué)生回答,教師總結(jié))

(六)作業(yè)

p106習(xí)題1-5題

七、板書設(shè)計:

《平方差公式》

平方差公式:(a+b)(a-b)=a-b例1計算:

(1)(2x+y)(2x-y)

(2)(-5a+3b)(-5a-3b)

解:(2x+y)(2x-y)

解:(-5a+3b)(-5a-3b)

=(2x)-y=(-5a)-(3b)=4x-y=25a-3b例2用平方差計算:

(1)99×101

(2)59.8×60.2

解:99×101

解:59.8×60.2=(100+1)(100-1)

=(60+0.2)(60-0.2)

=(100)-(1)

=(60)-(0.2)2

22222

=9999

=3599.96

教學(xué)反思

通過精心備課,本節(jié)課在教學(xué)中是比較成功的。成功之處在于整個教學(xué)流程環(huán)環(huán)相扣,層層遞進(jìn),抓住了學(xué)生思維這條主線,遵循由淺入深,由特殊到一般的認(rèn)知規(guī)律,引起學(xué)生的興趣。使他們能夠積極參與其中,同時,使他們的思維得到了鍛煉和發(fā)展。不足之處:時間安排不是很合理,前松后緊。課堂上沒有給更多的學(xué)生提供展示自己思考結(jié)果的機(jī)會,過于注重“收”,而“放”不夠。

平方差公式教案及板書設(shè)計篇十六

教學(xué)目標(biāo):

一、 知識與技能

1、 參與探索平方差公式的過程,發(fā)展學(xué)生的推理能力 2、 會運用公式進(jìn)行簡單的乘法運算。

二、 過程與方法

1、 經(jīng)歷探索過程,學(xué)會歸納推導(dǎo)出某種特種特定類型乘法并用簡單的

數(shù)學(xué)式子表達(dá)出,即給出公式。

2、 在探索過程的教學(xué)中,培養(yǎng)學(xué)生觀察、歸納的能力,發(fā)展學(xué)生的符

號感和語言描述能力。

三、 情感與態(tài)度

以探索、歸納公式和簡單運用公式這一數(shù)學(xué)情景,加深學(xué)生的體驗,增加學(xué)習(xí)數(shù)學(xué)和使用的信心。培養(yǎng)學(xué)生由觀察-發(fā)現(xiàn)-歸納-驗證-使用這一數(shù)學(xué)方法的逐步形成.

教學(xué)重點: 公式的簡單運用

教學(xué)難點: 公式的推導(dǎo)

教學(xué)方法: 學(xué)生探索歸納與教師講授結(jié)合

課前準(zhǔn)備:投影儀、幻燈片

平方差公式教案及板書設(shè)計篇十七

1.使學(xué)生理解和掌握平方差公式,并會用公式進(jìn)行計算;

2.注意培養(yǎng)學(xué)生分析、綜合和抽象、概括以及運算能力.

教學(xué)重點和難點

重點:平方差公式的應(yīng)用.

難點:用公式的結(jié)構(gòu)特征判斷題目能否使用公式.

教學(xué)過程設(shè)計

一、師生共同研究平方差公式

我們已經(jīng)學(xué)過了多項式的乘法,兩個二項式相乘,在合并同類項前應(yīng)該有幾項?合并同類項以后,積可能會是三項嗎?積可能是二項嗎?請舉出例子.

讓學(xué)生動腦、動筆進(jìn)行探討,并發(fā)表自己的見解.教師根據(jù)學(xué)生的回答,引導(dǎo)學(xué)生進(jìn)一步思考:

(當(dāng)乘式是兩個數(shù)之和以及這兩個數(shù)之差相乘時,積是二項式.這是因為具備這樣特點的兩個二項式相乘,積的四項中,會出現(xiàn)互為相反數(shù)的兩項,合并這兩項的結(jié)果為零,于是就剩下兩項了.而它們的積等于乘式中這兩個數(shù)的平方差)

繼而指出,在多項式的乘法中,對于某些特殊形式的多項式相乘,我們把它寫成公式,并加以熟記,以便遇到類似形式的多項式相乘時就可以直接運用公式進(jìn)行計算.以后經(jīng)常遇到(a+b)(a-b)這種乘法,所以把(a+b)(a-b)=a2-b2作為公式,叫做乘法的平方差公式.

在此基礎(chǔ)上,讓學(xué)生用語言敘述公式.

二、運用舉例變式練習(xí)

例1計算(1+2x)(1-2x).

解:(1+2x)(1-2x)

=12-(2x)2

=1-4x2.

教師引導(dǎo)學(xué)生分析題目條件是否符合平方差公式特征,并讓學(xué)生說出本題中a,b分別表示什么.

例2計算(b2+2a3)(2a3-b2).

解:(b2+2a3)(2a3-b2)

=(2a3+b2)(2a3-b2)

=(2a3)2-(b2)2

=4a6-b4.

教師引導(dǎo)學(xué)生發(fā)現(xiàn),只需將(b2+2a3)中的兩項交換位置,就可用平方差公式進(jìn)行計算.

課堂練習(xí)

運用平方差公式計算:

(l)(x+a)(x-a);(2)(m+n)(m-n);

(3)(a+3b)(a-3b);(4)(1-5y)(l+5y).

例3計算(-4a-1)(-4a+1).

讓學(xué)生在練習(xí)本上計算,教師巡視學(xué)生解題情況,讓采用不同解法的兩個學(xué)生進(jìn)行板演.

解法1:(-4a-1)(-4a+1)

=[-(4a+l)][-(4a-l)]

=(4a+1)(4a-l)

=(4a)2-l2

=16a2-1.

解法2:(-4a-l)(-4a+l)

=(-4a)2-l

=16a2-1.

根據(jù)學(xué)生板演,教師指出兩種解法都很正確,解法1先用了提出負(fù)號的辦法,使兩乘式首項都變成正的,而后看出兩數(shù)的和與這兩數(shù)的差相乘的形式,應(yīng)用平方差公式,寫出結(jié)果.解法2把-4a看成一個數(shù),把1看成另一個數(shù),直接寫出(-4a)2-l2后得出結(jié)果.采用解法2的同學(xué)比較注意平方差公式的特征,能看到問題的本質(zhì),運算簡捷.因此,我們在計算中,先要分析題目的數(shù)字特征,然后正確應(yīng)用平方差公式,就能比較簡捷地得到答案.

課堂練習(xí)

1.口答下列各題:

(l)(-a+b)(a+b);(2)(a-b)(b+a);

(3)(-a-b)(-a+b);(4)(a-b)(-a-b).

2.計算下列各題:

(1)(4x-5y)(4x+5y);(2)(-2x2+5)(-2x2-5);

教師巡視學(xué)生練習(xí)情況,請不同解法的學(xué)生,或發(fā)生錯誤的學(xué)生板演,教師和學(xué)生一起分析解法.

三、小結(jié)

1.什么是平方差公式?

2.運用公式要注意什么?

(1)要符合公式特征才能運用平方差公式;

(2)有些式子表面不能應(yīng)用公式,但實質(zhì)能應(yīng)用公式,要注意變形.

四、作業(yè)

1.運用平方差公式計算:

(l)(x+2y)(x-2y);(2)(2a-3b)(3b+2a);

(3)(-1+3x)(-1-3x);(4)(-2b-5)(2b-5);

2.計算:

(3)x(x-3)-(x+7)(x-7);(4)(2x-5)(x-2)+(3x-4)(3x+4).

【本文地址:http://mlvmservice.com/zuowen/5025143.html】

全文閱讀已結(jié)束,如果需要下載本文請點擊

下載此文檔