在日常工作中,總結(jié)能夠發(fā)現(xiàn)問題,提升效率??偨Y(jié)的結(jié)構(gòu)要合理,通常包括引言、主體和結(jié)論三個(gè)部分。以下是一些經(jīng)典總結(jié)范文,對(duì)我們理解總結(jié)的作用和方法有重要意義。
人工智能的弊端論文篇一
你聽說過或者看到過智能垃圾桶嗎?如果你們沒看到,那就請(qǐng)跟我一起坐時(shí)光穿梭機(jī)到未來世界去參觀吧!
未來的大街上,干凈無比,沒有落葉、沒有垃圾、沒有到處飛舞的蒼蠅、蚊蟲、更沒有刺鼻的汽油味......
喲!多可愛的米奇老鼠??!我們一起跑上前,正想撫摸它,嘿!原來是一個(gè)垃圾桶。這可不是一般的垃圾桶喲!你們瞧:米奇兩眼還發(fā)著光呢,原來它正在發(fā)電來處理自已肚里的東西。米奇嘴巴緊閉著,頭上有二根天線,這天線可不是好玩的,它左邊一根天線是吸收路旁汽車的尾氣的,右邊一根天線是吸收太陽能的,以用來發(fā)電處理垃圾的;米奇胖乎乎的身體上還有三顆顏色不同的大紐扣。一個(gè)小朋友好奇的觸摸了一下第一顆紅色的扣子,垃圾桶的門自動(dòng)翻開了,又按了一下第二顆綠色扣子,門又自動(dòng)的關(guān)上了,那第三顆是干什么的呢?小朋友忍不住又按了一下第三顆的扣子,哈!真神奇,扣子眼里彈出一個(gè)微型。這時(shí),一位阿姨走過來,見我們圍著米奇,知道我們想知道這只神奇的米奇的功能,于是,便給我們介紹起來:這只米奇的腦袋里裝有電腦芯片,它只要看到有人不小心掉了垃圾,它就會(huì)走過去,用手將垃圾撿起來,張開緊閉的嘴,把它扔進(jìn)去。如果看到有人不愛清潔,它的另一只手那么會(huì)出示”保護(hù)環(huán)境榮耀,破壞環(huán)境羞恥”的小牌。它還有許多的內(nèi)在功能:它會(huì)垃圾分類,把有毒和無毒的分裝在肚子的兩邊,它肚子里還有一種溶化器,它把無毒的垃圾處理成肥料,把有毒的垃圾通過自身的.排毒器將它轉(zhuǎn)換成一種無毒的清新氣體,釋放出來。它還有一種非常有趣的趣事,一但它肚子的垃圾裝滿了,它就會(huì)自動(dòng)處理垃圾,并會(huì)走到一棵樹下,從緊閉的嘴里彈出一根管了,然后插入土里,把垃圾養(yǎng)份注入樹里,然后又回到它原來的位置。
到了秋天,秋風(fēng)掃落葉時(shí),米奇頭上便會(huì)張開一個(gè)巨大的吸盤,把黃葉都吸進(jìn)去,然后又做成肥料。米奇的腳下還有一種粘了水的毛刷式吸塵器,它可以一邊唱”小曲”,一邊走一邊清潔道路。如果我們現(xiàn)實(shí)中有這種垃圾桶,那該多方便啊!我想,這個(gè)愿望不會(huì)是夢(mèng),我們的愿望一定會(huì)實(shí)現(xiàn)。
人工智能的弊端論文篇二
【摘要】目的:通過調(diào)查研究超聲醫(yī)學(xué)在臨床急診中的檢查價(jià)值。方法:采用隨機(jī)數(shù)字表法將對(duì)我院門診收治的100例急診患者,分成50例的觀察組和50例的對(duì)照組。且給予兩組正常病癥檢查方法,觀察組在常規(guī)檢查的基礎(chǔ)上使用超聲醫(yī)學(xué),并對(duì)檢查的結(jié)果進(jìn)行回顧性的分析與比較。結(jié)果:超聲診斷與常規(guī)診斷的符合率和未診斷率為96%,4%和68%,32%。兩者之間的對(duì)比具有顯著的差異性(p0.05)。結(jié)論:超聲醫(yī)學(xué)在急診的檢查中具有比較高的正確率,不僅幫助醫(yī)生減少了確診時(shí)間,還為患者贏得了就診時(shí)間,提高了患者的搶救成功率。
【關(guān)鍵詞】超聲醫(yī)學(xué);急診;價(jià)值
隨著超聲診斷技術(shù)在臨床中廣泛應(yīng)用以及不斷的發(fā)展和日益完善中,超聲學(xué)對(duì)患者的病情及時(shí)快速的檢測(cè)方面做出了重大的作用。使得很多腹部疾病以及意外創(chuàng)傷的患者得到了迅速、及時(shí)且有效的治療方案,減輕了患者的痛苦,給患者提供了醫(yī)治空間,提高了患者的致殘率以及死亡率。本文主要將我院20xx年6月至20xx年10月收治的50例急診患者分別采用常規(guī)診斷和超聲醫(yī)學(xué)進(jìn)行診斷,且分析比較,現(xiàn)將調(diào)查結(jié)果報(bào)告如下:
1資料與方法
1.1一般資料
采用隨機(jī)數(shù)字表法將我院在20xx年6月至20xx年10月收治的50例急診患者,均分為超聲醫(yī)學(xué)診斷的觀察組和常規(guī)診斷的對(duì)照組,且都符合急診診斷的標(biāo)準(zhǔn)[1]。其中治療組男性患者14例,女性患者11例,年齡31-64歲,平均年齡為(43±21),黃體破裂出血5例,急性闌尾炎15例,胃十二指腸穿孔2例,急性膽囊炎3例;對(duì)照組男性患者18例,女性患者7例,年齡28-66歲,平均年齡為(38±25),病程1-8年,黃體破裂出血8例,急性闌尾炎12例,胃十二指腸穿孔3例,急性膽囊炎2例;兩組患者性別、年齡、原發(fā)疾病等一般資料組間比較,差異無統(tǒng)計(jì)學(xué)意義(p0.05)。
1.2治療方法
主要采用多種超聲診斷儀器,如logiq400、logiq5、邁瑞ma77―0786等診斷儀器,探頭的頻率使用3.5―8.0mhz.在診斷過程中要求患者不能空腹,對(duì)于盆腔檢查的患者需要憋尿或或者使用生理鹽水對(duì)膀胱進(jìn)行充盈,患者檢測(cè)時(shí)采取仰臥或者側(cè)臥的姿勢(shì),對(duì)進(jìn)行全腹部多切面檢查的患者,需要采取坐位進(jìn)行胸膜腔的探查。
1.3療效評(píng)價(jià)標(biāo)準(zhǔn)
當(dāng)超聲診斷的結(jié)果和臨床診斷一致時(shí),便為符合標(biāo)準(zhǔn);當(dāng)超聲診斷的結(jié)果僅僅顯示了患者腹腔的積血、積液或者病灶區(qū)的血供量逐漸減少,便為基本符合標(biāo)準(zhǔn);當(dāng)超聲診斷的結(jié)果和臨床診斷不一致時(shí),則為誤診或漏診,稱為未診斷。
1.4統(tǒng)計(jì)學(xué)方法
采用spssl5.0軟件進(jìn)行統(tǒng)計(jì)分析,計(jì)量數(shù)據(jù)將采用采用x2檢驗(yàn);當(dāng)p0.05,差異是具有統(tǒng)計(jì)學(xué)的意義。
2結(jié)果
2.1兩組數(shù)據(jù)比較
通過對(duì)比分析兩組分別使用超聲醫(yī)學(xué)進(jìn)行診斷以及常規(guī)診斷的結(jié)果,見表1
3討論
急診患者一般病情都比較的緊急,且癥狀比較的嚴(yán)重。有時(shí)病人會(huì)處在休克期或者休克的前期,病情相對(duì)比較的復(fù)雜,嬰幼兒的患者一般不能完全的表達(dá)病情。是否能夠?qū)颊呒皶r(shí)明確的進(jìn)行診斷,可以有效的減少并發(fā)癥以及死亡率,成為臨床搶救措施的關(guān)鍵因素。臨床的醫(yī)生可以根據(jù)患者病情的癥狀、體征以及其他檢查作出一些鑒別性的診斷,但在大多數(shù)的情況下還是難以進(jìn)行確診。然而具有操作方便、使用快捷的超聲檢查,發(fā)揮其特點(diǎn),用獨(dú)特的聲像圖片為臨床提供有利的證據(jù)。超聲醫(yī)學(xué)的檢查可以有效的縮短醫(yī)生的確診時(shí)間,減輕了急診患者的病痛,給患者提供了足夠的治療空間。超聲診斷在婦產(chǎn)科疾病、腸胃疾病以及膽囊等各類疾病中的表現(xiàn)具有差異性,以下將對(duì)各種病情做出分析[3]。婦產(chǎn)科疾病:超聲醫(yī)學(xué)在婦科的作用是無法代替的,異位妊娠的聲圖像是子宮內(nèi)膜中出現(xiàn)不同程度增厚現(xiàn)象的表示,在患者的子宮一側(cè)會(huì)出現(xiàn)混合型的團(tuán)塊,但在聲像圖中并沒有非常明顯特征的表示。盆腔炎患者病情嚴(yán)重時(shí),超聲圖像則會(huì)變現(xiàn)為子宮增大和輸卵管的逐漸變粗?;颊叱霈F(xiàn)黃體破裂出血時(shí)在超聲圖中的顯示和異位妊娠表現(xiàn)形式具有細(xì)微的變化,在檢查過程中需要仔細(xì)。當(dāng)隨著患者的發(fā)病時(shí)間以及血塊的多少變化時(shí),胎膜下積血聲像學(xué)則會(huì)表現(xiàn)胎盤和子宮壁間的邊緣部分具有粗糙且規(guī)則不一的液體狀的暗區(qū),有許多斑點(diǎn)狀呈現(xiàn)高回聲、雜亂的回聲或者不均質(zhì)的低回聲。胃腸道系統(tǒng)疾病超聲檢查:當(dāng)患者的胃十二指腸穿孔時(shí)一般會(huì)出現(xiàn)誤診或者漏診的情況,此時(shí)在檢查過程中還要結(jié)合其他的手段進(jìn)行輔助性的檢查,如x光線等。當(dāng)患者出現(xiàn)急性闌尾炎時(shí),超聲圖像一般表現(xiàn)為闌尾體型會(huì)有顯著性的增大,呈現(xiàn)出模糊的周圍結(jié)構(gòu)且具有高、低、高的回聲。急性闌尾炎的圖像特點(diǎn)為:一般的闌尾炎,闌尾腫大,其直徑一般9mm,具有比較清晰的闌尾管的壁層,且從外到內(nèi)逐漸呈現(xiàn)出高回聲、低回聲、高回聲;急性化膿性的闌尾炎,闌尾具有明顯的粗大狀態(tài),可以通過肉眼辨別出來,具有較厚的闌尾壁,腔內(nèi)具有較多的積液,且有代表性的少量的斑片狀的高強(qiáng)回聲。闌尾的橫切面呈現(xiàn)出強(qiáng)弱相間的環(huán)形回聲以及靶環(huán)征;急性闌尾炎合并周圍膿腫,其患者的闌尾狀態(tài)是無法進(jìn)行辨認(rèn)的,但在右下腹可以看到類似于圓形團(tuán)狀的回聲,且在內(nèi)部會(huì)呈現(xiàn)出不均勻的雜亂的低回聲。膽管系統(tǒng)疾病:當(dāng)患者出現(xiàn)膽總管結(jié)石時(shí),進(jìn)行超聲檢查,管內(nèi)具有強(qiáng)回聲且伴隨位于后方的圖像影射[3]。當(dāng)患者膽管內(nèi)具有膽汁淤積時(shí),膽管就會(huì)出現(xiàn)不同程度的擴(kuò)張現(xiàn)象?;颊吣懩野l(fā)炎時(shí),超聲圖像中的膽囊具有顯著性的擴(kuò)充,具有較厚的膽囊壁,較強(qiáng)的張力,強(qiáng)回聲光團(tuán)會(huì)出現(xiàn)在膽囊頸部。
綜上所述,超聲醫(yī)學(xué)的診斷具有操作簡(jiǎn)單、經(jīng)濟(jì)適用、準(zhǔn)確診斷的特征,且還可以在定位的同時(shí),了解患者是否存在并發(fā)癥,因此在臨床中的應(yīng)用越加廣泛,為臨床的醫(yī)生提供了具有重要價(jià)值的參考以及治療方案。特別是在胸腹部創(chuàng)傷以及急性腹部的疾病急診體系中起到了重要的作用,且不同程度上促進(jìn)了醫(yī)療急救體系的發(fā)展。
參考文獻(xiàn):
人工智能的弊端論文篇三
智能交通系統(tǒng)(intelligent transportation systems,簡(jiǎn)稱its)是將先進(jìn)的信息技術(shù)、數(shù)據(jù)通訊傳輸技術(shù)、電子傳感技術(shù)、電子控制技術(shù)及計(jì)算機(jī)處理技術(shù)等有效地集成運(yùn)用于整個(gè)地面交通管理系統(tǒng)而建立的一種在大范圍內(nèi)、全方位發(fā)揮作用的,實(shí)時(shí)、準(zhǔn)確、高效的綜合交通運(yùn)輸管理系統(tǒng)。its能有效地利用現(xiàn)有交通設(shè)施、減少交通負(fù)荷和環(huán)境污染、保證交通安全、提高運(yùn)輸效率、促進(jìn)社會(huì)經(jīng)濟(jì)發(fā)展、提高人民生活質(zhì)量,并以推動(dòng)社會(huì)信息化及形成新產(chǎn)業(yè)而受到各國(guó)的重視。目前已形成世界二十一世紀(jì)的發(fā)展方向。
交通仿真是智能交通領(lǐng)域的重要分支,它是利用最先進(jìn)的計(jì)算機(jī)技術(shù),通過仿真模擬的方法來分析交通問題,輔助交通管理人員做決策。傳統(tǒng)上,數(shù)學(xué)推導(dǎo)、科學(xué)實(shí)驗(yàn)是進(jìn)行科學(xué)研究、解決科學(xué)問題的主要方法。對(duì)于交通問題來說,由于參與交通的人很多,影響交通出行的因素也很多,人們很難、甚至無法對(duì)交通問題建立精確的數(shù)學(xué)模型。同時(shí),由于安全、法規(guī),以及開銷方面的原因,進(jìn)行現(xiàn)場(chǎng)交通實(shí)驗(yàn)通常也是不可行的。而交通仿真恰恰能夠有效地解決上述兩個(gè)方面的困難。
然而,傳統(tǒng)的交通仿真由于設(shè)計(jì)理念上的原因,并不能從根本上有效地解決交通問題。這是因?yàn)?,交通系統(tǒng)是一個(gè)龐大的復(fù)雜系統(tǒng),必須用對(duì)付復(fù)雜系統(tǒng)的方法來處理,也就是要用綜合的方法,而不是還原分解的方法來處理。
1)城市交通系統(tǒng)是由經(jīng)濟(jì)、環(huán)境、人口等因素綜合作用的結(jié)果,必須全面綜合地考慮城市交通和這些系統(tǒng)之間的關(guān)系。例如,不能為例城市交通問題的解決,而導(dǎo)致城市生態(tài)惡化,危害人居環(huán)境;不能為了城市交通的暢通,阻礙城市社會(huì)經(jīng)濟(jì)活動(dòng)的健康發(fā)展。我們必須在已有工作的基礎(chǔ)上,突破傳統(tǒng)思維,探索研究此類復(fù)雜系統(tǒng)的新途徑,而基于人工系統(tǒng)的研究方法正是這種有效途徑之一。
2)城市交通問題不存在“一勞永逸”的解決方案。城市交通系統(tǒng)涉及人與社會(huì)的動(dòng)態(tài)變化,本身也在不斷變化和發(fā)展之中,不可避免地需要一個(gè)不斷深化地認(rèn)識(shí)過程,這類系統(tǒng)實(shí)際上不存在精確完備的整體解析模型。因此,無法“一勞永逸”地解決城市交通問題,我們需要基于“不斷探索和改善”的'原則,研究建立有效可行的計(jì)算實(shí)驗(yàn)方法體系,為不斷地完善城市交通系統(tǒng)的綜合可持續(xù)發(fā)展方案提供科學(xué)依據(jù)。
3)城市交通問題不存在一般意義下的最優(yōu)解,更不存在唯一的最優(yōu)解。首先,基于解析模型的最優(yōu)解與假設(shè)條件直接相關(guān),具有條件敏感性,但對(duì)于城市交通這樣的問題,假設(shè)條件與實(shí)際情況往往存在很大差別。其次,解決這些問題一般不存在單一的優(yōu)化指標(biāo),而多層次多目標(biāo)優(yōu)化往往導(dǎo)致多個(gè)甚至無數(shù)個(gè)解決方案,就連采用近似模型的多目標(biāo)優(yōu)化也是如此。再者,對(duì)于這類復(fù)雜系統(tǒng),有時(shí)甚至連確定一個(gè)量化的綜合優(yōu)化指標(biāo)也有困難,特別是由于復(fù)雜系統(tǒng)長(zhǎng)期行為的不可預(yù)測(cè)性,試圖求解其某一最優(yōu)化解決方案本身就是不可行的。因此,我們應(yīng)當(dāng)接受有效解決方案的概念,而且還要接受一般情況下存在多個(gè)有效解決方案的事實(shí)。在這種情況下,我們應(yīng)該利用平行系統(tǒng)方法,追求具有動(dòng)態(tài)適應(yīng)能力的有效解決方案。
基于以上分析,中國(guó)科學(xué)研自動(dòng)化所王飛躍研究員提出了人工交通系統(tǒng)的概念。其基本思想是利用人工社會(huì)的理論與方法,把交通仿真推向更高的層次、獲得更廣的視野。它利用基于代理的建模、面向?qū)ο蟮木幊毯筒⑿蟹植际接?jì)算等方法和技術(shù),“生長(zhǎng)”和“培育”交通系統(tǒng),即“人工交通系統(tǒng)”。
利用人工交通系統(tǒng)解決問題的思路跟改革開放摸著石頭過河差不多,不斷探索和改善,使過程、方法更科學(xué)化、系統(tǒng)化、綜合化,不斷改善探索建立城市交通、物流、生態(tài)綜合發(fā)展的理論和方法體系。
三是平行管理運(yùn)行,虛擬交通系統(tǒng)與實(shí)際交通系統(tǒng)相結(jié)合,直接采集現(xiàn)實(shí)交通數(shù)據(jù),進(jìn)行超前運(yùn)算,以判斷可能發(fā)生的交通事件,提前采取預(yù)防措施,為交通的高效暢通提供保障。
1)在宏觀認(rèn)識(shí)上,人工交通系統(tǒng)不是單純的討論交通自身的問題。相反,人工交通系統(tǒng)將交通看作社會(huì)整體的一個(gè)子系統(tǒng),與經(jīng)濟(jì)、人口、環(huán)境、氣候等子系統(tǒng)具有平等的地位,并將各個(gè)子系統(tǒng)之間的相互銜接、相互聯(lián)系、相互作用和相互影響作為研究的重點(diǎn)之一。
2)在仿真方法上,人工交通系統(tǒng)屬于微觀仿真的范疇,但是不局限于研究局部的交通問題。人工交通系統(tǒng)面向大區(qū)域的仿真研究,采用復(fù)雜性科學(xué)中“涌現(xiàn)”的原理,在底層建立單個(gè)交通出行元素的代理模型,通過大交通區(qū)域內(nèi)單個(gè)代理模型之間的相互作用,“涌現(xiàn)”出宏觀的交通現(xiàn)象。
3)在實(shí)現(xiàn)手段上,人工交通系統(tǒng)不能在單一、孤立的計(jì)算機(jī)上進(jìn)行仿真,要使人工交通系統(tǒng)具備真實(shí)交通系統(tǒng)的分散性和社會(huì)性,必須采用先進(jìn)的分布式計(jì)算方法,如網(wǎng)格和p2p等,在互聯(lián)網(wǎng)上建立結(jié)構(gòu)化、分散化的虛擬交通路網(wǎng)系統(tǒng),并且通過終端界面將網(wǎng)絡(luò)中的真實(shí)人吸引到人工交通系統(tǒng)的運(yùn)行中來,以使每一個(gè)代理模型具有逼近現(xiàn)實(shí)的社會(huì)屬性。
4)在仿真目的上,人工交通系統(tǒng)不是一味的追求逼近現(xiàn)實(shí)交通環(huán)境和狀態(tài)。除此之外,人工交通系統(tǒng)可以通過調(diào)整參數(shù)、添加隨機(jī)事件等方法產(chǎn)生現(xiàn)實(shí)交通系統(tǒng)可能但尚未發(fā)生的交通現(xiàn)象,用以制定突發(fā)事故的緊急預(yù)案、交通控制方案的預(yù)評(píng)估以及交通參與人員的培訓(xùn)等等。
人工系統(tǒng)說起來有一點(diǎn)抽象,其實(shí)說穿了很簡(jiǎn)單。第一是充分利用計(jì)算機(jī)技術(shù)的發(fā)展,第二是仿真與模擬的常態(tài)化。仿真不再是一個(gè)項(xiàng)目立項(xiàng)前跑一跑看看行不行的手段,仿真要秒秒在、分分在、永遠(yuǎn)在。它是經(jīng)驗(yàn)與知識(shí)的數(shù)字化、動(dòng)態(tài)化和即時(shí)化,使人工影響現(xiàn)實(shí),虛擬影響實(shí)在。
人工交通系統(tǒng)完善之后,人們可以像玩網(wǎng)絡(luò)游戲一樣,作為一個(gè)行人或司機(jī)加入到系統(tǒng)中,不必出門即可體驗(yàn)交通;交警同志可以在人工交通系統(tǒng)中學(xué)習(xí)指揮交通,而不必?fù)?dān)心造成擁堵;交通分析人員可以利用人工交通系統(tǒng)研究各種突發(fā)事故對(duì)交通的影響,而不必?fù)?dān)心人民的生命財(cái)產(chǎn)受到威脅;交通管理和決策人員可以在人工交通系統(tǒng)試驗(yàn)交通政策和方案,而不必承擔(dān)決策失敗的風(fēng)險(xiǎn)。
人工智能的弊端論文篇四
1、構(gòu)思要圍繞主題展開:若要使論文寫得條理清晰、脈絡(luò)分明,必須要使全文有一條貫穿線,這就是論文的主題。主題是一篇學(xué)術(shù)論文的精髓,它是體現(xiàn)作者的學(xué)術(shù)觀點(diǎn)學(xué)術(shù)見解的。
2、構(gòu)思論文布局,要力求結(jié)構(gòu)完整統(tǒng)一:在對(duì)一篇論文構(gòu)思時(shí),有時(shí)按時(shí)間順序編寫,有時(shí)按地域位置(空間)順序編寫,但更多的還是按邏輯關(guān)系編寫,即要求符合客觀事物的內(nèi)在聯(lián)系和規(guī)律,符合科學(xué)研究和認(rèn)識(shí)事物的邏輯。但不管屬于何種情形,都應(yīng)保持合乎情理、連貫完整。
3、要作讀者分析:撰寫并發(fā)表任何一篇科技文章,其最終目的是讓別人讀的,因此,構(gòu)思時(shí)要求做“心中裝著讀者”,多作讀者分析。有了清晰的讀者對(duì)象,才能有效地展開構(gòu)思,也才能順利地確定立意、選材以及表達(dá)的角度。
提高構(gòu)思能力
1、寫學(xué)術(shù)論文之前,先擬定提綱,可以極大地幫助作者鍛煉思想,提高構(gòu)思能力。
2、寫作提綱,可以幫助作者勾劃出全篇論文的框架,體現(xiàn)自己經(jīng)過對(duì)材料的消化與進(jìn)行邏輯思維后形成的初步設(shè)想,可計(jì)劃先寫什么、后寫什么,前后如何表述一致,重點(diǎn)又放在哪里,哪里需要進(jìn)行一些注釋或解說。按此計(jì)劃寫作,可使論文層次清晰,前后照應(yīng),內(nèi)容連貫,表達(dá)嚴(yán)密。
3、擬制寫作提綱,只需要運(yùn)用一些簡(jiǎn)單的句子甚至是詞與詞組加以提示,把材料單元與相應(yīng)的論點(diǎn)有機(jī)組織編成順序號(hào),工作量并不大,也容易辦到。提綱中用以提示寫作的句子,有時(shí)即可用來做論文段落的標(biāo)題。
討論部分的寫作技巧
1.描述結(jié)論:首先,從專業(yè)角度對(duì)自己的研究進(jìn)行總結(jié),此部分務(wù)必與研究結(jié)果和研究目的保持一致,也就是說討論部分的內(nèi)容必須在結(jié)果中找到依據(jù)。否則就會(huì)給人一種課題設(shè)計(jì)不完善的感覺。
2.解釋結(jié)論:對(duì)本研究的結(jié)論進(jìn)行解釋,為了突出解釋的科學(xué)性和可靠性,一般是在和別人的研究分析對(duì)比中進(jìn)行解釋。列出幾篇和自己結(jié)論一致的文獻(xiàn),同時(shí)也要列出幾篇和自己不一致或者相悖的文獻(xiàn),但要解釋出不一致的理由,比如是因?yàn)樗x群體不一致,研究條件不一致等等,因?yàn)榭茖W(xué)研究中的可控變量較多,所以解釋兩個(gè)結(jié)論不一致一般不難。
3.研究?jī)r(jià)值:結(jié)論解釋完之后,還要說明本研究的應(yīng)用價(jià)值,也就本研究所能給社會(huì)或者臨床帶來什么實(shí)際價(jià)值,比如本研究可以進(jìn)一步明確某種方法治療某種疾病的效果,本研究發(fā)現(xiàn)某種藥物存在一些尚未發(fā)現(xiàn)的治療作用,或者本研究可以為相關(guān)研究提供參考。
4.不足之處:任何一項(xiàng)研究由于客觀條件的限制,不可能盡善盡美,都會(huì)或多或少存在一些不足之處,或者由于當(dāng)前科技水平的限制,也會(huì)導(dǎo)致研究所存在的一些局限性,描述此部分內(nèi)容時(shí),一定要慎重。
盡量列出1~2個(gè)不影響本研究結(jié)論科學(xué)性和準(zhǔn)確性的限制,比如本研究的樣本含量較小,或者本研究隨訪時(shí)間較短等等,一般不要列出諸如本研究所用統(tǒng)計(jì)方法不當(dāng),或者本課題的所用評(píng)價(jià)標(biāo)準(zhǔn)不夠成熟等。
5.研究心得:在文章最后,應(yīng)說明本文所要傳遞的信息,或者是對(duì)后續(xù)研究的展望。一般文章最后寫出本文要傳遞給讀者什么有價(jià)值的知識(shí)或信息,也可以是給讀者帶來的啟發(fā)。比如:“隨著對(duì)不穩(wěn)定型上頸椎結(jié)核性骨折的研究不斷深入,探求一種既能實(shí)現(xiàn)理想的復(fù)位固定,又可保留寰樞椎關(guān)節(jié)活動(dòng)功能的內(nèi)固定方法是我們當(dāng)前研究的方向?!?/p>
人工智能的弊端論文篇五
十九世紀(jì)末到二十世紀(jì)以來科學(xué)技術(shù)得到了飛速的發(fā)展,在這個(gè)時(shí)期里很多學(xué)科都得到了提高和補(bǔ)充,學(xué)科間的關(guān)系也越來越密切,一系列利好因素的共同作用下,機(jī)械電子工程學(xué)得以產(chǎn)生并發(fā)展。
顧名思義,機(jī)械電子工程就是電子信息技術(shù)與傳統(tǒng)的機(jī)械技術(shù)的一個(gè)結(jié)合,充分的發(fā)揮了兩個(gè)不同學(xué)科在技術(shù)上的共同點(diǎn),達(dá)到了物理上和信息功能上的連結(jié)。這是一個(gè)跨學(xué)科的嘗試,更是一個(gè)挑戰(zhàn),它可以將所有的機(jī)械工程信息進(jìn)行分析,達(dá)到智能化的目的。雖然依舊屬于機(jī)械工程行業(yè),但是顯然已經(jīng)擁有了自己的特點(diǎn)。
1)不同的設(shè)計(jì)方法
機(jī)械電子工程與傳統(tǒng)工程相比,已經(jīng)不是單一的一個(gè)學(xué)科,它已經(jīng)發(fā)展成為了有很多技術(shù)和科學(xué)共同組成的一個(gè)新學(xué)科,并且在工程設(shè)計(jì)上充分的吸納了信息技術(shù)、機(jī)械技術(shù),并為了使工程的各模塊結(jié)構(gòu)布局更加完整,設(shè)計(jì)人員一般都會(huì)采取自上而下的設(shè)計(jì)方法。
2)產(chǎn)品上的差異
2機(jī)械電子工程的發(fā)展過程
機(jī)械電子工程學(xué)并不是一個(gè)孤立的學(xué)科,它與很多工程和技術(shù)都有著密切的聯(lián)系,是機(jī)械工程學(xué)科和電子信息工程、智能管理技術(shù)共同作用下,形成的一個(gè)新的發(fā)展體系。在信息系統(tǒng)不斷完善的過程中,機(jī)械電子工程體系也更加完善,并日益成熟。機(jī)械電子工程學(xué)的發(fā)展歷程主要是這樣的幾個(gè)方面:
1)機(jī)械電子工程學(xué)的開端
機(jī)械電子工程學(xué)在剛起步的階段,其主要的生產(chǎn)形式是手工生產(chǎn),此時(shí)社會(huì)的生產(chǎn)能力很低,沒有充足的勞動(dòng)力資源,發(fā)展生產(chǎn)力變得異常艱辛。為了改變這樣一個(gè)窘迫的狀況,科學(xué)家進(jìn)行了大量的研究和嘗試,在一次次的失敗中,機(jī)械工程終于得到了一定的發(fā)展。
2)機(jī)械電子工程學(xué)的高速發(fā)展階段
在經(jīng)歷了起初艱難的開始階段以后,機(jī)械電子工程迎來了高速發(fā)展時(shí)期,隨著標(biāo)準(zhǔn)件生產(chǎn)在同一的流水線下得以實(shí)現(xiàn),這一時(shí)期的生產(chǎn)已經(jīng)具備了一定的標(biāo)準(zhǔn),并且極大地刺激了生產(chǎn)力的發(fā)展。但是這樣的生產(chǎn)模式并不是沒有缺點(diǎn)的,生產(chǎn)的過程過于標(biāo)準(zhǔn),使產(chǎn)品過于單一,滿足不了不同用戶和社會(huì)不斷變化的需要。
3)機(jī)械電子工程的成熟階段
經(jīng)過了多年的發(fā)展,機(jī)械電子工程產(chǎn)業(yè)已經(jīng)形成了一定的體系,并與現(xiàn)代化科學(xué)技術(shù)有了一定的融合,進(jìn)入了現(xiàn)代機(jī)械電子發(fā)展階段。歸根結(jié)底,機(jī)械電子工程的發(fā)展是為了滿足社會(huì)工作和生活的需要,現(xiàn)代社會(huì)工作節(jié)奏加快,生產(chǎn)也更加靈活,對(duì)機(jī)械電子工程提出了更高的要求,機(jī)械電子行業(yè)的特點(diǎn)是柔性制造,這也為機(jī)械電子同信息化社會(huì)的融合創(chuàng)造了條件。
3人工智能在機(jī)械電子工程的運(yùn)用
人類社會(huì)的發(fā)展始終離不開能源、信息。在古代,生產(chǎn)力水平及其低下,人們對(duì)信息的獲取能力也十分有限,能源和物質(zhì)是維持人類生產(chǎn)生活的必需品。長(zhǎng)久以來,人類往往都沒有認(rèn)識(shí)到信息的作用。隨著人類文明的不斷發(fā)展,生產(chǎn)力水平的不斷提高人類對(duì)信息的概念逐漸了解,同時(shí)也產(chǎn)生了對(duì)信息的需求,信息的價(jià)值逐漸被發(fā)現(xiàn)。
隨著電子計(jì)算機(jī)技術(shù)的逐漸應(yīng)用,人類的生活發(fā)生了質(zhì)的變化,人類社會(huì)至此進(jìn)入了高科技的信息時(shí)代。人工智能系統(tǒng)作為電子技術(shù)發(fā)展的產(chǎn)物,在近兩年出現(xiàn),并且迅速的應(yīng)用到了機(jī)械電子工程領(lǐng)域。
電子信息技術(shù)在方便快捷的同時(shí),也存在一定的弊端,比如缺乏一定的穩(wěn)定性,這使機(jī)械信息系統(tǒng)在輸入和輸出上就會(huì)變得十分混亂,并且不利于描述。以往的描述方法一般包括:建設(shè)規(guī)則庫、推導(dǎo)數(shù)學(xué)方程、學(xué)習(xí)并生成知識(shí)。
一般的解析方法都比較精密、準(zhǔn)確,但是應(yīng)用范圍十分有限,只能應(yīng)用于比較簡(jiǎn)單的系統(tǒng),而對(duì)比較繁瑣復(fù)雜的體系,卻不能夠提供完整的解析式,必須依靠人工操作才能實(shí)現(xiàn)。隨著人們對(duì)系統(tǒng)的要求越來越高,處理的信息變得復(fù)雜多樣,信息的內(nèi)容不僅包括數(shù)據(jù)的形式,也出現(xiàn)了數(shù)字信息和語言信息等新形式。為了適應(yīng)時(shí)代形勢(shì)的發(fā)展,人工智能處理方式以其復(fù)雜、不確定的特點(diǎn)成為了解析數(shù)學(xué)的新方法、新手段。
人工智能處理體系一般是這樣進(jìn)行分類的,模糊推理體系和神經(jīng)網(wǎng)絡(luò)體系。這兩個(gè)系統(tǒng)存在著聯(lián)系,也有所不同。模糊推理系統(tǒng)一般通過對(duì)大腦功能進(jìn)行模擬,從而分析出語言的信號(hào);而神經(jīng)網(wǎng)絡(luò)系統(tǒng)模擬的卻是大腦的結(jié)構(gòu),通過對(duì)數(shù)字信號(hào)的處理得出參考數(shù)值。
1)模糊推理體系和神經(jīng)網(wǎng)絡(luò)體系的相同點(diǎn)
我們可以說,模糊推理體系和神經(jīng)網(wǎng)絡(luò)體系都是利用網(wǎng)絡(luò)結(jié)構(gòu),然后在某一精度上趨近一個(gè)函數(shù)。
2)模糊推理體系和神經(jīng)網(wǎng)絡(luò)體系的不同點(diǎn)
(1)映射方式
在映射方式的運(yùn)用方面,模糊推理系統(tǒng)運(yùn)用域和域之間的映射,神經(jīng)網(wǎng)絡(luò)體系則是點(diǎn)到點(diǎn)的映射。
(2)物理性質(zhì)
模糊推理體系與神經(jīng)網(wǎng)絡(luò)體系相比擁有更明確的物理性質(zhì)。
(3)計(jì)算量和計(jì)算精度
模糊推理體系沒有固定的連接,計(jì)算量和計(jì)算精度都十分有限,神經(jīng)網(wǎng)絡(luò)體系則很好的克服了這一點(diǎn),在輸入的過程中使每個(gè)神經(jīng)元相互作用,大大的提高了計(jì)算量,并且能夠保證較高的輸出精度。
(4)儲(chǔ)存方式
在儲(chǔ)存信息的過程中,模糊推理體系采用的是比較規(guī)則的方式,神經(jīng)網(wǎng)絡(luò)體系則是利用分布式對(duì)信息進(jìn)行儲(chǔ)存。
社會(huì)作為一個(gè)不斷發(fā)展變化的有機(jī)結(jié)合體,單一的處理手段是無法滿足人類發(fā)展的需要的。為此,智能系統(tǒng)研究專家開始了對(duì)綜合智能系統(tǒng)的開發(fā)與探索。綜合智能系統(tǒng)是對(duì)以往人工智能體系的繼承和發(fā)展,它能夠融合以往兩種智能體系的優(yōu)點(diǎn),使數(shù)學(xué)描述變得更加全面。
4結(jié)論
機(jī)械電子工程產(chǎn)業(yè)發(fā)展是我國(guó)工業(yè)信息化過程的一個(gè)寫照,在工程制造的過程中充分利用現(xiàn)代化科學(xué)技術(shù)的巨大優(yōu)勢(shì),實(shí)現(xiàn)了生產(chǎn)力的提高,滿足社會(huì)發(fā)展的需求,機(jī)械電子工程和人工智能和完美結(jié)合實(shí)現(xiàn)了不同學(xué)科之間的融合,為工業(yè)信息化的發(fā)展提供了成功經(jīng)驗(yàn)和新思路。
人工智能的弊端論文篇六
隨著數(shù)字智能技術(shù)的不斷進(jìn)步,人工智能技術(shù)在電氣自動(dòng)化控制系統(tǒng)中的應(yīng)用也日益廣泛。因此,在電氣自動(dòng)化控制系統(tǒng)中,為提高生產(chǎn)力水平、方便人們?nèi)粘I?,需要加大?duì)人工智能技術(shù)的應(yīng)用研究,實(shí)現(xiàn)自動(dòng)化體系的升級(jí)和發(fā)展需要。本文主要以人工智能技術(shù)的應(yīng)用理論和現(xiàn)狀入手,具體介紹了電氣自動(dòng)化控制中人工智能技術(shù)的應(yīng)用對(duì)策,最終提高經(jīng)濟(jì)效益和社會(huì)效益。
電氣自動(dòng)化是一門實(shí)踐性較強(qiáng)的應(yīng)用性科學(xué),主要研究電氣系統(tǒng)的運(yùn)行控制和研發(fā)。人類社會(huì)文明發(fā)展至今在科學(xué)技術(shù)方面的最大進(jìn)步,主要是實(shí)現(xiàn)了系統(tǒng)中機(jī)械設(shè)備運(yùn)行和控制的自動(dòng)化和智能化。研究人工智能技術(shù)在電氣自動(dòng)化控制中的應(yīng)用,有助于推動(dòng)電氣系統(tǒng)自動(dòng)化的進(jìn)一步發(fā)展,實(shí)現(xiàn)系統(tǒng)運(yùn)行的智能化,使得其更加安全穩(wěn)定,最終提高企業(yè)的生產(chǎn)效率,提高市場(chǎng)競(jìng)爭(zhēng)力。
人工智能是一門新型的計(jì)算機(jī)科學(xué),介于自然科學(xué)和社會(huì)科學(xué)邊緣之間,研究對(duì)象主要是智能搜索、邏輯程序設(shè)計(jì)、自然語言問題和感知問題等。人工智能技術(shù)的本質(zhì)就是模擬人類思維進(jìn)行信息編碼的過程,主要是結(jié)構(gòu)模仿和功能模擬兩種思維模擬方式。前者模擬形式主要是對(duì)人類大腦機(jī)制進(jìn)行模擬,制造出類似人腦的機(jī)器設(shè)備;后者模擬主要是從人腦的功能角度出發(fā),對(duì)人類大腦思維功能進(jìn)行模擬。較為成功的典型事件就是現(xiàn)代的電子信息計(jì)算機(jī),順利地模擬人類大腦思維進(jìn)行信息編碼。
人工智能不是人的智能,更不是對(duì)人的智力功能的超越,其不同于人類大腦運(yùn)行的顯著特征主要有四個(gè)方面:是機(jī)械的無意識(shí)的物理過程;無社會(huì)性;不具備人類意識(shí)的創(chuàng)造力;功能是在人類大腦思維之后產(chǎn)生的。應(yīng)用人工智能技術(shù)在電氣自動(dòng)化控制系統(tǒng)中,可以極大地節(jié)省人力資源,降低成本。同時(shí),不控制目標(biāo)模型就可以提高操作的準(zhǔn)確度,降低誤差。此外,這樣還能保證產(chǎn)品的規(guī)范,提高性能。
近年來,人工智能技術(shù)得到了公眾的高度重視,大多數(shù)的專業(yè)性高校和科研單位都對(duì)其在電氣自動(dòng)化系統(tǒng)中的應(yīng)用開展了眾多工作,現(xiàn)下的人工智能技術(shù)主要應(yīng)用在電氣設(shè)備的設(shè)計(jì)、事故及故障診斷和電氣控制過程中的監(jiān)控預(yù)警等工作。首先,在電氣自動(dòng)化系統(tǒng)中電氣設(shè)備的設(shè)計(jì)方面,設(shè)備的結(jié)構(gòu)設(shè)計(jì)較為繁瑣復(fù)雜,涉及面較廣,要求操作設(shè)計(jì)人員具備較多的實(shí)踐經(jīng)驗(yàn)。其次,在事故及故障診斷方面,人工智能技術(shù)可以利用模糊邏輯和神經(jīng)網(wǎng)絡(luò)等發(fā)揮優(yōu)勢(shì),做好預(yù)警監(jiān)控工作。最后,在電氣控制過程中應(yīng)用人工智能技術(shù),主要依靠神經(jīng)網(wǎng)絡(luò)、模糊控制和專家系統(tǒng)三種方式,其中模糊控制應(yīng)用較為普遍,以ai控制為主。
根據(jù)上部分分析的人工智能技術(shù)在電氣自動(dòng)化控制系統(tǒng)的應(yīng)用現(xiàn)狀,可知為實(shí)現(xiàn)電氣自動(dòng)化控制系統(tǒng)運(yùn)行的高效性、提高人工智能技術(shù)的應(yīng)用性,對(duì)策主要有以下三個(gè)方面:應(yīng)用于電氣設(shè)備設(shè)計(jì)、應(yīng)用于事故及故障診斷和應(yīng)用于電氣控制過程。
3.1 應(yīng)用于電氣設(shè)備設(shè)計(jì)
根據(jù)諸多電氣工程的實(shí)踐證明,只有具備各相關(guān)專業(yè)的學(xué)科知識(shí)和技藝才能真正實(shí)現(xiàn)電氣自動(dòng)化控制系統(tǒng)的高效性,使其穩(wěn)定運(yùn)行。在電氣設(shè)備的設(shè)計(jì)中應(yīng)用人工智能技術(shù),可以簡(jiǎn)化工作,降低人力成本。因此,企業(yè)擁有一批素質(zhì)高的設(shè)計(jì)團(tuán)隊(duì),這是電氣自動(dòng)化控制系統(tǒng)實(shí)現(xiàn)高效性的關(guān)鍵之一。此外,企業(yè)需要采取先進(jìn)的人工智能技術(shù)進(jìn)行電氣設(shè)備的設(shè)計(jì)工作,尤其是結(jié)構(gòu)設(shè)計(jì)工作。具體來說,人工智能技術(shù)在進(jìn)行電氣設(shè)備設(shè)計(jì)時(shí)主要是采用遺傳算法升級(jí)計(jì)算機(jī)系統(tǒng),全面提高產(chǎn)品的研發(fā)、設(shè)計(jì)和生產(chǎn),優(yōu)化設(shè)計(jì)產(chǎn)品。
3.2 應(yīng)用于事故及故障診斷
電氣故障診斷,指的是對(duì)電氣自動(dòng)化控制系統(tǒng)中機(jī)械設(shè)備的先關(guān)信息進(jìn)行確定,判斷技術(shù)和運(yùn)行狀況是否正常,如果出現(xiàn)異常,可以及時(shí)確定故障的具體內(nèi)容和性質(zhì)部位,找出故障原因并提出解決對(duì)策。而在電氣設(shè)備運(yùn)行時(shí),不確定因素較多,使得系統(tǒng)容易出現(xiàn)各種類型的故障和事故,如果無法及時(shí)確定故障的性質(zhì)和部位,將會(huì)給員工的人身安全帶來威脅,企業(yè)也會(huì)承受較大的經(jīng)濟(jì)損失。因此,及時(shí)判斷分析事故并做好故障診斷工作,是一項(xiàng)至關(guān)重要的工作。可以在傳統(tǒng)的電氣控制系統(tǒng)中,采取一些新型的.人工智能技術(shù)進(jìn)行診斷。比如說,在診斷變壓器的故障中,我們可以引入人工智能技術(shù)進(jìn)行診斷,在節(jié)省人力物力的同時(shí)保證診斷的精確性,也可以在對(duì)發(fā)動(dòng)機(jī)和發(fā)電機(jī)等電氣機(jī)械設(shè)備進(jìn)行事故診斷時(shí)引入人工智能技術(shù),提高精確度,以達(dá)到良好的工作效果,實(shí)現(xiàn)企業(yè)的經(jīng)濟(jì)效益。
3.3 應(yīng)用于電氣控制過程
人工智能技術(shù)在電氣自動(dòng)化控制系統(tǒng)中起著關(guān)鍵性作用,是電氣行業(yè)中的重要部分。實(shí)現(xiàn)電氣自動(dòng)化控制的人工智能化,有助于降低工作成本,提高工作效率,實(shí)現(xiàn)資源優(yōu)化和最佳配置。在傳統(tǒng)的電氣自動(dòng)化控制過程中,由于過程的繁瑣復(fù)雜操作人員容易出現(xiàn)錯(cuò)誤,而采取人工智能化技術(shù)則可以避免這些人為錯(cuò)誤。人工智能技術(shù)主要采取神經(jīng)系統(tǒng)的控制、專家系統(tǒng)的高效控制和模糊控制?,F(xiàn)在最常用的技術(shù)方式是模糊控制,通過模糊控制借助直流電和交流電的傳動(dòng)最終實(shí)現(xiàn)電氣自動(dòng)化控制系統(tǒng)的智能化控制。模糊控制可以具體分為surgeno和mamdan兩種表現(xiàn)形式,前者是后者的特殊情況,兩者均用來調(diào)速控制。
在電氣領(lǐng)域里,人工智能技術(shù)可以運(yùn)用到日常操作中。我們可以利用家庭電腦實(shí)現(xiàn)對(duì)電氣自動(dòng)化控制系統(tǒng)的遠(yuǎn)程操作控制。具體來說,是通過采用人工智能技術(shù)預(yù)先設(shè)計(jì)好的既定程序控制操作過程,實(shí)現(xiàn)設(shè)備智能化,及時(shí)掌控全局。
綜上所述,電氣自動(dòng)化控制中的人工智能技術(shù)的應(yīng)用研究,既能實(shí)現(xiàn)工作效率的提高,還能降低運(yùn)行成本,更好地實(shí)現(xiàn)電氣系統(tǒng)的自動(dòng)化智能化控制。此外,隨著科學(xué)技術(shù)的飛速發(fā)展,人工智能技術(shù)在電氣自動(dòng)化控制中的應(yīng)用面臨著巨大的機(jī)遇和挑戰(zhàn),需要學(xué)者們不斷研究和完善,使其得到更好的應(yīng)用。
人工智能的弊端論文篇七
人工智能是一門交叉性的前沿學(xué)科,也是一門極富挑戰(zhàn)性的科學(xué)。人工智能技術(shù)和理論在一定程度上代表了信息技術(shù)的發(fā)展方向,所以對(duì)其人才的培養(yǎng)也是重中之重。
人工智能;信息技術(shù);智能教育
人工智能是多種學(xué)科相互滲透而發(fā)展起來的交叉性學(xué)科,其涉及計(jì)算機(jī)科學(xué)、信息論、數(shù)學(xué)、哲學(xué)和認(rèn)知科學(xué)、心理學(xué)、控制論、不定性論、神經(jīng)生理學(xué)、語言學(xué)等多種學(xué)科。隨著科技的飛速發(fā)展和人工智能技術(shù)應(yīng)用的不斷擴(kuò)延,其涉及的學(xué)科領(lǐng)域?qū)⒂鷣碛啵押腿藗兊膶W(xué)習(xí)、生活息息相關(guān),時(shí)代和社會(huì)需要此方面的大量人才。在高中信息技術(shù)課中開設(shè)人工智能初步模塊是十分必要的,本文擬從其發(fā)展現(xiàn)狀、存在問題等幾個(gè)方面對(duì)我國(guó)高中信息課程中人工智能教育做一下探討。
(1)人工智能定義
人工智能(ai,artificial intelligence)是計(jì)算機(jī)科學(xué)的一個(gè)分支,己成為一門具有廣泛應(yīng)用的交叉學(xué)科和前沿學(xué)科。它研究如何用計(jì)算機(jī)模擬人腦所從事的推理、證明、識(shí)別、理解、設(shè)計(jì)、學(xué)習(xí)、規(guī)劃以及問題求解等思維活動(dòng),來解決人類專家才能解決的復(fù)雜問題,例如咨詢、探測(cè)、診斷、策劃等。
(2)開設(shè)人工智能課程的意義
現(xiàn)實(shí)世界的問題可以按照結(jié)構(gòu)化程度劃分成三個(gè)層次:結(jié)構(gòu)化問題,是能用形式化(或稱公式化)方法描述和求解的一類問題;非結(jié)構(gòu)化問題難以用確定的形式來描述,主要根據(jù)經(jīng)驗(yàn)來求解;半結(jié)構(gòu)化問題則介于上述兩者之間。
將人工智能課程引入到我國(guó)現(xiàn)行的教育中,可以讓學(xué)生在了解人工智能基本語言特征、理解智能化問題求解的基本策略過程中,體驗(yàn)、認(rèn)識(shí)人工智能技術(shù)的同時(shí)獲得對(duì)非結(jié)構(gòu)化、半結(jié)構(gòu)化問題解決過程的了解,從而使學(xué)生了解計(jì)算機(jī)解決問題方法的多樣性,培養(yǎng)學(xué)生的多種思維方式,更好的解決現(xiàn)實(shí)問題。
目前,該學(xué)科的教育正處于摸索階段,由于中學(xué)信息技術(shù)師資水平、學(xué)校硬軟件設(shè)備等條件的制約,我國(guó)尚未在中學(xué)專門開設(shè)獨(dú)立的人工智能類課程,internet上與人工智能教育相關(guān)的中文信息資源也十分貧乏,在教學(xué)環(huán)境上大致存在以下問題:
(一)教學(xué)條件參差不齊
開設(shè)好人工智能課程,就要求安排更多的實(shí)踐課程和活動(dòng)來增強(qiáng)課程的趣味性,讓廣大師生切實(shí)體會(huì)到人工智能對(duì)我們生活的影響。這些活動(dòng)大部分要求上機(jī)操作或利用網(wǎng)絡(luò)資源來學(xué)習(xí)交流,這就對(duì)教學(xué)條件提出了較高的要求,尤其是一些偏遠(yuǎn)農(nóng)村、條件相對(duì)落后的中學(xué)在開設(shè)人工智能課程上存在很大困難。
(1)對(duì)硬件性能的要求
人工智能課程中有較多的實(shí)踐課程需要老師和學(xué)生利用網(wǎng)絡(luò)資源,使用計(jì)算機(jī)進(jìn)行操作。這就需要學(xué)校配備計(jì)算機(jī)網(wǎng)絡(luò)教學(xué)機(jī)房,若其性能較差,會(huì)延長(zhǎng)學(xué)生在線進(jìn)行人機(jī)對(duì)話的時(shí)間,一旦遇到網(wǎng)絡(luò)堵塞,可能連網(wǎng)頁都打不開,這不僅浪費(fèi)了僅有的'上課時(shí)間,而且大大降低了學(xué)生的學(xué)習(xí)興趣。
(2)對(duì)軟件性能的要求
為了降低成本,學(xué)校可以利用互聯(lián)網(wǎng)上提供的免費(fèi)下載軟件和免費(fèi)在線教學(xué)網(wǎng)站等進(jìn)行實(shí)踐教學(xué),可大大減少自研開發(fā)軟件和軟件維護(hù)的費(fèi)用。但一旦遇到網(wǎng)絡(luò)不通、網(wǎng)絡(luò)擁擠或在線網(wǎng)站停止服務(wù)等情況,將無法使用網(wǎng)絡(luò)資源進(jìn)行教學(xué),可見,軟件的依賴性較強(qiáng)也存在很大的問題。
(二)對(duì)人工智能科學(xué)的認(rèn)識(shí)不足
(1)學(xué)生的認(rèn)識(shí)誤區(qū)
提及人工智能,給大多數(shù)學(xué)生的感覺是一門神秘、遙不可及的科學(xué)。很多學(xué)生認(rèn)為人工智能技術(shù)是很高深的科學(xué),離我們現(xiàn)實(shí)生活有一定距離,研究和接觸這門科學(xué)是少數(shù)科學(xué)家的事情,從而對(duì)該科學(xué)的關(guān)注程度不高。其實(shí),人工智能學(xué)科是一門漸漸成長(zhǎng)的科學(xué),它將應(yīng)用在我們生活的方方面面。我們應(yīng)在教學(xué)中讓學(xué)生多去體驗(yàn)人工智能的魅力所在,吸引更多對(duì)該學(xué)科感興趣的人去研究和使用它。
(2)教師對(duì)人工智能學(xué)科開設(shè)存在偏見
一些從事該學(xué)科教學(xué)的教師沒有接觸過人工智能方面的知識(shí),在接觸過后被其中深?yuàn)W難理解的知識(shí)所嚇倒,認(rèn)為即使開設(shè)了這門課程也不易被同學(xué)們所接受;而一些在大學(xué)接觸過人工智能課程的教師則認(rèn)為,其理論枯燥乏味,知識(shí)內(nèi)容艱深,不適合放在高中開設(shè)。
(三)一線教師經(jīng)驗(yàn)不足
在我國(guó)大學(xué)教育中,開展人工智能專業(yè)課程的大學(xué)為數(shù)不多,師范類院校更是少之又少。從事人工智能領(lǐng)域的專業(yè)人才輸出少,所以,缺乏具備一定知識(shí)結(jié)構(gòu)、有專業(yè)素養(yǎng)的教師來擔(dān)任高中信息技術(shù)課中人工智能課程的教育工作。絕大多數(shù)的一線教師并沒有接受過人工智能課程的專業(yè)培訓(xùn),在授課內(nèi)容上的著重點(diǎn)掌握不好,教學(xué)目標(biāo)不夠明確;在授課形式上也沒有前人的經(jīng)驗(yàn)可尋,這就給一線教師帶來了極大的挑戰(zhàn)。
(一)加強(qiáng)軟、硬件建設(shè)
在學(xué)校條件允許的條件下,應(yīng)加大硬件設(shè)施的投入,改善網(wǎng)絡(luò)傳遞信息的效率,同時(shí)加強(qiáng)軟件資源建設(shè)。鼓勵(lì)師生上網(wǎng)搜索更多適合ai教學(xué)的網(wǎng)站,教師應(yīng)整理出和ai相關(guān)的趣味小故事、電影、光盤等和教材相關(guān)的素材,以便更好的配合硬件教學(xué)。
(二)端正認(rèn)識(shí),增強(qiáng)支持
作為教師要樹立對(duì)高中人工智能選修課程的正確認(rèn)識(shí)。通過對(duì)課標(biāo)中規(guī)定的相關(guān)內(nèi)容的深入了解和學(xué)習(xí),克服對(duì)人工智能的神秘感或恐懼感,理性而客觀的看待人工智能技術(shù)及其應(yīng)用,明確在高中開設(shè)該課程的目的。同時(shí),教師也不能因?yàn)樵撜n程的“選修”性質(zhì),從而輕視該課程的作用。
作為學(xué)生不應(yīng)該僅僅看見這門課程的娛樂趣味性,應(yīng)把一些重要的技術(shù)理論知識(shí)重視起來,不能過分的放松自己而偏離了我們的教學(xué)目標(biāo)。家長(zhǎng)也應(yīng)該支持和贊同學(xué)生選擇該課程,不能應(yīng)認(rèn)識(shí)不到這門課程的作用、怕耽誤學(xué)生主干課的學(xué)習(xí)而反對(duì)學(xué)生積極參與。
校方領(lǐng)導(dǎo)也不應(yīng)條件限制就輕易放棄這門課程的開設(shè),應(yīng)給予積極的配合。社會(huì)各界也應(yīng)加強(qiáng)輿論與正確引導(dǎo),讓更多的人們認(rèn)識(shí)人工智能并予以肯定。
總之,人工智能是一門逐漸成長(zhǎng)的科學(xué),開設(shè)好該課程需要廣大教育工作者和校方領(lǐng)導(dǎo)不斷努力,互相交流,共同克服困難。
參考文獻(xiàn):
[1]張劍平.人工智能技術(shù)與“問題解決”[j].中小學(xué)信息技術(shù)教育,2003(10).
[2]段東輝.淺談信息技術(shù)課程中人工智能教育[j].新鄉(xiāng)教育學(xué)院學(xué)報(bào),第19卷第二期2006,6.
[3]教育部.普通高中技術(shù)課程標(biāo)準(zhǔn)(實(shí)驗(yàn)稿).人民教育出版社,2003年4月.
[4]張家華,張劍平.開展高中人工智能教學(xué)存在的問題及對(duì)策[j].
人工智能的弊端論文篇八
人工智能(artificialintelligence),英文縮寫為ai,也稱機(jī)器智能?!叭斯ぶ悄堋币辉~最初是在1956年的dartmouth學(xué)會(huì)上提出的。它是計(jì)算機(jī)科學(xué)、控制論、信息論、神經(jīng)生理學(xué)、心理學(xué)、語言學(xué)等多種學(xué)科互相滲透而發(fā)展起來的一門綜合性學(xué)科。從計(jì)算機(jī)應(yīng)用系統(tǒng)的角度出發(fā),人工智能是研究如何制造智能機(jī)器或智能系統(tǒng)來模擬人類智能活動(dòng)的能力,以延伸人們智能的科學(xué)。
人工智能是計(jì)算機(jī)科學(xué)的一個(gè)分支,它企圖了解智能的實(shí)質(zhì),并生產(chǎn)出一種新的能與人類智能相似的方式做出反應(yīng)的智能機(jī)器。人工智能的發(fā)展史是和計(jì)算機(jī)科學(xué)與技術(shù)的發(fā)展史聯(lián)系在一起的,目前能夠用來研究人工智能的主要物質(zhì)手段以及能夠?qū)崿F(xiàn)人工智能技術(shù)的機(jī)器就是計(jì)算機(jī),人工智能在21世紀(jì)必將為發(fā)展國(guó)民經(jīng)濟(jì)和改善人類生活做出更大的貢獻(xiàn)。
事物的發(fā)展都是曲折的,人工智能的發(fā)展也是如此。人工智能的發(fā)展歷程大致可以劃分為以下五個(gè)階段:
第一階段:20世紀(jì)50年代,人工智能的興起和冷落。人工智能概念在1956年首次提出后,相繼出現(xiàn)了一批顯著的成果,如機(jī)器定理證明、跳棋程序、通用問題s求解程序、lisp表處理語言等。但是由于消解法推理能力有限以及機(jī)器翻譯等的失敗,使人工智能走入了低谷。這一階段的特點(diǎn)是重視問題求解的方法,而忽視了知識(shí)的重要性。
第二階段:60年代末到70年代,專家系統(tǒng)出現(xiàn),使人工智能研究出現(xiàn)新高潮。dendral化學(xué)質(zhì)譜分析系統(tǒng)、mycin疾病診斷和治療系統(tǒng)、prospectior探礦系統(tǒng)、hearsay—ii語音理解系統(tǒng)等專家系統(tǒng)的研究和開發(fā),將人工智能引向了實(shí)用化。并且,1969年成立了國(guó)際人工智能聯(lián)合會(huì)議(internationaljointconferencesonartificialintelligence即ijcai)。
第三階段:80年代,隨著第五代計(jì)算機(jī)的研制,人工智能得到了飛速的發(fā)展。日本在1982年開始了“第五代計(jì)算機(jī)研制計(jì)劃”,即“知識(shí)信息處理計(jì)算機(jī)系統(tǒng)kips”,其目的是使邏輯推理達(dá)到數(shù)值運(yùn)算那么快。雖然此計(jì)劃最終失敗,但它的開展形成了一股研究人工智能的熱潮。
第四階段:80年代末,神經(jīng)網(wǎng)絡(luò)飛速發(fā)展,。1987年,美國(guó)召開第一次神經(jīng)網(wǎng)絡(luò)國(guó)際會(huì)議,宣告了這一新學(xué)科的誕生。此后,各國(guó)在神經(jīng)網(wǎng)絡(luò)方面的投資逐漸增加,神經(jīng)網(wǎng)絡(luò)迅速發(fā)展起來。
第五階段:90年代,人工智能出現(xiàn)新的研究高潮。由于網(wǎng)絡(luò)技術(shù)特別是國(guó)際互連網(wǎng)技術(shù)的發(fā)展,人工智能開始由單個(gè)智能主體研究轉(zhuǎn)向基于網(wǎng)絡(luò)環(huán)境下的分布式人工智能研究。不僅研究基于同一目標(biāo)的分布式問題求解,而且研究多個(gè)智能主體的多目標(biāo)問題求解,將人工智能更面向?qū)嵱?。另外,由于hopfield多層神經(jīng)網(wǎng)絡(luò)模型的提出,使人工神經(jīng)網(wǎng)絡(luò)研究與應(yīng)用出現(xiàn)了欣欣向榮的景象。
1、人工智能在管理系統(tǒng)中的應(yīng)用
人工智能應(yīng)用于企業(yè)管理的意義主要不在于提高效率,而是用計(jì)算機(jī)實(shí)現(xiàn)人們非常需要做,但工業(yè)工程信息技術(shù)是靠人工卻做不了或是很難做到的事情。把人工智能應(yīng)用于企業(yè)管理中,以數(shù)據(jù)管理和處理為中心,圍繞企業(yè)的核心業(yè)務(wù)和主導(dǎo)流程建立若干個(gè)主題數(shù)據(jù)庫,而所有的應(yīng)用系統(tǒng)應(yīng)該圍繞主題數(shù)據(jù)庫來建立和運(yùn)行。也就是說,將企業(yè)各部門的數(shù)據(jù)進(jìn)行統(tǒng)一集成管理,搭建人工智能的應(yīng)用平臺(tái),使之成為企業(yè)管理與決策中的關(guān)鍵因子,這些正體現(xiàn)了人工智能在企業(yè)管理中的巨大價(jià)值。
2、人工智能在工程領(lǐng)域中的應(yīng)用
人工智能在地質(zhì)勘探、石油化工等工程領(lǐng)域也發(fā)揮著非常重要的作用。早在1978年,美國(guó)斯坦福國(guó)際研究所就研發(fā)制成礦藏勘探和評(píng)價(jià)專家系統(tǒng)“prospector”,該系統(tǒng)用于勘探評(píng)價(jià)、區(qū)域資源估值和鉆井井位選擇等,是工程領(lǐng)域的首個(gè)人工智能專家系統(tǒng),其發(fā)現(xiàn)了一個(gè)鉬礦沉積,價(jià)值超過1億美元。
3、人工智能在技術(shù)研究中的應(yīng)用
人工智能在電子技術(shù)領(lǐng)域的應(yīng)用可謂由來已久。隨著網(wǎng)絡(luò)的迅速發(fā)展,網(wǎng)絡(luò)技術(shù)的安全已經(jīng)成了人們關(guān)心的重點(diǎn),因此必須在傳統(tǒng)技術(shù)的基礎(chǔ)上進(jìn)行網(wǎng)絡(luò)安全技術(shù)的`改進(jìn)和變更,大力發(fā)展數(shù)據(jù)挖掘技術(shù)、人工免疫技術(shù)等高效的ai技術(shù),開發(fā)更高級(jí)的ai通用與專用語言和應(yīng)用環(huán)境以及開發(fā)專用機(jī)器,而人工智能技術(shù)則為其提供了一定的可能。
人工智能的近期研究目標(biāo)在于建造智能計(jì)算機(jī),用以代替人類去從事各種復(fù)雜的腦力勞動(dòng)。正是根據(jù)這一近期研究目標(biāo),人們才把人工智能理解為計(jì)算機(jī)科學(xué)的一個(gè)分支。當(dāng)然,人工智能還有它的遠(yuǎn)期研究目標(biāo),即探究人類智能和機(jī)器智能的基本原理,研究用自動(dòng)機(jī)(automata)模擬人類的思維過程和智能行為。這個(gè)長(zhǎng)期目標(biāo)遠(yuǎn)遠(yuǎn)超出計(jì)算機(jī)科學(xué)的范疇,幾乎涉及自然科學(xué)和社會(huì)科學(xué)的所有學(xué)科。如今,人工智能已經(jīng)進(jìn)入了21世紀(jì),其必將為發(fā)展國(guó)民經(jīng)濟(jì)和改善人類生活做出更大的貢獻(xiàn)。但是,從人工智能目前的發(fā)展現(xiàn)狀來看,其研究也存在一定的問題,這些主要表現(xiàn)在以下三個(gè)方面:
1、宏觀與微觀隔離
一方面是哲學(xué)、認(rèn)知科學(xué)、思維科學(xué)和心理學(xué)等學(xué)科所研究的智能層次太高、太抽象;另一方面是人工智能邏輯符號(hào)、神經(jīng)網(wǎng)絡(luò)和行為主義所研究的智能層次太低。這兩方面之間相距太遠(yuǎn),中間還有許多層次尚待研究,目前還無法把宏觀與微觀有機(jī)地結(jié)合起來和相互滲透。
2、全局與局部割裂
人工智能是腦系統(tǒng)的整體效應(yīng),有著豐富的層次和多個(gè)側(cè)面。但是,符號(hào)主義只抓住人腦的抽象思維特性;連接主義只模仿人的形象思維特性;行為主義則著眼于人類智能行為特性及其進(jìn)化過程。這就導(dǎo)致了三者之間存在著明顯的局限性。因此,必須從多層次、多因素、多維和全局觀點(diǎn)來研究人工智能,才能克服上述局限。
3、理論與實(shí)際脫節(jié)
大腦的實(shí)際工作,在宏觀上已知道不少;但是智能的千姿百態(tài),變幻莫測(cè),復(fù)雜的難以理出頭緒。在微觀上,我們對(duì)大腦的工作機(jī)制知之甚少,似是而非,這也使我們難以找出規(guī)律。在這種背景下提出的各種人工智能理論,只是部分人的主觀猜想,能在某些方面表現(xiàn)出“智能”就已經(jīng)算是相當(dāng)?shù)某晒Α?/p>
人工智能一直處于計(jì)算機(jī)技術(shù)的前沿,其研究的理論和發(fā)現(xiàn)在很大程度上將決定計(jì)算機(jī)技術(shù)的發(fā)展方向。人工智能研究與應(yīng)用雖取得了不少成果,但離全面推廣應(yīng)用還有很大的距離,還有許多問題有待解決,且需要多學(xué)科的研究專家共同合作。因此,要想從根本上了解人腦的結(jié)構(gòu)和功能,完成人工智能的研究任務(wù),就必須去尋找和建立更新的人工智能框架和理論體系,進(jìn)而為人工智能的進(jìn)一步發(fā)展奠定堅(jiān)實(shí)的理論基礎(chǔ)。我們堅(jiān)信在不久的將來,人工智能技術(shù)的應(yīng)用與發(fā)展必將會(huì)給人們的生活、工作和教育等帶來更大的影響。
人工智能的弊端論文篇九
在二十一世紀(jì)的將來,寧波市室驗(yàn)小學(xué)的中心,有一座巨大的建筑物――大本鐘。
這不是大本鐘的仿照,而是一座高科技的智能教學(xué)樓。這座樓分成一個(gè)個(gè)小小的圓,那是一個(gè)個(gè)教室。現(xiàn)在,可以讓你見識(shí)見識(shí)所謂的“高科技”啦。走上樓梯,來到四(五)班的教室門口,門口擺著好多雙鞋,不用驚奇,教室是圓的,固然得穿特別的鞋啦。在門框上,有一個(gè)指甲大小的洞,那是微形錄像頭,假如你晚到了便會(huì)自動(dòng)發(fā)信息給教師,以防你不誠懇,偷偷溜進(jìn)來。教室的中心有一大個(gè)一大個(gè)的沙包,那是學(xué)生座椅,你任憑怎么坐都可以,由于它有一個(gè)芯片,可以測(cè)你的心理,只要在聽課就可以。假如沒聽課,它就會(huì)像一把扎滿釘子的“活火山”,把你弄得苦痛不堪。教室里沒有桌子,一人一個(gè)平板電腦,教師講課的板書占一半,不用怕看不見,在為可以放大。另一半是錄像機(jī),把教師講的課全程錄像。
教室前面的講臺(tái)更牛,還有那個(gè)“大本鐘”語。數(shù)教師(包括全部教師)要拖課,那把教室建成大本鐘干嗎?鐘一響,學(xué)生倒安平穩(wěn)穩(wěn)的,教師在講臺(tái)上卻被震得象在12級(jí)地震現(xiàn)場(chǎng),五臟六腑都“蹦”了出來。假如學(xué)生很喜愛,只要在“課后評(píng)分”地方點(diǎn)一個(gè)好,教師就會(huì)留下來?!皦Α鄙系暮诎逡灿行酒?,教師不用找文件,心里一想,文件就會(huì)立即翻開。芯片還能識(shí)別人。同學(xué)假如在動(dòng),不到5秒,電腦就會(huì)自動(dòng)關(guān)機(jī),以防壞掉。黑板角落一個(gè)個(gè)白色的,上面畫有圖案的是教室按扭,一按,相應(yīng)的教室布置,讓同學(xué)們和教師不會(huì)為沒有教室而苦惱。
教室后邊的圖書角也很奇妙。想到什么書,什么書就會(huì)被推出一個(gè)角,不用我們一本本地找了。圖書角的邊上有一個(gè)生物角,透亮的玻璃里一個(gè)“動(dòng)物園”一樣的地方。每天都會(huì)引來很多奇怪的眼睛,里面除了兇狠的野獸,其它動(dòng)物幾乎都不缺。進(jìn)入邊上的“更衣室”,一套適合你的衣服就穿在了你身上,再走進(jìn)“迷你動(dòng)物園”,邊上不是透亮的了,而是一望無際的“動(dòng)物天堂”。盡管知道這是幻覺,但學(xué)是很吸引人。走近那些動(dòng)物,衣服起了作用,讓人聽懂了它們的語言,還能和它們溝通呢!
不止這些呢,節(jié)日里,“天花板”上的燈會(huì)身出五彩的`光線,平常只會(huì)在摔倒時(shí)變軟的“地板”現(xiàn)在一不當(dāng)心踩著了哪塊,“砰”地一下就會(huì)炸出五色的彩帶,立即又自動(dòng)恢復(fù),為節(jié)日增加不少樂趣。
噢,差點(diǎn)遺忘了,教室是園的,真正的目的就是不讓教師體罰學(xué)生。由于那把“沙包椅”已經(jīng)起到這個(gè)作用了啦!
這樣一個(gè)智能教室,肯定會(huì)在21世紀(jì)被創(chuàng)造出來讓我們用的。我們肯定要去研發(fā)出這種高科技的智能教室。
人工智能的弊端論文篇十
摘要:在航空業(yè)的發(fā)展中,人工智能技術(shù)起著積極的促進(jìn)作用。本文介紹了空中交通管理中的人工智能理論及方法運(yùn)用,為優(yōu)化空中交通流量管理系統(tǒng)提供理論依據(jù),更好地服務(wù)于空管系統(tǒng)。
關(guān)鍵詞:人工智能;空中交通;管理
人工智能,即artificialintelligence,是計(jì)算機(jī)科學(xué)的一個(gè)分支,研究對(duì)人的意識(shí)及思維的信息過程的模擬并對(duì)其進(jìn)行延伸和擴(kuò)展,通過了解人類智能,研究出類似的反應(yīng)的智能機(jī)器。隨著計(jì)算機(jī)技術(shù)的發(fā)展,人工智能越來越多的運(yùn)用于民航的各個(gè)方面,如飛行間隔的控制,空中流量的預(yù)測(cè),飛行沖突的調(diào)配。但隨著民航業(yè)的飛速發(fā)展,飛行流量日益增大,需要將人工智能技術(shù)有效運(yùn)用于空中交通流量管理中,建立人工智能輔助系統(tǒng),擴(kuò)大空域容量,優(yōu)化空中交通流量,提升空管秩序。
1空中交通流量管理探討
在空中交通流量管理(airtrafficflowcontrolmanagement)中,空中交通流量是指單位時(shí)間和空間通過的航空器數(shù)量。通過優(yōu)化空中交通流量,將空中交通管制服務(wù)與機(jī)場(chǎng)、航路有效結(jié)合,減少延誤,提高機(jī)場(chǎng)和空域的利用率。從時(shí)間角度上,空中交通流量管理可以分為航路流量管理和機(jī)場(chǎng)終端區(qū)流量管理兩部分,從時(shí)間上又可劃分為戰(zhàn)略流量管理,預(yù)戰(zhàn)術(shù)流量管理和戰(zhàn)術(shù)流量管理。當(dāng)航空器數(shù)量飽和時(shí)就要對(duì)航空器進(jìn)行流量控制,目前的常用的控制措施如下:1)地面等待,最主要的空中交通流量管理措施,本著地面讓空中的原則,對(duì)地面航空器的起飛時(shí)間進(jìn)行限制;2)空中等待,航空器在航路上或終端區(qū)規(guī)定的等待點(diǎn)或沒有沖突的臨時(shí)等待點(diǎn)進(jìn)行盤旋等待;3)更改航路等待,當(dāng)航路航線的容量飽和時(shí),航空器可以通過選擇其他航路航線;4)控制航路間隔,通過對(duì)航空器進(jìn)入空域的間隔進(jìn)行限制,來達(dá)到流量管理的目的,吸收部分擁擠的流量。
2人工智能的應(yīng)用研究探討
agent在人工智能的研究中,指能自主活動(dòng)的軟件或者硬件實(shí)體,目前國(guó)內(nèi)普遍翻譯為智能體。在人工智能中,設(shè)計(jì)關(guān)鍵智能體,對(duì)于研究人工智能的應(yīng)用是非常重要的。在空中交通流量管理中,設(shè)計(jì)如下關(guān)鍵智能體:航班智能體、航路智能體和機(jī)場(chǎng)終端區(qū)智能體。航班智能體的屬性有高度、速度、上升/下降率、起飛機(jī)場(chǎng)、目的地等。航班智能體可以與區(qū)域內(nèi)或終端區(qū)的其他航班智能體建立通信,通過獲取航班信息和邏輯判斷,結(jié)合周圍環(huán)境與自身狀況,指導(dǎo)控制自身行為。如果航班智能體需要做出相應(yīng)的調(diào)整如改變高度航向等,需要給上級(jí)的航路智能體或機(jī)場(chǎng)終端區(qū)智能體發(fā)出申請(qǐng),上級(jí)智能體批準(zhǔn)后,航班智能體才能采取相應(yīng)的調(diào)整,作出相應(yīng)的控制行為,才能通過交互環(huán)境反饋相應(yīng)結(jié)果。在實(shí)際工作中,這個(gè)過程是通過空中交通管制員指揮航空器實(shí)現(xiàn)的??罩薪煌ü苤茊T在實(shí)際指揮工作中,需要結(jié)合當(dāng)時(shí)的空中交通狀況和自身的經(jīng)驗(yàn)知識(shí)。航路智能體的主要屬性有航路的`高度、寬度、容量等。航路智能體需要對(duì)航班智能體進(jìn)行指揮,管理航路上的智能體,同時(shí)與其他航路智能體和機(jī)場(chǎng)終端區(qū)智能體進(jìn)行通信,對(duì)航班智能體進(jìn)入和離開航路的時(shí)機(jī)進(jìn)行協(xié)調(diào),記錄流量信息并報(bào)告給上級(jí)流量管理部門,接收上級(jí)智能體的指令。在航班智能體進(jìn)入航路之前首先要進(jìn)行容量評(píng)估。通過評(píng)估后的航班智能體回收到航路智能體發(fā)出的放行許可才能進(jìn)入航路。如果沒有通過容量評(píng)估,則要向上級(jí)智能體發(fā)送將流量限制的申請(qǐng),發(fā)布流量限制后航路就不能批準(zhǔn)航班智能體的進(jìn)入,通過減少航班智能體的數(shù)量,控制航路交通流量。機(jī)場(chǎng)終端區(qū)智能體:在實(shí)際工作中,機(jī)場(chǎng)終端區(qū)的航班管理包括管制指揮、流量控制、地面場(chǎng)面監(jiān)視、進(jìn)離場(chǎng)等,難度較大。終端區(qū)智能體(通常運(yùn)行中為塔臺(tái)管制)首先要處理所收到的信息,如天氣雷達(dá)信息、地面運(yùn)行信息和情報(bào)信息等等,結(jié)合已有知識(shí)開展機(jī)場(chǎng)的容量評(píng)估。如遇到低云低能見度、雷雨等天氣時(shí)可以調(diào)低終端區(qū)/機(jī)場(chǎng)容量,對(duì)進(jìn)入離開的航空器進(jìn)行限制。通過容量評(píng)估,塔臺(tái)會(huì)給航班智能體一個(gè)slottime,航班智能體按照塔臺(tái)的slottime起飛或降落,從而達(dá)到流量控制。如果沒有通過容量評(píng)估,則需要通過上級(jí)的智能體批準(zhǔn),發(fā)布流量控制,限制終端區(qū)的流量,通過控制進(jìn)入或離開的航空器數(shù)量達(dá)到流量限制的目的。機(jī)場(chǎng)終端區(qū)智能體(塔臺(tái))對(duì)終端區(qū)的航空器進(jìn)行管理,還需要與航路智能體和平級(jí)的終端去智能體進(jìn)行通信,對(duì)航班進(jìn)出的slottime進(jìn)行協(xié)調(diào),并將流量管理信息報(bào)告給上級(jí)流量管理部門,接收上級(jí)智能體的命令。如果出現(xiàn)擁堵機(jī)場(chǎng)終端區(qū)智能體需要通過一些措施來管理流量,如分配slottime、指揮航空器地面或空中盤旋等待。
3結(jié)論
綜上所述,以往在模擬空中交通流量進(jìn)行研究的時(shí)候,首先制定流量控制信息,再在系統(tǒng)模擬航班飛行計(jì)劃。這樣的模擬過程不能解決容量告警問題。如果流量控制不合理,只能重新設(shè)定流控信息,再次進(jìn)行模擬,因而加大模擬過程的工作量。而通過智能體的運(yùn)用,可以在模擬中不斷調(diào)整智能體來模擬空中流量,增加了模擬流量過程中的靈活性,將人工智能運(yùn)用于模擬中,借助智能體來模擬空中流量,可以更好的分析空中交通流量問題。
參考文獻(xiàn)
[2]甘鑫鑫基于多agent的空中交通協(xié)同流量管理研究[j].科學(xué)與財(cái)富,20xx(30):278.
[5]陳言俊,劉甜甜.人工智能與機(jī)器人.[6]黃昱斌.基于multi-agent的空中交通流量的探究[j].科技創(chuàng)新與應(yīng)用,20xx(14):57-57.
人工智能的弊端論文篇十一
語言文學(xué)專業(yè)學(xué)術(shù)論文具有突出的學(xué)術(shù)性,它只能把學(xué)術(shù)問題當(dāng)作自己的論題,把學(xué)術(shù)成果當(dāng)作自己的描述對(duì)象,把學(xué)術(shù)見解作為自己的核心內(nèi)容。它以學(xué)術(shù)性區(qū)別于一般的社會(huì)理論文章和政治理論文章。學(xué)術(shù)是有系統(tǒng)、較專門的學(xué)問,它往往以學(xué)科的形式表現(xiàn)出來。人們通常將學(xué)科分為自然科學(xué)和社會(huì)科學(xué)兩大類。兩大類又可逐層劃分下去。如社會(huì)科學(xué)可以分為哲學(xué)、政治、經(jīng)濟(jì)、法律、歷史、語言文學(xué)等,語言文學(xué)又可劃分出語言、文學(xué),文學(xué)又可以劃分出文學(xué)理論、文學(xué)史,文學(xué)史又可以分為中外文學(xué)史,中外文學(xué)史又可以劃階段、設(shè)專題。分工越細(xì),學(xué)問也就越專門化。但一切專門化的學(xué)問,又隸屬于它的上級(jí)學(xué)科。語言文學(xué)專業(yè)學(xué)術(shù)論文所研究的,就是這些專門化的學(xué)問。語言文學(xué)專業(yè)學(xué)術(shù)論文所要研究和解決的問題,是這些專業(yè)知識(shí)中的某一問題。
(二)獨(dú)創(chuàng)性
人工智能的弊端論文篇十二
在航空業(yè)的發(fā)展中,人工智能技術(shù)起著積極的促進(jìn)作用。本文介紹了空中交通管理中的人工智能理論及方法運(yùn)用,為優(yōu)化空中交通流量管理系統(tǒng)提供理論依據(jù),更好地服務(wù)于空管系統(tǒng)。
人工智能;空中交通;管理
人工智能,即artificialintelligence,是計(jì)算機(jī)科學(xué)的一個(gè)分支,研究對(duì)人的意識(shí)及思維的信息過程的模擬并對(duì)其進(jìn)行延伸和擴(kuò)展,通過了解人類智能,研究出類似的反應(yīng)的智能機(jī)器。隨著計(jì)算機(jī)技術(shù)的發(fā)展,人工智能越來越多的運(yùn)用于民航的各個(gè)方面,如飛行間隔的控制,空中流量的預(yù)測(cè),飛行沖突的調(diào)配。但隨著民航業(yè)的飛速發(fā)展,飛行流量日益增大,需要將人工智能技術(shù)有效運(yùn)用于空中交通流量管理中,建立人工智能輔助系統(tǒng),擴(kuò)大空域容量,優(yōu)化空中交通流量,提升空管秩序。
在空中交通流量管理(airtrafficflowcontrolmanagement)中,空中交通流量是指單位時(shí)間和空間通過的航空器數(shù)量。通過優(yōu)化空中交通流量,將空中交通管制服務(wù)與機(jī)場(chǎng)、航路有效結(jié)合,減少延誤,提高機(jī)場(chǎng)和空域的.利用率。從時(shí)間角度上,空中交通流量管理可以分為航路流量管理和機(jī)場(chǎng)終端區(qū)流量管理兩部分,從時(shí)間上又可劃分為戰(zhàn)略流量管理,預(yù)戰(zhàn)術(shù)流量管理和戰(zhàn)術(shù)流量管理。當(dāng)航空器數(shù)量飽和時(shí)就要對(duì)航空器進(jìn)行流量控制,目前的常用的控制措施如下:1)地面等待,最主要的空中交通流量管理措施,本著地面讓空中的原則,對(duì)地面航空器的起飛時(shí)間進(jìn)行限制;2)空中等待,航空器在航路上或終端區(qū)規(guī)定的等待點(diǎn)或沒有沖突的臨時(shí)等待點(diǎn)進(jìn)行盤旋等待;3)更改航路等待,當(dāng)航路航線的容量飽和時(shí),航空器可以通過選擇其他航路航線;4)控制航路間隔,通過對(duì)航空器進(jìn)入空域的間隔進(jìn)行限制,來達(dá)到流量管理的目的,吸收部分擁擠的流量。
agent在人工智能的研究中,指能自主活動(dòng)的軟件或者硬件實(shí)體,目前國(guó)內(nèi)普遍翻譯為智能體。在人工智能中,設(shè)計(jì)關(guān)鍵智能體,對(duì)于研究人工智能的應(yīng)用是非常重要的。在空中交通流量管理中,設(shè)計(jì)如下關(guān)鍵智能體:航班智能體、航路智能體和機(jī)場(chǎng)終端區(qū)智能體。航班智能體的屬性有高度、速度、上升/下降率、起飛機(jī)場(chǎng)、目的地等。航班智能體可以與區(qū)域內(nèi)或終端區(qū)的其他航班智能體建立通信,通過獲取航班信息和邏輯判斷,結(jié)合周圍環(huán)境與自身狀況,指導(dǎo)控制自身行為。如果航班智能體需要做出相應(yīng)的調(diào)整如改變高度航向等,需要給上級(jí)的航路智能體或機(jī)場(chǎng)終端區(qū)智能體發(fā)出申請(qǐng),上級(jí)智能體批準(zhǔn)后,航班智能體才能采取相應(yīng)的調(diào)整,作出相應(yīng)的控制行為,才能通過交互環(huán)境反饋相應(yīng)結(jié)果。在實(shí)際工作中,這個(gè)過程是通過空中交通管制員指揮航空器實(shí)現(xiàn)的??罩薪煌ü苤茊T在實(shí)際指揮工作中,需要結(jié)合當(dāng)時(shí)的空中交通狀況和自身的經(jīng)驗(yàn)知識(shí)。航路智能體的主要屬性有航路的高度、寬度、容量等。航路智能體需要對(duì)航班智能體進(jìn)行指揮,管理航路上的智能體,同時(shí)與其他航路智能體和機(jī)場(chǎng)終端區(qū)智能體進(jìn)行通信,對(duì)航班智能體進(jìn)入和離開航路的時(shí)機(jī)進(jìn)行協(xié)調(diào),記錄流量信息并報(bào)告給上級(jí)流量管理部門,接收上級(jí)智能體的指令。在航班智能體進(jìn)入航路之前首先要進(jìn)行容量評(píng)估。通過評(píng)估后的航班智能體回收到航路智能體發(fā)出的放行許可才能進(jìn)入航路。如果沒有通過容量評(píng)估,則要向上級(jí)智能體發(fā)送將流量限制的申請(qǐng),發(fā)布流量限制后航路就不能批準(zhǔn)航班智能體的進(jìn)入,通過減少航班智能體的數(shù)量,控制航路交通流量。機(jī)場(chǎng)終端區(qū)智能體:在實(shí)際工作中,機(jī)場(chǎng)終端區(qū)的航班管理包括管制指揮、流量控制、地面場(chǎng)面監(jiān)視、進(jìn)離場(chǎng)等,難度較大。終端區(qū)智能體(通常運(yùn)行中為塔臺(tái)管制)首先要處理所收到的信息,如天氣雷達(dá)信息、地面運(yùn)行信息和情報(bào)信息等等,結(jié)合已有知識(shí)開展機(jī)場(chǎng)的容量評(píng)估。如遇到低云低能見度、雷雨等天氣時(shí)可以調(diào)低終端區(qū)/機(jī)場(chǎng)容量,對(duì)進(jìn)入離開的航空器進(jìn)行限制。通過容量評(píng)估,塔臺(tái)會(huì)給航班智能體一個(gè)slottime,航班智能體按照塔臺(tái)的slottime起飛或降落,從而達(dá)到流量控制。如果沒有通過容量評(píng)估,則需要通過上級(jí)的智能體批準(zhǔn),發(fā)布流量控制,限制終端區(qū)的流量,通過控制進(jìn)入或離開的航空器數(shù)量達(dá)到流量限制的目的。機(jī)場(chǎng)終端區(qū)智能體(塔臺(tái))對(duì)終端區(qū)的航空器進(jìn)行管理,還需要與航路智能體和平級(jí)的終端去智能體進(jìn)行通信,對(duì)航班進(jìn)出的slottime進(jìn)行協(xié)調(diào),并將流量管理信息報(bào)告給上級(jí)流量管理部門,接收上級(jí)智能體的命令。如果出現(xiàn)擁堵機(jī)場(chǎng)終端區(qū)智能體需要通過一些措施來管理流量,如分配slottime、指揮航空器地面或空中盤旋等待。
綜上所述,以往在模擬空中交通流量進(jìn)行研究的時(shí)候,首先制定流量控制信息,再在系統(tǒng)模擬航班飛行計(jì)劃。這樣的模擬過程不能解決容量告警問題。如果流量控制不合理,只能重新設(shè)定流控信息,再次進(jìn)行模擬,因而加大模擬過程的工作量。而通過智能體的運(yùn)用,可以在模擬中不斷調(diào)整智能體來模擬空中流量,增加了模擬流量過程中的靈活性,將人工智能運(yùn)用于模擬中,借助智能體來模擬空中流量,可以更好的分析空中交通流量問題。
[2]甘鑫鑫基于多agent的空中交通協(xié)同流量管理研究[j].科學(xué)與財(cái)富,2015(30):278.
[5]陳言俊,劉甜甜.人工智能與機(jī)器人.[6]黃昱斌.基于multi-agent的空中交通流量的探究[j].科技創(chuàng)新與應(yīng)用,2015(14):57-57.
人工智能的弊端論文篇十三
隨著新型科技的持續(xù)更新,工程中逐漸應(yīng)用新科技,這也是科技朝著應(yīng)用式與開放式方向發(fā)展的開始。電子工程在傳統(tǒng)工程基礎(chǔ)上的革新,隨著人工智能化發(fā)展,逐漸轉(zhuǎn)換為信息化產(chǎn)業(yè)鏈接。這一智能化技術(shù)機(jī)械生產(chǎn)明顯減少,經(jīng)濟(jì)效益與產(chǎn)量提升,我國(guó)逐漸進(jìn)入到智能化階段。
(一)發(fā)展歷程
在機(jī)械電子工程發(fā)展初期,主要體現(xiàn)為手工制作,生產(chǎn)力水平較低,資源技術(shù)等對(duì)其發(fā)展產(chǎn)生制約。為了提升生產(chǎn)效率,逐漸朝著機(jī)械工業(yè)方向發(fā)展。
在生產(chǎn)線階段,機(jī)械工程已逐漸發(fā)展到流水線生產(chǎn),實(shí)現(xiàn)標(biāo)準(zhǔn)化大批量生產(chǎn),這一生產(chǎn)模式使勞動(dòng)力得到解放,生產(chǎn)力水平大大提升,同時(shí)生產(chǎn)效率也得到提高。但是仍然存在一些不足,比如,部分生產(chǎn)仍就以進(jìn)口為主,生產(chǎn)成本較大,在市場(chǎng)方面缺少適應(yīng)力;靈活性較差,難以滿足不斷變化的市場(chǎng)需求。
在機(jī)械電子產(chǎn)業(yè)發(fā)展階段中,產(chǎn)品生產(chǎn)能夠適應(yīng)市場(chǎng)的需求,對(duì)于不斷變化的產(chǎn)品需求產(chǎn)業(yè)化發(fā)展能夠滿足。
(二)機(jī)械電子工程主要特征
機(jī)械電子工程是復(fù)雜綜合性學(xué)科,同各類學(xué)科之間都有著密切的聯(lián)系。機(jī)械電子工程發(fā)展要以計(jì)算機(jī)、電子以及機(jī)械為基礎(chǔ),結(jié)合其他學(xué)科做出合理、科學(xué)的設(shè)計(jì)。在設(shè)計(jì)的過程中,要求每一個(gè)模塊都能夠?qū)崿F(xiàn)有機(jī)結(jié)合,進(jìn)而使得各個(gè)模塊都能將其最大優(yōu)勢(shì)發(fā)揮出來。機(jī)械電子產(chǎn)品內(nèi)部結(jié)構(gòu)簡(jiǎn)單明了,并不復(fù)雜,無需復(fù)雜原件的投入,這樣能在一定程度上使產(chǎn)品性能得到提升,進(jìn)而擴(kuò)大消費(fèi)市場(chǎng)。
人工智能是一門復(fù)雜,并且綜合性較強(qiáng)的學(xué)科,所涉及到的學(xué)科比較多。也可以說,21世紀(jì)人工智能是最偉大學(xué)科之一。人工智能實(shí)現(xiàn)了對(duì)人的智能模擬,并且能通過計(jì)算機(jī)使認(rèn)得智能化得到進(jìn)一步的延伸,人工智能這門學(xué)科有著較好的發(fā)展?jié)摿?。人工智能在發(fā)展的過程中主要經(jīng)歷下列幾個(gè)階段。
初步階段。人工智能在17世紀(jì)開始發(fā)生萌芽,法國(guó)在這一階段成功誕生世界上的第一部計(jì)算機(jī),這一計(jì)算器只是單純的能進(jìn)行加法簡(jiǎn)單運(yùn)算,但是仍就轟動(dòng)世界,進(jìn)而在世界范圍內(nèi),對(duì)這項(xiàng)技術(shù)開始進(jìn)一步研宄。在最初階段,人工智能并沒有明顯的進(jìn)展,主要是在實(shí)踐的過程中積累與總結(jié)知識(shí),這為今后人工智能發(fā)展奠定堅(jiān)實(shí)的基礎(chǔ)。
發(fā)展初始階段。美國(guó)人在二十世紀(jì)首次提出人工智能專業(yè)用語。在這個(gè)發(fā)展階段,人工智能主要以證明與闡釋為主要體現(xiàn),在這一時(shí)期對(duì)于人工智能的研宄就是首要任務(wù)。
發(fā)展起伏階段。隨著人們對(duì)于人工智能的不斷深入研宄,人工智能也處于持續(xù)的發(fā)展階段,但是在實(shí)踐過程中發(fā)現(xiàn),要想使人工智能模仿和人類思維同步是非常困難的。大部分對(duì)于人工智能的科學(xué)研宄僅僅是停留于簡(jiǎn)單映射層面,對(duì)于邏輯思維的研宄仍就沒有突破性進(jìn)展。不論怎么說,在發(fā)展的起伏階段,人功能智能也在發(fā)展中得到了技術(shù)創(chuàng)新,特別是在系統(tǒng)方面、計(jì)算機(jī)機(jī)器人以及語言掌握方面取得了較大的成就。
起伏階段發(fā)展以后。在這一階段,人工智能的相關(guān)研究得到了發(fā)展,尤其是第五屆國(guó)際人工智能聯(lián)合會(huì)議的召開,人工智能逐漸朝著知識(shí)層面的方向發(fā)展,大部分的人工智能研都會(huì)結(jié)合相應(yīng)的知識(shí)工程,在這個(gè)階段中,人工智能發(fā)展的高度是前所未有的,在一定程度上促進(jìn)了人工智能應(yīng)用于實(shí)際工程中。
穩(wěn)步發(fā)展階段。隨著互聯(lián)網(wǎng)技術(shù)的快速發(fā)展,對(duì)于人工智能研宄方向發(fā)生重大轉(zhuǎn)變,由原本的單一主體朝著集中統(tǒng)一主體的方向發(fā)展。關(guān)于人工智能在實(shí)際中的運(yùn)用以及研究,受到了互聯(lián)網(wǎng)技術(shù)的影響。網(wǎng)絡(luò)的普及與快速發(fā)展,在一定程度上促進(jìn)了信息化的發(fā)展,信息在傳送方面發(fā)生率重大性變革。在人們逐漸進(jìn)入信息化社會(huì)后,在信息有效處理方面人工智能的發(fā)展到了重要的作用,在模擬設(shè)計(jì)方面,機(jī)械電子工程的發(fā)展需要人工智能的大力支持。
隨著我國(guó)社會(huì)經(jīng)濟(jì)的持續(xù)發(fā)展,社會(huì)不斷的進(jìn)步,對(duì)于信息人們?cè)絹碓街匾?。?1世紀(jì),互聯(lián)網(wǎng)技術(shù)得到快速發(fā)展,同時(shí)信息的傳遞也逐漸注入新鮮血液?;ヂ?lián)網(wǎng)應(yīng)用的普及說明人們正朝著信息時(shí)代的方向邁進(jìn),在社會(huì)逐步信息化以后,更加需要有人工智能這一技術(shù)的支持,特別是機(jī)械電子工程發(fā)展中有著重要作用,機(jī)械電子系統(tǒng)本身缺少一定的穩(wěn)定性,這樣在機(jī)械電子工程設(shè)計(jì)方面就有著較大阻礙存在。在現(xiàn)代社會(huì)中,信息的處理量持續(xù)增大,并且較為復(fù)雜,有些時(shí)候需要同時(shí)對(duì)不同類型的信息進(jìn)行處理,所以需要采取人工智能的.支持才能完成信息處理。人工智能主要包含模糊推理系統(tǒng)、神經(jīng)網(wǎng)絡(luò)系統(tǒng)這種兩種方法。神經(jīng)網(wǎng)絡(luò)系統(tǒng)傾向于對(duì)人腦結(jié)構(gòu)的綜合分析,模糊推理系統(tǒng)更加重視對(duì)于語言信號(hào)的分析與理解。隨著現(xiàn)代社會(huì)的發(fā)展,僅僅采取單一的人工智能方法,明顯已經(jīng)無法適應(yīng)目前社會(huì)中不斷變化的市場(chǎng)需求,所以,對(duì)于人工智能相關(guān)問題的研宂正逐漸朝著多方位、全面的人工智能方向轉(zhuǎn)變。多方位全面人工智能系統(tǒng)通過模糊推理系統(tǒng)和神經(jīng)網(wǎng)絡(luò)系統(tǒng)相互統(tǒng)一的方式,揚(yáng)長(zhǎng)補(bǔ)短,將二者有效的結(jié)合起來,使得二者的優(yōu)勢(shì)得到最大程度的發(fā)揮。
智能同機(jī)械電子工程之間在相互影響的過程中,逐漸產(chǎn)生嶄新的行業(yè)。首先通過現(xiàn)代科技逐漸,將人工智能融入到機(jī)械電子工程中,使機(jī)械工業(yè)發(fā)展?jié)摿Φ玫匠浞滞诰颉F浯坞S著機(jī)械電子工程發(fā)展難度的加大,對(duì)于人工智能也就提出來新的要求,這從某種程度上來推動(dòng)了人工智能發(fā)展。在將機(jī)械電子工程與人工智能有效結(jié)合的基礎(chǔ)上,促進(jìn)社會(huì)生產(chǎn)力發(fā)展,同時(shí)也能促進(jìn)有關(guān)經(jīng)濟(jì)產(chǎn)業(yè)的快速發(fā)展,這種效應(yīng)將會(huì)對(duì)整個(gè)社會(huì)產(chǎn)生一定影響,使我國(guó)經(jīng)濟(jì)得到全面發(fā)展。
人工智能的弊端論文篇十四
以前我們談科技進(jìn)步,談網(wǎng)絡(luò)應(yīng)用,總說是一把雙刃劍,有利有弊?,F(xiàn)在,面對(duì)日益發(fā)達(dá)的人工智能,我想說:現(xiàn)在,擺在我們面前的任務(wù)是把它變成一把單刃的劍。
把人工智能變成一把雙刃劍,需要我們以正確的態(tài)度去面對(duì)。就像一局險(xiǎn)勝阿爾法狗的李世石一樣,他說:人機(jī)大戰(zhàn)并沒有讓我感受到失敗的痛苦,反而讓我更好地理解了象棋,這讓我很開心。連續(xù)輸三局的天才棋手柯潔說:阿爾法狗讓我更好地理解圍棋的奧秘。面對(duì)人工智能的快速發(fā)展,我們應(yīng)該有更積極的態(tài)度和更清晰的認(rèn)識(shí)。不能一味的夸。人工智能有多優(yōu)秀,多無敵,不能一味貶低人類來看人類。我們需要知道的是,阿爾法狗只是一臺(tái)機(jī)器,是人類創(chuàng)造的玩具。他沒有頭腦,沒有情感,甚至沒有——的智商。只是我們?cè)谘邪l(fā)過程中輸入的一堆冷冰冰的代碼,不需要自大,也不需要妄自菲薄。我們和人工智能是平等的,有時(shí)候它們可以成為我們的工具。
要把人工智能變成一把單刃劍,我們需要了解它。俗話說知己知彼百戰(zhàn)不殆。網(wǎng)上有人說,如果人工智能獲得了人類的意識(shí),那么他們就會(huì)反過來奴役人類。未來將是人工智能的世界,讓人恐慌。首先,人類還沒有能夠讓一臺(tái)機(jī)器擁有意識(shí),很多人還沒有意識(shí)到意識(shí)的起源。做出這種無用的猜測(cè),沒有實(shí)際意義。現(xiàn)在我們能做的就是找出它的運(yùn)行規(guī)律,了解它的優(yōu)缺點(diǎn)。掌握使用人工智能的方法。帶上她神秘的面紗,而不是看著他的面紗漫天要價(jià)。
要把人工智能變成一把單刃劍,最重要的是揚(yáng)長(zhǎng)避短。是的,任何事情都有兩面性。就像之前關(guān)于學(xué)生是否應(yīng)該使用手機(jī)的爭(zhēng)論一樣,在自律性差的人手里,手機(jī)是用不好的,而在頭腦清醒、自律性強(qiáng)的人手里,才能充分發(fā)揮自己的優(yōu)勢(shì)。而且不會(huì)讓劣勢(shì)影響自己,人工智能也是一樣?,F(xiàn)在要注意的是提高自己應(yīng)用人工智能的能力。讓這些過于智能的機(jī)器在我們手里得到合理的利用,讓它們的缺點(diǎn)得到融化,優(yōu)勢(shì)得到彰顯。只有這樣,人工智能才能得到它的天賦,并充分利用它們。
問:如何讓人工智能成為一把雙刃劍?回答:以正確的態(tài)度面對(duì)他,以積極的方式認(rèn)識(shí)他,然后揚(yáng)長(zhǎng)避短,是運(yùn)用人工智能的好方法。
人工智能的弊端論文篇十五
(一)人工智能的發(fā)展
1950年,艾倫,麥席森,圖靈發(fā)表了一篇?jiǎng)潟r(shí)代之作《制作機(jī)器會(huì)思考嗎?》里面提出了測(cè)試機(jī)器是否具有智能的方法,并因此摘得“人工智能之父”的桂冠。約翰,麥卡錫在1956年的達(dá)特茅斯學(xué)術(shù)會(huì)議上,第一次提出人工智能(artificialintelligence,ai)。1997年,ibm公司“深藍(lán)”電腦擊敗了人類的世界國(guó)際象棋冠軍更是人工智能技術(shù)的一個(gè)完美表現(xiàn)。2017年7月,國(guó)務(wù)院印發(fā)了《新一代人工智能發(fā)展規(guī)劃》,這是我國(guó)首個(gè)面向2030年的人工智能技術(shù)的戰(zhàn)略發(fā)展藍(lán)圖,也表現(xiàn)出我國(guó)對(duì)發(fā)展人工智能技術(shù)的重視與支持,同時(shí),人工智能人選“2017年度中國(guó)媒體十大流行語”。
人工智能是計(jì)算機(jī)科學(xué)的一個(gè)分支,可以對(duì)人的意識(shí)、思維的信息過程的模擬,人工智能不是人的智能,但能像人那樣思考、也可能超過人的智能。該領(lǐng)域的研究包括機(jī)器人、語言識(shí)別、圖像識(shí)別、自然語言處理和專家系統(tǒng)等。人工智能從誕生以來,理論和技術(shù)日益成熟,應(yīng)用領(lǐng)域也不斷擴(kuò)大,未來人工智能帶來的科技產(chǎn)品,將會(huì)是人類智慧的“容器”。
(二)人工智能的意義
人工智能在會(huì)計(jì)、審計(jì)、稅務(wù)等行業(yè)的廣泛運(yùn)用,使得傳統(tǒng)、簡(jiǎn)單、重復(fù)性的基礎(chǔ)會(huì)計(jì)工作崗位將面臨被智能化取代,人工智能已成為促進(jìn)會(huì)計(jì)行業(yè)轉(zhuǎn)型發(fā)展的重要推手。近三年來,德勤、普華永道、安永、畢馬威4大國(guó)際會(huì)計(jì)師事務(wù)所通過利用財(cái)務(wù)機(jī)器人進(jìn)行會(huì)計(jì)、審計(jì)等工作,使得數(shù)據(jù)的準(zhǔn)確性、工作效率、管理決策水平等明顯提升,由此可見,人工智能早已潛移默化的影響到了會(huì)計(jì)工作的方方面面。
(一)會(huì)計(jì)工作效率提高了。人工智能技術(shù)與財(cái)務(wù)管理系統(tǒng)的對(duì)接,實(shí)現(xiàn)了系統(tǒng)自動(dòng)識(shí)別票據(jù)、生成會(huì)計(jì)記賬憑證、記錄明細(xì)賬戶以及生成總賬和各類報(bào)表。作業(yè)過程中系統(tǒng)按時(shí)間順序記錄每筆業(yè)務(wù),對(duì)每一筆賬務(wù)進(jìn)行核實(shí)和驗(yàn)證。財(cái)務(wù)機(jī)器人還實(shí)現(xiàn)了信息的語音、掃描錄入,財(cái)務(wù)軟件可自動(dòng)生成證、帳、表,這將更加高效準(zhǔn)確地完成基礎(chǔ)會(huì)計(jì)核算工作,提高此項(xiàng)工作的效率,會(huì)計(jì)人員因此節(jié)省了大量用于基礎(chǔ)核算工作的時(shí)間,從而能將更多的精力投入在企業(yè)內(nèi)部管理型的工作上,同時(shí)又提高了管理工作的效率。
(二)會(huì)計(jì)信息質(zhì)量提高了。受自身能力、專業(yè)素質(zhì)以及外部環(huán)境等因素的影響,會(huì)計(jì)信息數(shù)據(jù)的滯后性和人為失誤在所難免。人工智能將會(huì)計(jì)模型和方法程序化,它既減少了人為失誤又極大地提升了數(shù)據(jù)處理能力,工作重心逐漸轉(zhuǎn)向數(shù)據(jù)的挖掘、分析等重要環(huán)節(jié)和高附加值工作中,同時(shí),會(huì)計(jì)檔案由紙質(zhì)變成電子檔案更便于信息系統(tǒng)的管理、流程化的管理和監(jiān)控,避免了人工作業(yè)的失誤以及造假的可能,數(shù)據(jù)信息和記錄的真實(shí)性和精準(zhǔn)度得到保證。
(三)會(huì)計(jì)職能重心轉(zhuǎn)移了。人工智能雖然可以替人做一些簡(jiǎn)單、繁冗、重復(fù)性的基礎(chǔ)會(huì)計(jì)工作,但并不能完全替代會(huì)計(jì)人員,隨著人工智能與會(huì)計(jì)信息系統(tǒng)的不斷結(jié)合,從事簡(jiǎn)單記賬工作的初級(jí)會(huì)計(jì)人員將會(huì)越來越少,而中高級(jí)會(huì)計(jì)人員將會(huì)集中于行業(yè)中涉及分析、預(yù)測(cè)和統(tǒng)籌的領(lǐng)域。因而會(huì)計(jì)職能的重心將向預(yù)測(cè)、決策、規(guī)劃、控制、評(píng)價(jià)等目前人工智能無法取代的管理會(huì)計(jì)的職能轉(zhuǎn)移。
(四)會(huì)計(jì)人員從業(yè)壓力加大了。隨著人工智能被引入到會(huì)計(jì)行業(yè)中,一方面,簡(jiǎn)單的會(huì)計(jì)核算工作將被智能化財(cái)務(wù)軟件逐步替代,普通核算類型工作的崗位勢(shì)必減少,基層會(huì)計(jì)人員面臨失業(yè)的壓力:另一方面,由于財(cái)務(wù)軟件能夠高效完成基礎(chǔ)財(cái)務(wù)工作,企業(yè)更需要財(cái)會(huì)人員發(fā)揮管理會(huì)計(jì)的職能,會(huì)計(jì)從業(yè)人員需要將工作重心轉(zhuǎn)移到?jīng)Q策分析和經(jīng)營(yíng)管理上,使其有從財(cái)務(wù)會(huì)計(jì)到管理會(huì)計(jì)轉(zhuǎn)型的壓力。
人工智能的發(fā)展與應(yīng)用是社會(huì)經(jīng)濟(jì)發(fā)展過程中的必然產(chǎn)物,它的到來就像一把雙刃劍,雖然可以對(duì)會(huì)計(jì)行業(yè)整體工作效率與工作方式帶來提升,但是人工智是不能完全代替會(huì)計(jì)人員的工作的。比如,智能化的設(shè)備無法完全替代充滿人情味的服務(wù)。李開復(fù)也指出,社交能力強(qiáng)、應(yīng)變能力強(qiáng)、協(xié)商能力強(qiáng)的人,永遠(yuǎn)不會(huì)被人工智能取代。人類的感情,想象、創(chuàng)造等特質(zhì)也是人工智能所無法企及的。所以,對(duì)于會(huì)計(jì)從業(yè)人員而言,人工智能只是一種行業(yè)對(duì)于自身的探索以及進(jìn)步,順應(yīng)這種變化,會(huì)計(jì)人員應(yīng)當(dāng)認(rèn)清挑戰(zhàn),抓住機(jī)遇。
一方面,會(huì)計(jì)從業(yè)人員應(yīng)調(diào)整好心態(tài),快速適應(yīng)行業(yè)的變革,重新找回自己的價(jià)值。努力提升自己的專業(yè)分析能力和管理能力,成為人工智能代替不了的高級(jí)會(huì)計(jì)工作者。比如:財(cái)務(wù)戰(zhàn)略制定,納稅籌劃,風(fēng)險(xiǎn)控制,合理避稅、財(cái)務(wù)分析等。同時(shí),向復(fù)合型人才發(fā)展。正如任正非所說,稱職的cfo應(yīng)隨時(shí)可以接任ceo。會(huì)計(jì)人員應(yīng)當(dāng)開闊眼界,放大格局,不能只著眼于本職工作,還應(yīng)該了解工作其他崗位的工作內(nèi)容,比如銷售類、生產(chǎn)類等部門的業(yè)務(wù),提高自己的企業(yè)價(jià)值以及行業(yè)地位,做一名復(fù)合型人才。
另一方面,人工智能技術(shù)在財(cái)會(huì)領(lǐng)域的突破離不開懂會(huì)計(jì)知識(shí)的專業(yè)人員的配合,財(cái)務(wù)人員要努力學(xué)習(xí)新技能,加強(qiáng)計(jì)算機(jī)、信息技術(shù)的知識(shí)儲(chǔ)備,協(xié)助人工智能會(huì)計(jì)信息系統(tǒng)的研發(fā),擔(dān)當(dāng)人工智能會(huì)計(jì)系統(tǒng)的設(shè)計(jì)者和監(jiān)督者。
參考文獻(xiàn):
[1]閏鈺.企業(yè)人工智能時(shí)代下對(duì)會(huì)計(jì)行業(yè)的思考[j].商場(chǎng)現(xiàn)代化.2018(1z)
[2]楊秀琴.淺議人工智能時(shí)代財(cái)務(wù)會(huì)計(jì)與管理會(huì)計(jì)的融合發(fā)展趨勢(shì)[j].現(xiàn)代商業(yè).2018(18)
[3]李牧陽,運(yùn)用給會(huì)計(jì)行業(yè)帶來的問題和思考[j],中國(guó)管理信息化.2019(42)
人工智能的弊端論文篇十六
圖像識(shí)別技術(shù)是信息時(shí)代的一門重要的技術(shù),其產(chǎn)生目的是為了讓計(jì)算機(jī)代替人類去處理大量的物理信息。隨著計(jì)算機(jī)技術(shù)的發(fā)展,人類對(duì)圖像識(shí)別技術(shù)的認(rèn)識(shí)越來越深刻。圖像識(shí)別技術(shù)的過程分為信息的獲取、預(yù)處理、特征抽取和選擇、分類器設(shè)計(jì)和分類決策。文章簡(jiǎn)單分析了圖像識(shí)別技術(shù)的引入、其技術(shù)原理以及模式識(shí)別等,之后介紹了神經(jīng)網(wǎng)絡(luò)的圖像識(shí)別技術(shù)和非線性降維的圖像識(shí)別技術(shù)及圖像識(shí)別技術(shù)的應(yīng)用。從中可以總結(jié)出圖像處理技術(shù)的應(yīng)用廣泛,人類的生活將無法離開圖像識(shí)別技術(shù),研究圖像識(shí)別技術(shù)具有重大意義。
1圖像識(shí)別技術(shù)的引入
圖像識(shí)別是人工智能科技的一個(gè)重要領(lǐng)域。圖像識(shí)別的發(fā)展經(jīng)歷了三個(gè)階段:文字識(shí)別、數(shù)字圖像處理與識(shí)別、物體識(shí)別。圖像識(shí)別,顧名思義,就是對(duì)圖像做出各種處理、分析,最終識(shí)別我們所要研究的目標(biāo)。今天所指的圖像識(shí)別并不僅僅是用人類的肉眼,而是借助計(jì)算機(jī)技術(shù)進(jìn)行識(shí)別。雖然人類的識(shí)別能力很強(qiáng)大,但是對(duì)于高速發(fā)展的社會(huì),人類自身識(shí)別能力已經(jīng)滿足不了我們的需求,于是就產(chǎn)生了基于計(jì)算機(jī)的圖像識(shí)別技術(shù)。這就像人類研究生物細(xì)胞,完全靠肉眼觀察細(xì)胞是不現(xiàn)實(shí)的,這樣自然就產(chǎn)生了顯微鏡等用于精確觀測(cè)的儀器。通常一個(gè)領(lǐng)域有固有技術(shù)無法解決的需求時(shí),就會(huì)產(chǎn)生相應(yīng)的新技術(shù)。圖像識(shí)別技術(shù)也是如此,此技術(shù)的產(chǎn)生就是為了讓計(jì)算機(jī)代替人類去處理大量的物理信息,解決人類無法識(shí)別或者識(shí)別率特別低的信息。
1.1圖像識(shí)別技術(shù)原理
其實(shí),圖像識(shí)別技術(shù)背后的原理并不是很難,只是其要處理的信息比較繁瑣。計(jì)算機(jī)的任何處理技術(shù)都不是憑空產(chǎn)生的,它都是學(xué)者們從生活實(shí)踐中得到啟發(fā)而利用程序?qū)⑵淠M實(shí)現(xiàn)的。計(jì)算機(jī)的圖像識(shí)別技術(shù)和人類的圖像識(shí)別在原理上并沒有本質(zhì)的區(qū)別,只是機(jī)器缺少人類在感覺與視覺差上的影響罷了。人類的圖像識(shí)別也不單單是憑借整個(gè)圖像存儲(chǔ)在腦海中的記憶來識(shí)別的,我們識(shí)別圖像都是依靠圖像所具有的本身特征而先將這些圖像分了類,然后通過各個(gè)類別所具有的特征將圖像識(shí)別出來的,只是很多時(shí)候我們沒有意識(shí)到這一點(diǎn)。當(dāng)看到一張圖片時(shí),我們的大腦會(huì)迅速感應(yīng)到是否見過此圖片或與其相似的圖片。其實(shí)在“看到”與“感應(yīng)到”的中間經(jīng)歷了一個(gè)迅速識(shí)別過程,這個(gè)識(shí)別的過程和搜索有些類似。在這個(gè)過程中,我們的大腦會(huì)根據(jù)存儲(chǔ)記憶中已經(jīng)分好的類別進(jìn)行識(shí)別,查看是否有與該圖像具有相同或類似特征的存儲(chǔ)記憶,從而識(shí)別出是否見過該圖像。機(jī)器的圖像識(shí)別技術(shù)也是如此,通過分類并提取重要特征而排除多余的信息來識(shí)別圖像。機(jī)器所提取出的這些特征有時(shí)會(huì)非常明顯,有時(shí)又是很普通,這在很大的程度上影響了機(jī)器識(shí)別的速率??傊谟?jì)算機(jī)的視覺識(shí)別中,圖像的內(nèi)容通常是用圖像特征進(jìn)行描述。
1.2模式識(shí)別
模式識(shí)別是人工智能和信息科學(xué)的重要組成部分。模式識(shí)別是指對(duì)表示事物或現(xiàn)象的不同形式的信息做分析和處理從而得到一個(gè)對(duì)事物或現(xiàn)象做出描述、辨認(rèn)和分類等的過程。
計(jì)算機(jī)的圖像識(shí)別技術(shù)就是模擬人類的圖像識(shí)別過程。在圖像識(shí)別的過程中進(jìn)行模式識(shí)別是必不可少的。模式識(shí)別原本是人類的一項(xiàng)基本智能。但隨著計(jì)算機(jī)的發(fā)展和人工智能的興起,人類本身的模式識(shí)別已經(jīng)滿足不了生活的需要,于是人類就希望用計(jì)算機(jī)來代替或擴(kuò)展人類的部分腦力勞動(dòng)。這樣計(jì)算機(jī)的模式識(shí)別就產(chǎn)生了。簡(jiǎn)單地說,模式識(shí)別就是對(duì)數(shù)據(jù)進(jìn)行分類,它是一門與數(shù)學(xué)緊密結(jié)合的科學(xué),其中所用的思想大部分是概率與統(tǒng)計(jì)。模式識(shí)別主要分為三種:統(tǒng)計(jì)模式識(shí)別、句法模式識(shí)別、模糊模式識(shí)別。
2圖像識(shí)別技術(shù)的過程
既然計(jì)算機(jī)的圖像識(shí)別技術(shù)與人類的圖像識(shí)別原理相同,那它們的過程也是大同小異的。圖像識(shí)別技術(shù)的過程分以下幾步:信息的獲取、預(yù)處理、特征抽取和選擇、分類器設(shè)計(jì)和分類決策。
信息的獲取是指通過傳感器,將光或聲音等信息轉(zhuǎn)化為電信息。也就是獲取研究對(duì)象的基本信息并通過某種方法將其轉(zhuǎn)變?yōu)闄C(jī)器能夠認(rèn)識(shí)的信息。
預(yù)處理主要是指圖像處理中的去噪、平滑、變換等的操作,從而加強(qiáng)圖像的重要特征。
特征抽取和選擇是指在模式識(shí)別中,需要進(jìn)行特征的抽取和選擇。簡(jiǎn)單的理解就是我們所研究的圖像是各式各樣的,如果要利用某種方法將它們區(qū)分開,就要通過這些圖像所具有的本身特征來識(shí)別,而獲取這些特征的過程就是特征抽取。在特征抽取中所得到的特征也許對(duì)此次識(shí)別并不都是有用的,這個(gè)時(shí)候就要提取有用的特征,這就是特征的選擇。特征抽取和選擇在圖像識(shí)別過程中是非常關(guān)鍵的技術(shù)之一,所以對(duì)這一步的理解是圖像識(shí)別的重點(diǎn)。
分類器設(shè)計(jì)是指通過訓(xùn)練而得到一種識(shí)別規(guī)則,通過此識(shí)別規(guī)則可以得到一種特征分類,使圖像識(shí)別技術(shù)能夠得到高識(shí)別率。分類決策是指在特征空間中對(duì)被識(shí)別對(duì)象進(jìn)行分類,從而更好地識(shí)別所研究的對(duì)象具體屬于哪一類。
3圖像識(shí)別技術(shù)的分析
隨著計(jì)算機(jī)技術(shù)的迅速發(fā)展和科技的不斷進(jìn)步,圖像識(shí)別技術(shù)已經(jīng)在眾多領(lǐng)域中得到了應(yīng)用。20xx年2月15日新浪科技發(fā)布一條新聞:“微軟最近公布了一篇關(guān)于圖像識(shí)別的研究論文,在一項(xiàng)圖像識(shí)別的基準(zhǔn)測(cè)試中,電腦系統(tǒng)識(shí)別能力已經(jīng)超越了人類。人類在歸類數(shù)據(jù)庫imagenet中的圖像識(shí)別錯(cuò)誤率為5.1%,而微軟研究小組的這個(gè)深度學(xué)習(xí)系統(tǒng)可以達(dá)到4.94%的錯(cuò)誤率?!睆倪@則新聞中我們可以看出圖像識(shí)別技術(shù)在圖像識(shí)別方面已經(jīng)有要超越人類的圖像識(shí)別能力的趨勢(shì)。這也說明未來圖像識(shí)別技術(shù)有更大的研究意義與潛力。而且,計(jì)算機(jī)在很多方面確實(shí)具有人類所無法超越的優(yōu)勢(shì),也正是因?yàn)檫@樣,圖像識(shí)別技術(shù)才能為人類社會(huì)帶來更多的應(yīng)用。
3.1神經(jīng)網(wǎng)絡(luò)的圖像識(shí)別技術(shù)
神經(jīng)網(wǎng)絡(luò)圖像識(shí)別技術(shù)是一種比較新型的圖像識(shí)別技術(shù),是在傳統(tǒng)的圖像識(shí)別方法和基礎(chǔ)上融合神經(jīng)網(wǎng)絡(luò)算法的一種圖像識(shí)別方法。這里的神經(jīng)網(wǎng)絡(luò)是指人工神經(jīng)網(wǎng)絡(luò),也就是說這種神經(jīng)網(wǎng)絡(luò)并不是動(dòng)物本身所具有的真正的神經(jīng)網(wǎng)絡(luò),而是人類模仿動(dòng)物神經(jīng)網(wǎng)絡(luò)后人工生成的。在神經(jīng)網(wǎng)絡(luò)圖像識(shí)別技術(shù)中,遺傳算法與bp網(wǎng)絡(luò)相融合的神經(jīng)網(wǎng)絡(luò)圖像識(shí)別模型是非常經(jīng)典的,在很多領(lǐng)域都有它的應(yīng)用。在圖像識(shí)別系統(tǒng)中利用神經(jīng)網(wǎng)絡(luò)系統(tǒng),一般會(huì)先提取圖像的特征,再利用圖像所具有的特征映射到神經(jīng)網(wǎng)絡(luò)進(jìn)行圖像識(shí)別分類。以汽車拍照自動(dòng)識(shí)別技術(shù)為例,當(dāng)汽車通過的時(shí)候,汽車自身具有的檢測(cè)設(shè)備會(huì)有所感應(yīng)。此時(shí)檢測(cè)設(shè)備就會(huì)啟用圖像采集裝置來獲取汽車正反面的圖像。獲取了圖像后必須將圖像上傳到計(jì)算機(jī)進(jìn)行保存以便識(shí)別。最后車牌定位模塊就會(huì)提取車牌信息,對(duì)車牌上的字符進(jìn)行識(shí)別并顯示最終的結(jié)果。在對(duì)車牌上的字符進(jìn)行識(shí)別的過程中就用到了基于模板匹配算法和基于人工神經(jīng)網(wǎng)絡(luò)算法。
3.2非線性降維的圖像識(shí)別技術(shù)
計(jì)算機(jī)的圖像識(shí)別技術(shù)是一個(gè)異常高維的識(shí)別技術(shù)。不管圖像本身的分辨率如何,其產(chǎn)生的數(shù)據(jù)經(jīng)常是多維性的,這給計(jì)算機(jī)的識(shí)別帶來了非常大的困難。想讓計(jì)算機(jī)具有高效地識(shí)別能力,最直接有效的方法就是降維。降維分為線性降維和非線性降維。例如主成分分析(pca)和線性奇異分析(lda)等就是常見的線性降維方法,它們的特點(diǎn)是簡(jiǎn)單、易于理解。但是通過線性降維處理的是整體的數(shù)據(jù)集合,所求的是整個(gè)數(shù)據(jù)集合的最優(yōu)低維投影。經(jīng)過驗(yàn)證,這種線性的降維策略計(jì)算復(fù)雜度高而且占用相對(duì)較多的時(shí)間和空間,因此就產(chǎn)生了基于非線性降維的圖像識(shí)別技術(shù),它是一種極其有效的非線性特征提取方法。此技術(shù)可以發(fā)現(xiàn)圖像的非線性結(jié)構(gòu)而且可以在不破壞其本征結(jié)構(gòu)的基礎(chǔ)上對(duì)其進(jìn)行降維,使計(jì)算機(jī)的圖像識(shí)別在盡量低的維度上進(jìn)行,這樣就提高了識(shí)別速率。例如人臉圖像識(shí)別系統(tǒng)所需的維數(shù)通常很高,其復(fù)雜度之高對(duì)計(jì)算機(jī)來說無疑是巨大的“災(zāi)難”。由于在高維度空間中人臉圖像的不均勻分布,使得人類可以通過非線性降維技術(shù)來得到分布緊湊的人臉圖像,從而提高人臉識(shí)別技術(shù)的高效性。
3.3圖像識(shí)別技術(shù)的應(yīng)用及前景
計(jì)算機(jī)的圖像識(shí)別技術(shù)在公共安全、生物、工業(yè)、農(nóng)業(yè)、交通、醫(yī)療等很多領(lǐng)域都有應(yīng)用。例如交通方面的車牌識(shí)別系統(tǒng);公共安全方面的人臉識(shí)別技術(shù)、指紋識(shí)別技術(shù);農(nóng)業(yè)方面的種子識(shí)別技術(shù)、食品品質(zhì)檢測(cè)技術(shù);醫(yī)學(xué)方面的心電圖識(shí)別技術(shù)等。隨著計(jì)算機(jī)技術(shù)的不斷發(fā)展,圖像識(shí)別技術(shù)也在不斷地優(yōu)化,其算法也在不斷地改進(jìn)。圖像是人類獲取和交換信息的主要來源,因此與圖像相關(guān)的圖像識(shí)別技術(shù)必定也是未來的研究重點(diǎn)。以后計(jì)算機(jī)的圖像識(shí)別技術(shù)很有可能在更多的領(lǐng)域嶄露頭角,它的應(yīng)用前景也是不可限量的,人類的生活也將更加離不開圖像識(shí)別技術(shù)。
4總結(jié)
圖像識(shí)別技術(shù)雖然是剛興起的技術(shù),但其應(yīng)用已是相當(dāng)廣泛。并且,圖像識(shí)別技術(shù)也在不斷地成長(zhǎng),隨著科技的不斷進(jìn)步,人類對(duì)圖像識(shí)別技術(shù)的認(rèn)識(shí)也會(huì)更加深刻。未來圖像識(shí)別技術(shù)將會(huì)更加強(qiáng)大,更加智能地出現(xiàn)在我們的生活中,為人類社會(huì)的更多領(lǐng)域帶來重大的應(yīng)用。在21世紀(jì)這個(gè)信息化的時(shí)代,我們無法想象離開了圖像識(shí)別技術(shù)以后我們的生活會(huì)變成什么樣。圖像識(shí)別技術(shù)是人類現(xiàn)在以及未來生活必不可少的一項(xiàng)技術(shù)。
人工智能的弊端論文篇十七
摘要:電氣工程及其自動(dòng)化的實(shí)現(xiàn),從根本上促進(jìn)我國(guó)電氣產(chǎn)業(yè)迅速發(fā)展,滿足人們的日常生活需求。但在實(shí)際的自動(dòng)化發(fā)展過程中,還存在一些不足之處影響電氣工程的生產(chǎn)效率,難以滿足當(dāng)前時(shí)代的需求,基于此,作者結(jié)合自身經(jīng)驗(yàn),對(duì)電氣工程及其自動(dòng)化發(fā)展的現(xiàn)狀,及其中存在的問題及解決措施進(jìn)行有效的分析,以供相關(guān)人員參考,為其提供借鑒。
關(guān)鍵詞:電氣工程;自動(dòng)化;問題
引言
隨著時(shí)代不斷發(fā)展,信息技術(shù)、電氣工程自動(dòng)化技術(shù)逐漸被廣泛應(yīng)用。受生產(chǎn)力水平提升的影響,人們對(duì)于電氣工程及其自動(dòng)化的要求也不斷提升,以滿足時(shí)代發(fā)展,但實(shí)際上,現(xiàn)階段電氣工程及其自動(dòng)化中存在諸多問題,其技術(shù)水平與社會(huì)生產(chǎn)力發(fā)展需求未能有效的相適應(yīng),難以滿足當(dāng)前社會(huì)的需求。
1我國(guó)電氣工程及其自動(dòng)化現(xiàn)狀分析
電氣工程及其自動(dòng)化屬于新型的技術(shù),具有較強(qiáng)的綜合性,直接影響我國(guó)工業(yè)的生產(chǎn)水平,并與人們的日常生活息息相關(guān)?,F(xiàn)階段,我國(guó)電氣工程技術(shù)不斷創(chuàng)新發(fā)展,從根本上帶動(dòng)電氣工程及其自動(dòng)化領(lǐng)域發(fā)展,并促使其逐漸向高新技術(shù)轉(zhuǎn)化,擴(kuò)大技術(shù)的應(yīng)用范圍,從整體上促進(jìn)國(guó)民經(jīng)濟(jì)提升。實(shí)際上,電氣工程及其自動(dòng)化屬于現(xiàn)代電氣信息領(lǐng)域,其涵蓋內(nèi)容非常廣泛,包括與電氣工程相關(guān)的所有工程,并在多個(gè)領(lǐng)域中進(jìn)行應(yīng)用,例如,工業(yè)領(lǐng)域、軍事領(lǐng)域、農(nóng)業(yè)領(lǐng)域等,對(duì)我國(guó)的工業(yè)與社會(huì)發(fā)展起到積極的促進(jìn)作用,同時(shí),電氣工程及其自動(dòng)化技術(shù)的創(chuàng)新與發(fā)展對(duì)于人們的日常生活方式與生產(chǎn)方式也產(chǎn)生影響,以推動(dòng)國(guó)民經(jīng)濟(jì)穩(wěn)定發(fā)展[1]。
2我國(guó)電氣工程及其自動(dòng)化中存在的問題
2.1電氣工程能源損耗問題
在電氣工程及其自動(dòng)化的實(shí)際應(yīng)用過程中,受自身的工作性質(zhì)與設(shè)備影響,存在能源損耗問題,直接造成能源浪費(fèi),加劇現(xiàn)階段我國(guó)能源緊缺的壓力,與當(dāng)前的節(jié)能減排理念相悖,不符合可持續(xù)發(fā)展戰(zhàn)略的實(shí)施,同時(shí)提升了工業(yè)生產(chǎn)的成本支出,降低了經(jīng)濟(jì)效益。
2.2電氣系統(tǒng)的集成化不高
現(xiàn)階段,受時(shí)代發(fā)展與實(shí)際需求的影響,促使電氣工程自動(dòng)化系統(tǒng)逐漸向集成化方向發(fā)展,以滿足當(dāng)前時(shí)代的要求,但由于我國(guó)電氣集成化起步較晚,當(dāng)前的集成化水平較低,處于獨(dú)立自動(dòng)化階段,影響信息與資源的共享。
2.3電氣工程自動(dòng)化系統(tǒng)難以統(tǒng)一
為了滿足當(dāng)前的發(fā)展需求,電氣工程要利用先進(jìn)的技術(shù),構(gòu)建完善合理的自動(dòng)化系統(tǒng),以此提升工作效率,但受多種因素影響,系統(tǒng)難以進(jìn)行合理的統(tǒng)一,缺乏兼容性,降低了系統(tǒng)的工作效率。
2.4電氣工程質(zhì)量達(dá)不到要求
電氣工程的質(zhì)量直接影響其使用壽命,但受實(shí)際的工程質(zhì)量管理工作影響,以及工作人員自身的管理水平偏低、管理意識(shí)落后等因素的影響,導(dǎo)致電氣工程質(zhì)量經(jīng)常達(dá)不到實(shí)際的要求,質(zhì)量管理效率不高。
3現(xiàn)階段我國(guó)電氣工程及其自動(dòng)化中存在問題的解決措施
3.1合理對(duì)電氣工程進(jìn)行節(jié)能設(shè)計(jì)
在當(dāng)前的時(shí)代背景下,工作人員應(yīng)重視電氣工程的能源損耗問題,利用先進(jìn)的技術(shù)手段,降低能源消耗,以滿足當(dāng)前可持續(xù)發(fā)展戰(zhàn)略,緩解我國(guó)能源與資源緊缺問題。例如,利用合理的技術(shù)手段,優(yōu)化電氣工程的節(jié)能設(shè)計(jì),從根本上降低能源的不必要浪費(fèi),降低成本的支出。在實(shí)際的節(jié)能設(shè)計(jì)優(yōu)化過程中,工作人員應(yīng)結(jié)合實(shí)際情況,以工作最基本要求為基礎(chǔ),對(duì)非重點(diǎn)環(huán)節(jié)進(jìn)行有效的改良,如,對(duì)現(xiàn)階段的變壓器進(jìn)行改良,選擇繞組阻值較小的供電系統(tǒng)變壓器,以此來降低變壓器的能源損耗,從而減少不必要的損失浪費(fèi),達(dá)到節(jié)能的目的,促使我國(guó)電氣工程實(shí)現(xiàn)可持續(xù)發(fā)展。
3.2從整體上提升電氣工程自動(dòng)化系統(tǒng)的集成化水平
提升工作人員自身的專業(yè)水平與能力,利用工作人員的專業(yè)技術(shù),建立完善的系統(tǒng)平臺(tái),并充分發(fā)揮其創(chuàng)新意識(shí)與主觀意識(shí),從根本上滿足實(shí)際的集成化需求,具體來說,主要從以下兩方面入手:一方面,完善電氣工程系統(tǒng)的兼容性,保證系統(tǒng)軟硬件在交換過程中具有統(tǒng)一的接口,從而實(shí)現(xiàn)信息數(shù)據(jù)的共享;另一方面,提升各功能與系統(tǒng)之間的鏈接效率,從整體上降低電氣工程自動(dòng)化系統(tǒng)的運(yùn)行成本,從而促使減少設(shè)計(jì)成本的支出,以滿足當(dāng)前時(shí)代的需求。
3.3構(gòu)建科學(xué)合理、統(tǒng)一的電氣自動(dòng)化系統(tǒng)
構(gòu)建科學(xué)合理、統(tǒng)一的電氣自動(dòng)化系統(tǒng)是電氣工程未來發(fā)展的主要方向與趨勢(shì),以此來提升電氣工程的整體質(zhì)量。具體來說,主要包含以下幾方面:首先,積極引進(jìn)先進(jìn)的技術(shù),以先進(jìn)的電氣自動(dòng)化技術(shù)為基礎(chǔ),構(gòu)建完善的系統(tǒng),從而提升整體的管理水平;其次,引進(jìn)先進(jìn)的設(shè)計(jì)理念,完善現(xiàn)階段電氣自動(dòng)化系統(tǒng),改善其中的不合理之處,并針對(duì)現(xiàn)階段的企業(yè)不同需求進(jìn)行個(gè)性化開發(fā);最后,實(shí)現(xiàn)信息資源的有效共享,促進(jìn)我國(guó)電氣工程領(lǐng)域穩(wěn)定發(fā)展,跟上時(shí)代發(fā)展的步伐[2]。
3.4重視對(duì)電氣工程的質(zhì)量管理
重視對(duì)電氣工程的質(zhì)量管理,可以從根本上提升電氣工程質(zhì)量與使用壽命,并保證工程使用安全。具體來說,可以從以下幾方面入手:首先,加強(qiáng)工作管理人員對(duì)電氣工程質(zhì)量管理的重視力度,認(rèn)識(shí)到管理的重要性,以此來保證工程質(zhì)量;其次,加強(qiáng)現(xiàn)階段工作人員自身的專業(yè)水平與能力,通過定期的培訓(xùn),強(qiáng)化工作人員的專業(yè)水平與技術(shù)理念,利用其良好的綜合素養(yǎng),提升質(zhì)量管理效率;然后,加強(qiáng)對(duì)電氣工程施工材料的管理,保證材料的質(zhì)量,從而提升電氣工程的質(zhì)量;最后,重視對(duì)各個(gè)施工環(huán)節(jié)的質(zhì)量管理,通過合理的監(jiān)督與管理,保證施工的規(guī)范性,并以其整體質(zhì)量為基礎(chǔ),適當(dāng)對(duì)施工進(jìn)度進(jìn)行合理的調(diào)整,以此來保證施工的整體進(jìn)度。
4結(jié)論
綜上所述,電氣工程及其自動(dòng)化中存在的問題,直接影響電氣工程的整體質(zhì)量與效率,因此,工作人員應(yīng)積極引進(jìn)先進(jìn)的技術(shù)與設(shè)備,通過不斷的革新與發(fā)展,合理的進(jìn)行資源節(jié)約,降低成本的支出,以此來獲取可觀的經(jīng)濟(jì)效益。同時(shí),加強(qiáng)對(duì)電氣工程的研究力度,不斷提升其技術(shù)水平,從而推動(dòng)我國(guó)電氣工程及其自動(dòng)化領(lǐng)域穩(wěn)定發(fā)展。
參考文獻(xiàn):
[1]宋海南.電氣工程及其自動(dòng)化中存在的問題及解決措施[j].南方農(nóng)機(jī),20xx,47(11):134+148.
[2]閆海東,程世偉.淺析電氣工程及其自動(dòng)化中存在的問題及解決措施[j].科技創(chuàng)新與應(yīng)用,20xx(06):69.
人工智能的弊端論文篇十八
摘要:隨著工業(yè)領(lǐng)域的迅猛發(fā)展,自動(dòng)化、智能化被當(dāng)做是電氣控制領(lǐng)域的重點(diǎn)發(fā)展趨勢(shì)。為了讓電氣自動(dòng)化控制中人工智能技術(shù)發(fā)揮更大的作用,本文概括了人工智能技術(shù),闡述了人工智能技術(shù)在電氣自動(dòng)化領(lǐng)域的使用實(shí)例,以此期望對(duì)有關(guān)工作人員能有幫助。
關(guān)鍵詞:電氣控制;自動(dòng)化控制;人工智能
近年來隨著國(guó)內(nèi)外人工智能研究的興起與發(fā)展,越來越多的傳統(tǒng)領(lǐng)域開始思考能否在自己的產(chǎn)品生產(chǎn)線上使用人工智能技術(shù),所以它的實(shí)際使用領(lǐng)域廣泛?,F(xiàn)代社會(huì)的發(fā)展離不開人工智能技術(shù)的使用,特別是在現(xiàn)代工業(yè)的領(lǐng)域,在方法上需要依靠最新的人工智能技術(shù)為支持,但要做到讓人工智能技術(shù)在電氣自動(dòng)化控制中更好的發(fā)揮作用,我們先要知道人工智能技術(shù)到底是什么樣的技術(shù)[1]。
1人工智能技術(shù)的概述
國(guó)內(nèi)的創(chuàng)新熱潮近幾年正在蓬勃的發(fā)展,各種新技術(shù)競(jìng)相展現(xiàn),人工智能技術(shù)也逐漸成熟了,而且它在當(dāng)今社會(huì)中的使用也更加寬泛。人工智能技術(shù)的建立,不僅要有計(jì)算機(jī)技術(shù)知識(shí)進(jìn)行有效支持,還與其他學(xué)科知識(shí)息息相關(guān),人工智能技術(shù)通俗上講就是生產(chǎn)出可以替代人類來工作的智能化機(jī)器人,將來許多崗位都可以由機(jī)器來替代人類工作[2]。隨著科技的日新月異,科學(xué)家們已經(jīng)成功地生產(chǎn)出了類似于人腦一樣思考的人工大腦芯片,并將這種新技術(shù)命名為人工智能技術(shù)。在人們平常的生產(chǎn)活動(dòng)中,已有非常多的范圍都使用了人工智能技術(shù),而且它們的現(xiàn)實(shí)使用效率非常高。
2人工智能技術(shù)在電氣自動(dòng)化中的應(yīng)用廣闊前景
電氣自動(dòng)化中應(yīng)用人工智能技術(shù),不僅在極大程度上讓工人更好的操控電氣自動(dòng)化設(shè)備,還極大地減少了電氣自動(dòng)化的使用成本,這說明發(fā)展人工智能技術(shù)的前景是非常有利的。
2.1電氣自動(dòng)化控制中加入人工智能技術(shù)的重要性
人工智能技術(shù)同人類的工作方式相比有許多人類不能替代的優(yōu)勢(shì),例如人工智能對(duì)于數(shù)字和程式非常敏感,可以長(zhǎng)時(shí)間的集中于處理同一個(gè)問題,這些優(yōu)勢(shì)可以幫助人類解決一些繁復(fù)的工作,所以電氣自動(dòng)化控制中應(yīng)用人工智能技術(shù)后,它一定可以為人類創(chuàng)造更大的價(jià)值[3]。
2.2人工智能技術(shù)在電氣自動(dòng)化控制中的應(yīng)用優(yōu)勢(shì)
因?yàn)殡姎庠O(shè)備的復(fù)雜性和連貫性的要求,所以對(duì)電氣設(shè)備的設(shè)計(jì)人員就提出了非常高的專業(yè)要求,除了具備非常扎實(shí)的專業(yè)知識(shí)以外,還要求他們的設(shè)計(jì)最好可以結(jié)合最新的科學(xué)技術(shù)。在電氣自動(dòng)化控制中使用人工智能技術(shù)之后,會(huì)帶來很多便利性,具體表現(xiàn)為下面這4點(diǎn):(1)數(shù)據(jù)的收集與運(yùn)算都能利用人工智能技術(shù)來實(shí)現(xiàn),因?yàn)閾碛辛诉@一作用,以此一來就能對(duì)電氣設(shè)備的每樣數(shù)值開展收集,還可立即對(duì)數(shù)據(jù)進(jìn)行運(yùn)算,因此能讓電氣自動(dòng)化的現(xiàn)實(shí)管控效果得以大范圍提高。(2)人工智能技術(shù)可實(shí)現(xiàn)連續(xù)的監(jiān)管并實(shí)現(xiàn)必要的報(bào)警。人工智能技術(shù)能同步監(jiān)控電氣系統(tǒng)中主要設(shè)備的模擬數(shù)據(jù)值。(3)人工智能管控的操縱監(jiān)控系統(tǒng)較高效。能夠通過鼠標(biāo)、鍵盤來對(duì)電氣設(shè)備實(shí)行自動(dòng)化管控,因?yàn)槭褂霉芸亓鞒叹湍軌驅(qū)崿F(xiàn)同步并網(wǎng)帶負(fù)荷操縱,以此以來不僅能夠大范圍減少工作人員的勞動(dòng)時(shí)間,還能讓控制效率得以提升,這同目前工業(yè)發(fā)展的`現(xiàn)實(shí)需要非常符合[4]。(4)差錯(cuò)記載功能也是人工智能技術(shù)擁有的獨(dú)特特點(diǎn),人類可以更好的運(yùn)用這個(gè)技術(shù)來監(jiān)測(cè)每一個(gè)運(yùn)行環(huán)節(jié)中出現(xiàn)的點(diǎn)滴差池,以此來調(diào)試設(shè)備使其達(dá)到最佳的狀態(tài),這從根本上提高了電氣設(shè)備的運(yùn)行效率和使用安全度,使其更好的為人類服務(wù)。
3人工智能技術(shù)在電氣自動(dòng)化中的應(yīng)用分析
因?yàn)槟壳皬母旧仙?jí)了人工智能技術(shù),加上它技術(shù)的逐漸完備,越來越多的電氣設(shè)備開始同人工智能技術(shù)掛鉤,為了更加直觀的介紹人工智能設(shè)備的特點(diǎn)與技術(shù)屬性,筆者主要對(duì)電氣自動(dòng)化設(shè)備中人工智能技術(shù)的使用和電氣管控流程中人工智能技術(shù)的使用開展了辨析。
3.1人工智能技術(shù)在電氣自動(dòng)化設(shè)備中的應(yīng)用
電氣自動(dòng)化系統(tǒng)有極大的繁雜性,它主要牽扯到許多范圍與科目,這就對(duì)操控電氣自動(dòng)化設(shè)備的員工提出了很高的要求,他們應(yīng)該擁有很高的職業(yè)素養(yǎng),而且還要有充足的知識(shí)儲(chǔ)備。因?yàn)殡姎庾詣?dòng)化體系相當(dāng)繁雜,所以在現(xiàn)實(shí)操控中的效率性要加強(qiáng),這樣才能極大程度地降低因?yàn)椴缓侠硎褂茫瑢?dǎo)致出現(xiàn)非常規(guī)錯(cuò)誤,有時(shí)更可能導(dǎo)致安全事故等。這些問題的解決都可憑借人工智能技術(shù)來達(dá)成,就人工智能技術(shù)自身來看,其系統(tǒng)中心主要是計(jì)算機(jī)系統(tǒng),經(jīng)由編輯每種操控系統(tǒng),能夠使計(jì)算機(jī)控制中的智能管控得以更好的施行[5]。
3.2人工智能技術(shù)在電氣控制過程中的應(yīng)用
就電氣自動(dòng)化的管控流程來看,人工智能可以幫助人類更好的控制電氣設(shè)備。在電氣設(shè)備的控制系統(tǒng)中,引入人工智能的現(xiàn)金技術(shù)后,能讓實(shí)際工作操作效果在很大范圍上得以提升,還能使得整個(gè)操作過程實(shí)現(xiàn)無人化監(jiān)管,這樣一來達(dá)到了企業(yè)節(jié)約成本的目的,尤其是不用再去花費(fèi)大筆的人工費(fèi)用。除此之外就從整個(gè)控制過程來看,人工智能技術(shù)可以實(shí)現(xiàn)同多臺(tái)設(shè)備的同時(shí)控制,專家體系、模擬操控和神經(jīng)網(wǎng)絡(luò)操控是其首要應(yīng)用的人工智能系統(tǒng)[6]。
4總結(jié)
科技的發(fā)展讓人類的生活更加便利與美好,人工智能技術(shù)的發(fā)揮在那越來越推進(jìn)了現(xiàn)代工業(yè)的更好發(fā)展。因?yàn)槿斯ぶ悄芗夹g(shù)具備相當(dāng)多的優(yōu)點(diǎn),它是這些年來發(fā)展起來的一門新興高科技技術(shù),它在實(shí)際應(yīng)用中有巨大的使用效率,不僅在電氣自動(dòng)化控制中,加入人工智能技術(shù)后,極大程度上提高了電氣設(shè)備的控制度,讓它能更好的的服務(wù)人類生產(chǎn)活動(dòng);同時(shí)電氣設(shè)備上結(jié)合了人工智能技術(shù),讓電氣自動(dòng)化設(shè)備的操控系統(tǒng)變得更加簡(jiǎn)潔,提高了員工操控效率;降低了企業(yè)的人力物力成本,使得生產(chǎn)流程更加科學(xué)、連貫,所以大力發(fā)展人工智能技術(shù)與電氣自動(dòng)化的結(jié)合是非常有必要的研究。
參考文獻(xiàn):
[5]黃開平.高級(jí)項(xiàng)目中自動(dòng)化系統(tǒng)的應(yīng)用[j].電氣時(shí)代,20xx(02).
人工智能的弊端論文篇十九
人工智能(artificialintelligence,ai)一直都處于計(jì)算機(jī)技術(shù)的最前沿,經(jīng)歷了幾起幾落……----長(zhǎng)久以來,人工智能對(duì)于普通人來說是那樣的可望而不可及,然而它卻吸引了無數(shù)研究人員為之奉獻(xiàn)才智,從美國(guó)的麻省理工學(xué)院(mit)、卡內(nèi)基-梅隆大學(xué)(cmu)到ibm公司,再到日本的本田公司、sony公司以及國(guó)內(nèi)的清華大學(xué)、中科院等科研院所,全世界的實(shí)驗(yàn)室都在進(jìn)行著ai技術(shù)的實(shí)驗(yàn)。不久前,著名導(dǎo)演斯蒂文·斯皮爾伯格還將這一主題搬上了銀幕,科幻片《人工智能》(a.i.)對(duì)許多人的頭腦又一次產(chǎn)生了震動(dòng),引起了一些人士了解并探索人工智能領(lǐng)域的興趣。
----在本期技術(shù)專題中,中國(guó)科學(xué)院計(jì)算技術(shù)研究所智能信息處理開放實(shí)驗(yàn)室的幾位研究人員將引領(lǐng)我們走近人工智能這一充滿挑戰(zhàn)與機(jī)遇的領(lǐng)域。
計(jì)算機(jī)與人工智能
----“智能”源于拉丁語legere,字面意思是采集(特別是果實(shí))、收集、匯集,并由此進(jìn)行選擇,形成一個(gè)東西。intelegere是從中進(jìn)行選擇,進(jìn)而理解、領(lǐng)悟和認(rèn)識(shí)。正如帕梅拉·麥考達(dá)克在《機(jī)器思維》(machineswhothinks,1979)中所提出的:在復(fù)雜的機(jī)械裝置與智能之間存在長(zhǎng)期的聯(lián)系。從幾個(gè)世紀(jì)前出現(xiàn)的神話般的巨鐘和機(jī)械自動(dòng)機(jī)開始,人們已對(duì)機(jī)器操作的復(fù)雜性與自身的某些智能活動(dòng)進(jìn)行直觀聯(lián)系。經(jīng)過幾個(gè)世紀(jì)之后,新技術(shù)已使我們所建立的機(jī)器的復(fù)雜性大為提高。1936年,24歲的英國(guó)數(shù)學(xué)家圖靈(turing)提出了“自動(dòng)機(jī)”理論,把研究會(huì)思維的機(jī)器和計(jì)算機(jī)的工作大大向前推進(jìn)了一步,他也因此被稱為“人工智能之父”。
----人工智能領(lǐng)域的研究是從1956年正式開始的,這一年在達(dá)特茅斯大學(xué)召開的會(huì)議上正式使用了“人工智能”(artificialintelligence,ai)這個(gè)術(shù)語。隨后的幾十年中,人們從問題求解、邏輯推理與定理證明、自然語言理解、博弈、自動(dòng)程序設(shè)計(jì)、專家系統(tǒng)、學(xué)習(xí)以及機(jī)器人學(xué)等多個(gè)角度展開了研究,已經(jīng)建立了一些具有不同程度人工智能的計(jì)算機(jī)系統(tǒng),例如能夠求解微分方程、設(shè)計(jì)分析集成電路、合成人類自然語言,而進(jìn)行情報(bào)檢索,提供語音識(shí)別、手寫體識(shí)別的多模式接口,應(yīng)用于疾病診斷的專家系統(tǒng)以及控制太空飛行器和水下機(jī)器人更加貼近我們的生活。我們熟知的ibm的“深藍(lán)”在棋盤上擊敗了國(guó)際象棋大師卡斯帕羅夫就是比較突出的例子。
----當(dāng)然,人工智能的發(fā)展也并不是一帆風(fēng)順的,也曾因計(jì)算機(jī)計(jì)算能力的限制無法模仿人腦的思考以及與實(shí)際需求的差距過遠(yuǎn)而走入低谷,但是隨著硬件和軟件的發(fā)展,計(jì)算機(jī)的運(yùn)算能力在以指數(shù)級(jí)增長(zhǎng),同時(shí)網(wǎng)絡(luò)技術(shù)蓬勃興起,確保計(jì)算機(jī)已經(jīng)具備了足夠的條件來運(yùn)行一些要求更高的ai軟件,而且現(xiàn)在的ai具備了更多的現(xiàn)實(shí)應(yīng)用的基礎(chǔ)。90年代以來,人工智能研究又出現(xiàn)了新的高潮。
----我們有幸采訪了中國(guó)科學(xué)院計(jì)算技術(shù)研究所智能信息處理開放實(shí)驗(yàn)室史忠植研究員,請(qǐng)他和他的實(shí)驗(yàn)室成員引領(lǐng)我們走近人工智能這個(gè)讓普通人感到深?yuàn)W卻又具有無窮魅力的領(lǐng)域。
----答:ai研究出現(xiàn)了新的高潮,這一方面是因?yàn)樵谌斯ぶ悄芾碚摲矫嬗辛诵碌倪M(jìn)展,另一方面也是因?yàn)橛?jì)算機(jī)硬件突飛猛進(jìn)的發(fā)展。隨著計(jì)算機(jī)速度的不斷提高、存儲(chǔ)容量的不斷擴(kuò)大、價(jià)格的不斷降低以及網(wǎng)絡(luò)技術(shù)的不斷發(fā)展,許多原來無法完成的工作現(xiàn)在已經(jīng)能夠?qū)崿F(xiàn)。目前人工智能研究的3個(gè)熱點(diǎn)是:智能接口、數(shù)據(jù)挖掘、主體及多主體系統(tǒng)。
----智能接口技術(shù)是研究如何使人們能夠方便自然地與計(jì)算機(jī)交流。為了實(shí)現(xiàn)這一目標(biāo),要求計(jì)算機(jī)能夠看懂文字、聽懂語言、說話表達(dá),甚至能夠進(jìn)行不同語言之間的翻譯,而這些功能的實(shí)現(xiàn)又依賴于知識(shí)表示方法的研究。因此,智能接口技術(shù)的研究既有巨大的應(yīng)用價(jià)值,又有基礎(chǔ)的理論意義。目前,智能接口技術(shù)已經(jīng)取得了顯著成果,文字識(shí)別、語音識(shí)別、語音合成、圖像識(shí)別、機(jī)器翻譯以及自然語言理解等技術(shù)已經(jīng)開始實(shí)用化。
----數(shù)據(jù)挖掘就是從大量的、不完全的、有噪聲的、模糊的、隨機(jī)的實(shí)際應(yīng)用數(shù)據(jù)中提取隱含在其中的、人們事先不知道的、但又是潛在有用的信息和知識(shí)的過程。數(shù)據(jù)挖掘和知識(shí)發(fā)現(xiàn)的研究目前已經(jīng)形成了三根強(qiáng)大的技術(shù)支柱:數(shù)據(jù)庫、人工智能和數(shù)理統(tǒng)計(jì)。主要研究?jī)?nèi)容包括基礎(chǔ)理論、發(fā)現(xiàn)算法、數(shù)據(jù)倉庫、可視化技術(shù)、定性定量互換模型、知識(shí)表示方法、發(fā)現(xiàn)知識(shí)的維護(hù)和再利用、半結(jié)構(gòu)化和非結(jié)構(gòu)化數(shù)據(jù)中的知識(shí)發(fā)現(xiàn)以及網(wǎng)上數(shù)據(jù)挖掘等。
----主體是具有信念、愿望、意圖、能力、選擇、承諾等心智狀態(tài)的實(shí)體,比對(duì)象的粒度更大,智能性更高,而且具有一定自主性。主體試圖自治地、獨(dú)立地完成任務(wù),而且可以和環(huán)境交互,與其他主體通信,通過規(guī)劃達(dá)到目標(biāo)。多主體系統(tǒng)主要研究在邏輯上或物理上分離的多個(gè)主體之間進(jìn)行協(xié)調(diào)智能行為,最終實(shí)現(xiàn)問題求解。多主體系統(tǒng)試圖用主體來模擬人的理性行為,主要應(yīng)用在對(duì)現(xiàn)實(shí)世界和社會(huì)的模擬、機(jī)器人以及智能機(jī)械等領(lǐng)域。目前對(duì)主體和多主體系統(tǒng)的研究主要集中在主體和多主體理論、主體的體系結(jié)構(gòu)和組織、主體語言、主體之間的協(xié)作和協(xié)調(diào)、通信和交互技術(shù)、多主體學(xué)習(xí)以及多主體系統(tǒng)應(yīng)用等方面。
----答:我國(guó)開始“863計(jì)劃“時(shí),正值全世界的人工智能熱潮?!?63-306“主題的名稱是”智能計(jì)算機(jī)系統(tǒng)“,其任務(wù)就是在充分發(fā)掘現(xiàn)有計(jì)算機(jī)潛力的基礎(chǔ)上,分析現(xiàn)有計(jì)算機(jī)在應(yīng)用中的缺陷和”瓶頸”,用人工智能技術(shù)克服這些問題,建立起更為和諧的人-機(jī)環(huán)境。經(jīng)過十幾年來的努力,我們縮短了我國(guó)人工智能技術(shù)與世界先進(jìn)水平的差距,也為未來的發(fā)展奠定了技術(shù)和人才基礎(chǔ)。
----但是也應(yīng)該看到目前我國(guó)人工智能研究中還存在一些問題,其特點(diǎn)是:課題比較分散,應(yīng)用項(xiàng)目偏多、基礎(chǔ)研究比例略少、理論研究與實(shí)際應(yīng)用需求結(jié)合不夠緊密。選題時(shí),容易跟著國(guó)外的選題走;立項(xiàng)論證時(shí),慣于考慮國(guó)外怎么做;落實(shí)項(xiàng)目時(shí),又往往顧及面面俱到,大而全;再加上受研究經(jīng)費(fèi)的限制,所以很多課題既沒有取得理論上的突破,也沒有太大的實(shí)際應(yīng)用價(jià)值。
----今后,基礎(chǔ)研究的比例應(yīng)該適當(dāng)提高,同時(shí)人工智能研究一定要與應(yīng)用需求相結(jié)合??茖W(xué)研究講創(chuàng)新,而創(chuàng)新必須接受應(yīng)用和市場(chǎng)的檢驗(yàn)。因此,我們不僅要善于找到解決問題的答案,更重要的是要發(fā)現(xiàn)最迫切需要解決的問題和最迫切需要滿足的市場(chǎng)需求。
----問:請(qǐng)您預(yù)測(cè)一下人工智能將來會(huì)向哪些方面發(fā)展?
----答:技術(shù)的發(fā)展總是超乎人們的想象,要準(zhǔn)確地預(yù)測(cè)人工智能的未來是不可能的。但是,從目前的一些前瞻性研究可以看出未來人工智能可能會(huì)向以下幾個(gè)方面發(fā)展:模糊處理、并行化、神經(jīng)網(wǎng)絡(luò)和機(jī)器情感。
----目前,人工智能的推理功能已獲突破,學(xué)習(xí)及聯(lián)想功能正在研究之中,下一步就是模仿人類右腦的模糊處理功能和整個(gè)大腦的并行化處理功能。人工神經(jīng)網(wǎng)絡(luò)是未來人工智能應(yīng)用的新領(lǐng)域,未來智能計(jì)算機(jī)的構(gòu)成,可能就是作為主機(jī)的馮·諾依曼型機(jī)與作為智能外圍的人工神經(jīng)網(wǎng)絡(luò)的結(jié)合。研究表明:情感是智能的一部分,而不是與智能相分離的,因此人工智能領(lǐng)域的下一個(gè)突破可能在于賦予計(jì)算機(jī)情感能力。情感能力對(duì)于計(jì)算機(jī)與人的自然交往至關(guān)重要。
----人工智能一直處于計(jì)算機(jī)技術(shù)的前沿,人工智能研究的理論和發(fā)現(xiàn)在很大程度上將決定計(jì)算機(jī)技術(shù)的發(fā)展方向。今天,已經(jīng)有很多人工智能研究的成果進(jìn)入人們的日常生活。將來,人工智能技術(shù)的發(fā)展將會(huì)給人們的`生活、工作和教育等帶來更大的影響。
什么是人工智能?
----人工智能也稱機(jī)器智能,它是計(jì)算機(jī)科學(xué)、控制論、信息論、神經(jīng)生理學(xué)、心理學(xué)、語言學(xué)等多種學(xué)科互相滲透而發(fā)展起來的一門綜合性學(xué)科。從計(jì)算機(jī)應(yīng)用系統(tǒng)的角度出發(fā),人工智能是研究如何制造出人造的智能機(jī)器或智能系統(tǒng),來模擬人類智能活動(dòng)的能力,以延伸人們智能的科學(xué)。
ai理論的實(shí)用性
----在一年一度at&t實(shí)驗(yàn)室舉行的機(jī)器人足球賽中,每支球隊(duì)的“球員”都裝備上了ai軟件和許多感應(yīng)器,它們都很清楚自己該踢什么位置,同時(shí)也明白有些情況下不能死守崗位。盡管現(xiàn)在的ai技術(shù)只能使它們大部分時(shí)間處于個(gè)人盤帶的狀態(tài),但它們傳接配合的能力正在以很快的速度改進(jìn)。
----這種ai機(jī)器人組隊(duì)打比賽看似無聊,但是有很強(qiáng)的現(xiàn)實(shí)意義。因?yàn)橥ㄟ^這類活動(dòng)可以加強(qiáng)機(jī)器之間的協(xié)作能力。我們知道,internet是由無數(shù)臺(tái)服務(wù)器和無數(shù)臺(tái)路由器組成的,路由器的作用就是為各自的數(shù)據(jù)選擇通道并加以傳送,如果利用一些智能化的路由器很好地協(xié)作,就能分析出傳輸數(shù)據(jù)的最佳路徑,從而可以大大減少網(wǎng)絡(luò)堵塞。
----我國(guó)也已經(jīng)在大學(xué)中開展了機(jī)器人足球賽,有很多學(xué)校組隊(duì)參加,引起了大學(xué)生對(duì)人工智能研究的興趣。
未來的ai產(chǎn)品
----安放于加州勞倫斯·利佛摩爾國(guó)家實(shí)驗(yàn)室的asciwhite電腦,是ibm制造的世界最快的超級(jí)電腦,但其智力能力也僅為人腦的千分之一?,F(xiàn)在,ibm正在開發(fā)能力更為強(qiáng)大的新超級(jí)電腦--“藍(lán)色牛仔”(bluejean)。據(jù)其研究主任保羅·霍恩稱,預(yù)計(jì)于4年后誕生的“藍(lán)色牛仔”的智力水平將大致與人腦相當(dāng)。
----麻省理工學(xué)院的ai實(shí)驗(yàn)室進(jìn)行一個(gè)的代號(hào)為cog的項(xiàng)目。cog計(jì)劃意圖賦予機(jī)器人以人類的行為。該實(shí)驗(yàn)的一個(gè)項(xiàng)目是讓機(jī)器人捕捉眼睛的移動(dòng)和面部表情,另一個(gè)項(xiàng)目是讓機(jī)器人抓住從它眼前經(jīng)過的東西,還有一個(gè)項(xiàng)目則是讓機(jī)器人學(xué)會(huì)聆聽音樂的節(jié)奏并將其在鼓上演奏出來。
----/報(bào)道,比利時(shí)的starlab正在制造一個(gè)人工貓腦,這個(gè)貓腦將有7500萬個(gè)人造神經(jīng)細(xì)胞。據(jù)稱,移植了人工貓腦的小貓能夠行走,還能玩球。預(yù)計(jì)它將于制作完程。
人工智能的弊端論文篇二十
電氣自動(dòng)化控制系統(tǒng)是由計(jì)算機(jī)控制系統(tǒng)對(duì)電氣設(shè)備的運(yùn)行進(jìn)行自動(dòng)控制,電氣自動(dòng)化控制系統(tǒng)的應(yīng)用能夠大大提高電氣設(shè)備的工作效率,提高機(jī)械設(shè)備工作的精確性,為企業(yè)帶來了良好的經(jīng)濟(jì)效益,但是隨著電氣設(shè)備自動(dòng)化程度的不斷提高,要求電氣設(shè)備自動(dòng)化控制系統(tǒng)要實(shí)現(xiàn)智能化操作。人工智能技術(shù)是通過計(jì)算機(jī)系統(tǒng)模擬人的智能,在計(jì)算機(jī)的控制下,實(shí)現(xiàn)電氣設(shè)備控制系統(tǒng)的模擬人的智能,例如進(jìn)行圖像分析與處理、語音識(shí)別以及專家控制系統(tǒng)等等。可以說將人工智能技術(shù)應(yīng)用在電氣自動(dòng)化控制系統(tǒng)中是電氣自動(dòng)化技術(shù)發(fā)展的必然趨勢(shì)。
人工智能技術(shù)是以計(jì)算機(jī)技術(shù)為基礎(chǔ),融合多門學(xué)科的綜合性科學(xué)技術(shù),其主要是通過計(jì)算機(jī)模擬構(gòu)建人的智能,并且創(chuàng)建機(jī)器人系統(tǒng)和專家系統(tǒng)實(shí)現(xiàn)對(duì)電氣自動(dòng)控制系統(tǒng)的智能化操作。人工智能技術(shù)的突出特點(diǎn)是:一是操作性。人工智能技術(shù)主要是依托計(jì)算機(jī)的控制實(shí)現(xiàn)對(duì)電氣設(shè)備的控制,因此人工智能技術(shù)具有很強(qiáng)的邏輯性,便于控制人員進(jìn)行操作;二是價(jià)值大。人工智能技術(shù)不僅融合了計(jì)算機(jī)技術(shù),而且其還實(shí)現(xiàn)了對(duì)電氣設(shè)備的自動(dòng)化控制與監(jiān)測(cè),實(shí)現(xiàn)了以較小的投入獲得更大的經(jīng)濟(jì)效益的目的。比如通過人工智能技術(shù)可以減少人工操作環(huán)節(jié),進(jìn)而為企業(yè)節(jié)省相當(dāng)多的人力資源成本費(fèi)用;三是準(zhǔn)確性比較高。人工智能技術(shù)主要是計(jì)算機(jī)依據(jù)人的智能建立計(jì)算機(jī)控制系統(tǒng),實(shí)現(xiàn)對(duì)電氣設(shè)備的精確性操作,比如利用人工智能技術(shù)可以對(duì)電氣設(shè)備的運(yùn)行情況進(jìn)行智能檢測(cè)與處理,避免了人工檢測(cè)所存在的弊端。
人工智能技術(shù)的最大優(yōu)勢(shì)就是通過對(duì)電氣控制系統(tǒng)信息的收集、研究,制定出具體的有效處理措施,從而代替?zhèn)鹘y(tǒng)的依靠人腦進(jìn)行操作的模式。將人工智能技術(shù)應(yīng)用到電氣自動(dòng)化控制系統(tǒng)中具有重要的意義:
2.1能夠有效解決電氣自動(dòng)化控制過程中存在的病態(tài)結(jié)構(gòu)問題
電氣自動(dòng)化控制過程中因?yàn)殡姎庠O(shè)備精密度越來越高,因此在運(yùn)行過程中所出現(xiàn)的病態(tài)結(jié)構(gòu)很難應(yīng)用傳統(tǒng)的方式表達(dá)出來,而人工智能技術(shù)則可以有效解決此類問題,其完全有能力利用定量與定性相結(jié)合的控制方式對(duì)控制系統(tǒng)進(jìn)行計(jì)算與分析。
2.2實(shí)現(xiàn)自動(dòng)控制系統(tǒng)的數(shù)據(jù)采集與處理功能
將人工智能技術(shù)應(yīng)用到電氣自動(dòng)化控制中能夠依托專家系統(tǒng)對(duì)電氣設(shè)備進(jìn)行實(shí)時(shí)監(jiān)視,并且對(duì)相關(guān)信息進(jìn)行自動(dòng)收集與儲(chǔ)存,一旦發(fā)現(xiàn)存在潛在故障或者存在事故的事件,人工智能技術(shù)就會(huì)自動(dòng)采取相應(yīng)的.控制方式,對(duì)故障進(jìn)行自動(dòng)處理,進(jìn)而避免了電氣系統(tǒng)故障的進(jìn)一步擴(kuò)大化。
2.3簡(jiǎn)化了人工操作過程,降低了人工操作造成的損失
人工智能技術(shù)通過計(jì)算機(jī)設(shè)備就可以實(shí)現(xiàn)對(duì)電氣設(shè)備的自動(dòng)化控制,比如電氣系統(tǒng)的人工智能化控制系統(tǒng)就可以通過鼠標(biāo)對(duì)控制開關(guān)進(jìn)行自動(dòng)控制,并且對(duì)勵(lì)磁電流進(jìn)行調(diào)整。同時(shí)電氣人工智能控制系統(tǒng)還設(shè)定了應(yīng)用管理權(quán)限,限制了相應(yīng)操作人員的權(quán)限,實(shí)現(xiàn)了專人專崗制度,細(xì)化了操作責(zé)任制度。
3.1人工智能技術(shù)在電氣自動(dòng)化設(shè)備中的應(yīng)用
我們知道電氣自動(dòng)化控制系統(tǒng)屬于非常負(fù)責(zé)的控制系統(tǒng),其不僅包含復(fù)雜的元件,而且還需要操作人員嚴(yán)格按照自動(dòng)化控制系統(tǒng)的要求進(jìn)行操作,而將人工智能技術(shù)應(yīng)用到電氣設(shè)備中可以實(shí)現(xiàn)計(jì)算機(jī)的自動(dòng)化操作,最重要的就是可以代替?zhèn)鹘y(tǒng)的需要人工進(jìn)行設(shè)備檢測(cè)的落后模式,實(shí)現(xiàn)了對(duì)電氣設(shè)備的運(yùn)行狀態(tài)、故障檢測(cè)以及維修意見等一體的功能,降低了人工操作的失誤性,提高了電氣設(shè)備的應(yīng)用壽命,為企業(yè)節(jié)省了大量的成本。
3.2人工智能技術(shù)在電氣控制過程中的應(yīng)用
將智能技術(shù)應(yīng)用到電氣自動(dòng)化控制過程中,是人工智能技術(shù)發(fā)展的重要?jiǎng)恿?,通過人工智能化的電氣控制系統(tǒng)不僅可以提高電氣設(shè)備的工作效率,而且還可以降低電氣自動(dòng)化控制中的故障發(fā)生率。人工智能技術(shù)主要師模糊控制、專家控制以及神經(jīng)網(wǎng)絡(luò)控制和集成智能控制。本文以專家控制為例,專家控制就是將專家系統(tǒng)的設(shè)計(jì)規(guī)范和運(yùn)行機(jī)制與電氣控制劉楠相結(jié)合實(shí)現(xiàn)實(shí)時(shí)控制系統(tǒng)的設(shè)計(jì),其主要是對(duì)自動(dòng)控制的知識(shí)獲取、表示以及推理機(jī)制的建立。
3.3在事故和故障診斷中人工智能技術(shù)的應(yīng)用分析
人工智能技術(shù)在電氣設(shè)備故障中的作用是非常大的,尤其是對(duì)發(fā)動(dòng)機(jī)的故障檢修是具有重要作用的,我們知道在電氣設(shè)備中由于其結(jié)構(gòu)比較復(fù)雜,依靠人工很難對(duì)其進(jìn)行深入的檢測(cè),因此需要借助人工智能技術(shù)實(shí)現(xiàn)對(duì)設(shè)備的檢修。我們以變壓器為例,將智能技術(shù)應(yīng)用到變壓器的故障檢修中首先就是先收集電壓器油體中分解的氣體,然后通過對(duì)油體氣體的分析,找出故障的原因,進(jìn)而自動(dòng)形成解決措施。這樣有效避免了人工檢測(cè)所出現(xiàn)的失誤現(xiàn)象。另外人工智能技術(shù)在電氣設(shè)備操作中的應(yīng)用價(jià)值也比較大。通過人工智能技術(shù)可以實(shí)現(xiàn)電氣自動(dòng)化控制環(huán)節(jié)的簡(jiǎn)單化,比如在機(jī)床加工中,如果運(yùn)用人工智能技術(shù)則能夠有效降低機(jī)床操作的復(fù)雜性,并且能夠?qū)C(jī)床的運(yùn)行信息進(jìn)行收集與儲(chǔ)存,便于日后對(duì)相關(guān)信息的查詢。
總之,人工智能技術(shù)在電氣化領(lǐng)域中應(yīng)用,不但能夠最大限度的降低人工參與的程度,提升控制系統(tǒng)的數(shù)字化、智能化程度,還能夠大幅降低企業(yè)運(yùn)營(yíng)的成本,提高其利潤(rùn)空間,并將生產(chǎn)效率提高到一個(gè)全新的層面。因此,相關(guān)部門應(yīng)加強(qiáng)對(duì)人工智能技術(shù)的研究,使其能夠?yàn)槠髽I(yè)的發(fā)展以及社會(huì)的進(jìn)步發(fā)揮出更為突出的作用。
人工智能的弊端論文篇二十一
簡(jiǎn)要地介紹了人工智能科技技術(shù)的基本概念。對(duì)專家系統(tǒng)、人工神經(jīng)網(wǎng)絡(luò)、模糊理論、遺傳算法等人工智能技術(shù)的含義進(jìn)行了介紹,并對(duì)這些技術(shù)在電力系統(tǒng)中的應(yīng)用和存在問題進(jìn)行了分析。
人工智能技術(shù)(ai artificial intelligence)是一項(xiàng)將人類知識(shí)轉(zhuǎn)化為機(jī)器智能的技術(shù)。它研究的是怎樣用機(jī)器模仿人腦從事推理、規(guī)劃、設(shè)計(jì)、思考和學(xué)習(xí)等思維活動(dòng),解決需要由專家才能處理好的復(fù)雜問題。在應(yīng)用方面,以專家系統(tǒng)、人工神經(jīng)網(wǎng)絡(luò)、遺傳算法等最為普遍 。
1.1 專家系統(tǒng)(es)
專家系統(tǒng)是利用知識(shí)和推理來解決專家不能解決的問題。傳統(tǒng)程序需要固定程序和復(fù)雜算法,輸入數(shù)據(jù)并得出結(jié)果。專家系統(tǒng)集中大量的符號(hào)處理,采用啟發(fā)式方法模擬專家的推理過程,通過推理,利用知識(shí)解決問題。它具有邏輯思維和符號(hào)處理能力,能修改原來知識(shí),適合于電力系統(tǒng)問題的分析。
1.2 人工神經(jīng)網(wǎng)絡(luò)(ann)
人工神經(jīng)網(wǎng)絡(luò)是大量處理單元廣泛互聯(lián)而成的網(wǎng)絡(luò),是一種模擬動(dòng)物神經(jīng)系統(tǒng)的技術(shù)。神經(jīng)網(wǎng)絡(luò)具有自適應(yīng)和自學(xué)習(xí)的能力,能并行處理分布信息。電力系統(tǒng)應(yīng)用人工神經(jīng)網(wǎng)絡(luò)可以進(jìn)行實(shí)時(shí)控制、狀態(tài)評(píng)估等。
1.3 遺傳算法(ga)
遺傳算法是一種進(jìn)化論的數(shù)學(xué)模型,借鑒自然遺傳機(jī)制的隨機(jī)搜索算法。它的主要特征是群體搜索和群體中個(gè)體之間的信息交換。該方法適用于處理傳統(tǒng)搜索方法難以解決的非線性問題。
1.4 模糊邏輯(fl)
當(dāng)輸入是離散的變量,難以建立數(shù)學(xué)模型。而模糊邏輯則成功地應(yīng)用在潮流計(jì)算、系統(tǒng)規(guī)劃、故障診斷等電力系統(tǒng)問題。
1.5 混合技術(shù)
以上各種智能控制方法各有局限性,有些甚至難以處理電力系統(tǒng)實(shí)際問題。因此需要結(jié)合各個(gè)算法的優(yōu)勢(shì),采用人工智能混合技術(shù)。其中包括:模糊專家系統(tǒng)、神經(jīng)網(wǎng)絡(luò)模糊系統(tǒng)、神經(jīng)網(wǎng)絡(luò)專家系統(tǒng)等技術(shù)。
2.1在電能質(zhì)量研究中的應(yīng)用
人工智能技術(shù)可以對(duì)電壓波動(dòng)、電壓不平衡、電網(wǎng)諧波等電能質(zhì)量參數(shù)進(jìn)行在線監(jiān)測(cè)和分析。在檢測(cè)和識(shí)別電能質(zhì)量擾動(dòng)時(shí)能克服傳統(tǒng)方法的缺陷。專家系統(tǒng)隨著經(jīng)驗(yàn)的積累、擾動(dòng)類型變化而不斷擴(kuò)充和修改,便于用戶的.掌握[3] 。
此外,專家系統(tǒng)和模糊邏輯可用于培訓(xùn)變電站工作人員。智能軟件可以模擬故障情形,有利于提高運(yùn)行人員的操作技能。
2.2 變壓器狀態(tài)監(jiān)測(cè)與故障診斷專家系統(tǒng)
變壓器事故原因判斷起來十分復(fù)雜。判斷過程中,必須通過內(nèi)外部的檢測(cè)等各種方法綜合分析作出判斷。變壓器監(jiān)測(cè)和診斷專家系統(tǒng)首先對(duì)油中氣體進(jìn)行分析。異常時(shí),根據(jù)異常程度結(jié)合試驗(yàn)進(jìn)行分析,決定變壓器的停運(yùn)檢查。若經(jīng)分析發(fā)現(xiàn)變壓器已嚴(yán)重故障,需立即退出運(yùn)行,則要結(jié)合電氣試驗(yàn)手段對(duì)變壓器的故障性質(zhì)及部位做出確診。
變壓器監(jiān)測(cè)和診斷專家系統(tǒng)通過診斷模塊和推理機(jī)制,能診斷出變壓器的故障并提出相應(yīng)對(duì)策,提高了變壓器內(nèi)部故障的診斷水平,實(shí)現(xiàn)了電力變壓器狀態(tài)檢修和在線監(jiān)測(cè)。
2.3 人工智能技術(shù)在低壓電器中的應(yīng)用
低壓電器的設(shè)計(jì)以實(shí)驗(yàn)為基礎(chǔ),需要分析靜態(tài)模型和動(dòng)態(tài)過程。人工智能技術(shù)能進(jìn)行分段過程的動(dòng)態(tài)設(shè)計(jì),對(duì)變化規(guī)律進(jìn)行曲線擬合并進(jìn)行人工神經(jīng)網(wǎng)絡(luò)訓(xùn)練,建立變化規(guī)律預(yù)測(cè)模型,降低了開發(fā)成本。
低壓電器需要通過試驗(yàn)進(jìn)行性能認(rèn)證。而低壓電器的壽命很難進(jìn)行評(píng)價(jià)。模糊識(shí)別方法,從考慮產(chǎn)品性能的角度出發(fā),將動(dòng)態(tài)測(cè)得的反映性能的特性指標(biāo)作為模糊識(shí)別的變量特征值,能夠建立評(píng)估電器性能的模糊識(shí)別模型。
2.4 人工智能在電力系統(tǒng)無功優(yōu)化中的應(yīng)用
無功優(yōu)化是保證電力系統(tǒng)安全,提高運(yùn)行經(jīng)濟(jì)性的手段之一。通過無功優(yōu)化,可以使各個(gè)性能指標(biāo)達(dá)到最優(yōu)。但是無功優(yōu)化是一個(gè)復(fù)雜的非線性問題 。
人工智能算法能應(yīng)用于電力系統(tǒng)無功優(yōu)化。如改進(jìn)的模擬退火算法,在求解高中壓配電網(wǎng)的無功優(yōu)化問題中,采用了記憶指導(dǎo)搜索方法來加快搜索速度。模式法進(jìn)行局部尋優(yōu)以增加獲得全局最優(yōu)解的可能性,能夠以較大概率獲得全局最優(yōu)解,提高了收斂穩(wěn)定性。禁忌搜索方法尋優(yōu)速度較快,在跳出局部最優(yōu)解方面有較大優(yōu)勢(shì)。遺傳算法在解決多變量、非線性、離散性的問題時(shí)有極大的優(yōu)勢(shì)。要求較少的求解信息的,模型簡(jiǎn)單,適用范圍廣。
2.5 人工智能在電力系統(tǒng)繼電保護(hù)中應(yīng)用
自適應(yīng)型繼電保護(hù)裝置能地適應(yīng)各種變化,改善保護(hù)的性能,使之適應(yīng)各種運(yùn)行方式和故障類型。它能夠有效地處理各種故障信息,獲得可靠的保護(hù)。
借助于人工智能技術(shù)不但能夠提取故障信息,還能利用其自學(xué)習(xí)和自適應(yīng)能力,根據(jù)不同運(yùn)行工況,自適應(yīng)地調(diào)整保護(hù)定值和動(dòng)作特性。
2.6 人工智能在抑制電力系統(tǒng)低頻振蕩的應(yīng)用
大規(guī)模電網(wǎng)互聯(lián)易產(chǎn)生低頻振蕩,嚴(yán)重威脅著電力系統(tǒng)的安全。人工智能為電力系統(tǒng)低頻振蕩的控制提供了技術(shù)支持。神經(jīng)網(wǎng)絡(luò)、模糊理論、ga等人工智能技術(shù)應(yīng)用于facts控制器和自適應(yīng)pss的研究,為抑制電力系統(tǒng)低頻振蕩提供了新的手段。
作為一門交叉學(xué)科,人工智能將隨著其他理論的發(fā)展而進(jìn)入新的發(fā)展階段。應(yīng)用新方法解決問題,或促進(jìn)各種方法的融合,保持簡(jiǎn)單的數(shù)學(xué)模型和全局尋優(yōu)情況下,尋求到更少的運(yùn)算量,提高算法效率,將是未來發(fā)展的趨勢(shì)。
隨著電力系統(tǒng)的發(fā)展,電力系統(tǒng)的復(fù)雜性不斷增加,不確定因素越來越多。隨著人工智能技術(shù)的不斷發(fā)展和提高,利用人工智能技術(shù)來解決電力系統(tǒng)的問題將會(huì)受到越來越多的重視。
隨著我國(guó)電力系統(tǒng)的持續(xù)穩(wěn)步發(fā)展,電力系統(tǒng)數(shù)據(jù)量不斷增加,管理上復(fù)雜程度大幅度增長(zhǎng),市場(chǎng)競(jìng)爭(zhēng)的加大,為人工智能技術(shù)在電力系統(tǒng)的應(yīng)用提供了廣闊前景。
但人工智能技術(shù)的基本理論還不成熟,只是停留在仿真和實(shí)驗(yàn)階段。人工智能的開發(fā)是一個(gè)長(zhǎng)期的過程,需要不斷改進(jìn)和完善,并在實(shí)際應(yīng)用中接受檢驗(yàn)。
【本文地址:http://mlvmservice.com/zuowen/4665984.html】