最優(yōu)人工智能的優(yōu)點論文大全(18篇)

格式:DOC 上傳日期:2023-10-28 04:06:06
最優(yōu)人工智能的優(yōu)點論文大全(18篇)
時間:2023-10-28 04:06:06     小編:紫薇兒

全面觀察總結(jié)還可以加入自己的感悟和反思,使其更具個人特色。以下是小編為大家搜集的相關(guān)資料,供大家參考。

人工智能的優(yōu)點論文篇一

人工智能是一門交叉性的前沿學(xué)科,也是一門極富挑戰(zhàn)性的科學(xué)。人工智能技術(shù)和理論在一定程度上代表了信息技術(shù)的發(fā)展方向,所以對其人才的培養(yǎng)也是重中之重。

人工智能;信息技術(shù);智能教育

人工智能是多種學(xué)科相互滲透而發(fā)展起來的交叉性學(xué)科,其涉及計算機科學(xué)、信息論、數(shù)學(xué)、哲學(xué)和認知科學(xué)、心理學(xué)、控制論、不定性論、神經(jīng)生理學(xué)、語言學(xué)等多種學(xué)科。隨著科技的飛速發(fā)展和人工智能技術(shù)應(yīng)用的不斷擴延,其涉及的學(xué)科領(lǐng)域?qū)⒂鷣碛?,它已和人們的學(xué)習(xí)、生活息息相關(guān),時代和社會需要此方面的大量人才。在高中信息技術(shù)課中開設(shè)人工智能初步模塊是十分必要的,本文擬從其發(fā)展現(xiàn)狀、存在問題等幾個方面對我國高中信息課程中人工智能教育做一下探討。

(1)人工智能定義

人工智能(ai,artificial intelligence)是計算機科學(xué)的一個分支,己成為一門具有廣泛應(yīng)用的交叉學(xué)科和前沿學(xué)科。它研究如何用計算機模擬人腦所從事的推理、證明、識別、理解、設(shè)計、學(xué)習(xí)、規(guī)劃以及問題求解等思維活動,來解決人類專家才能解決的復(fù)雜問題,例如咨詢、探測、診斷、策劃等。

(2)開設(shè)人工智能課程的意義

現(xiàn)實世界的問題可以按照結(jié)構(gòu)化程度劃分成三個層次:結(jié)構(gòu)化問題,是能用形式化(或稱公式化)方法描述和求解的一類問題;非結(jié)構(gòu)化問題難以用確定的形式來描述,主要根據(jù)經(jīng)驗來求解;半結(jié)構(gòu)化問題則介于上述兩者之間。

將人工智能課程引入到我國現(xiàn)行的教育中,可以讓學(xué)生在了解人工智能基本語言特征、理解智能化問題求解的基本策略過程中,體驗、認識人工智能技術(shù)的同時獲得對非結(jié)構(gòu)化、半結(jié)構(gòu)化問題解決過程的了解,從而使學(xué)生了解計算機解決問題方法的多樣性,培養(yǎng)學(xué)生的多種思維方式,更好的解決現(xiàn)實問題。

目前,該學(xué)科的教育正處于摸索階段,由于中學(xué)信息技術(shù)師資水平、學(xué)校硬軟件設(shè)備等條件的制約,我國尚未在中學(xué)專門開設(shè)獨立的人工智能類課程,internet上與人工智能教育相關(guān)的中文信息資源也十分貧乏,在教學(xué)環(huán)境上大致存在以下問題:

(一)教學(xué)條件參差不齊

開設(shè)好人工智能課程,就要求安排更多的實踐課程和活動來增強課程的趣味性,讓廣大師生切實體會到人工智能對我們生活的影響。這些活動大部分要求上機操作或利用網(wǎng)絡(luò)資源來學(xué)習(xí)交流,這就對教學(xué)條件提出了較高的要求,尤其是一些偏遠農(nóng)村、條件相對落后的中學(xué)在開設(shè)人工智能課程上存在很大困難。

(1)對硬件性能的要求

人工智能課程中有較多的實踐課程需要老師和學(xué)生利用網(wǎng)絡(luò)資源,使用計算機進行操作。這就需要學(xué)校配備計算機網(wǎng)絡(luò)教學(xué)機房,若其性能較差,會延長學(xué)生在線進行人機對話的時間,一旦遇到網(wǎng)絡(luò)堵塞,可能連網(wǎng)頁都打不開,這不僅浪費了僅有的'上課時間,而且大大降低了學(xué)生的學(xué)習(xí)興趣。

(2)對軟件性能的要求

為了降低成本,學(xué)??梢岳没ヂ?lián)網(wǎng)上提供的免費下載軟件和免費在線教學(xué)網(wǎng)站等進行實踐教學(xué),可大大減少自研開發(fā)軟件和軟件維護的費用。但一旦遇到網(wǎng)絡(luò)不通、網(wǎng)絡(luò)擁擠或在線網(wǎng)站停止服務(wù)等情況,將無法使用網(wǎng)絡(luò)資源進行教學(xué),可見,軟件的依賴性較強也存在很大的問題。

(二)對人工智能科學(xué)的認識不足

(1)學(xué)生的認識誤區(qū)

提及人工智能,給大多數(shù)學(xué)生的感覺是一門神秘、遙不可及的科學(xué)。很多學(xué)生認為人工智能技術(shù)是很高深的科學(xué),離我們現(xiàn)實生活有一定距離,研究和接觸這門科學(xué)是少數(shù)科學(xué)家的事情,從而對該科學(xué)的關(guān)注程度不高。其實,人工智能學(xué)科是一門漸漸成長的科學(xué),它將應(yīng)用在我們生活的方方面面。我們應(yīng)在教學(xué)中讓學(xué)生多去體驗人工智能的魅力所在,吸引更多對該學(xué)科感興趣的人去研究和使用它。

(2)教師對人工智能學(xué)科開設(shè)存在偏見

一些從事該學(xué)科教學(xué)的教師沒有接觸過人工智能方面的知識,在接觸過后被其中深奧難理解的知識所嚇倒,認為即使開設(shè)了這門課程也不易被同學(xué)們所接受;而一些在大學(xué)接觸過人工智能課程的教師則認為,其理論枯燥乏味,知識內(nèi)容艱深,不適合放在高中開設(shè)。

(三)一線教師經(jīng)驗不足

在我國大學(xué)教育中,開展人工智能專業(yè)課程的大學(xué)為數(shù)不多,師范類院校更是少之又少。從事人工智能領(lǐng)域的專業(yè)人才輸出少,所以,缺乏具備一定知識結(jié)構(gòu)、有專業(yè)素養(yǎng)的教師來擔任高中信息技術(shù)課中人工智能課程的教育工作。絕大多數(shù)的一線教師并沒有接受過人工智能課程的專業(yè)培訓(xùn),在授課內(nèi)容上的著重點掌握不好,教學(xué)目標不夠明確;在授課形式上也沒有前人的經(jīng)驗可尋,這就給一線教師帶來了極大的挑戰(zhàn)。

(一)加強軟、硬件建設(shè)

在學(xué)校條件允許的條件下,應(yīng)加大硬件設(shè)施的投入,改善網(wǎng)絡(luò)傳遞信息的效率,同時加強軟件資源建設(shè)。鼓勵師生上網(wǎng)搜索更多適合ai教學(xué)的網(wǎng)站,教師應(yīng)整理出和ai相關(guān)的趣味小故事、電影、光盤等和教材相關(guān)的素材,以便更好的配合硬件教學(xué)。

(二)端正認識,增強支持

作為教師要樹立對高中人工智能選修課程的正確認識。通過對課標中規(guī)定的相關(guān)內(nèi)容的深入了解和學(xué)習(xí),克服對人工智能的神秘感或恐懼感,理性而客觀的看待人工智能技術(shù)及其應(yīng)用,明確在高中開設(shè)該課程的目的。同時,教師也不能因為該課程的“選修”性質(zhì),從而輕視該課程的作用。

作為學(xué)生不應(yīng)該僅僅看見這門課程的娛樂趣味性,應(yīng)把一些重要的技術(shù)理論知識重視起來,不能過分的放松自己而偏離了我們的教學(xué)目標。家長也應(yīng)該支持和贊同學(xué)生選擇該課程,不能應(yīng)認識不到這門課程的作用、怕耽誤學(xué)生主干課的學(xué)習(xí)而反對學(xué)生積極參與。

校方領(lǐng)導(dǎo)也不應(yīng)條件限制就輕易放棄這門課程的開設(shè),應(yīng)給予積極的配合。社會各界也應(yīng)加強輿論與正確引導(dǎo),讓更多的人們認識人工智能并予以肯定。

總之,人工智能是一門逐漸成長的科學(xué),開設(shè)好該課程需要廣大教育工作者和校方領(lǐng)導(dǎo)不斷努力,互相交流,共同克服困難。

參考文獻:

[1]張劍平.人工智能技術(shù)與“問題解決”[j].中小學(xué)信息技術(shù)教育,2003(10).

[2]段東輝.淺談信息技術(shù)課程中人工智能教育[j].新鄉(xiāng)教育學(xué)院學(xué)報,第19卷第二期2006,6.

[3]教育部.普通高中技術(shù)課程標準(實驗稿).人民教育出版社,2003年4月.

[4]張家華,張劍平.開展高中人工智能教學(xué)存在的問題及對策[j].

人工智能的優(yōu)點論文篇二

長久以來,人工智能對于普通人來說是那樣的可望而不可及,然而它卻吸引了無數(shù)研究人員為之奉獻才智,從美國的麻省理工學(xué)院(mit)、卡內(nèi)基-梅隆大學(xué)(cmu)到ibm公司,再到日本的本田公司、sony公司以及國內(nèi)的清華大學(xué)、中科院等科研院所,全世界的實驗室都在進行著ai技術(shù)的實驗。不久前,著名導(dǎo)演斯蒂文·斯皮爾伯格還將這一主題搬上了銀幕,科幻片《人工智能》(a.i.)對許多人的頭腦又一次產(chǎn)生了震動,引起了一些人士了解并探索人工智能領(lǐng)域的興趣。

在本期技術(shù)專題中,中國科學(xué)院計算技術(shù)研究所智能信息處理開放實驗室的幾位研究人員將引領(lǐng)我們走近人工智能這一充滿挑戰(zhàn)與機遇的領(lǐng)域。

"智能"源于拉丁語legere,字面意思是采集(特別是果實)、收集、匯集,并由此進行選擇,形成一個東西。intelegere是從中進行選擇,進而理解、領(lǐng)悟和認識。正如帕梅拉·麥考達克在《機器思維》(machineswhothinks,1979)中所提出的:在復(fù)雜的機械裝置與智能之間存在長期的聯(lián)系。從幾個世紀前出現(xiàn)的神話般的巨鐘和機械自動機開始,人們已對機器操作的復(fù)雜性與自身的某些智能活動進行直觀聯(lián)系。經(jīng)過幾個世紀之后,新技術(shù)已使我們所建立的機器的復(fù)雜性大為提高。1936年,24歲的英國數(shù)學(xué)家圖靈(turing)提出了"自動機"理論,把研究會思維的機器和計算機的工作大大向前推進了一步,他也因此被稱為"人工智能之父"。

人工智能領(lǐng)域的研究是從1956年正式開始的,這一年在達特茅斯大學(xué)召開的會議上正式使用了"人工智能"(artificialintelligence,ai)這個術(shù)語。隨后的幾十年中,人們從問題求解、邏輯推理與定理證明、自然語言理解、博弈、自動程序設(shè)計、專家系統(tǒng)、學(xué)習(xí)以及機器人學(xué)等多個角度展開了研究,已經(jīng)建立了一些具有不同程度人工智能的計算機系統(tǒng),例如能夠求解微分方程、設(shè)計分析集成電路、合成人類自然語言,而進行情報檢索,提供語音識別、手寫體識別的多模式接口,應(yīng)用于疾病診斷的專家系統(tǒng)以及控制太空飛行器和水下機器人更加貼近我們的生活。我們熟知的ibm的"深藍"在棋盤上擊敗了國際象棋大師卡斯帕羅夫就是比較突出的例子。

當然,人工智能的發(fā)展也并不是一帆風順的,也曾因計算機計算能力的限制無法模仿人腦的思考以及與實際需求的差距過遠而走入低谷,但是隨著硬件和軟件的發(fā)展,計算機的運算能力在以指數(shù)級增長,同時網(wǎng)絡(luò)技術(shù)蓬勃興起,確保計算機已經(jīng)具備了足夠的條件來運行一些要求更高的ai軟件,而且現(xiàn)在的ai具備了更多的現(xiàn)實應(yīng)用的基礎(chǔ)。90年代以來,人工智能研究又出現(xiàn)了新的高潮。

我們有幸采訪了中國科學(xué)院計算技術(shù)研究所智能信息處理開放實驗室史忠植研究員,請他和他的實驗室成員引領(lǐng)我們走近人工智能這個讓普通人感到深奧卻又具有無窮魅力的領(lǐng)域。

問:目前人工智能研究出現(xiàn)了新的高潮,那么現(xiàn)在有哪些新的研究熱點和實際應(yīng)用呢?

答:ai研究出現(xiàn)了新的高潮,這一方面是因為在人工智能理論方面有了新的進展,另一方面也是因為計算機硬件突飛猛進的發(fā)展。隨著計算機速度的`不斷提高、存儲容量的不斷擴大、價格的不斷降低以及網(wǎng)絡(luò)技術(shù)的不斷發(fā)展,許多原來無法完成的工作現(xiàn)在已經(jīng)能夠?qū)崿F(xiàn)。目前人工智能研究的3個熱點是:智能接口、數(shù)據(jù)挖掘、主體及多主體系統(tǒng)。

智能接口技術(shù)是研究如何使人們能夠方便自然地與計算機交流。為了實現(xiàn)這一目標,要求計算機能夠看懂文字、聽懂語言、說話表達,甚至能夠進行不同語言之間的翻譯,而這些功能的實現(xiàn)又依賴于知識表示方法的研究。因此,智能接口技術(shù)的研究既有巨大的應(yīng)用價值,又有基礎(chǔ)的理論意義。目前,智能接口技術(shù)已經(jīng)取得了顯著成果,文字識別、語音識別、語音合成、圖像識別、機器翻譯以及自然語言理解等技術(shù)已經(jīng)開始實用化。

數(shù)據(jù)挖掘就是從大量的、不完全的、有噪聲的、模糊的、隨機的實際應(yīng)用數(shù)據(jù)中提取隱含在其中的、人們事先不知道的、但又是潛在有用的信息和知識的過程。數(shù)據(jù)挖掘和知識發(fā)現(xiàn)的研究目前已經(jīng)形成了三根強大的技術(shù)支柱:數(shù)據(jù)庫、人工智能和數(shù)理統(tǒng)計。主要研究內(nèi)容包括基礎(chǔ)理論、發(fā)現(xiàn)算法、數(shù)據(jù)倉庫、可視化技術(shù)、定性定量互換模型、知識表示方法、發(fā)現(xiàn)知識的維護和再利用、半結(jié)構(gòu)化和非結(jié)構(gòu)化數(shù)據(jù)中的知識發(fā)現(xiàn)以及網(wǎng)上數(shù)據(jù)挖掘等。

主體是具有信念、愿望、意圖、能力、選擇、承諾等心智狀態(tài)的實體,比對象的粒度更大,智能性更高,而且具有一定自主性。主體試圖自治地、獨立地完成任務(wù),而且可以和環(huán)境交互,與其他主體通信,通過規(guī)劃達到目標。多主體系統(tǒng)主要研究在邏輯上或物理上分離的多個主體之間進行協(xié)調(diào)智能行為,最終實現(xiàn)問題求解。多主體系統(tǒng)試圖用主體來模擬人的理性行為,主要應(yīng)用在對現(xiàn)實世界和社會的模擬、機器人以及智能機械等領(lǐng)域。目前對主體和多主體系統(tǒng)的研究主要集中在主體和多主體理論、主體的體系結(jié)構(gòu)和組織、主體語言、主體之間的協(xié)作和協(xié)調(diào)、通信和交互技術(shù)、多主體學(xué)習(xí)以及多主體系統(tǒng)應(yīng)用等方面。

答:我國開始"863計劃"時,正值全世界的人工智能熱潮。"863-306"主題的名稱是"智能計算機系統(tǒng)",其任務(wù)就是在充分發(fā)掘現(xiàn)有計算機潛力的基礎(chǔ)上,分析現(xiàn)有計算機在應(yīng)用中的缺陷和"瓶頸",用人工智能技術(shù)克服這些問題,建立起更為和諧的人-機環(huán)境。經(jīng)過十幾年來的努力,我們縮短了我國人工智能技術(shù)與世界先進水平的差距,也為未來的發(fā)展奠定了技術(shù)和人才基礎(chǔ)。

但是也應(yīng)該看到目前我國人工智能研究中還存在一些問題,其特點是:課題比較分散,應(yīng)用項目偏多、基礎(chǔ)研究比例略少、理論研究與實際應(yīng)用需求結(jié)合不夠緊密。選題時,容易跟著國外的選題走;立項論證時,慣于考慮國外怎么做;落實項目時,又往往顧及面面俱到,大而全;再加上受研究經(jīng)費的限制,所以很多課題既沒有取得理論上的突破,也沒有太大的實際應(yīng)用價值。

今后,基礎(chǔ)研究的比例應(yīng)該適當提高,同時人工智能研究一定要與應(yīng)用需求相結(jié)合??茖W(xué)研究講創(chuàng)新,而創(chuàng)新必須接受應(yīng)用和市場的檢驗。因此,我們不僅要善于找到解決問題的答案,更重要的是要發(fā)現(xiàn)最迫切需要解決的問題和最迫切需要滿足的市場需求。

問:請您預(yù)測一下人工智能將來會向哪些方面發(fā)展?

答:技術(shù)的發(fā)展總是超乎人們的想象,要準確地預(yù)測人工智能的未來是不可能的。但是,從目前的一些前瞻性研究可以看出未來人工智能可能會向以下幾個方面發(fā)展:模糊處理、并行化、神經(jīng)網(wǎng)絡(luò)和機器情感。

目前,人工智能的推理功能已獲突破,學(xué)習(xí)及聯(lián)想功能正在研究之中,下一步就是模仿人類右腦的模糊處理功能和整個大腦的并行化處理功能。人工神經(jīng)網(wǎng)絡(luò)是未來人工智能應(yīng)用的新領(lǐng)域,未來智能計算機的構(gòu)成,可能就是作為主機的馮·諾依曼型機與作為智能外圍的人工神經(jīng)網(wǎng)絡(luò)的結(jié)合。研究表明:情感是智能的一部分,而不是與智能相分離的,因此人工智能領(lǐng)域的下一個突破可能在于賦予計算機情感能力。情感能力對于計算機與人的自然交往至關(guān)重要。

人工智能一直處于計算機技術(shù)的前沿,人工智能研究的理論和發(fā)現(xiàn)在很大程度上將決定計算機技術(shù)的發(fā)展方向。今天,已經(jīng)有很多人工智能研究的成果進入人們的日常生活。將來,人工智能技術(shù)的發(fā)展將會給人們的生活、工作和教育等帶來更大的影響。

人工智能也稱機器智能,它是計算機科學(xué)、控制論、信息論、神經(jīng)生理學(xué)、心理學(xué)、語言學(xué)等多種學(xué)科互相滲透而發(fā)展起來的一門綜合性學(xué)科。從計算機應(yīng)用系統(tǒng)的角度出發(fā),人工智能是研究如何制造出人造的智能機器或智能系統(tǒng),來模擬人類智能活動的能力,以延伸人們智能的科學(xué)。

在一年一度at&t實驗室舉行的機器人足球賽中,每支球隊的"球員"都裝備上了ai軟件和許多感應(yīng)器,它們都很清楚自己該踢什么位置,同時也明白有些情況下不能死守崗位。盡管現(xiàn)在的ai技術(shù)只能使它們大部分時間處于個人盤帶的狀態(tài),但它們傳接配合的能力正在以很快的速度改進。

這種ai機器人組隊打比賽看似無聊,但是有很強的現(xiàn)實意義。因為通過這類活動可以加強機器之間的協(xié)作能力。我們知道,internet是由無數(shù)臺服務(wù)器和無數(shù)臺路由器組成的,路由器的作用就是為各自的數(shù)據(jù)選擇通道并加以傳送,如果利用一些智能化的路由器很好地協(xié)作,就能分析出傳輸數(shù)據(jù)的最佳路徑,從而可以大大減少網(wǎng)絡(luò)堵塞。

我國也已經(jīng)在大學(xué)中開展了機器人足球賽,有很多學(xué)校組隊參加,引起了大學(xué)生對人工智能研究的興趣。

安放于加州勞倫斯·利佛摩爾國家實驗室的asciwhite電腦,是ibm制造的世界最快的超級電腦,但其智力能力也僅為人腦的千分之一?,F(xiàn)在,ibm正在開發(fā)能力更為強大的新超級電腦--"藍色牛仔"(bluejean)。據(jù)其研究主任保羅·霍恩稱,預(yù)計于4年后誕生的"藍色牛仔"的智力水平將大致與人腦相當。

麻省理工學(xué)院的ai實驗室進行一個的代號為cog的項目。cog計劃意圖賦予機器人以人類的行為。該實驗的一個項目是讓機器人捕捉眼睛的移動和面部表情,另一個項目是讓機器人抓住從它眼前經(jīng)過的東西,還有一個項目則是讓機器人學(xué)會聆聽音樂的節(jié)奏并將其在鼓上演奏出來。

人工智能的優(yōu)點論文篇三

隨著數(shù)字智能技術(shù)的不斷進步,人工智能技術(shù)在電氣自動化控制系統(tǒng)中的應(yīng)用也日益廣泛。因此,在電氣自動化控制系統(tǒng)中,為提高生產(chǎn)力水平、方便人們?nèi)粘I?,需要加大對人工智能技術(shù)的應(yīng)用研究,實現(xiàn)自動化體系的升級和發(fā)展需要。本文主要以人工智能技術(shù)的應(yīng)用理論和現(xiàn)狀入手,具體介紹了電氣自動化控制中人工智能技術(shù)的應(yīng)用對策,最終提高經(jīng)濟效益和社會效益。

電氣自動化是一門實踐性較強的應(yīng)用性科學(xué),主要研究電氣系統(tǒng)的運行控制和研發(fā)。人類社會文明發(fā)展至今在科學(xué)技術(shù)方面的最大進步,主要是實現(xiàn)了系統(tǒng)中機械設(shè)備運行和控制的自動化和智能化。研究人工智能技術(shù)在電氣自動化控制中的應(yīng)用,有助于推動電氣系統(tǒng)自動化的進一步發(fā)展,實現(xiàn)系統(tǒng)運行的智能化,使得其更加安全穩(wěn)定,最終提高企業(yè)的生產(chǎn)效率,提高市場競爭力。

人工智能是一門新型的計算機科學(xué),介于自然科學(xué)和社會科學(xué)邊緣之間,研究對象主要是智能搜索、邏輯程序設(shè)計、自然語言問題和感知問題等。人工智能技術(shù)的本質(zhì)就是模擬人類思維進行信息編碼的過程,主要是結(jié)構(gòu)模仿和功能模擬兩種思維模擬方式。前者模擬形式主要是對人類大腦機制進行模擬,制造出類似人腦的機器設(shè)備;后者模擬主要是從人腦的功能角度出發(fā),對人類大腦思維功能進行模擬。較為成功的典型事件就是現(xiàn)代的電子信息計算機,順利地模擬人類大腦思維進行信息編碼。

人工智能不是人的智能,更不是對人的智力功能的超越,其不同于人類大腦運行的顯著特征主要有四個方面:是機械的無意識的物理過程;無社會性;不具備人類意識的創(chuàng)造力;功能是在人類大腦思維之后產(chǎn)生的。應(yīng)用人工智能技術(shù)在電氣自動化控制系統(tǒng)中,可以極大地節(jié)省人力資源,降低成本。同時,不控制目標模型就可以提高操作的準確度,降低誤差。此外,這樣還能保證產(chǎn)品的規(guī)范,提高性能。

近年來,人工智能技術(shù)得到了公眾的高度重視,大多數(shù)的專業(yè)性高校和科研單位都對其在電氣自動化系統(tǒng)中的應(yīng)用開展了眾多工作,現(xiàn)下的人工智能技術(shù)主要應(yīng)用在電氣設(shè)備的設(shè)計、事故及故障診斷和電氣控制過程中的監(jiān)控預(yù)警等工作。首先,在電氣自動化系統(tǒng)中電氣設(shè)備的設(shè)計方面,設(shè)備的結(jié)構(gòu)設(shè)計較為繁瑣復(fù)雜,涉及面較廣,要求操作設(shè)計人員具備較多的實踐經(jīng)驗。其次,在事故及故障診斷方面,人工智能技術(shù)可以利用模糊邏輯和神經(jīng)網(wǎng)絡(luò)等發(fā)揮優(yōu)勢,做好預(yù)警監(jiān)控工作。最后,在電氣控制過程中應(yīng)用人工智能技術(shù),主要依靠神經(jīng)網(wǎng)絡(luò)、模糊控制和專家系統(tǒng)三種方式,其中模糊控制應(yīng)用較為普遍,以ai控制為主。

根據(jù)上部分分析的人工智能技術(shù)在電氣自動化控制系統(tǒng)的應(yīng)用現(xiàn)狀,可知為實現(xiàn)電氣自動化控制系統(tǒng)運行的高效性、提高人工智能技術(shù)的應(yīng)用性,對策主要有以下三個方面:應(yīng)用于電氣設(shè)備設(shè)計、應(yīng)用于事故及故障診斷和應(yīng)用于電氣控制過程。

3.1 應(yīng)用于電氣設(shè)備設(shè)計

根據(jù)諸多電氣工程的實踐證明,只有具備各相關(guān)專業(yè)的學(xué)科知識和技藝才能真正實現(xiàn)電氣自動化控制系統(tǒng)的高效性,使其穩(wěn)定運行。在電氣設(shè)備的設(shè)計中應(yīng)用人工智能技術(shù),可以簡化工作,降低人力成本。因此,企業(yè)擁有一批素質(zhì)高的設(shè)計團隊,這是電氣自動化控制系統(tǒng)實現(xiàn)高效性的關(guān)鍵之一。此外,企業(yè)需要采取先進的人工智能技術(shù)進行電氣設(shè)備的設(shè)計工作,尤其是結(jié)構(gòu)設(shè)計工作。具體來說,人工智能技術(shù)在進行電氣設(shè)備設(shè)計時主要是采用遺傳算法升級計算機系統(tǒng),全面提高產(chǎn)品的研發(fā)、設(shè)計和生產(chǎn),優(yōu)化設(shè)計產(chǎn)品。

3.2 應(yīng)用于事故及故障診斷

電氣故障診斷,指的是對電氣自動化控制系統(tǒng)中機械設(shè)備的先關(guān)信息進行確定,判斷技術(shù)和運行狀況是否正常,如果出現(xiàn)異常,可以及時確定故障的具體內(nèi)容和性質(zhì)部位,找出故障原因并提出解決對策。而在電氣設(shè)備運行時,不確定因素較多,使得系統(tǒng)容易出現(xiàn)各種類型的故障和事故,如果無法及時確定故障的性質(zhì)和部位,將會給員工的人身安全帶來威脅,企業(yè)也會承受較大的經(jīng)濟損失。因此,及時判斷分析事故并做好故障診斷工作,是一項至關(guān)重要的工作??梢栽趥鹘y(tǒng)的電氣控制系統(tǒng)中,采取一些新型的.人工智能技術(shù)進行診斷。比如說,在診斷變壓器的故障中,我們可以引入人工智能技術(shù)進行診斷,在節(jié)省人力物力的同時保證診斷的精確性,也可以在對發(fā)動機和發(fā)電機等電氣機械設(shè)備進行事故診斷時引入人工智能技術(shù),提高精確度,以達到良好的工作效果,實現(xiàn)企業(yè)的經(jīng)濟效益。

3.3 應(yīng)用于電氣控制過程

人工智能技術(shù)在電氣自動化控制系統(tǒng)中起著關(guān)鍵性作用,是電氣行業(yè)中的重要部分。實現(xiàn)電氣自動化控制的人工智能化,有助于降低工作成本,提高工作效率,實現(xiàn)資源優(yōu)化和最佳配置。在傳統(tǒng)的電氣自動化控制過程中,由于過程的繁瑣復(fù)雜操作人員容易出現(xiàn)錯誤,而采取人工智能化技術(shù)則可以避免這些人為錯誤。人工智能技術(shù)主要采取神經(jīng)系統(tǒng)的控制、專家系統(tǒng)的高效控制和模糊控制?,F(xiàn)在最常用的技術(shù)方式是模糊控制,通過模糊控制借助直流電和交流電的傳動最終實現(xiàn)電氣自動化控制系統(tǒng)的智能化控制。模糊控制可以具體分為surgeno和mamdan兩種表現(xiàn)形式,前者是后者的特殊情況,兩者均用來調(diào)速控制。

在電氣領(lǐng)域里,人工智能技術(shù)可以運用到日常操作中。我們可以利用家庭電腦實現(xiàn)對電氣自動化控制系統(tǒng)的遠程操作控制。具體來說,是通過采用人工智能技術(shù)預(yù)先設(shè)計好的既定程序控制操作過程,實現(xiàn)設(shè)備智能化,及時掌控全局。

綜上所述,電氣自動化控制中的人工智能技術(shù)的應(yīng)用研究,既能實現(xiàn)工作效率的提高,還能降低運行成本,更好地實現(xiàn)電氣系統(tǒng)的自動化智能化控制。此外,隨著科學(xué)技術(shù)的飛速發(fā)展,人工智能技術(shù)在電氣自動化控制中的應(yīng)用面臨著巨大的機遇和挑戰(zhàn),需要學(xué)者們不斷研究和完善,使其得到更好的應(yīng)用。

人工智能的優(yōu)點論文篇四

十九世紀末到二十世紀以來科學(xué)技術(shù)得到了飛速的發(fā)展,在這個時期里很多學(xué)科都得到了提高和補充,學(xué)科間的關(guān)系也越來越密切,一系列利好因素的共同作用下,機械電子工程學(xué)得以產(chǎn)生并發(fā)展。

顧名思義,機械電子工程就是電子信息技術(shù)與傳統(tǒng)的機械技術(shù)的一個結(jié)合,充分的發(fā)揮了兩個不同學(xué)科在技術(shù)上的共同點,達到了物理上和信息功能上的連結(jié)。這是一個跨學(xué)科的嘗試,更是一個挑戰(zhàn),它可以將所有的機械工程信息進行分析,達到智能化的目的。雖然依舊屬于機械工程行業(yè),但是顯然已經(jīng)擁有了自己的特點。

1)不同的設(shè)計方法

機械電子工程與傳統(tǒng)工程相比,已經(jīng)不是單一的一個學(xué)科,它已經(jīng)發(fā)展成為了有很多技術(shù)和科學(xué)共同組成的一個新學(xué)科,并且在工程設(shè)計上充分的吸納了信息技術(shù)、機械技術(shù),并為了使工程的各模塊結(jié)構(gòu)布局更加完整,設(shè)計人員一般都會采取自上而下的設(shè)計方法。

2)產(chǎn)品上的差異

2機械電子工程的發(fā)展過程

機械電子工程學(xué)并不是一個孤立的學(xué)科,它與很多工程和技術(shù)都有著密切的聯(lián)系,是機械工程學(xué)科和電子信息工程、智能管理技術(shù)共同作用下,形成的一個新的發(fā)展體系。在信息系統(tǒng)不斷完善的過程中,機械電子工程體系也更加完善,并日益成熟。機械電子工程學(xué)的發(fā)展歷程主要是這樣的幾個方面:

1)機械電子工程學(xué)的開端

機械電子工程學(xué)在剛起步的階段,其主要的生產(chǎn)形式是手工生產(chǎn),此時社會的生產(chǎn)能力很低,沒有充足的勞動力資源,發(fā)展生產(chǎn)力變得異常艱辛。為了改變這樣一個窘迫的狀況,科學(xué)家進行了大量的研究和嘗試,在一次次的失敗中,機械工程終于得到了一定的發(fā)展。

2)機械電子工程學(xué)的高速發(fā)展階段

在經(jīng)歷了起初艱難的開始階段以后,機械電子工程迎來了高速發(fā)展時期,隨著標準件生產(chǎn)在同一的流水線下得以實現(xiàn),這一時期的生產(chǎn)已經(jīng)具備了一定的標準,并且極大地刺激了生產(chǎn)力的發(fā)展。但是這樣的生產(chǎn)模式并不是沒有缺點的,生產(chǎn)的過程過于標準,使產(chǎn)品過于單一,滿足不了不同用戶和社會不斷變化的需要。

3)機械電子工程的成熟階段

經(jīng)過了多年的發(fā)展,機械電子工程產(chǎn)業(yè)已經(jīng)形成了一定的體系,并與現(xiàn)代化科學(xué)技術(shù)有了一定的融合,進入了現(xiàn)代機械電子發(fā)展階段。歸根結(jié)底,機械電子工程的發(fā)展是為了滿足社會工作和生活的需要,現(xiàn)代社會工作節(jié)奏加快,生產(chǎn)也更加靈活,對機械電子工程提出了更高的要求,機械電子行業(yè)的特點是柔性制造,這也為機械電子同信息化社會的融合創(chuàng)造了條件。

3人工智能在機械電子工程的運用

人類社會的發(fā)展始終離不開能源、信息。在古代,生產(chǎn)力水平及其低下,人們對信息的獲取能力也十分有限,能源和物質(zhì)是維持人類生產(chǎn)生活的必需品。長久以來,人類往往都沒有認識到信息的作用。隨著人類文明的不斷發(fā)展,生產(chǎn)力水平的不斷提高人類對信息的概念逐漸了解,同時也產(chǎn)生了對信息的需求,信息的價值逐漸被發(fā)現(xiàn)。

隨著電子計算機技術(shù)的逐漸應(yīng)用,人類的生活發(fā)生了質(zhì)的變化,人類社會至此進入了高科技的信息時代。人工智能系統(tǒng)作為電子技術(shù)發(fā)展的產(chǎn)物,在近兩年出現(xiàn),并且迅速的應(yīng)用到了機械電子工程領(lǐng)域。

電子信息技術(shù)在方便快捷的同時,也存在一定的弊端,比如缺乏一定的穩(wěn)定性,這使機械信息系統(tǒng)在輸入和輸出上就會變得十分混亂,并且不利于描述。以往的描述方法一般包括:建設(shè)規(guī)則庫、推導(dǎo)數(shù)學(xué)方程、學(xué)習(xí)并生成知識。

一般的解析方法都比較精密、準確,但是應(yīng)用范圍十分有限,只能應(yīng)用于比較簡單的系統(tǒng),而對比較繁瑣復(fù)雜的體系,卻不能夠提供完整的解析式,必須依靠人工操作才能實現(xiàn)。隨著人們對系統(tǒng)的要求越來越高,處理的信息變得復(fù)雜多樣,信息的內(nèi)容不僅包括數(shù)據(jù)的形式,也出現(xiàn)了數(shù)字信息和語言信息等新形式。為了適應(yīng)時代形勢的發(fā)展,人工智能處理方式以其復(fù)雜、不確定的特點成為了解析數(shù)學(xué)的新方法、新手段。

人工智能處理體系一般是這樣進行分類的,模糊推理體系和神經(jīng)網(wǎng)絡(luò)體系。這兩個系統(tǒng)存在著聯(lián)系,也有所不同。模糊推理系統(tǒng)一般通過對大腦功能進行模擬,從而分析出語言的信號;而神經(jīng)網(wǎng)絡(luò)系統(tǒng)模擬的卻是大腦的結(jié)構(gòu),通過對數(shù)字信號的處理得出參考數(shù)值。

1)模糊推理體系和神經(jīng)網(wǎng)絡(luò)體系的相同點

我們可以說,模糊推理體系和神經(jīng)網(wǎng)絡(luò)體系都是利用網(wǎng)絡(luò)結(jié)構(gòu),然后在某一精度上趨近一個函數(shù)。

2)模糊推理體系和神經(jīng)網(wǎng)絡(luò)體系的不同點

(1)映射方式

在映射方式的運用方面,模糊推理系統(tǒng)運用域和域之間的映射,神經(jīng)網(wǎng)絡(luò)體系則是點到點的映射。

(2)物理性質(zhì)

模糊推理體系與神經(jīng)網(wǎng)絡(luò)體系相比擁有更明確的物理性質(zhì)。

(3)計算量和計算精度

模糊推理體系沒有固定的連接,計算量和計算精度都十分有限,神經(jīng)網(wǎng)絡(luò)體系則很好的克服了這一點,在輸入的過程中使每個神經(jīng)元相互作用,大大的提高了計算量,并且能夠保證較高的輸出精度。

(4)儲存方式

在儲存信息的過程中,模糊推理體系采用的是比較規(guī)則的方式,神經(jīng)網(wǎng)絡(luò)體系則是利用分布式對信息進行儲存。

社會作為一個不斷發(fā)展變化的有機結(jié)合體,單一的處理手段是無法滿足人類發(fā)展的需要的。為此,智能系統(tǒng)研究專家開始了對綜合智能系統(tǒng)的開發(fā)與探索。綜合智能系統(tǒng)是對以往人工智能體系的繼承和發(fā)展,它能夠融合以往兩種智能體系的優(yōu)點,使數(shù)學(xué)描述變得更加全面。

4結(jié)論

機械電子工程產(chǎn)業(yè)發(fā)展是我國工業(yè)信息化過程的一個寫照,在工程制造的過程中充分利用現(xiàn)代化科學(xué)技術(shù)的巨大優(yōu)勢,實現(xiàn)了生產(chǎn)力的提高,滿足社會發(fā)展的需求,機械電子工程和人工智能和完美結(jié)合實現(xiàn)了不同學(xué)科之間的融合,為工業(yè)信息化的發(fā)展提供了成功經(jīng)驗和新思路。

人工智能的優(yōu)點論文篇五

智能交通系統(tǒng)(intelligent transportation systems,簡稱its)是將先進的信息技術(shù)、數(shù)據(jù)通訊傳輸技術(shù)、電子傳感技術(shù)、電子控制技術(shù)及計算機處理技術(shù)等有效地集成運用于整個地面交通管理系統(tǒng)而建立的一種在大范圍內(nèi)、全方位發(fā)揮作用的,實時、準確、高效的綜合交通運輸管理系統(tǒng)。its能有效地利用現(xiàn)有交通設(shè)施、減少交通負荷和環(huán)境污染、保證交通安全、提高運輸效率、促進社會經(jīng)濟發(fā)展、提高人民生活質(zhì)量,并以推動社會信息化及形成新產(chǎn)業(yè)而受到各國的重視。目前已形成世界二十一世紀的發(fā)展方向。

交通仿真是智能交通領(lǐng)域的重要分支,它是利用最先進的計算機技術(shù),通過仿真模擬的方法來分析交通問題,輔助交通管理人員做決策。傳統(tǒng)上,數(shù)學(xué)推導(dǎo)、科學(xué)實驗是進行科學(xué)研究、解決科學(xué)問題的主要方法。對于交通問題來說,由于參與交通的人很多,影響交通出行的因素也很多,人們很難、甚至無法對交通問題建立精確的數(shù)學(xué)模型。同時,由于安全、法規(guī),以及開銷方面的原因,進行現(xiàn)場交通實驗通常也是不可行的。而交通仿真恰恰能夠有效地解決上述兩個方面的困難。

然而,傳統(tǒng)的交通仿真由于設(shè)計理念上的原因,并不能從根本上有效地解決交通問題。這是因為,交通系統(tǒng)是一個龐大的復(fù)雜系統(tǒng),必須用對付復(fù)雜系統(tǒng)的方法來處理,也就是要用綜合的方法,而不是還原分解的方法來處理。

1)城市交通系統(tǒng)是由經(jīng)濟、環(huán)境、人口等因素綜合作用的結(jié)果,必須全面綜合地考慮城市交通和這些系統(tǒng)之間的關(guān)系。例如,不能為例城市交通問題的解決,而導(dǎo)致城市生態(tài)惡化,危害人居環(huán)境;不能為了城市交通的暢通,阻礙城市社會經(jīng)濟活動的健康發(fā)展。我們必須在已有工作的基礎(chǔ)上,突破傳統(tǒng)思維,探索研究此類復(fù)雜系統(tǒng)的新途徑,而基于人工系統(tǒng)的研究方法正是這種有效途徑之一。

2)城市交通問題不存在“一勞永逸”的解決方案。城市交通系統(tǒng)涉及人與社會的動態(tài)變化,本身也在不斷變化和發(fā)展之中,不可避免地需要一個不斷深化地認識過程,這類系統(tǒng)實際上不存在精確完備的整體解析模型。因此,無法“一勞永逸”地解決城市交通問題,我們需要基于“不斷探索和改善”的'原則,研究建立有效可行的計算實驗方法體系,為不斷地完善城市交通系統(tǒng)的綜合可持續(xù)發(fā)展方案提供科學(xué)依據(jù)。

3)城市交通問題不存在一般意義下的最優(yōu)解,更不存在唯一的最優(yōu)解。首先,基于解析模型的最優(yōu)解與假設(shè)條件直接相關(guān),具有條件敏感性,但對于城市交通這樣的問題,假設(shè)條件與實際情況往往存在很大差別。其次,解決這些問題一般不存在單一的優(yōu)化指標,而多層次多目標優(yōu)化往往導(dǎo)致多個甚至無數(shù)個解決方案,就連采用近似模型的多目標優(yōu)化也是如此。再者,對于這類復(fù)雜系統(tǒng),有時甚至連確定一個量化的綜合優(yōu)化指標也有困難,特別是由于復(fù)雜系統(tǒng)長期行為的不可預(yù)測性,試圖求解其某一最優(yōu)化解決方案本身就是不可行的。因此,我們應(yīng)當接受有效解決方案的概念,而且還要接受一般情況下存在多個有效解決方案的事實。在這種情況下,我們應(yīng)該利用平行系統(tǒng)方法,追求具有動態(tài)適應(yīng)能力的有效解決方案。

基于以上分析,中國科學(xué)研自動化所王飛躍研究員提出了人工交通系統(tǒng)的概念。其基本思想是利用人工社會的理論與方法,把交通仿真推向更高的層次、獲得更廣的視野。它利用基于代理的建模、面向?qū)ο蟮木幊毯筒⑿蟹植际接嬎愕确椒ê图夹g(shù),“生長”和“培育”交通系統(tǒng),即“人工交通系統(tǒng)”。

利用人工交通系統(tǒng)解決問題的思路跟改革開放摸著石頭過河差不多,不斷探索和改善,使過程、方法更科學(xué)化、系統(tǒng)化、綜合化,不斷改善探索建立城市交通、物流、生態(tài)綜合發(fā)展的理論和方法體系。

三是平行管理運行,虛擬交通系統(tǒng)與實際交通系統(tǒng)相結(jié)合,直接采集現(xiàn)實交通數(shù)據(jù),進行超前運算,以判斷可能發(fā)生的交通事件,提前采取預(yù)防措施,為交通的高效暢通提供保障。

1)在宏觀認識上,人工交通系統(tǒng)不是單純的討論交通自身的問題。相反,人工交通系統(tǒng)將交通看作社會整體的一個子系統(tǒng),與經(jīng)濟、人口、環(huán)境、氣候等子系統(tǒng)具有平等的地位,并將各個子系統(tǒng)之間的相互銜接、相互聯(lián)系、相互作用和相互影響作為研究的重點之一。

2)在仿真方法上,人工交通系統(tǒng)屬于微觀仿真的范疇,但是不局限于研究局部的交通問題。人工交通系統(tǒng)面向大區(qū)域的仿真研究,采用復(fù)雜性科學(xué)中“涌現(xiàn)”的原理,在底層建立單個交通出行元素的代理模型,通過大交通區(qū)域內(nèi)單個代理模型之間的相互作用,“涌現(xiàn)”出宏觀的交通現(xiàn)象。

3)在實現(xiàn)手段上,人工交通系統(tǒng)不能在單一、孤立的計算機上進行仿真,要使人工交通系統(tǒng)具備真實交通系統(tǒng)的分散性和社會性,必須采用先進的分布式計算方法,如網(wǎng)格和p2p等,在互聯(lián)網(wǎng)上建立結(jié)構(gòu)化、分散化的虛擬交通路網(wǎng)系統(tǒng),并且通過終端界面將網(wǎng)絡(luò)中的真實人吸引到人工交通系統(tǒng)的運行中來,以使每一個代理模型具有逼近現(xiàn)實的社會屬性。

4)在仿真目的上,人工交通系統(tǒng)不是一味的追求逼近現(xiàn)實交通環(huán)境和狀態(tài)。除此之外,人工交通系統(tǒng)可以通過調(diào)整參數(shù)、添加隨機事件等方法產(chǎn)生現(xiàn)實交通系統(tǒng)可能但尚未發(fā)生的交通現(xiàn)象,用以制定突發(fā)事故的緊急預(yù)案、交通控制方案的預(yù)評估以及交通參與人員的培訓(xùn)等等。

人工系統(tǒng)說起來有一點抽象,其實說穿了很簡單。第一是充分利用計算機技術(shù)的發(fā)展,第二是仿真與模擬的常態(tài)化。仿真不再是一個項目立項前跑一跑看看行不行的手段,仿真要秒秒在、分分在、永遠在。它是經(jīng)驗與知識的數(shù)字化、動態(tài)化和即時化,使人工影響現(xiàn)實,虛擬影響實在。

人工交通系統(tǒng)完善之后,人們可以像玩網(wǎng)絡(luò)游戲一樣,作為一個行人或司機加入到系統(tǒng)中,不必出門即可體驗交通;交警同志可以在人工交通系統(tǒng)中學(xué)習(xí)指揮交通,而不必擔心造成擁堵;交通分析人員可以利用人工交通系統(tǒng)研究各種突發(fā)事故對交通的影響,而不必擔心人民的生命財產(chǎn)受到威脅;交通管理和決策人員可以在人工交通系統(tǒng)試驗交通政策和方案,而不必承擔決策失敗的風險。

人工智能的優(yōu)點論文篇六

【摘要】目的:通過調(diào)查研究超聲醫(yī)學(xué)在臨床急診中的檢查價值。方法:采用隨機數(shù)字表法將對我院門診收治的100例急診患者,分成50例的觀察組和50例的對照組。且給予兩組正常病癥檢查方法,觀察組在常規(guī)檢查的基礎(chǔ)上使用超聲醫(yī)學(xué),并對檢查的結(jié)果進行回顧性的分析與比較。結(jié)果:超聲診斷與常規(guī)診斷的符合率和未診斷率為96%,4%和68%,32%。兩者之間的對比具有顯著的差異性(p0.05)。結(jié)論:超聲醫(yī)學(xué)在急診的檢查中具有比較高的正確率,不僅幫助醫(yī)生減少了確診時間,還為患者贏得了就診時間,提高了患者的搶救成功率。

【關(guān)鍵詞】超聲醫(yī)學(xué);急診;價值

隨著超聲診斷技術(shù)在臨床中廣泛應(yīng)用以及不斷的發(fā)展和日益完善中,超聲學(xué)對患者的病情及時快速的檢測方面做出了重大的作用。使得很多腹部疾病以及意外創(chuàng)傷的患者得到了迅速、及時且有效的治療方案,減輕了患者的痛苦,給患者提供了醫(yī)治空間,提高了患者的致殘率以及死亡率。本文主要將我院20xx年6月至20xx年10月收治的50例急診患者分別采用常規(guī)診斷和超聲醫(yī)學(xué)進行診斷,且分析比較,現(xiàn)將調(diào)查結(jié)果報告如下:

1資料與方法

1.1一般資料

采用隨機數(shù)字表法將我院在20xx年6月至20xx年10月收治的50例急診患者,均分為超聲醫(yī)學(xué)診斷的觀察組和常規(guī)診斷的對照組,且都符合急診診斷的標準[1]。其中治療組男性患者14例,女性患者11例,年齡31-64歲,平均年齡為(43±21),黃體破裂出血5例,急性闌尾炎15例,胃十二指腸穿孔2例,急性膽囊炎3例;對照組男性患者18例,女性患者7例,年齡28-66歲,平均年齡為(38±25),病程1-8年,黃體破裂出血8例,急性闌尾炎12例,胃十二指腸穿孔3例,急性膽囊炎2例;兩組患者性別、年齡、原發(fā)疾病等一般資料組間比較,差異無統(tǒng)計學(xué)意義(p0.05)。

1.2治療方法

主要采用多種超聲診斷儀器,如logiq400、logiq5、邁瑞ma77―0786等診斷儀器,探頭的頻率使用3.5―8.0mhz.在診斷過程中要求患者不能空腹,對于盆腔檢查的患者需要憋尿或或者使用生理鹽水對膀胱進行充盈,患者檢測時采取仰臥或者側(cè)臥的姿勢,對進行全腹部多切面檢查的患者,需要采取坐位進行胸膜腔的探查。

1.3療效評價標準

當超聲診斷的結(jié)果和臨床診斷一致時,便為符合標準;當超聲診斷的結(jié)果僅僅顯示了患者腹腔的積血、積液或者病灶區(qū)的血供量逐漸減少,便為基本符合標準;當超聲診斷的結(jié)果和臨床診斷不一致時,則為誤診或漏診,稱為未診斷。

1.4統(tǒng)計學(xué)方法

采用spssl5.0軟件進行統(tǒng)計分析,計量數(shù)據(jù)將采用采用x2檢驗;當p0.05,差異是具有統(tǒng)計學(xué)的意義。

2結(jié)果

2.1兩組數(shù)據(jù)比較

通過對比分析兩組分別使用超聲醫(yī)學(xué)進行診斷以及常規(guī)診斷的結(jié)果,見表1

3討論

急診患者一般病情都比較的緊急,且癥狀比較的嚴重。有時病人會處在休克期或者休克的前期,病情相對比較的復(fù)雜,嬰幼兒的患者一般不能完全的表達病情。是否能夠?qū)颊呒皶r明確的進行診斷,可以有效的減少并發(fā)癥以及死亡率,成為臨床搶救措施的關(guān)鍵因素。臨床的醫(yī)生可以根據(jù)患者病情的癥狀、體征以及其他檢查作出一些鑒別性的診斷,但在大多數(shù)的情況下還是難以進行確診。然而具有操作方便、使用快捷的超聲檢查,發(fā)揮其特點,用獨特的聲像圖片為臨床提供有利的證據(jù)。超聲醫(yī)學(xué)的檢查可以有效的縮短醫(yī)生的確診時間,減輕了急診患者的病痛,給患者提供了足夠的治療空間。超聲診斷在婦產(chǎn)科疾病、腸胃疾病以及膽囊等各類疾病中的表現(xiàn)具有差異性,以下將對各種病情做出分析[3]。婦產(chǎn)科疾病:超聲醫(yī)學(xué)在婦科的作用是無法代替的,異位妊娠的聲圖像是子宮內(nèi)膜中出現(xiàn)不同程度增厚現(xiàn)象的表示,在患者的子宮一側(cè)會出現(xiàn)混合型的團塊,但在聲像圖中并沒有非常明顯特征的表示。盆腔炎患者病情嚴重時,超聲圖像則會變現(xiàn)為子宮增大和輸卵管的逐漸變粗?;颊叱霈F(xiàn)黃體破裂出血時在超聲圖中的顯示和異位妊娠表現(xiàn)形式具有細微的變化,在檢查過程中需要仔細。當隨著患者的發(fā)病時間以及血塊的多少變化時,胎膜下積血聲像學(xué)則會表現(xiàn)胎盤和子宮壁間的邊緣部分具有粗糙且規(guī)則不一的液體狀的暗區(qū),有許多斑點狀呈現(xiàn)高回聲、雜亂的回聲或者不均質(zhì)的低回聲。胃腸道系統(tǒng)疾病超聲檢查:當患者的胃十二指腸穿孔時一般會出現(xiàn)誤診或者漏診的情況,此時在檢查過程中還要結(jié)合其他的手段進行輔助性的檢查,如x光線等。當患者出現(xiàn)急性闌尾炎時,超聲圖像一般表現(xiàn)為闌尾體型會有顯著性的增大,呈現(xiàn)出模糊的周圍結(jié)構(gòu)且具有高、低、高的回聲。急性闌尾炎的圖像特點為:一般的闌尾炎,闌尾腫大,其直徑一般9mm,具有比較清晰的闌尾管的壁層,且從外到內(nèi)逐漸呈現(xiàn)出高回聲、低回聲、高回聲;急性化膿性的闌尾炎,闌尾具有明顯的粗大狀態(tài),可以通過肉眼辨別出來,具有較厚的闌尾壁,腔內(nèi)具有較多的積液,且有代表性的少量的斑片狀的高強回聲。闌尾的橫切面呈現(xiàn)出強弱相間的環(huán)形回聲以及靶環(huán)征;急性闌尾炎合并周圍膿腫,其患者的闌尾狀態(tài)是無法進行辨認的,但在右下腹可以看到類似于圓形團狀的回聲,且在內(nèi)部會呈現(xiàn)出不均勻的雜亂的低回聲。膽管系統(tǒng)疾?。寒敾颊叱霈F(xiàn)膽總管結(jié)石時,進行超聲檢查,管內(nèi)具有強回聲且伴隨位于后方的圖像影射[3]。當患者膽管內(nèi)具有膽汁淤積時,膽管就會出現(xiàn)不同程度的擴張現(xiàn)象。患者膽囊發(fā)炎時,超聲圖像中的膽囊具有顯著性的擴充,具有較厚的膽囊壁,較強的張力,強回聲光團會出現(xiàn)在膽囊頸部。

綜上所述,超聲醫(yī)學(xué)的診斷具有操作簡單、經(jīng)濟適用、準確診斷的特征,且還可以在定位的同時,了解患者是否存在并發(fā)癥,因此在臨床中的應(yīng)用越加廣泛,為臨床的醫(yī)生提供了具有重要價值的參考以及治療方案。特別是在胸腹部創(chuàng)傷以及急性腹部的疾病急診體系中起到了重要的作用,且不同程度上促進了醫(yī)療急救體系的發(fā)展。

參考文獻:

人工智能的優(yōu)點論文篇七

摘要:在航空業(yè)的發(fā)展中,人工智能技術(shù)起著積極的促進作用。本文介紹了空中交通管理中的人工智能理論及方法運用,為優(yōu)化空中交通流量管理系統(tǒng)提供理論依據(jù),更好地服務(wù)于空管系統(tǒng)。

關(guān)鍵詞:人工智能;空中交通;管理

人工智能,即artificialintelligence,是計算機科學(xué)的一個分支,研究對人的意識及思維的信息過程的模擬并對其進行延伸和擴展,通過了解人類智能,研究出類似的反應(yīng)的智能機器。隨著計算機技術(shù)的發(fā)展,人工智能越來越多的運用于民航的各個方面,如飛行間隔的控制,空中流量的預(yù)測,飛行沖突的調(diào)配。但隨著民航業(yè)的飛速發(fā)展,飛行流量日益增大,需要將人工智能技術(shù)有效運用于空中交通流量管理中,建立人工智能輔助系統(tǒng),擴大空域容量,優(yōu)化空中交通流量,提升空管秩序。

1空中交通流量管理探討

在空中交通流量管理(airtrafficflowcontrolmanagement)中,空中交通流量是指單位時間和空間通過的航空器數(shù)量。通過優(yōu)化空中交通流量,將空中交通管制服務(wù)與機場、航路有效結(jié)合,減少延誤,提高機場和空域的利用率。從時間角度上,空中交通流量管理可以分為航路流量管理和機場終端區(qū)流量管理兩部分,從時間上又可劃分為戰(zhàn)略流量管理,預(yù)戰(zhàn)術(shù)流量管理和戰(zhàn)術(shù)流量管理。當航空器數(shù)量飽和時就要對航空器進行流量控制,目前的常用的控制措施如下:1)地面等待,最主要的空中交通流量管理措施,本著地面讓空中的原則,對地面航空器的起飛時間進行限制;2)空中等待,航空器在航路上或終端區(qū)規(guī)定的等待點或沒有沖突的臨時等待點進行盤旋等待;3)更改航路等待,當航路航線的容量飽和時,航空器可以通過選擇其他航路航線;4)控制航路間隔,通過對航空器進入空域的間隔進行限制,來達到流量管理的目的,吸收部分擁擠的流量。

2人工智能的應(yīng)用研究探討

agent在人工智能的研究中,指能自主活動的軟件或者硬件實體,目前國內(nèi)普遍翻譯為智能體。在人工智能中,設(shè)計關(guān)鍵智能體,對于研究人工智能的應(yīng)用是非常重要的。在空中交通流量管理中,設(shè)計如下關(guān)鍵智能體:航班智能體、航路智能體和機場終端區(qū)智能體。航班智能體的屬性有高度、速度、上升/下降率、起飛機場、目的地等。航班智能體可以與區(qū)域內(nèi)或終端區(qū)的其他航班智能體建立通信,通過獲取航班信息和邏輯判斷,結(jié)合周圍環(huán)境與自身狀況,指導(dǎo)控制自身行為。如果航班智能體需要做出相應(yīng)的調(diào)整如改變高度航向等,需要給上級的航路智能體或機場終端區(qū)智能體發(fā)出申請,上級智能體批準后,航班智能體才能采取相應(yīng)的調(diào)整,作出相應(yīng)的控制行為,才能通過交互環(huán)境反饋相應(yīng)結(jié)果。在實際工作中,這個過程是通過空中交通管制員指揮航空器實現(xiàn)的??罩薪煌ü苤茊T在實際指揮工作中,需要結(jié)合當時的空中交通狀況和自身的經(jīng)驗知識。航路智能體的主要屬性有航路的`高度、寬度、容量等。航路智能體需要對航班智能體進行指揮,管理航路上的智能體,同時與其他航路智能體和機場終端區(qū)智能體進行通信,對航班智能體進入和離開航路的時機進行協(xié)調(diào),記錄流量信息并報告給上級流量管理部門,接收上級智能體的指令。在航班智能體進入航路之前首先要進行容量評估。通過評估后的航班智能體回收到航路智能體發(fā)出的放行許可才能進入航路。如果沒有通過容量評估,則要向上級智能體發(fā)送將流量限制的申請,發(fā)布流量限制后航路就不能批準航班智能體的進入,通過減少航班智能體的數(shù)量,控制航路交通流量。機場終端區(qū)智能體:在實際工作中,機場終端區(qū)的航班管理包括管制指揮、流量控制、地面場面監(jiān)視、進離場等,難度較大。終端區(qū)智能體(通常運行中為塔臺管制)首先要處理所收到的信息,如天氣雷達信息、地面運行信息和情報信息等等,結(jié)合已有知識開展機場的容量評估。如遇到低云低能見度、雷雨等天氣時可以調(diào)低終端區(qū)/機場容量,對進入離開的航空器進行限制。通過容量評估,塔臺會給航班智能體一個slottime,航班智能體按照塔臺的slottime起飛或降落,從而達到流量控制。如果沒有通過容量評估,則需要通過上級的智能體批準,發(fā)布流量控制,限制終端區(qū)的流量,通過控制進入或離開的航空器數(shù)量達到流量限制的目的。機場終端區(qū)智能體(塔臺)對終端區(qū)的航空器進行管理,還需要與航路智能體和平級的終端去智能體進行通信,對航班進出的slottime進行協(xié)調(diào),并將流量管理信息報告給上級流量管理部門,接收上級智能體的命令。如果出現(xiàn)擁堵機場終端區(qū)智能體需要通過一些措施來管理流量,如分配slottime、指揮航空器地面或空中盤旋等待。

3結(jié)論

綜上所述,以往在模擬空中交通流量進行研究的時候,首先制定流量控制信息,再在系統(tǒng)模擬航班飛行計劃。這樣的模擬過程不能解決容量告警問題。如果流量控制不合理,只能重新設(shè)定流控信息,再次進行模擬,因而加大模擬過程的工作量。而通過智能體的運用,可以在模擬中不斷調(diào)整智能體來模擬空中流量,增加了模擬流量過程中的靈活性,將人工智能運用于模擬中,借助智能體來模擬空中流量,可以更好的分析空中交通流量問題。

參考文獻

[2]甘鑫鑫基于多agent的空中交通協(xié)同流量管理研究[j].科學(xué)與財富,20xx(30):278.

[5]陳言俊,劉甜甜.人工智能與機器人.[6]黃昱斌.基于multi-agent的空中交通流量的探究[j].科技創(chuàng)新與應(yīng)用,20xx(14):57-57.

人工智能的優(yōu)點論文篇八

你聽說過或者看到過智能垃圾桶嗎?如果你們沒看到,那就請跟我一起坐時光穿梭機到未來世界去參觀吧!

未來的大街上,干凈無比,沒有落葉、沒有垃圾、沒有到處飛舞的蒼蠅、蚊蟲、更沒有刺鼻的汽油味......

喲!多可愛的米奇老鼠?。∥覀円黄鹋苌锨埃霌崦?,嘿!原來是一個垃圾桶。這可不是一般的垃圾桶喲!你們瞧:米奇兩眼還發(fā)著光呢,原來它正在發(fā)電來處理自已肚里的東西。米奇嘴巴緊閉著,頭上有二根天線,這天線可不是好玩的,它左邊一根天線是吸收路旁汽車的尾氣的,右邊一根天線是吸收太陽能的,以用來發(fā)電處理垃圾的;米奇胖乎乎的身體上還有三顆顏色不同的大紐扣。一個小朋友好奇的觸摸了一下第一顆紅色的扣子,垃圾桶的門自動翻開了,又按了一下第二顆綠色扣子,門又自動的關(guān)上了,那第三顆是干什么的呢?小朋友忍不住又按了一下第三顆的扣子,哈!真神奇,扣子眼里彈出一個微型。這時,一位阿姨走過來,見我們圍著米奇,知道我們想知道這只神奇的米奇的功能,于是,便給我們介紹起來:這只米奇的腦袋里裝有電腦芯片,它只要看到有人不小心掉了垃圾,它就會走過去,用手將垃圾撿起來,張開緊閉的嘴,把它扔進去。如果看到有人不愛清潔,它的另一只手那么會出示”保護環(huán)境榮耀,破壞環(huán)境羞恥”的小牌。它還有許多的內(nèi)在功能:它會垃圾分類,把有毒和無毒的分裝在肚子的兩邊,它肚子里還有一種溶化器,它把無毒的垃圾處理成肥料,把有毒的垃圾通過自身的.排毒器將它轉(zhuǎn)換成一種無毒的清新氣體,釋放出來。它還有一種非常有趣的趣事,一但它肚子的垃圾裝滿了,它就會自動處理垃圾,并會走到一棵樹下,從緊閉的嘴里彈出一根管了,然后插入土里,把垃圾養(yǎng)份注入樹里,然后又回到它原來的位置。

到了秋天,秋風掃落葉時,米奇頭上便會張開一個巨大的吸盤,把黃葉都吸進去,然后又做成肥料。米奇的腳下還有一種粘了水的毛刷式吸塵器,它可以一邊唱”小曲”,一邊走一邊清潔道路。如果我們現(xiàn)實中有這種垃圾桶,那該多方便啊!我想,這個愿望不會是夢,我們的愿望一定會實現(xiàn)。

人工智能的優(yōu)點論文篇九

語言文學(xué)專業(yè)學(xué)術(shù)論文具有突出的學(xué)術(shù)性,它只能把學(xué)術(shù)問題當作自己的論題,把學(xué)術(shù)成果當作自己的描述對象,把學(xué)術(shù)見解作為自己的核心內(nèi)容。它以學(xué)術(shù)性區(qū)別于一般的社會理論文章和政治理論文章。學(xué)術(shù)是有系統(tǒng)、較專門的學(xué)問,它往往以學(xué)科的形式表現(xiàn)出來。人們通常將學(xué)科分為自然科學(xué)和社會科學(xué)兩大類。兩大類又可逐層劃分下去。如社會科學(xué)可以分為哲學(xué)、政治、經(jīng)濟、法律、歷史、語言文學(xué)等,語言文學(xué)又可劃分出語言、文學(xué),文學(xué)又可以劃分出文學(xué)理論、文學(xué)史,文學(xué)史又可以分為中外文學(xué)史,中外文學(xué)史又可以劃階段、設(shè)專題。分工越細,學(xué)問也就越專門化。但一切專門化的學(xué)問,又隸屬于它的上級學(xué)科。語言文學(xué)專業(yè)學(xué)術(shù)論文所研究的,就是這些專門化的學(xué)問。語言文學(xué)專業(yè)學(xué)術(shù)論文所要研究和解決的問題,是這些專業(yè)知識中的某一問題。

(二)獨創(chuàng)性

人工智能的優(yōu)點論文篇十

在航空業(yè)的發(fā)展中,人工智能技術(shù)起著積極的促進作用。本文介紹了空中交通管理中的人工智能理論及方法運用,為優(yōu)化空中交通流量管理系統(tǒng)提供理論依據(jù),更好地服務(wù)于空管系統(tǒng)。

人工智能;空中交通;管理

人工智能,即artificialintelligence,是計算機科學(xué)的一個分支,研究對人的意識及思維的信息過程的模擬并對其進行延伸和擴展,通過了解人類智能,研究出類似的反應(yīng)的智能機器。隨著計算機技術(shù)的發(fā)展,人工智能越來越多的運用于民航的各個方面,如飛行間隔的控制,空中流量的預(yù)測,飛行沖突的調(diào)配。但隨著民航業(yè)的飛速發(fā)展,飛行流量日益增大,需要將人工智能技術(shù)有效運用于空中交通流量管理中,建立人工智能輔助系統(tǒng),擴大空域容量,優(yōu)化空中交通流量,提升空管秩序。

在空中交通流量管理(airtrafficflowcontrolmanagement)中,空中交通流量是指單位時間和空間通過的航空器數(shù)量。通過優(yōu)化空中交通流量,將空中交通管制服務(wù)與機場、航路有效結(jié)合,減少延誤,提高機場和空域的.利用率。從時間角度上,空中交通流量管理可以分為航路流量管理和機場終端區(qū)流量管理兩部分,從時間上又可劃分為戰(zhàn)略流量管理,預(yù)戰(zhàn)術(shù)流量管理和戰(zhàn)術(shù)流量管理。當航空器數(shù)量飽和時就要對航空器進行流量控制,目前的常用的控制措施如下:1)地面等待,最主要的空中交通流量管理措施,本著地面讓空中的原則,對地面航空器的起飛時間進行限制;2)空中等待,航空器在航路上或終端區(qū)規(guī)定的等待點或沒有沖突的臨時等待點進行盤旋等待;3)更改航路等待,當航路航線的容量飽和時,航空器可以通過選擇其他航路航線;4)控制航路間隔,通過對航空器進入空域的間隔進行限制,來達到流量管理的目的,吸收部分擁擠的流量。

agent在人工智能的研究中,指能自主活動的軟件或者硬件實體,目前國內(nèi)普遍翻譯為智能體。在人工智能中,設(shè)計關(guān)鍵智能體,對于研究人工智能的應(yīng)用是非常重要的。在空中交通流量管理中,設(shè)計如下關(guān)鍵智能體:航班智能體、航路智能體和機場終端區(qū)智能體。航班智能體的屬性有高度、速度、上升/下降率、起飛機場、目的地等。航班智能體可以與區(qū)域內(nèi)或終端區(qū)的其他航班智能體建立通信,通過獲取航班信息和邏輯判斷,結(jié)合周圍環(huán)境與自身狀況,指導(dǎo)控制自身行為。如果航班智能體需要做出相應(yīng)的調(diào)整如改變高度航向等,需要給上級的航路智能體或機場終端區(qū)智能體發(fā)出申請,上級智能體批準后,航班智能體才能采取相應(yīng)的調(diào)整,作出相應(yīng)的控制行為,才能通過交互環(huán)境反饋相應(yīng)結(jié)果。在實際工作中,這個過程是通過空中交通管制員指揮航空器實現(xiàn)的。空中交通管制員在實際指揮工作中,需要結(jié)合當時的空中交通狀況和自身的經(jīng)驗知識。航路智能體的主要屬性有航路的高度、寬度、容量等。航路智能體需要對航班智能體進行指揮,管理航路上的智能體,同時與其他航路智能體和機場終端區(qū)智能體進行通信,對航班智能體進入和離開航路的時機進行協(xié)調(diào),記錄流量信息并報告給上級流量管理部門,接收上級智能體的指令。在航班智能體進入航路之前首先要進行容量評估。通過評估后的航班智能體回收到航路智能體發(fā)出的放行許可才能進入航路。如果沒有通過容量評估,則要向上級智能體發(fā)送將流量限制的申請,發(fā)布流量限制后航路就不能批準航班智能體的進入,通過減少航班智能體的數(shù)量,控制航路交通流量。機場終端區(qū)智能體:在實際工作中,機場終端區(qū)的航班管理包括管制指揮、流量控制、地面場面監(jiān)視、進離場等,難度較大。終端區(qū)智能體(通常運行中為塔臺管制)首先要處理所收到的信息,如天氣雷達信息、地面運行信息和情報信息等等,結(jié)合已有知識開展機場的容量評估。如遇到低云低能見度、雷雨等天氣時可以調(diào)低終端區(qū)/機場容量,對進入離開的航空器進行限制。通過容量評估,塔臺會給航班智能體一個slottime,航班智能體按照塔臺的slottime起飛或降落,從而達到流量控制。如果沒有通過容量評估,則需要通過上級的智能體批準,發(fā)布流量控制,限制終端區(qū)的流量,通過控制進入或離開的航空器數(shù)量達到流量限制的目的。機場終端區(qū)智能體(塔臺)對終端區(qū)的航空器進行管理,還需要與航路智能體和平級的終端去智能體進行通信,對航班進出的slottime進行協(xié)調(diào),并將流量管理信息報告給上級流量管理部門,接收上級智能體的命令。如果出現(xiàn)擁堵機場終端區(qū)智能體需要通過一些措施來管理流量,如分配slottime、指揮航空器地面或空中盤旋等待。

綜上所述,以往在模擬空中交通流量進行研究的時候,首先制定流量控制信息,再在系統(tǒng)模擬航班飛行計劃。這樣的模擬過程不能解決容量告警問題。如果流量控制不合理,只能重新設(shè)定流控信息,再次進行模擬,因而加大模擬過程的工作量。而通過智能體的運用,可以在模擬中不斷調(diào)整智能體來模擬空中流量,增加了模擬流量過程中的靈活性,將人工智能運用于模擬中,借助智能體來模擬空中流量,可以更好的分析空中交通流量問題。

[2]甘鑫鑫基于多agent的空中交通協(xié)同流量管理研究[j].科學(xué)與財富,2015(30):278.

[5]陳言俊,劉甜甜.人工智能與機器人.[6]黃昱斌.基于multi-agent的空中交通流量的探究[j].科技創(chuàng)新與應(yīng)用,2015(14):57-57.

人工智能的優(yōu)點論文篇十一

1、構(gòu)思要圍繞主題展開:若要使論文寫得條理清晰、脈絡(luò)分明,必須要使全文有一條貫穿線,這就是論文的主題。主題是一篇學(xué)術(shù)論文的精髓,它是體現(xiàn)作者的學(xué)術(shù)觀點學(xué)術(shù)見解的。

2、構(gòu)思論文布局,要力求結(jié)構(gòu)完整統(tǒng)一:在對一篇論文構(gòu)思時,有時按時間順序編寫,有時按地域位置(空間)順序編寫,但更多的還是按邏輯關(guān)系編寫,即要求符合客觀事物的內(nèi)在聯(lián)系和規(guī)律,符合科學(xué)研究和認識事物的邏輯。但不管屬于何種情形,都應(yīng)保持合乎情理、連貫完整。

3、要作讀者分析:撰寫并發(fā)表任何一篇科技文章,其最終目的是讓別人讀的,因此,構(gòu)思時要求做“心中裝著讀者”,多作讀者分析。有了清晰的讀者對象,才能有效地展開構(gòu)思,也才能順利地確定立意、選材以及表達的角度。

提高構(gòu)思能力

1、寫學(xué)術(shù)論文之前,先擬定提綱,可以極大地幫助作者鍛煉思想,提高構(gòu)思能力。

2、寫作提綱,可以幫助作者勾劃出全篇論文的框架,體現(xiàn)自己經(jīng)過對材料的消化與進行邏輯思維后形成的初步設(shè)想,可計劃先寫什么、后寫什么,前后如何表述一致,重點又放在哪里,哪里需要進行一些注釋或解說。按此計劃寫作,可使論文層次清晰,前后照應(yīng),內(nèi)容連貫,表達嚴密。

3、擬制寫作提綱,只需要運用一些簡單的句子甚至是詞與詞組加以提示,把材料單元與相應(yīng)的論點有機組織編成順序號,工作量并不大,也容易辦到。提綱中用以提示寫作的句子,有時即可用來做論文段落的標題。

討論部分的寫作技巧

1.描述結(jié)論:首先,從專業(yè)角度對自己的研究進行總結(jié),此部分務(wù)必與研究結(jié)果和研究目的保持一致,也就是說討論部分的內(nèi)容必須在結(jié)果中找到依據(jù)。否則就會給人一種課題設(shè)計不完善的感覺。

2.解釋結(jié)論:對本研究的結(jié)論進行解釋,為了突出解釋的科學(xué)性和可靠性,一般是在和別人的研究分析對比中進行解釋。列出幾篇和自己結(jié)論一致的文獻,同時也要列出幾篇和自己不一致或者相悖的文獻,但要解釋出不一致的理由,比如是因為所選群體不一致,研究條件不一致等等,因為科學(xué)研究中的可控變量較多,所以解釋兩個結(jié)論不一致一般不難。

3.研究價值:結(jié)論解釋完之后,還要說明本研究的應(yīng)用價值,也就本研究所能給社會或者臨床帶來什么實際價值,比如本研究可以進一步明確某種方法治療某種疾病的效果,本研究發(fā)現(xiàn)某種藥物存在一些尚未發(fā)現(xiàn)的治療作用,或者本研究可以為相關(guān)研究提供參考。

4.不足之處:任何一項研究由于客觀條件的限制,不可能盡善盡美,都會或多或少存在一些不足之處,或者由于當前科技水平的限制,也會導(dǎo)致研究所存在的一些局限性,描述此部分內(nèi)容時,一定要慎重。

盡量列出1~2個不影響本研究結(jié)論科學(xué)性和準確性的限制,比如本研究的樣本含量較小,或者本研究隨訪時間較短等等,一般不要列出諸如本研究所用統(tǒng)計方法不當,或者本課題的所用評價標準不夠成熟等。

5.研究心得:在文章最后,應(yīng)說明本文所要傳遞的信息,或者是對后續(xù)研究的展望。一般文章最后寫出本文要傳遞給讀者什么有價值的知識或信息,也可以是給讀者帶來的啟發(fā)。比如:“隨著對不穩(wěn)定型上頸椎結(jié)核性骨折的研究不斷深入,探求一種既能實現(xiàn)理想的復(fù)位固定,又可保留寰樞椎關(guān)節(jié)活動功能的內(nèi)固定方法是我們當前研究的方向?!?/p>

人工智能的優(yōu)點論文篇十二

在二十一世紀的將來,寧波市室驗小學(xué)的中心,有一座巨大的建筑物――大本鐘。

這不是大本鐘的仿照,而是一座高科技的智能教學(xué)樓。這座樓分成一個個小小的圓,那是一個個教室?,F(xiàn)在,可以讓你見識見識所謂的“高科技”啦。走上樓梯,來到四(五)班的教室門口,門口擺著好多雙鞋,不用驚奇,教室是圓的,固然得穿特別的鞋啦。在門框上,有一個指甲大小的洞,那是微形錄像頭,假如你晚到了便會自動發(fā)信息給教師,以防你不誠懇,偷偷溜進來。教室的中心有一大個一大個的沙包,那是學(xué)生座椅,你任憑怎么坐都可以,由于它有一個芯片,可以測你的心理,只要在聽課就可以。假如沒聽課,它就會像一把扎滿釘子的“活火山”,把你弄得苦痛不堪。教室里沒有桌子,一人一個平板電腦,教師講課的板書占一半,不用怕看不見,在為可以放大。另一半是錄像機,把教師講的課全程錄像。

教室前面的講臺更牛,還有那個“大本鐘”語。數(shù)教師(包括全部教師)要拖課,那把教室建成大本鐘干嗎?鐘一響,學(xué)生倒安平穩(wěn)穩(wěn)的,教師在講臺上卻被震得象在12級地震現(xiàn)場,五臟六腑都“蹦”了出來。假如學(xué)生很喜愛,只要在“課后評分”地方點一個好,教師就會留下來?!皦Α鄙系暮诎逡灿行酒?,教師不用找文件,心里一想,文件就會立即翻開。芯片還能識別人。同學(xué)假如在動,不到5秒,電腦就會自動關(guān)機,以防壞掉。黑板角落一個個白色的,上面畫有圖案的是教室按扭,一按,相應(yīng)的教室布置,讓同學(xué)們和教師不會為沒有教室而苦惱。

教室后邊的圖書角也很奇妙。想到什么書,什么書就會被推出一個角,不用我們一本本地找了。圖書角的邊上有一個生物角,透亮的玻璃里一個“動物園”一樣的地方。每天都會引來很多奇怪的眼睛,里面除了兇狠的野獸,其它動物幾乎都不缺。進入邊上的“更衣室”,一套適合你的衣服就穿在了你身上,再走進“迷你動物園”,邊上不是透亮的了,而是一望無際的“動物天堂”。盡管知道這是幻覺,但學(xué)是很吸引人。走近那些動物,衣服起了作用,讓人聽懂了它們的語言,還能和它們溝通呢!

不止這些呢,節(jié)日里,“天花板”上的燈會身出五彩的`光線,平常只會在摔倒時變軟的“地板”現(xiàn)在一不當心踩著了哪塊,“砰”地一下就會炸出五色的彩帶,立即又自動恢復(fù),為節(jié)日增加不少樂趣。

噢,差點遺忘了,教室是園的,真正的目的就是不讓教師體罰學(xué)生。由于那把“沙包椅”已經(jīng)起到這個作用了啦!

這樣一個智能教室,肯定會在21世紀被創(chuàng)造出來讓我們用的。我們肯定要去研發(fā)出這種高科技的智能教室。

人工智能的優(yōu)點論文篇十三

圖像識別技術(shù)是信息時代的一門重要的技術(shù),其產(chǎn)生目的是為了讓計算機代替人類去處理大量的物理信息。隨著計算機技術(shù)的發(fā)展,人類對圖像識別技術(shù)的認識越來越深刻。圖像識別技術(shù)的過程分為信息的獲取、預(yù)處理、特征抽取和選擇、分類器設(shè)計和分類決策。文章簡單分析了圖像識別技術(shù)的引入、其技術(shù)原理以及模式識別等,之后介紹了神經(jīng)網(wǎng)絡(luò)的圖像識別技術(shù)和非線性降維的圖像識別技術(shù)及圖像識別技術(shù)的應(yīng)用。從中可以總結(jié)出圖像處理技術(shù)的應(yīng)用廣泛,人類的生活將無法離開圖像識別技術(shù),研究圖像識別技術(shù)具有重大意義。

1圖像識別技術(shù)的引入

圖像識別是人工智能科技的一個重要領(lǐng)域。圖像識別的發(fā)展經(jīng)歷了三個階段:文字識別、數(shù)字圖像處理與識別、物體識別。圖像識別,顧名思義,就是對圖像做出各種處理、分析,最終識別我們所要研究的目標。今天所指的圖像識別并不僅僅是用人類的肉眼,而是借助計算機技術(shù)進行識別。雖然人類的識別能力很強大,但是對于高速發(fā)展的社會,人類自身識別能力已經(jīng)滿足不了我們的需求,于是就產(chǎn)生了基于計算機的圖像識別技術(shù)。這就像人類研究生物細胞,完全靠肉眼觀察細胞是不現(xiàn)實的,這樣自然就產(chǎn)生了顯微鏡等用于精確觀測的儀器。通常一個領(lǐng)域有固有技術(shù)無法解決的需求時,就會產(chǎn)生相應(yīng)的新技術(shù)。圖像識別技術(shù)也是如此,此技術(shù)的產(chǎn)生就是為了讓計算機代替人類去處理大量的物理信息,解決人類無法識別或者識別率特別低的信息。

1.1圖像識別技術(shù)原理

其實,圖像識別技術(shù)背后的原理并不是很難,只是其要處理的信息比較繁瑣。計算機的任何處理技術(shù)都不是憑空產(chǎn)生的,它都是學(xué)者們從生活實踐中得到啟發(fā)而利用程序?qū)⑵淠M實現(xiàn)的。計算機的圖像識別技術(shù)和人類的圖像識別在原理上并沒有本質(zhì)的區(qū)別,只是機器缺少人類在感覺與視覺差上的影響罷了。人類的圖像識別也不單單是憑借整個圖像存儲在腦海中的記憶來識別的,我們識別圖像都是依靠圖像所具有的本身特征而先將這些圖像分了類,然后通過各個類別所具有的特征將圖像識別出來的,只是很多時候我們沒有意識到這一點。當看到一張圖片時,我們的大腦會迅速感應(yīng)到是否見過此圖片或與其相似的圖片。其實在“看到”與“感應(yīng)到”的中間經(jīng)歷了一個迅速識別過程,這個識別的過程和搜索有些類似。在這個過程中,我們的大腦會根據(jù)存儲記憶中已經(jīng)分好的類別進行識別,查看是否有與該圖像具有相同或類似特征的存儲記憶,從而識別出是否見過該圖像。機器的圖像識別技術(shù)也是如此,通過分類并提取重要特征而排除多余的信息來識別圖像。機器所提取出的這些特征有時會非常明顯,有時又是很普通,這在很大的程度上影響了機器識別的速率??傊?,在計算機的視覺識別中,圖像的內(nèi)容通常是用圖像特征進行描述。

1.2模式識別

模式識別是人工智能和信息科學(xué)的重要組成部分。模式識別是指對表示事物或現(xiàn)象的不同形式的信息做分析和處理從而得到一個對事物或現(xiàn)象做出描述、辨認和分類等的過程。

計算機的圖像識別技術(shù)就是模擬人類的圖像識別過程。在圖像識別的過程中進行模式識別是必不可少的。模式識別原本是人類的一項基本智能。但隨著計算機的發(fā)展和人工智能的興起,人類本身的模式識別已經(jīng)滿足不了生活的需要,于是人類就希望用計算機來代替或擴展人類的部分腦力勞動。這樣計算機的模式識別就產(chǎn)生了。簡單地說,模式識別就是對數(shù)據(jù)進行分類,它是一門與數(shù)學(xué)緊密結(jié)合的科學(xué),其中所用的思想大部分是概率與統(tǒng)計。模式識別主要分為三種:統(tǒng)計模式識別、句法模式識別、模糊模式識別。

2圖像識別技術(shù)的過程

既然計算機的圖像識別技術(shù)與人類的圖像識別原理相同,那它們的過程也是大同小異的。圖像識別技術(shù)的過程分以下幾步:信息的獲取、預(yù)處理、特征抽取和選擇、分類器設(shè)計和分類決策。

信息的獲取是指通過傳感器,將光或聲音等信息轉(zhuǎn)化為電信息。也就是獲取研究對象的基本信息并通過某種方法將其轉(zhuǎn)變?yōu)闄C器能夠認識的信息。

預(yù)處理主要是指圖像處理中的去噪、平滑、變換等的操作,從而加強圖像的重要特征。

特征抽取和選擇是指在模式識別中,需要進行特征的抽取和選擇。簡單的理解就是我們所研究的圖像是各式各樣的,如果要利用某種方法將它們區(qū)分開,就要通過這些圖像所具有的本身特征來識別,而獲取這些特征的過程就是特征抽取。在特征抽取中所得到的特征也許對此次識別并不都是有用的,這個時候就要提取有用的特征,這就是特征的選擇。特征抽取和選擇在圖像識別過程中是非常關(guān)鍵的技術(shù)之一,所以對這一步的理解是圖像識別的重點。

分類器設(shè)計是指通過訓(xùn)練而得到一種識別規(guī)則,通過此識別規(guī)則可以得到一種特征分類,使圖像識別技術(shù)能夠得到高識別率。分類決策是指在特征空間中對被識別對象進行分類,從而更好地識別所研究的對象具體屬于哪一類。

3圖像識別技術(shù)的分析

隨著計算機技術(shù)的迅速發(fā)展和科技的不斷進步,圖像識別技術(shù)已經(jīng)在眾多領(lǐng)域中得到了應(yīng)用。20xx年2月15日新浪科技發(fā)布一條新聞:“微軟最近公布了一篇關(guān)于圖像識別的研究論文,在一項圖像識別的基準測試中,電腦系統(tǒng)識別能力已經(jīng)超越了人類。人類在歸類數(shù)據(jù)庫imagenet中的圖像識別錯誤率為5.1%,而微軟研究小組的這個深度學(xué)習(xí)系統(tǒng)可以達到4.94%的錯誤率。”從這則新聞中我們可以看出圖像識別技術(shù)在圖像識別方面已經(jīng)有要超越人類的圖像識別能力的趨勢。這也說明未來圖像識別技術(shù)有更大的研究意義與潛力。而且,計算機在很多方面確實具有人類所無法超越的優(yōu)勢,也正是因為這樣,圖像識別技術(shù)才能為人類社會帶來更多的應(yīng)用。

3.1神經(jīng)網(wǎng)絡(luò)的圖像識別技術(shù)

神經(jīng)網(wǎng)絡(luò)圖像識別技術(shù)是一種比較新型的圖像識別技術(shù),是在傳統(tǒng)的圖像識別方法和基礎(chǔ)上融合神經(jīng)網(wǎng)絡(luò)算法的一種圖像識別方法。這里的神經(jīng)網(wǎng)絡(luò)是指人工神經(jīng)網(wǎng)絡(luò),也就是說這種神經(jīng)網(wǎng)絡(luò)并不是動物本身所具有的真正的神經(jīng)網(wǎng)絡(luò),而是人類模仿動物神經(jīng)網(wǎng)絡(luò)后人工生成的。在神經(jīng)網(wǎng)絡(luò)圖像識別技術(shù)中,遺傳算法與bp網(wǎng)絡(luò)相融合的神經(jīng)網(wǎng)絡(luò)圖像識別模型是非常經(jīng)典的,在很多領(lǐng)域都有它的應(yīng)用。在圖像識別系統(tǒng)中利用神經(jīng)網(wǎng)絡(luò)系統(tǒng),一般會先提取圖像的特征,再利用圖像所具有的特征映射到神經(jīng)網(wǎng)絡(luò)進行圖像識別分類。以汽車拍照自動識別技術(shù)為例,當汽車通過的時候,汽車自身具有的檢測設(shè)備會有所感應(yīng)。此時檢測設(shè)備就會啟用圖像采集裝置來獲取汽車正反面的圖像。獲取了圖像后必須將圖像上傳到計算機進行保存以便識別。最后車牌定位模塊就會提取車牌信息,對車牌上的字符進行識別并顯示最終的結(jié)果。在對車牌上的字符進行識別的過程中就用到了基于模板匹配算法和基于人工神經(jīng)網(wǎng)絡(luò)算法。

3.2非線性降維的圖像識別技術(shù)

計算機的圖像識別技術(shù)是一個異常高維的識別技術(shù)。不管圖像本身的分辨率如何,其產(chǎn)生的數(shù)據(jù)經(jīng)常是多維性的,這給計算機的識別帶來了非常大的困難。想讓計算機具有高效地識別能力,最直接有效的方法就是降維。降維分為線性降維和非線性降維。例如主成分分析(pca)和線性奇異分析(lda)等就是常見的線性降維方法,它們的特點是簡單、易于理解。但是通過線性降維處理的是整體的數(shù)據(jù)集合,所求的是整個數(shù)據(jù)集合的最優(yōu)低維投影。經(jīng)過驗證,這種線性的降維策略計算復(fù)雜度高而且占用相對較多的時間和空間,因此就產(chǎn)生了基于非線性降維的圖像識別技術(shù),它是一種極其有效的非線性特征提取方法。此技術(shù)可以發(fā)現(xiàn)圖像的非線性結(jié)構(gòu)而且可以在不破壞其本征結(jié)構(gòu)的基礎(chǔ)上對其進行降維,使計算機的圖像識別在盡量低的維度上進行,這樣就提高了識別速率。例如人臉圖像識別系統(tǒng)所需的維數(shù)通常很高,其復(fù)雜度之高對計算機來說無疑是巨大的“災(zāi)難”。由于在高維度空間中人臉圖像的不均勻分布,使得人類可以通過非線性降維技術(shù)來得到分布緊湊的人臉圖像,從而提高人臉識別技術(shù)的高效性。

3.3圖像識別技術(shù)的應(yīng)用及前景

計算機的圖像識別技術(shù)在公共安全、生物、工業(yè)、農(nóng)業(yè)、交通、醫(yī)療等很多領(lǐng)域都有應(yīng)用。例如交通方面的車牌識別系統(tǒng);公共安全方面的人臉識別技術(shù)、指紋識別技術(shù);農(nóng)業(yè)方面的種子識別技術(shù)、食品品質(zhì)檢測技術(shù);醫(yī)學(xué)方面的心電圖識別技術(shù)等。隨著計算機技術(shù)的不斷發(fā)展,圖像識別技術(shù)也在不斷地優(yōu)化,其算法也在不斷地改進。圖像是人類獲取和交換信息的主要來源,因此與圖像相關(guān)的圖像識別技術(shù)必定也是未來的研究重點。以后計算機的圖像識別技術(shù)很有可能在更多的領(lǐng)域嶄露頭角,它的應(yīng)用前景也是不可限量的,人類的生活也將更加離不開圖像識別技術(shù)。

4總結(jié)

圖像識別技術(shù)雖然是剛興起的技術(shù),但其應(yīng)用已是相當廣泛。并且,圖像識別技術(shù)也在不斷地成長,隨著科技的不斷進步,人類對圖像識別技術(shù)的認識也會更加深刻。未來圖像識別技術(shù)將會更加強大,更加智能地出現(xiàn)在我們的生活中,為人類社會的更多領(lǐng)域帶來重大的應(yīng)用。在21世紀這個信息化的時代,我們無法想象離開了圖像識別技術(shù)以后我們的生活會變成什么樣。圖像識別技術(shù)是人類現(xiàn)在以及未來生活必不可少的一項技術(shù)。

人工智能的優(yōu)點論文篇十四

簡要地介紹了人工智能科技技術(shù)的基本概念。對專家系統(tǒng)、人工神經(jīng)網(wǎng)絡(luò)、模糊理論、遺傳算法等人工智能技術(shù)的含義進行了介紹,并對這些技術(shù)在電力系統(tǒng)中的應(yīng)用和存在問題進行了分析。

人工智能技術(shù)(ai artificial intelligence)是一項將人類知識轉(zhuǎn)化為機器智能的技術(shù)。它研究的是怎樣用機器模仿人腦從事推理、規(guī)劃、設(shè)計、思考和學(xué)習(xí)等思維活動,解決需要由專家才能處理好的復(fù)雜問題。在應(yīng)用方面,以專家系統(tǒng)、人工神經(jīng)網(wǎng)絡(luò)、遺傳算法等最為普遍 。

1.1 專家系統(tǒng)(es)

專家系統(tǒng)是利用知識和推理來解決專家不能解決的問題。傳統(tǒng)程序需要固定程序和復(fù)雜算法,輸入數(shù)據(jù)并得出結(jié)果。專家系統(tǒng)集中大量的符號處理,采用啟發(fā)式方法模擬專家的推理過程,通過推理,利用知識解決問題。它具有邏輯思維和符號處理能力,能修改原來知識,適合于電力系統(tǒng)問題的分析。

1.2 人工神經(jīng)網(wǎng)絡(luò)(ann)

人工神經(jīng)網(wǎng)絡(luò)是大量處理單元廣泛互聯(lián)而成的網(wǎng)絡(luò),是一種模擬動物神經(jīng)系統(tǒng)的技術(shù)。神經(jīng)網(wǎng)絡(luò)具有自適應(yīng)和自學(xué)習(xí)的能力,能并行處理分布信息。電力系統(tǒng)應(yīng)用人工神經(jīng)網(wǎng)絡(luò)可以進行實時控制、狀態(tài)評估等。

1.3 遺傳算法(ga)

遺傳算法是一種進化論的數(shù)學(xué)模型,借鑒自然遺傳機制的隨機搜索算法。它的主要特征是群體搜索和群體中個體之間的信息交換。該方法適用于處理傳統(tǒng)搜索方法難以解決的非線性問題。

1.4 模糊邏輯(fl)

當輸入是離散的變量,難以建立數(shù)學(xué)模型。而模糊邏輯則成功地應(yīng)用在潮流計算、系統(tǒng)規(guī)劃、故障診斷等電力系統(tǒng)問題。

1.5 混合技術(shù)

以上各種智能控制方法各有局限性,有些甚至難以處理電力系統(tǒng)實際問題。因此需要結(jié)合各個算法的優(yōu)勢,采用人工智能混合技術(shù)。其中包括:模糊專家系統(tǒng)、神經(jīng)網(wǎng)絡(luò)模糊系統(tǒng)、神經(jīng)網(wǎng)絡(luò)專家系統(tǒng)等技術(shù)。

2.1在電能質(zhì)量研究中的應(yīng)用

人工智能技術(shù)可以對電壓波動、電壓不平衡、電網(wǎng)諧波等電能質(zhì)量參數(shù)進行在線監(jiān)測和分析。在檢測和識別電能質(zhì)量擾動時能克服傳統(tǒng)方法的缺陷。專家系統(tǒng)隨著經(jīng)驗的積累、擾動類型變化而不斷擴充和修改,便于用戶的.掌握[3] 。

此外,專家系統(tǒng)和模糊邏輯可用于培訓(xùn)變電站工作人員。智能軟件可以模擬故障情形,有利于提高運行人員的操作技能。

2.2 變壓器狀態(tài)監(jiān)測與故障診斷專家系統(tǒng)

變壓器事故原因判斷起來十分復(fù)雜。判斷過程中,必須通過內(nèi)外部的檢測等各種方法綜合分析作出判斷。變壓器監(jiān)測和診斷專家系統(tǒng)首先對油中氣體進行分析。異常時,根據(jù)異常程度結(jié)合試驗進行分析,決定變壓器的停運檢查。若經(jīng)分析發(fā)現(xiàn)變壓器已嚴重故障,需立即退出運行,則要結(jié)合電氣試驗手段對變壓器的故障性質(zhì)及部位做出確診。

變壓器監(jiān)測和診斷專家系統(tǒng)通過診斷模塊和推理機制,能診斷出變壓器的故障并提出相應(yīng)對策,提高了變壓器內(nèi)部故障的診斷水平,實現(xiàn)了電力變壓器狀態(tài)檢修和在線監(jiān)測。

2.3 人工智能技術(shù)在低壓電器中的應(yīng)用

低壓電器的設(shè)計以實驗為基礎(chǔ),需要分析靜態(tài)模型和動態(tài)過程。人工智能技術(shù)能進行分段過程的動態(tài)設(shè)計,對變化規(guī)律進行曲線擬合并進行人工神經(jīng)網(wǎng)絡(luò)訓(xùn)練,建立變化規(guī)律預(yù)測模型,降低了開發(fā)成本。

低壓電器需要通過試驗進行性能認證。而低壓電器的壽命很難進行評價。模糊識別方法,從考慮產(chǎn)品性能的角度出發(fā),將動態(tài)測得的反映性能的特性指標作為模糊識別的變量特征值,能夠建立評估電器性能的模糊識別模型。

2.4 人工智能在電力系統(tǒng)無功優(yōu)化中的應(yīng)用

無功優(yōu)化是保證電力系統(tǒng)安全,提高運行經(jīng)濟性的手段之一。通過無功優(yōu)化,可以使各個性能指標達到最優(yōu)。但是無功優(yōu)化是一個復(fù)雜的非線性問題 。

人工智能算法能應(yīng)用于電力系統(tǒng)無功優(yōu)化。如改進的模擬退火算法,在求解高中壓配電網(wǎng)的無功優(yōu)化問題中,采用了記憶指導(dǎo)搜索方法來加快搜索速度。模式法進行局部尋優(yōu)以增加獲得全局最優(yōu)解的可能性,能夠以較大概率獲得全局最優(yōu)解,提高了收斂穩(wěn)定性。禁忌搜索方法尋優(yōu)速度較快,在跳出局部最優(yōu)解方面有較大優(yōu)勢。遺傳算法在解決多變量、非線性、離散性的問題時有極大的優(yōu)勢。要求較少的求解信息的,模型簡單,適用范圍廣。

2.5 人工智能在電力系統(tǒng)繼電保護中應(yīng)用

自適應(yīng)型繼電保護裝置能地適應(yīng)各種變化,改善保護的性能,使之適應(yīng)各種運行方式和故障類型。它能夠有效地處理各種故障信息,獲得可靠的保護。

借助于人工智能技術(shù)不但能夠提取故障信息,還能利用其自學(xué)習(xí)和自適應(yīng)能力,根據(jù)不同運行工況,自適應(yīng)地調(diào)整保護定值和動作特性。

2.6 人工智能在抑制電力系統(tǒng)低頻振蕩的應(yīng)用

大規(guī)模電網(wǎng)互聯(lián)易產(chǎn)生低頻振蕩,嚴重威脅著電力系統(tǒng)的安全。人工智能為電力系統(tǒng)低頻振蕩的控制提供了技術(shù)支持。神經(jīng)網(wǎng)絡(luò)、模糊理論、ga等人工智能技術(shù)應(yīng)用于facts控制器和自適應(yīng)pss的研究,為抑制電力系統(tǒng)低頻振蕩提供了新的手段。

作為一門交叉學(xué)科,人工智能將隨著其他理論的發(fā)展而進入新的發(fā)展階段。應(yīng)用新方法解決問題,或促進各種方法的融合,保持簡單的數(shù)學(xué)模型和全局尋優(yōu)情況下,尋求到更少的運算量,提高算法效率,將是未來發(fā)展的趨勢。

隨著電力系統(tǒng)的發(fā)展,電力系統(tǒng)的復(fù)雜性不斷增加,不確定因素越來越多。隨著人工智能技術(shù)的不斷發(fā)展和提高,利用人工智能技術(shù)來解決電力系統(tǒng)的問題將會受到越來越多的重視。

隨著我國電力系統(tǒng)的持續(xù)穩(wěn)步發(fā)展,電力系統(tǒng)數(shù)據(jù)量不斷增加,管理上復(fù)雜程度大幅度增長,市場競爭的加大,為人工智能技術(shù)在電力系統(tǒng)的應(yīng)用提供了廣闊前景。

但人工智能技術(shù)的基本理論還不成熟,只是停留在仿真和實驗階段。人工智能的開發(fā)是一個長期的過程,需要不斷改進和完善,并在實際應(yīng)用中接受檢驗。

人工智能的優(yōu)點論文篇十五

以前我們談科技進步,談網(wǎng)絡(luò)應(yīng)用,總說是一把雙刃劍,有利有弊?,F(xiàn)在,面對日益發(fā)達的人工智能,我想說:現(xiàn)在,擺在我們面前的任務(wù)是把它變成一把單刃的劍。

把人工智能變成一把雙刃劍,需要我們以正確的態(tài)度去面對。就像一局險勝阿爾法狗的李世石一樣,他說:人機大戰(zhàn)并沒有讓我感受到失敗的痛苦,反而讓我更好地理解了象棋,這讓我很開心。連續(xù)輸三局的天才棋手柯潔說:阿爾法狗讓我更好地理解圍棋的奧秘。面對人工智能的快速發(fā)展,我們應(yīng)該有更積極的態(tài)度和更清晰的認識。不能一味的夸。人工智能有多優(yōu)秀,多無敵,不能一味貶低人類來看人類。我們需要知道的是,阿爾法狗只是一臺機器,是人類創(chuàng)造的玩具。他沒有頭腦,沒有情感,甚至沒有——的智商。只是我們在研發(fā)過程中輸入的一堆冷冰冰的代碼,不需要自大,也不需要妄自菲薄。我們和人工智能是平等的,有時候它們可以成為我們的工具。

要把人工智能變成一把單刃劍,我們需要了解它。俗話說知己知彼百戰(zhàn)不殆。網(wǎng)上有人說,如果人工智能獲得了人類的意識,那么他們就會反過來奴役人類。未來將是人工智能的世界,讓人恐慌。首先,人類還沒有能夠讓一臺機器擁有意識,很多人還沒有意識到意識的起源。做出這種無用的猜測,沒有實際意義?,F(xiàn)在我們能做的就是找出它的運行規(guī)律,了解它的優(yōu)缺點。掌握使用人工智能的方法。帶上她神秘的面紗,而不是看著他的面紗漫天要價。

要把人工智能變成一把單刃劍,最重要的是揚長避短。是的,任何事情都有兩面性。就像之前關(guān)于學(xué)生是否應(yīng)該使用手機的爭論一樣,在自律性差的人手里,手機是用不好的,而在頭腦清醒、自律性強的人手里,才能充分發(fā)揮自己的優(yōu)勢。而且不會讓劣勢影響自己,人工智能也是一樣。現(xiàn)在要注意的是提高自己應(yīng)用人工智能的能力。讓這些過于智能的機器在我們手里得到合理的利用,讓它們的缺點得到融化,優(yōu)勢得到彰顯。只有這樣,人工智能才能得到它的天賦,并充分利用它們。

問:如何讓人工智能成為一把雙刃劍?回答:以正確的態(tài)度面對他,以積極的方式認識他,然后揚長避短,是運用人工智能的好方法。

人工智能的優(yōu)點論文篇十六

:隨著社會信息技術(shù)和計算機網(wǎng)絡(luò)技術(shù)的發(fā)展,人們對網(wǎng)絡(luò)應(yīng)用的需求也原來越多,這就需要不斷研究計算機網(wǎng)絡(luò)技術(shù),由于人工智能在一定程度上成為科學(xué)技術(shù)前言領(lǐng)域,所以世界上各個國家對人工智能的發(fā)展越來越重視。本文首先分析其所具有的重要意義,然后研究其在應(yīng)用過程中的作用,提出以下內(nèi)容。

計算機;人工智能;應(yīng)用;分析

目前由于人工智能的不斷成熟,人們在生活方面以及工作的過程中,智能化產(chǎn)品隨處可見。這不僅對人們在工作中的效率進行提高,同時還對其生活質(zhì)量進行加強。所以人工智能的發(fā)展在一定程度上離不開計算機網(wǎng)絡(luò)技術(shù),只有對計算機網(wǎng)絡(luò)技術(shù)進行相應(yīng)的依靠,才能夠讓人工智能研究出更多的成果。

由于計算機技術(shù)的快速發(fā)展,網(wǎng)絡(luò)信息安全問題在一定程度上是人們目前比較關(guān)注的一個重要問題。在網(wǎng)絡(luò)管理系統(tǒng)應(yīng)用中,其網(wǎng)絡(luò)監(jiān)控以及網(wǎng)絡(luò)控制是其比較重要的功能,信息能夠及時有效的獲取以及正確的處理對其起著決定性作用。所以,對計算機技術(shù)智能化進行實現(xiàn)是比較必要的。由于計算機得到了不斷的深入以及管廣泛的運用,在一定程度上導(dǎo)致用戶對網(wǎng)絡(luò)安全在管理方面的需求比較高,對自身的信息安全進行有效的保證。目前網(wǎng)絡(luò)犯罪現(xiàn)象比較多,計算機只有在具備較快的反應(yīng)力和靈敏觀察力的狀況下,才能夠?qū)τ脩粜畔⑦M行侵犯的違法活動進行及時遏制。充分的利用人工智能技術(shù),建立起相對較系統(tǒng)化的管理,讓其不僅對信息進行自動的收集,同時還能夠?qū)W(wǎng)絡(luò)出現(xiàn)的故障進行及時診斷,對網(wǎng)絡(luò)故障及時遏制,運用有效的措施對計算機網(wǎng)絡(luò)系統(tǒng)進行及時的恢復(fù),保證用戶信息的安全。計算機技術(shù)在發(fā)展的過程中對人工智能應(yīng)用起著決定性作用,人工智能技術(shù)也在一定程度上對計算機技術(shù)的發(fā)展起著促進作用。不斷的跟蹤動態(tài)化信息,為用戶提供準確的信息資源??偟膩碚f,計算機網(wǎng)絡(luò)在管理的過程中有效的運用人工智能,對網(wǎng)絡(luò)管理水平進行不斷的提高。

2.1安全管理應(yīng)用

網(wǎng)絡(luò)安全所具有的漏洞相對比較多,用戶在網(wǎng)絡(luò)中自身的資料信息安全是現(xiàn)階段人們比較關(guān)注以及重視的主要問題。在對網(wǎng)絡(luò)安全進行管理時,可以對人工智能技術(shù)進行充分的運用,在一定程度上能夠?qū)τ脩糇陨淼碾[身進行有效的保護。主要表現(xiàn)為:一是,智能防火墻的應(yīng)用;二是,智能反應(yīng)垃圾郵件方面;三是,入侵檢測方面等。智能防護墻主要應(yīng)用的就是智能化識別技術(shù),通過概率以及統(tǒng)計方式、決策方法和計算等對信息數(shù)據(jù)不僅進行有效的識別,同時還能對其相應(yīng)的處理,對匹配檢查過程中需要的計算進行消除,充分認識網(wǎng)絡(luò)行為特征值,訪問可以直接進行控制,把存在的網(wǎng)絡(luò)及時發(fā)現(xiàn),攔截以及阻止有害信息的彈出。智能防火墻能夠在一定程度上避免網(wǎng)絡(luò)站點受到黑客的攻擊,遏制病毒傳播,對相關(guān)局域網(wǎng)進行相應(yīng)的管理和控制,反之就會導(dǎo)致病毒以及木馬的傳播。在智能防火墻中,比較重要的就是入侵檢測,它屬于防護墻后的.第二安全閘門,在對網(wǎng)絡(luò)安全保證方面起著重要的作用。針對入侵檢測技術(shù)而言,主要能夠在一定程度上對網(wǎng)絡(luò)中的數(shù)據(jù)進行有效的分析,并且對其進行及時的處理,把部分數(shù)據(jù)過濾出去,數(shù)據(jù)檢測后的報告分析報告給用戶。入侵檢測在對網(wǎng)絡(luò)性能不產(chǎn)生影響的前提下監(jiān)測網(wǎng)絡(luò),為操作上的失誤以及內(nèi)外部攻擊提供一定的保護。針對智能型反垃圾而言,其自身的郵件系統(tǒng)能夠?qū)τ脩羿]箱進行有效的監(jiān)測,對郵箱進行相應(yīng)識別,把郵箱中存在的垃圾充分的篩選出來。如果郵件進入郵箱后,就會進行掃描郵箱,在一定程度上把垃圾郵箱的分類信息發(fā)給用戶,提醒用戶要對其進行及時的處理,避免給郵箱安全帶來影響。

2.2人工智能agent技術(shù)應(yīng)用分析

針對人工智能agent技術(shù)而言,它屬于人工智能代理的一種技術(shù),屬于不同部分所組成的軟件實體,包括:一是,知識域庫;二是數(shù)據(jù)庫;三是解釋推理器;四是各個agent之間的通訊部分等。人工智能agent技術(shù)通過任何一個agent域庫對新數(shù)據(jù)的相關(guān)信息進行處理,并且溝通以至完成任務(wù)。人工智能agent技術(shù)能夠在一定程度上通過用戶自定義對信息獲得自動搜索,然后將其發(fā)送到指定位置。人們通過agent技術(shù)得到人性化服務(wù)。例如:用戶在用電腦查相關(guān)信息時,該技術(shù)不僅能對信息進行處理,同時還能夠進行有效的分析,最后把有用的信息出題給用戶,充分節(jié)省用戶的時間。agent技術(shù)為用戶在日常生活中提供相應(yīng)的服務(wù),例如:在網(wǎng)上進行購物以及會議等方面的安排。它不僅自主性以及學(xué)習(xí)性,讓計算機對用戶所分配的任務(wù)自動完成,進一步推動機計算機網(wǎng)絡(luò)技術(shù)的發(fā)展。

2.3在網(wǎng)絡(luò)系統(tǒng)管理以及評價過程中的應(yīng)用分析

針對網(wǎng)絡(luò)管理系統(tǒng)來說,其智能化在一定程度上需要人工技能的不斷發(fā)展。在對網(wǎng)絡(luò)綜合管理系統(tǒng)進行建立的過程中,不僅可以對人工智能中的專家知識庫進行充分的利用,同時還能夠?qū)Υ嬖诘募夹g(shù)問題進行有效的解決和處理。網(wǎng)絡(luò)存在著動態(tài)以及變化性,所以,網(wǎng)絡(luò)在管理的過程中會面臨著困難,這就需要對網(wǎng)絡(luò)管理技術(shù)人工智能化進行實現(xiàn)。在人工智能技術(shù)中,其專家知識庫主要指的就是把各個相關(guān)領(lǐng)域?qū)<业闹R以及經(jīng)驗進行相應(yīng)的結(jié)語出來,錄入系統(tǒng)中,只有這樣才能形成比較完善的知識庫系統(tǒng),促進智能計算機程序的發(fā)展和提高。如果遇到某個領(lǐng)域問題的過程中,要充分利用專家經(jīng)驗程序?qū)ζ溥M行及時的處理。專家知識經(jīng)驗系統(tǒng)促進計算機網(wǎng)絡(luò)管理得到順利開展的同時,對系統(tǒng)評價相關(guān)進行工作不斷的提高和加強。

科學(xué)技術(shù)在發(fā)展的同時,也促進人工智能技術(shù)的提高,計算機在網(wǎng)絡(luò)技術(shù)中得到了比較多的需求,在一定程度上提高其應(yīng)用范圍和領(lǐng)域,因此可以看出,人工智能其應(yīng)用發(fā)展前景是比較廣泛的,人類對人工智能技術(shù)的進一步研究,會在未來開創(chuàng)出更多的應(yīng)用領(lǐng)域。

人工智能的優(yōu)點論文篇十七

人工智能和數(shù)字地球是計算機科學(xué)及信息科學(xué)發(fā)展中的重要領(lǐng)域。本文簡述了人工智能的概念及其在計算機上的實現(xiàn)方式,并提出了人工智能技術(shù)在數(shù)字地球發(fā)展中幾個方面的應(yīng)用,最后總結(jié)了人工智能技術(shù)為數(shù)字地球的發(fā)展帶來的好處。

1前言

,美國副總統(tǒng)阿爾.戈爾在加利福尼亞科學(xué)中心作的演講中提出了“數(shù)字地球”這一新概念,并對其作了比較全面和通俗的說明[1]。演講中戈爾總統(tǒng)給出數(shù)字地球可能的無比廣闊的應(yīng)用前景,人們可以通過數(shù)字地球技術(shù)指導(dǎo)仿真外交,打擊和監(jiān)測犯罪,保護生態(tài)多樣性,預(yù)測氣候變化,增加作物產(chǎn)量等。

在數(shù)字地球中非常重要的一點是如何使海量的地理空間數(shù)據(jù)變得有意義,即讓它們能過被人們所理解。但是,在面對這些海量的數(shù)據(jù)時,我們處理的手段卻是有限的。而且這些數(shù)據(jù)都是由計算機來處理的,在面對大量數(shù)據(jù)中的無用數(shù)據(jù)時,計算機是很難將其識別出來的。所以我們需要讓計算機具有人類一樣的智慧,將這些數(shù)據(jù)進行有效的處理。如今,人工智能技術(shù)在數(shù)字地球中有著廣泛的應(yīng)用。通過這一技術(shù),人們可以高效的處理和分析這些海量數(shù)據(jù)。

2人工智能的實現(xiàn)方式

人工智能在計算機上有兩種不同的實現(xiàn)方式。一種是采用傳統(tǒng)的編碼技術(shù),使系統(tǒng)呈現(xiàn)智能的效果,而不考慮所用的方法是否與人或動物機體所用的方法相同。另一種是模擬法(modelingapproach),它要求實現(xiàn)方法也和人或動物機體所用的方法相同或相似。模擬法有兩種實現(xiàn)的算法:遺傳算法和神經(jīng)網(wǎng)絡(luò)算法。

遺傳算法借鑒生物進化論,將要解決的問題模擬成一個生物體,通過復(fù)制、交叉、突變等操作產(chǎn)生下一代解空間[3],并通過適應(yīng)函數(shù)度來淘汰那些不良的個體,這樣迭代進化幾代之后就很有可能得到適應(yīng)度函數(shù)值較高的個體。遺傳算法通常用在求解問題最優(yōu)解的情況下,如函數(shù)優(yōu)化、組合優(yōu)化等。

神經(jīng)網(wǎng)絡(luò)算法通過模擬人或動物的神經(jīng)網(wǎng)絡(luò)傳遞和處理信息的行為特征,進行分布式并行信息處理的算法數(shù)學(xué)模型[4]。使用神經(jīng)網(wǎng)絡(luò)算法使系統(tǒng)具有像人一樣學(xué)習(xí)的特征。初始時,系統(tǒng)模塊跟初生嬰兒一樣什么也不懂,而且會經(jīng)常犯錯,但是它可用通過學(xué)習(xí),從錯誤中吸取教訓(xùn),下一次運行時就可能改正。

3人工智能技術(shù)在數(shù)字地球中的應(yīng)用

人工智能能夠使我們的計算機具有人能解決問題的能力,使得計算機工作起來更加的高效。而且通過人工智能的學(xué)習(xí)機制,降低其出錯的幾率。人工智能在數(shù)字地球中可以有以下幾個方面的應(yīng)用:

3.1智能導(dǎo)航

當前我們主要使用gps技術(shù)來做定位和導(dǎo)航的。但是gps只能在室外及衛(wèi)星信號不被遮擋或反射的地方才能使用。因此,在室內(nèi)、茂密的樹木覆蓋處和高層建筑地下gps就很難使用了[5]。

使用人工智能技術(shù)進行智能導(dǎo)航,當不能獲得gps衛(wèi)星信號時,系統(tǒng)會智能的使用基于通信基站定位、互聯(lián)網(wǎng)定位等來提供導(dǎo)航。同時,人工智能系統(tǒng)還可以實現(xiàn)最優(yōu)路徑規(guī)劃,周邊信息搜索等功能。

3.2智能的人機交互

數(shù)字地球的建設(shè)依賴于互聯(lián)網(wǎng)、虛擬現(xiàn)實等技術(shù),但是現(xiàn)在我們能做的僅僅是通過這些技術(shù)將我們所獲得的海量數(shù)據(jù)展現(xiàn)在人們面前。而顯示信息的形式主要是以瀏覽器、虛擬頭盔等,這些工具存在著不能與人友好交互的問題。我們通常是通過人肢體來交互,而不能像現(xiàn)實生活中人們通過對話的形式交互。

3.3專家系統(tǒng)

計算機較人強的地方在于它的計算速度快,將計算機的高運算速度和人的智慧集成起來構(gòu)成專家系統(tǒng)。專家系統(tǒng)使用人類專家推理的模型來處理現(xiàn)實世界中需要專家作出解釋的復(fù)雜問題,并得出與專家相同的結(jié)論[6]。

在氣象預(yù)測中,我們要處理大量的氣象數(shù)據(jù)。使用傳統(tǒng)的計算機處理方式,我們還要對計算機的處理結(jié)果做大量的分析。但是通過專家系統(tǒng),不僅給出處理的數(shù)據(jù)結(jié)果,還可以給出分析的結(jié)果,以便研究人員輔助研究使用。這樣可以減少大量的人力耗費。

總結(jié)

戈爾總統(tǒng)所提出的數(shù)字地球,不僅僅是數(shù)字化的地球,其未來的發(fā)展跟應(yīng)該是在數(shù)字化的基礎(chǔ)之上的智慧地球,正如20xx年ibm所提出的“智慧地球”。未來,電子設(shè)備將會更加智能化,人機交互將會更友好化。

同時在面對海量的地理空間數(shù)據(jù)時,使用人工智能技術(shù)可以拓寬我們隊這些數(shù)據(jù)的處理能力。加快數(shù)據(jù)的處理速度、精確性等。通過智能搜索,可以快速精準的找到我們所需要的信息。就像google公司所做的智能周邊搜索一樣,當人們走在城市街道上的時候,系統(tǒng)可以搜索并顯示周邊我們感興趣的一些商店、景觀、飯店等信息。并且人工智能技術(shù)還能提供智能導(dǎo)航、人機自然語言交互、專家系統(tǒng)等。未來人工智能技術(shù)將在數(shù)字地球的發(fā)展中起到更大的作用。

人工智能的優(yōu)點論文篇十八

人工智能(artificialintelligence,ai)一直都處于計算機技術(shù)的最前沿,經(jīng)歷了幾起幾落……

----長久以來,人工智能對于普通人來說是那樣的可望而不可及,然而它卻吸引了無數(shù)研究人員為之奉獻才智,從美國的麻省理工學(xué)院(mit)、卡內(nèi)基-梅隆大學(xué)(cmu)到ibm公司,再到日本的本田公司、sony公司以及國內(nèi)的清華大學(xué)、中科院等科研院所,全世界的實驗室都在進行著ai技術(shù)的實驗。不久前,著名導(dǎo)演斯蒂文·斯皮爾伯格還將這一主題搬上了銀幕,科幻片《人工智能》(a.i.)對許多人的頭腦又一次產(chǎn)生了震動,引起了一些人士了解并探索人工智能領(lǐng)域的興趣。

----在本期技術(shù)專題中,中國科學(xué)院計算技術(shù)研究所智能信息處理開放實驗室的幾位研究人員將引領(lǐng)我們走近人工智能這一充滿挑戰(zhàn)與機遇的領(lǐng)域。

計算機與人工智能

----“智能”源于拉丁語legere,字面意思是采集(特別是果實)、收集、匯集,并由此進行選擇,形成一個東西。intelegere是從中進行選擇,進而理解、領(lǐng)悟和認識。正如帕梅拉·麥考達克在《機器思維》(machineswhothinks,1979)中所提出的:在復(fù)雜的機械裝置與智能之間存在長期的聯(lián)系。從幾個世紀前出現(xiàn)的神話般的巨鐘和機械自動機開始,人們已對機器操作的復(fù)雜性與自身的某些智能活動進行直觀聯(lián)系。經(jīng)過幾個世紀之后,新技術(shù)已使我們所建立的機器的復(fù)雜性大為提高。1936年,24歲的英國數(shù)學(xué)家圖靈(turing)提出了“自動機”理論,把研究會思維的機器和計算機的工作大大向前推進了一步,他也因此被稱為“人工智能之父”。

----人工智能領(lǐng)域的研究是從1956年正式開始的,這一年在達特茅斯大學(xué)召開的會議上正式使用了“人工智能”(artificialintelligence,ai)這個術(shù)語。隨后的幾十年中,人們從問題求解、邏輯推理與定理證明、自然語言理解、博弈、自動程序設(shè)計、專家系統(tǒng)、學(xué)習(xí)以及機器人學(xué)等多個角度展開了研究,已經(jīng)建立了一些具有不同程度人工智能的計算機系統(tǒng),例如能夠求解微分方程、設(shè)計分析集成電路、合成人類自然語言,而進行情報檢索,提供語音識別、手寫體識別的多模式接口,應(yīng)用于疾病診斷的專家系統(tǒng)以及控制太空飛行器和水下機器人更加貼近我們的生活。我們熟知的ibm的“深藍”在棋盤上擊敗了國際象棋大師卡斯帕羅夫就是比較突出的例子。

----當然,人工智能的發(fā)展也并不是一帆風順的,也曾因計算機計算能力的限制無法模仿人腦的思考以及與實際需求的差距過遠而走入低谷,但是隨著硬件和軟件的發(fā)展,計算機的運算能力在以指數(shù)級增長,同時網(wǎng)絡(luò)技術(shù)蓬勃興起,確保計算機已經(jīng)具備了足夠的條件來運行一些要求更高的ai軟件,而且現(xiàn)在的ai具備了更多的現(xiàn)實應(yīng)用的基礎(chǔ)。90年代以來,人工智能研究又出現(xiàn)了新的高潮。

----我們有幸采訪了中國科學(xué)院計算技術(shù)研究所智能信息處理開放實驗室史忠植研究員,請他和他的實驗室成員引領(lǐng)我們走近人工智能這個讓普通人感到深奧卻又具有無窮魅力的領(lǐng)域。

----答:ai研究出現(xiàn)了新的高潮,這一方面是因為在人工智能理論方面有了新的進展,另一方面也是因為計算機硬件突飛猛進的發(fā)展。隨著計算機速度的不斷提高、存儲容量的不斷擴大、價格的不斷降低以及網(wǎng)絡(luò)技術(shù)的不斷發(fā)展,許多原來無法完成的工作現(xiàn)在已經(jīng)能夠?qū)崿F(xiàn)。目前人工智能研究的3個熱點是:智能接口、數(shù)據(jù)挖掘、主體及多主體系統(tǒng)。

----智能接口技術(shù)是研究如何使人們能夠方便自然地與計算機交流。為了實現(xiàn)這一目標,要求計算機能夠看懂文字、聽懂語言、說話表達,甚至能夠進行不同語言之間的翻譯,而這些功能的實現(xiàn)又依賴于知識表示方法的研究。因此,智能接口技術(shù)的研究既有巨大的應(yīng)用價值,又有基礎(chǔ)的理論意義。目前,智能接口技術(shù)已經(jīng)取得了顯著成果,文字識別、語音識別、語音合成、圖像識別、機器翻譯以及自然語言理解等技術(shù)已經(jīng)開始實用化。

----數(shù)據(jù)挖掘就是從大量的、不完全的、有噪聲的、模糊的、隨機的實際應(yīng)用數(shù)據(jù)中提取隱含在其中的、人們事先不知道的、但又是潛在有用的信息和知識的過程。數(shù)據(jù)挖掘和知識發(fā)現(xiàn)的研究目前已經(jīng)形成了三根強大的技術(shù)支柱:數(shù)據(jù)庫、人工智能和數(shù)理統(tǒng)計。主要研究內(nèi)容包括基礎(chǔ)理論、發(fā)現(xiàn)算法、數(shù)據(jù)倉庫、可視化技術(shù)、定性定量互換模型、知識表示方法、發(fā)現(xiàn)知識的維護和再利用、半結(jié)構(gòu)化和非結(jié)構(gòu)化數(shù)據(jù)中的知識發(fā)現(xiàn)以及網(wǎng)上數(shù)據(jù)挖掘等。

----主體是具有信念、愿望、意圖、能力、選擇、承諾等心智狀態(tài)的實體,比對象的粒度更大,智能性更高,而且具有一定自主性。主體試圖自治地、獨立地完成任務(wù),而且可以和環(huán)境交互,與其他主體通信,通過規(guī)劃達到目標。多主體系統(tǒng)主要研究在邏輯上或物理上分離的多個主體之間進行協(xié)調(diào)智能行為,最終實現(xiàn)問題求解。多主體系統(tǒng)試圖用主體來模擬人的理性行為,主要應(yīng)用在對現(xiàn)實世界和社會的模擬、機器人以及智能機械等領(lǐng)域。目前對主體和多主體系統(tǒng)的研究主要集中在主體和多主體理論、主體的體系結(jié)構(gòu)和組織、主體語言、主體之間的協(xié)作和協(xié)調(diào)、通信和交互技術(shù)、多主體學(xué)習(xí)以及多主體系統(tǒng)應(yīng)用等方面。

----答:我國開始“863計劃“時,正值全世界的人工智能熱潮?!?63-306“主題的名稱是”智能計算機系統(tǒng)“,其任務(wù)就是在充分發(fā)掘現(xiàn)有計算機潛力的基礎(chǔ)上,分析現(xiàn)有計算機在應(yīng)用中的缺陷和”瓶頸”,用人工智能技術(shù)克服這些問題,建立起更為和諧的人-機環(huán)境。經(jīng)過十幾年來的努力,我們縮短了我國人工智能技術(shù)與世界先進水平的差距,也為未來的發(fā)展奠定了技術(shù)和人才基礎(chǔ)。

----但是也應(yīng)該看到目前我國人工智能研究中還存在一些問題,其特點是:課題比較分散,應(yīng)用項目偏多、基礎(chǔ)研究比例略少、理論研究與實際應(yīng)用需求結(jié)合不夠緊密。選題時,容易跟著國外的選題走;立項論證時,慣于考慮國外怎么做;落實項目時,又往往顧及面面俱到,大而全;再加上受研究經(jīng)費的限制,所以很多課題既沒有取得理論上的突破,也沒有太大的實際應(yīng)用價值。

----今后,基礎(chǔ)研究的比例應(yīng)該適當提高,同時人工智能研究一定要與應(yīng)用需求相結(jié)合??茖W(xué)研究講創(chuàng)新,而創(chuàng)新必須接受應(yīng)用和市場的檢驗。因此,我們不僅要善于找到解決問題的答案,更重要的是要發(fā)現(xiàn)最迫切需要解決的問題和最迫切需要滿足的市場需求。

----問:請您預(yù)測一下人工智能將來會向哪些方面發(fā)展?

----答:技術(shù)的發(fā)展總是超乎人們的想象,要準確地預(yù)測人工智能的未來是不可能的。但是,從目前的一些前瞻性研究可以看出未來人工智能可能會向以下幾個方面發(fā)展:模糊處理、并行化、神經(jīng)網(wǎng)絡(luò)和機器情感。

----目前,人工智能的推理功能已獲突破,學(xué)習(xí)及聯(lián)想功能正在研究之中,下一步就是模仿人類右腦的模糊處理功能和整個大腦的并行化處理功能。人工神經(jīng)網(wǎng)絡(luò)是未來人工智能應(yīng)用的新領(lǐng)域,未來智能計算機的構(gòu)成,可能就是作為主機的馮·諾依曼型機與作為智能外圍的人工神經(jīng)網(wǎng)絡(luò)的結(jié)合。研究表明:情感是智能的一部分,而不是與智能相分離的,因此人工智能領(lǐng)域的下一個突破可能在于賦予計算機情感能力。情感能力對于計算機與人的自然交往至關(guān)重要。

----人工智能一直處于計算機技術(shù)的前沿,人工智能研究的理論和發(fā)現(xiàn)在很大程度上將決定計算機技術(shù)的發(fā)展方向。今天,已經(jīng)有很多人工智能研究的成果進入人們的日常生活。將來,人工智能技術(shù)的發(fā)展將會給人們的`生活、工作和教育等帶來更大的影響。

什么是人工智能?

----人工智能也稱機器智能,它是計算機科學(xué)、控制論、信息論、神經(jīng)生理學(xué)、心理學(xué)、語言學(xué)等多種學(xué)科互相滲透而發(fā)展起來的一門綜合性學(xué)科。從計算機應(yīng)用系統(tǒng)的角度出發(fā),人工智能是研究如何制造出人造的智能機器或智能系統(tǒng),來模擬人類智能活動的能力,以延伸人們智能的科學(xué)。

ai理論的實用性

----在一年一度at&t實驗室舉行的機器人足球賽中,每支球隊的“球員”都裝備上了ai軟件和許多感應(yīng)器,它們都很清楚自己該踢什么位置,同時也明白有些情況下不能死守崗位。盡管現(xiàn)在的ai技術(shù)只能使它們大部分時間處于個人盤帶的狀態(tài),但它們傳接配合的能力正在以很快的速度改進。

----這種ai機器人組隊打比賽看似無聊,但是有很強的現(xiàn)實意義。因為通過這類活動可以加強機器之間的協(xié)作能力。我們知道,internet是由無數(shù)臺服務(wù)器和無數(shù)臺路由器組成的,路由器的作用就是為各自的數(shù)據(jù)選擇通道并加以傳送,如果利用一些智能化的路由器很好地協(xié)作,就能分析出傳輸數(shù)據(jù)的最佳路徑,從而可以大大減少網(wǎng)絡(luò)堵塞。

----我國也已經(jīng)在大學(xué)中開展了機器人足球賽,有很多學(xué)校組隊參加,引起了大學(xué)生對人工智能研究的興趣。

未來的ai產(chǎn)品

----安放于加州勞倫斯·利佛摩爾國家實驗室的asciwhite電腦,是ibm制造的世界最快的超級電腦,但其智力能力也僅為人腦的千分之一?,F(xiàn)在,ibm正在開發(fā)能力更為強大的新超級電腦--“藍色牛仔”(bluejean)。據(jù)其研究主任保羅·霍恩稱,預(yù)計于4年后誕生的“藍色牛仔”的智力水平將大致與人腦相當。

----麻省理工學(xué)院的ai實驗室進行一個的代號為cog的項目。cog計劃意圖賦予機器人以人類的行為。該實驗的一個項目是讓機器人捕捉眼睛的移動和面部表情,另一個項目是讓機器人抓住從它眼前經(jīng)過的東西,還有一個項目則是讓機器人學(xué)會聆聽音樂的節(jié)奏并將其在鼓上演奏出來。

----/報道,比利時的starlab正在制造一個人工貓腦,這個貓腦將有7500萬個人造神經(jīng)細胞。據(jù)稱,移植了人工貓腦的小貓能夠行走,還能玩球。預(yù)計它將于制作完程。

【本文地址:http://mlvmservice.com/zuowen/4127979.html】

全文閱讀已結(jié)束,如果需要下載本文請點擊

下載此文檔