最新《反比例函數(shù)》教學設計及反思 反比例函數(shù)教學設計一等獎(九篇)

格式:DOC 上傳日期:2023-05-02 18:10:05
最新《反比例函數(shù)》教學設計及反思 反比例函數(shù)教學設計一等獎(九篇)
時間:2023-05-02 18:10:05     小編:zxfb

無論是身處學校還是步入社會,大家都嘗試過寫作吧,借助寫作也可以提高我們的語言組織能力。范文書寫有哪些要求呢?我們怎樣才能寫好一篇范文呢?這里我整理了一些優(yōu)秀的范文,希望對大家有所幫助,下面我們就來了解一下吧。

《反比例函數(shù)》教學設計及反思 反比例函數(shù)教學設計一等獎篇一

本節(jié)課是在學習了反比例函數(shù)的概念,反比例函數(shù)的圖像和性質(zhì)等相關(guān)知識的基礎上引入的。首先創(chuàng)設問題情境,展示反比例函數(shù)在實際生活中的應用情況,激發(fā)學生的求知欲和濃厚的學習興趣。接下來主要討論了反比例函數(shù)在體積、面積這樣的實際問題中的應用。分析實際問題中變量之間的關(guān)系,建立反比例函數(shù)模型,進而解決問題。

知識與技能

1、能靈活列反比例函數(shù)表達式解決一些實際問題。

2、能綜合利用幾何、方程、反比例函數(shù)的知識解決一些實際問題。

過程與方法

1、經(jīng)歷分析實際問題中變量之間的關(guān)系,建立反比例函數(shù)模型,進而解決問題。

2、體會數(shù)學與現(xiàn)實生活的緊密聯(lián)系,增強應用意識,提高運用代數(shù)方法解決問題的能力。

情感態(tài)度與價值觀

體驗反比例函數(shù)是有效地描述現(xiàn)實世界的重要手段,認識到數(shù)學是解決實際問題和進行交流的重要工具。

重點:掌握從實際問題中建構(gòu)反比例函數(shù)模型。

難點:從實際問題中尋找變量之間的關(guān)系。關(guān)鍵是充分運用所學知識分析實際情況,建立函數(shù)模型,教學時注意分析過程,滲透數(shù)形結(jié)合的思想。

《反比例函數(shù)》教學設計及反思 反比例函數(shù)教學設計一等獎篇二

本節(jié)課是在學習了反比例函數(shù)的概念,反比例函數(shù)的圖像和性質(zhì)等相關(guān)知識的基礎上引入的。首先創(chuàng)設問題情境,展示反比例函數(shù)在實際生活中的應用情況,激發(fā)學生的求知欲和濃厚的學習興趣。接下來主要討論了反比例函數(shù)在體積、面積這樣的實際問題中的應用。分析實際問題中變量之間的關(guān)系,建立反比例函數(shù)模型,進而解決問題。

1、能靈活列反比例函數(shù)表達式解決一些實際問題。

2、能綜合利用幾何、方程、反比例函數(shù)的知識解決一些實際問題。

1、經(jīng)歷分析實際問題中變量之間的關(guān)系,建立反比例函數(shù)模型,進而解決問題。

2、體會數(shù)學與現(xiàn)實生活的緊密聯(lián)系,增強應用意識,提高運用代數(shù)方法解決問題的能力。

情感態(tài)度與價值觀

體驗反比例函數(shù)是有效地描述現(xiàn)實世界的重要手段,認識到數(shù)學是解決實際問題和進行交流的重要工具。

掌握從實際問題中建構(gòu)反比例函數(shù)模型。

從實際問題中尋找變量之間的關(guān)系。關(guān)鍵是充分運用所學知識分析實際情況,建立函數(shù)模型,教學時注意分析過程,滲透數(shù)形結(jié)合的思想。

教學方法

啟發(fā)引導、合作探究

教學媒體

課件

(一)創(chuàng)設問題情境,引入新課

[師]有關(guān)反比例函數(shù)的表達式,圖像的特征我們都研究過了,那么,我們學習它們的目的是什么呢?

[生]是為了應用。

[師]很好。學習的目的是為了用學到的知識解決實際問題。究竟反比例函數(shù)能解決一些什么問題呢?本節(jié)課我們就來學一學。

問題:某??萍夹〗M進行野外考察,途中遇到一片十幾米寬的爛泥濕地,為了安全、迅速通過這片濕地,他們沿著前進路線鋪墊了若干塊木板,構(gòu)筑成一條臨時通道,從而順利完成了任務的情境。

《反比例函數(shù)》教學設計及反思 反比例函數(shù)教學設計一等獎篇三

1.理解反比例函數(shù)的圖象是雙曲線,利用描點法畫出反比例函數(shù)的圖象,說出它的性質(zhì);

2.利用反比例函數(shù)的圖象解決有關(guān)問題。

1.經(jīng)歷對反比 例函數(shù)圖象的觀察、分析、討論、概括過程,會說出它的性質(zhì);

2.探索反比例函數(shù)的圖象的性質(zhì),體會用數(shù) 形結(jié)合思想解數(shù)學問題。

一、創(chuàng)設情境

上節(jié)的練習中,我們畫出了問題1中函數(shù) 的圖象,發(fā)現(xiàn)它并不是直線。那么它是怎么樣的曲線呢?本節(jié)課,我們就來討論一般的反比例函數(shù) (k是常數(shù),k0)的圖象,探究它有什么性質(zhì)。

二、探究歸納

1.畫出函數(shù) 的圖象。

分析 畫出函數(shù)圖象一般分 為列表、描點、連線三個步驟,在反比例函數(shù)中自變量x 0.

解 1.列表:這個函數(shù)中自變量x的取值范圍是不等于零的一切實數(shù),列出x與y的對應值:

2.描點:用表里各組對應值作為點的坐標,在直角坐標系中描出在京各點點(-6,-1) 、(-3,-2)、(-2,-3)等。

3.連線:用平滑的 曲線將第一象限各點依次連起來,得到圖象的 第一個分支;用平滑的曲線將第三象限各點依次連起來,得到圖象的另一個分支。這兩個分支合起來,就是反比例函數(shù)的圖象。

上述圖象,通常稱為雙曲線(hyperbola).

提問 這兩條曲線會與x軸、y軸相交嗎?為什么?

學生試一試:畫出反比例函數(shù) 的圖象(學生動手畫反比函數(shù)圖象,進一步掌握畫函數(shù)圖象的步驟).

學生討論、交流以下問題,并 將討論、交流的結(jié)果回答 問題。

1.這個函數(shù)的圖 象在哪兩個象限?和函數(shù) 的圖象 有什么不同?

2.反比例函數(shù) (k0)的圖象在哪兩個象限內(nèi)?由什么確定?

3.聯(lián)系一次函數(shù)的性質(zhì),你能否總結(jié)出反比例函數(shù)中隨著自變量x的增加,函數(shù)y將怎樣變化?有什么規(guī)律?

反比例函數(shù) 有下列性質(zhì):

(1)當k0時,函數(shù)的圖象在第一、三象限,在每個象限內(nèi),曲線從左向右下降,也就是在每個象限內(nèi)y隨x的增加而減少;

(2)當k0時,函數(shù)的圖象在第二、四象限,在每個象限內(nèi),曲線從左向右上升,也就是在每個象限內(nèi)y隨x的增加而增加。

注 1.雙曲線的兩個分支與x軸和y軸沒有交點;

2.雙曲線的兩個分支關(guān)于原點成中心對稱。

以上兩點性質(zhì)在上堂課的問題1和問題2中反映了怎樣的實際意義?

在問題1中反映了汽車比自行車的速 度快,小華乘汽車比騎自行車到鎮(zhèn)上的時間少。

在問題2中反映了在面積一定的情況下,飼養(yǎng)場的一邊越長,另一邊越小。

三、實踐應用

例1 若反比例函數(shù) 的圖象在第二、四象限,求m的值。

分析 由反比例函 數(shù)的定義可知: , 又由于圖象在二、四象限,所以m+10,由這兩個條件可解出m的值。

解 由題意, 得 解得 .

例2 已知反比例函數(shù) (k0),當x0時,y隨x的增大而增大,求一次函數(shù)y=kx-k的圖象經(jīng)過的象限。

分析 由于反比例函數(shù) (k0 ),當x0時,y隨x的增大而增大,因此k0,而一次函數(shù)y=kx-k中,k0,可知,圖象過二、四象限,又-k0,所以直線與y軸的交點在x軸的上方。

解 因為反比例函數(shù) (k0),當x0時,y隨x的增大而增大,所以k0,所以一次函數(shù)y=kx-k的圖象經(jīng)過一、二、四象限。

例3 已知反比例函數(shù)的圖象過點(1,-2).

(1)求這個函數(shù)的解析式,并畫出圖象;

(2)若點a(-5,m)在圖象上,則點a關(guān)于兩坐標軸和原點的對稱點是否還在圖象上?

分析 (1) 反比例函數(shù)的圖象過點(1,-2),即當x=1時,y=-2.由待定系數(shù)法可求出反比例函數(shù)解析式;再根據(jù)解析式,通過列表、描點、連線可畫出反比例函數(shù)的圖象;

(2)由點a在反比例函數(shù)的圖象上,易求出m的值,再驗證點a關(guān)于兩坐標軸和原點的對稱點是否在圖象上。

解 (1)設:反比例函數(shù)的解析式為: (k0).

而反比例函數(shù)的圖象過 點(1,-2),即當x=1時,y=-2.

所以 ,k=-2.

即反比例函數(shù)的解析式為: .

(2)點a(-5,m)在反比例函數(shù) 圖象上,所以 ,

點a的坐標為 .

點a關(guān)于x軸的對稱點 不在這個圖象上;

點a關(guān)于y軸的對稱點 不在這個圖象上;

點a關(guān)于原點的對稱點 在這個圖象上;

例4 已知函數(shù) 為反比例函數(shù)。

(1)求m的值;

(2)它的圖象在第幾象限內(nèi)?在各象限內(nèi),y隨x的增大如何變化?

(3)當-3 時,求此函數(shù)的最大值和最小值。

解 (1)由反比例函數(shù)的定義可知: 解得,m=-2.

(2)因為-20,所以反比例函數(shù)的圖象在第二、四象限內(nèi),在各象限內(nèi),y隨x的增大而增大。

(3)因為在第個象限內(nèi),y隨x的增大而增大,

所以當x= 時,y最大值= ;

當x=-3時,y最小值= .

所以當-3 時,此函數(shù)的最大值為8,最小值為 .

例5 一個長方體的體積是100立方厘米,它的長是y厘米,寬是5厘米,高是x厘米。

(1)寫出用高表示長的函數(shù)關(guān) 系式;

(2)寫出自變量x的取值范圍;

( 3)畫出函數(shù)的圖象。

解 (1)因為100=5xy,所以 .

(2)x0.

(3)圖象如下:

說明 由于自變量x0,所以畫出的反比例函數(shù)的圖象只是位于第一象限內(nèi)的一個分支。

四、交流反思

本節(jié)課學習了畫反比例函數(shù)的圖象和探討了反比例函數(shù)的性質(zhì)。

1.反比例函數(shù)的圖象是雙曲線(hyperbola).

2.反比例函數(shù)有如下性質(zhì):

(1)當k0時,函數(shù)的圖象在第一、三象限,在每個象限內(nèi),曲線 從左向右下降,也就是在每個象限內(nèi)y隨x的增加而減少;

(2)當k0時,函數(shù)的圖象在第二、四象限,在每個象限內(nèi),曲線從左向右上升,也就是在每個象限內(nèi)y隨x的增加而增加。

五、檢測反饋

1.在同一直角坐標系中畫出下列函數(shù)的圖象:

(1) ; (2) .

2.已知y是x的反比例函數(shù),且當x=3時,y=8,求:

(1)y和x的函數(shù)關(guān)系式;

(2)當 時,y的值;

(3)當x取 何值時, ?

3.若反比例函數(shù) 的圖象在所在象限內(nèi),y隨x的增大而增大,求n的值。

4.已知反比例函數(shù) 經(jīng)過點a(2,-m)和b(n,2n),求:

(1)m和n的值;

(2)若圖象上有兩點p1(x1,y1)和p2( x2,y2),且x1 x2,試比較y1和 y2的大小。

《反比例函數(shù)》教學設計及反思 反比例函數(shù)教學設計一等獎篇四

1、能運用反比例函數(shù)的相關(guān)知識分析和解決一些簡單的實際問題。

2、在解決實際問題的過程中,進一步體會和認識反比例函數(shù)是刻

畫現(xiàn)實世界中數(shù)量關(guān)系的一種數(shù)學模型。

運用反比例函數(shù)解決實際問題

運用反比例函數(shù)解決實際問題

引例:小麗是一個近視眼,整天眼鏡不離鼻子,但自己一直不理解自己的眼鏡配制的原理,很是苦悶,近來她了解到近視眼鏡的度數(shù)y(度)與鏡片的焦距為x(m)成反比例,并請教師傅了解到自己400度的近視眼鏡鏡片的焦距為0.2m,可惜她不知道反比例函數(shù)的概念,所以她寫不出y與x的函數(shù)關(guān)系式,我們大家正好學過反比例函數(shù)了,誰能幫助她解決這個問題呢?

反比例函數(shù)在生活、生產(chǎn)實際中也有著廣泛的應用。

例如:在矩形中s一定,a和b之間的關(guān)系?你能舉例嗎?

例1、見課本73頁

例2、見課本74頁

例3、某氣球內(nèi)充滿一定質(zhì)量的氣體,當溫度不變時,氣球內(nèi)氣體的氣壓p(千帕)是氣球體積v(米3)的反比例函數(shù)

(1)寫出這個函數(shù)解析式

(2)當氣球的體積為0.8m3時,氣球的氣壓是多少千帕?

(3)當氣球內(nèi)的氣壓大于144千帕時,氣球?qū)⒈?,為了安全起見,氣球的體積不小于多少立方米?

《反比例函數(shù)》教學設計及反思 反比例函數(shù)教學設計一等獎篇五

反比例函數(shù)是初中階段所要學習的三種函數(shù)中的一種,是一類比較簡單但很重要的函數(shù),現(xiàn)實生活中充滿了反比例函數(shù)的例子。因此反比例函數(shù)的概念與意義的教學是基礎。

由于之前學習過函數(shù),學生對函數(shù)概念已經(jīng)有了一定的認識能力,另外在前一章我們學習過分式的知識,因此為本節(jié)課的教學奠定的一定的基礎。

知識目標:理解反比例函數(shù)意義;能夠根據(jù)已知條件確定反比例函數(shù)的表達式。

解決問題:能從實際問題中抽象出反比例函數(shù)并確定其表達式。情感態(tài)度:讓學生經(jīng)歷從實際問題中抽象出反比例函數(shù)模型的過程,體會反比例函數(shù)來源于實際。

重點:理解反比例函數(shù)意義,確定反比例函數(shù)的表達式。

難點:反比例函數(shù)表達式的確立。

(1)京滬線鐵路全程為1463km,某次列車的平均速度v(單位:km/h)隨此次列車的全程運行時間t(單位:h)的變化而變化;

(2)某住宅小區(qū)要種植一個面積1000m2的矩形草坪,草坪的長y(單位:m)隨寬x(單位:m)的變化而變化。

請同學們寫出上述函數(shù)的表達式

14631000(2)y=txk可知:形如y=(k為常數(shù),k≠0)的函數(shù)稱為反比例函數(shù),其中xx(1)v=是自變量,y是函數(shù)。

此過程的目的在于讓學生從實際問題中抽象出反比例函數(shù)模型的過程,體會反比例函數(shù)來源于實際。由于是分式,當x=0時,分式無意義,所以x≠0。

當y=中k=0時,y=0,函數(shù)y是一個常數(shù),通常我們把這樣的函數(shù)稱為常函數(shù)。此時y就不是反比例函數(shù)了。

舉例:下列屬于反比例函數(shù)的是

(1)y=(2)xy=10(3)y=k—1x(4)y=—

此過程的目的是通過分析與練習讓學生更加了解反比例函數(shù)的概念問已知y與x成反比例,y與x—1成反比例,y+1與x成反比例,y+1與x—1成反比例,將如何設其解析式(函數(shù)關(guān)系式)

已知y與x成反比例,則可設y與x的函數(shù)關(guān)系式為y=

kx?1

k已知y+1與x成反比例,則可設y與x的函數(shù)關(guān)系式為y+1=xkxkxkxkx2x已知y與x—1成反比例,則可設y與x的函數(shù)關(guān)系式為y=

已知y+1與x—1成反比例,則可設y與x的函數(shù)關(guān)系式為y+1=kx?1此過程的目的是為了讓學生更深刻的了解反比例函數(shù)的概念,為以后在求函數(shù)解析式做好鋪墊。

例:已知y與x2反比例,并且當x=3時y=4

(1)求出y和x之間的函數(shù)解析式

(2)求當x=1.5時y的值

解析:因為y與x2反比例,所以設y?k,只要將k求出即可得到y(tǒng)x2

和x之間的函數(shù)解析式。之后引導學生書寫過程。能從實際問題中抽象出反比例函數(shù)并確定其表達式最后學生練習并布置作業(yè)

通過此環(huán)節(jié),加深對本節(jié)課所內(nèi)容的認識,以達到鞏固的目的。

本節(jié)課是在學生現(xiàn)有的認識基礎上進行講解,便于學生理解反比例函數(shù)的概念。而本節(jié)課的重點在于理解反比例函數(shù)意義,確定反比例函數(shù)的表達式。應該對這一方面的內(nèi)容多練習鞏固。

《反比例函數(shù)》教學設計及反思 反比例函數(shù)教學設計一等獎篇六

1.利用反比例函數(shù)的知識分析、解決實際問題

2.滲透數(shù)形結(jié)合思想,提高學生用函數(shù)觀點解決問題的能力

1.重點:利用反比例函數(shù)的知識分析、解決實際問題

2.難點:分析實際問題中的數(shù)量關(guān)系,正確寫出函數(shù)解析式

3.難點的突破方法:

用函數(shù)觀點解實際問題,一要搞清題目中的基本數(shù)量關(guān)系,將實際問題抽象成數(shù)學問題,看看各變量間應滿足什么樣的關(guān)系式(包括已學過的基本公式),這一步很重要;二是要分清自變量和函數(shù),以便寫出正確的函數(shù)關(guān)系式,并注意自變量的取值范圍;三要熟練掌握反比例函數(shù)的意義、圖象和性質(zhì),特別是圖象,要做到數(shù)形結(jié)合,這樣有利于分析和解決問題。教學中要讓學生領(lǐng)會這一解決實際問題的基本思路。

教材第57頁的例1,數(shù)量關(guān)系比較簡單,學生根據(jù)基本公式很容易寫出函數(shù)關(guān)系式,此題實際上是利用了反比例函數(shù)的定義,同時也是要讓學生學會分析問題的方法。

教材第58頁的例2是一道利用反比例函數(shù)的定義和性質(zhì)來解決的實際問題,此題的實際背景較例1稍復雜些,目的是為了提高學生將實際問題抽象成數(shù)學問題的能力,掌握用函數(shù)觀點去分析和解決問題的思路。

補充例題一是為了鞏固反比例函數(shù)的有關(guān)知識,二是為了提高學生從圖象中讀取信息的能力,掌握數(shù)形結(jié)合的思想方法,以便更好地解決實際問題

《反比例函數(shù)》教學設計及反思 反比例函數(shù)教學設計一等獎篇七

1.對教材的分析

本節(jié)課講述內(nèi)容為北師大版教材九年級下冊第五章《反比例函數(shù)》的第二節(jié),也這一章的重點。本節(jié)課是在理解反比例函數(shù)的意義和概念的基礎上,進一步熟悉其圖象和性質(zhì)的過程。

本節(jié)課前一課時是在具體情境中領(lǐng)會反比例函數(shù)的意義和概念。函數(shù)的性質(zhì)蘊涵于概念之中,對反比例函數(shù)性質(zhì)的探索是對其內(nèi)在規(guī)定性的的認識,也是對函數(shù)的概念的深化。同時,本節(jié)課也是下一節(jié)課《反比例函數(shù)的應用》的基礎,有了本節(jié)課的知識儲備,便于學生利用函數(shù)的觀點來處理問題和解釋問題。

傳統(tǒng)教材在內(nèi)容和編寫意圖的比較:傳統(tǒng)教材里反比例函數(shù)的內(nèi)容僅有一節(jié),新教材里反比例函數(shù)的內(nèi)容增加至一章。本節(jié)課中的作函數(shù)圖象的要求在新舊教材中并不一樣,舊教材對畫圖只是一帶而過,而新教材中讓學生反復作反比例函數(shù)的圖象,為下一步性質(zhì)的探索打下良好的基礎。因為在學生進行函數(shù)的列表、描點作圖是活動中,就已經(jīng)開始了對反比例函數(shù)性質(zhì)的探索,而且通過對函數(shù)的三種表示方式的整和,逐步形成對函數(shù)概念的整體性認識。在舊教材中對反比例函數(shù)性質(zhì)只是簡單觀察以后,由老師講解得到,但是在新教材中注重從操作、觀察、概括和交流這些數(shù)學活動中得到性質(zhì)結(jié)論,從而逐步提高從函數(shù)圖象中獲取信息的能力。這也充分體現(xiàn)了重視獲取知識過程體驗的新課標的精神。

(1)教學目標:進一步熟悉作函數(shù)圖象的主要步驟,會作反比例函數(shù)的圖象;體會函數(shù)三種方式的相互轉(zhuǎn)換,對函數(shù)進行認識上的整和;逐步提高從函數(shù)圖象中獲取知識的能力,探索并掌握反比例函數(shù)的主要性質(zhì)。

(2)重點:會作反比例函數(shù)的圖象;探索并掌握反比例函數(shù)的主要性質(zhì)。

(3)難點:探索并掌握反比例函數(shù)的主要性質(zhì)。

2、對學情的分析

九年級學生在前面學習了一次函數(shù)之后,對函數(shù)有了一定的認識,雖然他們在小學已經(jīng)接觸了反比例,但都處于淺顯的、膚淺的知識表面,這對于他們理解反比例函數(shù)的圖象與性質(zhì)沒有多大的幫助,但由于本節(jié)課采用z+z智能教育平臺進行教學,比較{}形象,便于學生接受。

一、憶一憶

師:同學們還記得我們在學習一次函數(shù)時,是怎么作出一次函數(shù)圖象的嗎?一次函數(shù)的圖象是什么圖形?

生:作一次函數(shù)的圖象要采用以下幾個步驟:

(1)列表

(2)描點

(3)連線。

生乙:一次函數(shù)的圖象是一條直線。

師:大家說的很好,看來大家對過去的知識掌握的很牢固,那么同學們想一下,y=4/x是什么函數(shù)?

生:反比例函數(shù)。

師:你們能作出它的圖象嗎?

生:可以。

點評:復習舊知識,讓學生感受到新舊知識的聯(lián)系,并為后面的作反比例函數(shù)的圖象做好準備。

二、作圖象,試比較

師:請?zhí)顚戨娔X上的表格,并開始在坐標紙上描點,連線。

師:再按照上述方法作y=-4/x的圖象。

(學生動手操作)

師:下面大家分小組討論:對照你們所作出的兩個函數(shù)圖象,找出它們的相同點與不同點。

(學生討論交流,教師參與)

師:討論結(jié)束,下面哪個小組的同學說說你們的看法?

生1:它們的圖象都是由兩支曲線組成的。

生2:y=4/x的圖象的兩條曲線分布在一、三象限內(nèi),而y=-4/x的圖象的兩支曲線分布在二、四象限內(nèi)。

點評:這里讓學生自己上臺操作,既培養(yǎng)了學生的動手能力,又可以激發(fā)學生學好數(shù)學的興趣。

三、細觀察,找規(guī)律

師:大家都說得很好,下面我們一起觀察反比例函數(shù)y=k/x的圖象,當k的發(fā)值生變化時,函數(shù)的圖象發(fā)生了怎樣的變化,并分小組討論有什么規(guī)律。

(展示圖象,讓學生觀察y=k/x的圖象,按下動畫按鈕,在運動中觀察值的變化與函數(shù)的圖象變化之間的關(guān)系,并與同學們充分討論)

師:請同學們談一談剛才討論的結(jié)果。

生:我發(fā)現(xiàn)函數(shù)圖象的變化與k的值有關(guān):當k>0時,在每一象限內(nèi),y隨x的增大而減小,當k<0時,在每一象限內(nèi),y隨x的增大而增大。

師:看來大家都經(jīng)過了認真的思考和討論,對規(guī)律總結(jié)的也比較完整,下面我們一起把剛才兩個環(huán)節(jié)的知識點一起總結(jié)一下。

(1)反比例函數(shù)y=k/x的圖象是由兩支曲線所組成的。

(2)當k>0時,兩支曲線分別在一、三象限;當k<0時,兩支曲線分別在二、四象限。

(3)當k>0時,在每一象限內(nèi),y隨x的增大而減小,當k<0時,在每一象限內(nèi),y隨x的增大而增大。

師:如果我們將反比例函數(shù)的圖象繞原點旋轉(zhuǎn)180后,你會發(fā)現(xiàn)什么現(xiàn)象?這說明了什么問題?

(由學生在電腦上進行操作)

生:我發(fā)現(xiàn)旋轉(zhuǎn)后的圖象與原圖象完全重合了,這說明反比例函數(shù)的圖象是一個中心對稱圖形。

師:大家做得很好。那么,如果我們在圖象上任取a、b兩點,經(jīng)過這兩點分別作軸、軸的垂線,與坐標軸圍成的矩形面積分別為s1、s2,觀察兩個矩形面積的變化情況,并找出其中的變化規(guī)律。

題目:

(1)拖動k,使k變化,觀察k不斷變化過程中,矩形面積的變化情況,討論得出結(jié)論。

(2)拖動函數(shù)上的點,觀察矩形面積的變化情況,討論得出結(jié)論。

生:我們發(fā)現(xiàn),在同一個反比例函數(shù)中,不管k值怎么變化,矩形的面積始終不變。

師:大家的觀察很仔細,總結(jié)得也很正確。

點評:在這個環(huán)節(jié)中,既讓學生動手操作,又讓他們分組交流,這樣既培養(yǎng)了他們的動手能力,又增強了他們的團結(jié)合作的意識。結(jié)論主要有學生來發(fā)現(xiàn),體現(xiàn)了新課程理論的精神。

四、用規(guī)律,練一練

1、課本137頁隨堂練習1

生:第一幅圖是y=-2/x的圖象,因為在這里的k<0,雙曲線應在第二、四象限。

2、下列函數(shù)中,其圖象唯一、三象限的有哪幾個?在其圖象所在象限內(nèi),的值隨的增大而增大的有哪幾個?

(1)y=1/(2x)

(2)y=0.3/x

(3)y=10/x

(4)y=-7/(100x)

生:其中(1)(2)(3)的圖象在一、三象限;(4)的圖象在每一象限內(nèi),y隨x的增大而增大。

五、想一想,談收獲

師:通過今天的學習,你有什么收獲?

生甲:我今天知道了怎樣畫反比例函數(shù)的圖象。

生乙:我今天知道了反比例函數(shù)的圖象是由兩支曲線所組成的。

生丙:我還懂得了:當k>0時,圖象分布在一、三象限,在每一個象限內(nèi),y隨x的增大而減?。划攌<0時,圖象分布在二、四象限,在每一個象限內(nèi),y隨x的增大而增大

生?。何疫€能用反比例函數(shù)的相關(guān)性質(zhì)解題。

師:看來大家今天學到了不少知識,只要大家能保持這種對數(shù)學的熱情和勇于挑戰(zhàn)的精神,在數(shù)學上一定會有所收獲的。

總評:本節(jié)課很好的反映了新課程的一些理念,首先,就是將數(shù)學教學與多媒體教學進行了很好的整合,尤其是采用了z+z智能教育平臺進行教學,在本節(jié)課從進入課堂到結(jié)束,始終有多媒體教學的參與,如在講解反比例函數(shù)的性質(zhì)時運用多媒體展示可以給學生以直觀的感受,并給學生留下深刻的印象,教師也能熟練地操作電腦,可以看出教師扎實的基本功。其次,在本節(jié)課的教學中,教師將學習的主動權(quán)交給學生,課堂始終在學生自主探索、合作交流的氣氛中進行,如在得出反比例函數(shù)的性質(zhì)時,就在小組內(nèi)進行了廣泛交流,由學生自己去探索,去發(fā)現(xiàn)新知識,這樣可以激發(fā)學生求知的欲望,達到事半功倍的目的。同時教師也主動的參與進去,把自己也當成了教室里的一員,真正體現(xiàn)了新課程的理念。

本節(jié)課由于在課前進行了大量的準備工作,包括對教材的鉆研、教學內(nèi)容的設計、多媒體課件的制作、學生學情的了解,因此在教學中比較順利,對重難點內(nèi)容也有效的進行了突破,尤其是電腦的引入,極大的調(diào)動了學生的學習積極性。學生由于成了課堂的主人,所以在課堂上保持了高漲的熱情,因此這堂課的效果也較好。

《反比例函數(shù)》教學設計及反思 反比例函數(shù)教學設計一等獎篇八

教學目標:

1、通過實踐活動,理解反比例的意義,并能根據(jù)反比例的意義,正確地判斷兩種相關(guān)聯(lián)的量是否成反比例;

2、通過小組間的合作學習,培養(yǎng)學生的合作意識、參與意識,訓練其觀察能力及概括能力;

3、利用多媒體動畫的演示,讓學生體驗到反比例的變化規(guī)律。

教學重點:感受反比例的變化,概括反比例的意義;

教學難點:正確判斷兩種相關(guān)聯(lián)的量是否成反比例;

教學準備:20支鉛筆、一個筆筒;相關(guān)課件;學生分小組(每組一份觀察記錄單)

每次拿的支數(shù)

10

5

4

2

1

拿的次數(shù)

總支數(shù)

教學過程:

一、復習

1、什么叫做“成正比例的量”?

2、判斷兩種量是否成正比例關(guān)鍵是什么?

3、練習:課本表中的兩種量是不是成正比例?為什么?

二、小組協(xié)作 概括“成反比例的量”的意義

(一)活動一

師:好,現(xiàn)在請同學們拿出課前準備的學具,以小組為單位,動手操作,按要求認真填寫觀察記錄單??茨膫€組完成的又快又好!

1、學生匯報觀察記錄單的填寫結(jié)果。

2、引導觀察:在填、拿的過程中,你發(fā)現(xiàn)了什么?

3、師:你能根據(jù)表格,寫出這三個量的關(guān)系式嗎?

4、小結(jié):通過剛才的活動,我們發(fā)現(xiàn)每次拿的支數(shù)變化,拿的次數(shù)也隨著變化,但每次拿的支數(shù)和拿的次數(shù)的積即總支數(shù)總是一定的。

5、揭示反比例的意義(閱讀課本,明確反比例關(guān)系)

6、如果用x、y 表示兩種相關(guān)聯(lián)的量,用k表示積,反比例關(guān)系式怎樣表示?

(二)活動二:(例3)

1、課件出示例3,指名讀題,學生獨立完成

2、總結(jié)歸納出正比例和反比例的相同點和不同點

三、強化練習 發(fā)展提高

1判定兩個量是否成反比例,主要看它們的( )是否一定。

2全班人數(shù)一定,每組的人數(shù)和組數(shù)。

( )和( )是相關(guān)聯(lián)的量。

每組的人數(shù)×組數(shù)=全班人數(shù)(一定)

所以( )和( )是成反比例的量。

3判斷下面每題中的兩種量是不是成反比例,并說明理由。

糖果的總數(shù)一定,每袋糖果的粒數(shù)和裝的袋數(shù)。

煤的總量一定,每天的燒煤量和能夠燒的天數(shù)。

生產(chǎn)電視機的總臺數(shù)一定,每天生產(chǎn)的臺數(shù)和所用的天數(shù)。

長方形的面積一定,它的長和寬。

4機動練習:

想一想:鋪地面積一定時,方磚邊長與所需塊數(shù)成不成反比例?為什么?

四、全課總結(jié)

1、你能不能結(jié)合日常生活舉一些反比例的例子。

2、今天這節(jié)課,你有什么收獲?還有什么遺憾?

《反比例函數(shù)》教學設計及反思 反比例函數(shù)教學設計一等獎篇九

1、能靈活列反比例函數(shù)表達式解決一些實際問題。

2、能綜合利用物理杠桿知識、反比例函數(shù)的知識解決一些實際問題。

1、經(jīng)歷分析實際問題中變量之間的關(guān)系,建立反比例函數(shù)模型,進而解決問題。

2、 體會數(shù)學與現(xiàn)實生活的緊密聯(lián)系,增強應用意識,提高運用代數(shù)方法解決問題的`能力。

1、積極參與交流,并積極發(fā)表意見。

2、體驗反比例函數(shù)是有效地描述物理世界的重要手段,認識到數(shù)學是解決實際問題和進行交流的重要工具。

教學重點

掌握從物理問題中建構(gòu)反比例函數(shù)模型。

教學難點

從實際問題中尋找變量之間的關(guān)系,關(guān)鍵是充分運用所學知識分析物理問題,建立函數(shù)模型,教學時注意分析過程,滲透數(shù)形結(jié)合的思想。

教具準備

多媒體課件。

活動1

問 屬:在物理學中,有很多量之間的變化是反比例函數(shù)的關(guān)系,因此,我們可以借助于反比例函數(shù)的圖象和性質(zhì)解決一些物理學中的問題,這也稱為跨學科應用。下面的例子就是其中之一。

在某一電路中,保持電壓不變,電流i(安培)和電阻r(歐姆)成反比例,當電阻r=5歐姆時,電流i=2安培。

(1)求i與r之間的函數(shù)關(guān)系式;

(2)當電流i=0.5時,求電阻r的值。

設計意圖:

運用反比例函數(shù)解決物理學中的一些相關(guān)問題,提高各學科相互之間的綜合應用能力。

師生行為:

可由學生獨立思考,領(lǐng)會反比例函數(shù)在物理學中的綜合應用。

教師應給“學困生”一點物理學知識的引導。

師:從題目中提供的信息看變量i與r之間的反比例函數(shù)關(guān)系,可設出其表達式,再由已知條件(i與r的一對對應值)得到字母系數(shù)k的值。

生:(1)解:設i=kr ∵r=5,i=2,于是2=k5 ,所以k=10,i=10r 。

(3) 當i=0.5時,r=10i=100.5 =20(歐姆)。

師:很好!“給我一個支點,我可以把地球撬動?!边@是哪一位科學家的名言?這里蘊涵著什么 樣的原理呢?

生:這是古希臘科學家阿基米德的名言。

師:是的。公元前3世紀,古希臘科學家阿基米德發(fā)現(xiàn)了著名的“杠桿定律”: 若兩物體與支點的距離反比于其重量,則杠桿平衡,通俗一點可以描述為;阻力阻力臂=動力動力臂。

下面我們就來看一例子。

小偉欲用撬棍橇動一塊大石頭,已知阻力和阻力臂不變,分別為1200牛頓和0.5米。

(1)動力f與動力臂l有怎樣的函數(shù)關(guān)系?當動力臂為1.5米時,撬動石頭至少需要多大的力?

(2)若想使動力f不超過題(1)中所用力的一半,則動力臂至少要加長多少?

物理學中的很多量之間的變化是反比例函數(shù)關(guān)系。因此,在這兒又一次借助反比例函數(shù)的圖象和性質(zhì)解決一些物理學中的問題,即跨學科綜合應用。

先由學生根據(jù)“杠桿定律”解決上述問題。

教師可引導學生揭示“杠桿乎衡”與“反比例函數(shù)”之間的關(guān)系。

【本文地址:http://mlvmservice.com/zuowen/2794968.html】

全文閱讀已結(jié)束,如果需要下載本文請點擊

下載此文檔