每個人都曾試圖在平淡的學(xué)習(xí)、工作和生活中寫一篇文章。寫作是培養(yǎng)人的觀察、聯(lián)想、想象、思維和記憶的重要手段。相信許多人會覺得范文很難寫?接下來小編就給大家介紹一下優(yōu)秀的范文該怎么寫,我們一起來看一看吧。
初二數(shù)學(xué)分式的計算篇一
2、分母≠0時,分式有意義。分母=0時,分式無意義。
3、分式的值為0,要同時滿足兩個條件:分子=0,而分母≠0。
4、分式基本性質(zhì):分式的分子、分母都乘以或除以同一個不為0的整式,分式的值不變。
5、分式、分子、分母的符號,任意改變其中兩個的符號,分式的值不變。
6、分式四則運算
1)分式加減的關(guān)鍵是通分,把異分母的分式,轉(zhuǎn)化為同分母分式,再運算.
2)分式乘除時先把分子分母都因式分解,然后再約去相同的因式。
3)分式的混合運算,注意運算順序及符號的變化,
4)分式運算的最后結(jié)果應(yīng)化為最簡分式或整式.
7、分式方程
1)分式化簡與解分式方程不能混淆.分式化簡是恒等變形,不能隨意去分母.
2)解分式方程的步驟:第一、化分式方程為整式方程;第二,解這個整式方程;第三,驗根,通過檢驗去掉增根。
3)解有關(guān)應(yīng)用題的步驟和列整式方程解應(yīng)用題的步驟是一樣的:設(shè)、列、解、驗、答。
初二數(shù)學(xué)分式的計算篇二
1、分式的定義:如果a、b表示兩個整式,并且b中含有字母,那么式子b叫做分式。
2、對于分式概念的理解,應(yīng)把握以下幾點:
(1)分式是兩個整式相除的商。其中分子是被除式,分母是除式,分數(shù)線起除號和括號的作用;
(2)分式的分子可以含有字母,也可以不含字母,但分式的分母一定要含有字母才是分式;
(3)分母不能為零。
3、分式有意義、無意義的條件
(1)分式有意義的條件:分式的分母不等于0;
(2)分式無意義的條件:分式的分母等于0。
4、分式的值為0的條件:
當分式的分子等于0,而分母不等于0時,分式的值為0。即,使b=0的條件是:a=0,b≠0。
5、有理式 整式和分式統(tǒng)稱為有理式。整式分為單項式和多項式。分類:有理式
單項式:由數(shù)與字母的乘積組成的代數(shù)式;多項式:由幾個單項式的和組成的代數(shù)式。
只要這樣踏踏實實完成每天的計劃和小目標,就可以自如地應(yīng)對新學(xué)習(xí),達到長遠目標。由數(shù)學(xué)網(wǎng)為您提供的初二下冊數(shù)學(xué)知識點歸納:分式的概念,祝您學(xué)習(xí)愉快!
初二數(shù)學(xué)分式的計算篇三
我們知道整式乘法與因式分解互為逆變形。如果把乘法公式反過來就是把多項式分解因式。于是有:a2-b2=(a+b)(a-b)
a2+2ab+b2=(a+b)2
a2-2ab+b2=(a-b)2
如果把乘法公式反過來,就可以用來把某些多項式分解因式。這種分解因式的方法叫做運用公式法。
1.平方差公式
(1)式子:a2-b2=(a+b)(a-b)
(2)語言:兩個數(shù)的平方差,等于這兩個數(shù)的和與這兩個數(shù)的差的積。這個公式就是平方差公式。
1.因式分解時,各項如果有公因式應(yīng)先提公因式,再進一步分解。
2.因式分解,必須進行到每一個多項式因式不能再分解為止。
初二數(shù)學(xué)分式的計算篇四
初二數(shù)學(xué)分式的四則運算知識點
分式的四則運算和約分統(tǒng)一構(gòu)成了分式的運算法則。
1.同分母分式加減法則:同分母的分式相加減,分母不變,把分子相加減。用字母表示為:a/c±b/c=(a±b)/c
2.異分母分式加減法則:異分母的分式相加減,先通分,化為同分母的分式,然后再按同分母分式的加減法法則進行計算。用字母表示為:a/b±c/d=(ad±cb)/bd
3.分式的乘法法則:兩個分式相乘,把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。用字母表示為:a/b * c/d=ac/bd
4.分式的除法法則:
(1).兩個分式相除,把除式的分子和分母顛倒位置后再與被除式相乘。a/b÷c/d=ad/bc
(2).除以一個分式,等于乘以這個分式的倒數(shù):a/b÷c/d=a/b*d/c
不管什么樣的四則運算都會要求同學(xué)們做到細心和用心了。
初二數(shù)學(xué)分式的計算篇五
:
分式除以分式,把除式的分子、分母顛倒位置后,與被除式相乘。
提示:
(1)分式與分式相乘,若分子、分母是單項式,可先將分子、分母分別相乘,然后約去公因式,化為最簡分式;若分子、分母是多項式,先把分子、分母分解公因式,看能否約分,然后再相乘;
(2)當分式與整式相乘時,要把整式與分式的分子相乘作為積的分子,分母不變
(3)分式的除法可以轉(zhuǎn)化為分式的乘法運算;
(4)分式的乘除混合運算統(tǒng)一為乘法運算。
①分式的乘除法混合運算順序與分數(shù)的乘除混合運算相同,即按照從左到右的順序,有括號先算括號里面的;
②分式的乘除混合運算要注意各分式中分子、分母符號的處理,可先確定積的符號;
③分式的乘除混合運算結(jié)果要通過約分化為最簡分式(分式的分子、分母沒有公因式)或整式的形式。
初二數(shù)學(xué)分式的計算篇六
分式的分子與分母同乘(或除以)一個不等于0的整式,分式的值不變。
用式子表示為a/b=(a-c)/(b-c);a/b=(a-c)/(b-c)(c不等于0) ,其中a、b、c是整式
注意:
(1)“c是一個不等于0的整式”是分式基本性質(zhì)的一個制約條件;
(2)應(yīng)用分式的基本性質(zhì)時,要深刻理解“同”的含義,避免犯只乘分子(或分母)的錯誤;
(3)若分式的分子或分母是多項式,運用分式的基本性質(zhì)時,要先用括號把分子或分母括上,再乘或除以同一整式c;
(4)分式的基本性質(zhì)是分式進行約分、通分和符號變化的依據(jù)。
初二數(shù)學(xué)分式的計算篇七
含義:分母中含有未知數(shù)的方程叫做分式方程。
分式方程的解法:
①去分母{方程兩邊同時乘以最簡公分母(最簡公分母:①系數(shù)取最小公倍數(shù)②出現(xiàn)的字母取最高次冪③出現(xiàn)的因式取最高次冪),將分式方程化為整式方程;若遇到互為相反數(shù)時。不要忘了改變符號};
②按解整式方程的步驟(移項,若有括號應(yīng)去括號,注意變號,合并同類項, 系數(shù)化為1)求出未知數(shù)的值;
③驗根(求出未知數(shù)的值后必須驗根,因為在把分式方程化為整式方程的過程中,擴大了未知數(shù)的取值范圍,可能產(chǎn)生增根).
一般地驗根,只需把整式方程的根代入最簡公分母,如果最簡公分母等于0,這個根就是增根,否則這個根就是原分式方程的根。若解出的根是增根,則原方程無解。 如果分式本身約分了,也要代進去檢驗。
以上就是數(shù)學(xué)網(wǎng)為大家整理的20xx年初二下冊數(shù)學(xué)知識點歸納:分式方程意義與解法,怎么樣,大家還滿意嗎?希望對大家的學(xué)習(xí)有所幫助,同時也祝大家學(xué)習(xí)進步,考試順利!
【本文地址:http://mlvmservice.com/zuowen/2576489.html】