在日常學習、工作或生活中,大家總少不了接觸作文或者范文吧,通過文章可以把我們那些零零散散的思想,聚集在一塊。范文怎么寫才能發(fā)揮它最大的作用呢?下面是小編為大家收集的優(yōu)秀范文,供大家參考借鑒,希望可以幫助到有需要的朋友。
初一數(shù)學咋學篇一
數(shù)學是研究事物的空間形式和數(shù)量關(guān)系的,初中最重要的數(shù)量關(guān)系是等量關(guān)系,其次是不等量關(guān)系。最常見的等量關(guān)系就是“方程”。比如等速運動中,路程、速度和時間三者之間就有一種等量關(guān)系,可以建立一個相關(guān)等式:速度.時間=路程,在這樣的等式中,一般會有已知量,也有未知量,像這樣含有未知量的等式就是“方程”,而通過方程里的已知量求出未知量的過程就是解方程。我們在小學就已經(jīng)接觸過簡易方程,而初一則比較系統(tǒng)地學習解一元一次方程,并總結(jié)出解一元一次方程的五個步驟。如果學會并掌握了這五個步驟,任何一個一元一次方程都能順利地解出來。初二、初三我們還將學習解一元二次方程、二元二次方程組、簡單的三角方程;到了高中我們還將學習指數(shù)方程、對數(shù)方程、線性方程組、、參數(shù)方程、極坐標方程等。解這些方程的思維幾乎一致,都是通過一定的方法將它們轉(zhuǎn)化成一元一次方程或一元二次方程的形式,然后用大家熟悉的解一元一次方程的五個步驟或者解一元二次方程的求根公式加以解決。物理中的能量守恒,化學中的化學平衡式,現(xiàn)實中的大量實際應(yīng)用,都需要建立方程,通過解方程來求出結(jié)果。因此,同學們一定要將解一元一次方程和解一元二次方程學好,進而學好其它形式的方程。
所謂的“方程”思想就是對于數(shù)學問題,特別是現(xiàn)實當中碰到的未知量和已知量的錯綜復(fù)雜的關(guān)系,善于用“方程”的觀點去構(gòu)建有關(guān)的方程,進而用解方程的方法去解決它。
2、“數(shù)形結(jié)合”的思想
大千世界,“數(shù)”與“形”無處不在。任何事物,剝?nèi)ニ馁|(zhì)的方面,只剩下形狀和大小這兩個屬性,就交給數(shù)學去研究了。初中數(shù)學的兩個分支棗-代數(shù)和幾何,代數(shù)是研究“數(shù)”的,幾何是研究“形”的。但是,研究代數(shù)要借助“形”,研究幾何要借助“數(shù)”,“數(shù)形結(jié)合”是一種趨勢,越學下去,“數(shù)”與“形”越密不可分,到了高中,就出現(xiàn)了專門用代數(shù)方法去研究幾何問題的一門課,叫做“解析幾何”。在初三,建立平面直角坐標系后,研究函數(shù)的問題就離不開圖象了。往往借助圖象能使問題明朗化,比較容易找到問題的關(guān)鍵所在,從而解決問題。在今后的數(shù)學學習中,要重視“數(shù)形結(jié)合”的思維訓練,任何一道題,只要與“形”沾得上一點邊,就應(yīng)該根據(jù)題意畫出草圖來分析一番,這樣做,不但直觀,而且全面,整體性強,容易找出切入點,對解題大有益處。嘗到甜頭的人慢慢會養(yǎng)成一種“數(shù)形結(jié)合”的好習慣。
3、“對應(yīng)”的思想
“對應(yīng)”的思想由來已久,比如我們將一支鉛筆、一本書、一棟房子對應(yīng)一個抽象的數(shù)“1”,將兩只眼睛、一對耳環(huán)、雙胞胎對應(yīng)一個抽象的數(shù)“2”;隨著學習的深入,我們還將“對應(yīng)”擴展到對應(yīng)一種形式,對應(yīng)一種關(guān)系,等等。比如我們在計算或化簡中,將對應(yīng)公式的左邊,對應(yīng)a,y對應(yīng)b,再利用公式的右邊直接得出原式的結(jié)果即。這就是運用“對應(yīng)”的思想和方法來解題。初二、初三我們還將看到數(shù)軸上的點與實數(shù)之間的一一對應(yīng),直角坐標平面上的點與一對有序?qū)崝?shù)之間的一一對應(yīng),函數(shù)與其圖象之間的對應(yīng)?!皩?yīng)”的思想在今后的學習中將會發(fā)揮越來越大的作用
初一數(shù)學咋學篇二
一、?深刻理解概念。??
概念是初三數(shù)學的基石,學習概念(包括定義、定理、性質(zhì)與判定)不僅要知其然,還要知其所以然,許多同學只注重記概念,而忽視了對其背景的理解,這樣是學不好數(shù)學的,對于每個定義、定理,我們必須在牢記其內(nèi)容的基礎(chǔ)上知道它是怎樣得來的,又是運用到何處的,只有這樣,才能更好地運用它來解決問題。多看一些例題。??
細心的朋友會發(fā)現(xiàn),老師在講解基礎(chǔ)內(nèi)容之后,總是給我們補充一些課外例、習題,這是大有裨益的,我們學的概念、定理,一般較抽象,要把它們具體化,就需要把它們運用在題目中,由于我們剛接觸到這些知識,運用起來還不夠熟練,這時,例題就幫了我們大忙,我們可以在看例題的過程中,將頭腦中已有的概念具體化,使對知識的理解更深刻,更透徹,由于老師補充的例題十分有限,所以我們還應(yīng)自己找一些來看,看例題,還要注意以下幾點:????
不能只看皮毛,不看內(nèi)涵。??
我們看例題,就是要真正掌握其方法,建立起更寬的解題思路,如果看一道就是一道,只記題目不記方法,看例題也就失去了它本來的意義,每看一道題目,就應(yīng)理清它的思路,掌握它的思維方法,再遇到類似的題目或同類型的題目,心中有了大概的印象,做起來也就容易了,不過要強調(diào)一點,除非有十分的把握,否則不要憑借主觀臆斷,那樣會犯經(jīng)驗主義錯誤,走進死胡同的。????要把想和看結(jié)合起來。??
我們看例題,在讀了題目以后,可以自己先大概想一下如何做,再對照解答,看自己的思路有哪點比解答更好,促使自己有所提高,或者自己的思路和解答不同,也要找出原因,總結(jié)經(jīng)驗。??
二、多做綜合題。??
綜合題,由于用到的知識點較多,頗受命題人青睞。??
做綜合題也是檢驗自己學習成效的有力工具,通過做綜合題,可以知道自己的不足所在,彌補不足,使自己的數(shù)學水平不斷提高。??
“多做練習”要長期堅持,每天都要做幾道,時間長了才會有明顯的效果和較大的收獲。如何對待考試??
學數(shù)學并非為了單純的考試,但考試成績基本上還是可以反映出一個人數(shù)學水平的高低、數(shù)學素質(zhì)的好壞的,要想在考試中取得好的成績,以下幾個方面的素質(zhì)是必不可少的。
初一數(shù)學咋學篇三
按部就班
數(shù)學是環(huán)環(huán)相扣的一門學科,哪一個環(huán)節(jié)脫節(jié)都會影響整個學習的進程。所以,平時學習不應(yīng)貪快,要一章一章過關(guān),不要輕易留下自己不明白或者理解不深刻的問題。
強調(diào)理解
概念、定理、公式要在理解的基礎(chǔ)上記憶。每新學一個定理,嘗試先不看答案,做一次例題,看是否能正確運用新定理;若不行,則對照答案,加深對定理的理解。
基本訓練
學習數(shù)學是不能缺少訓練的,平時多做一些難度適中的練習,當然莫要陷入死鉆難題的誤區(qū),要熟悉高考的題型,訓練要做到有的放矢。
重視錯誤
訂一個錯題本,專門搜集自己的錯題,這些往往就是自己的薄弱之處。復(fù)習時,這個錯題本也就成了寶貴的復(fù)習資料。
數(shù)學的學習有一個循序漸進的過程,妄想一步登天是不現(xiàn)實的。熟記書本內(nèi)容后將書后習題認真寫好,有些同學可能認為書后習題太簡單不值得做,這種想法是極不可取的,書后習題的作用不僅幫助你將書本內(nèi)容記牢,還輔助你將書寫格式規(guī)范化,從而使自己的解題結(jié)構(gòu)緊密而又嚴整,公式定理能夠運用的恰如其分,以減少考試中無謂的失分。
【本文地址:http://mlvmservice.com/zuowen/2420807.html】