當工作或學習進行到一定階段或告一段落時,需要回過頭來對所做的工作認真地分析研究一下,肯定成績,找出問題,歸納出經驗教訓,提高認識,明確方向,以便進一步做好工作,并把這些用文字表述出來,就叫做總結。相信許多人會覺得總結很難寫?下面是我給大家整理的總結范文,歡迎大家閱讀分享借鑒,希望對大家能夠有所幫助。
高三數(shù)學重點知識點總結篇一
(1)棱柱:
幾何特征:兩底面是對應邊平行的全等多邊形;側面、對角面都是平行四邊形;側棱平行且相等;平行于底面的截面是與底面全等的多邊形.
(2)棱錐
幾何特征:側面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點到截面距離與高的比的平方.
(3)棱臺:
幾何特征:①上下底面是相似的平行多邊形②側面是梯形③側棱交于原棱錐的頂點
(4)圓柱:定義:以矩形的一邊所在的直線為軸旋轉,其余三邊旋轉所成
幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側面展開圖是一個矩形.
(5)圓錐:定義:以直角三角形的一條直角邊為旋轉軸,旋轉一周所成
幾何特征:①底面是一個圓;②母線交于圓錐的頂點;③側面展開圖是一個扇形.
(6)圓臺:定義:以直角梯形的垂直與底邊的腰為旋轉軸,旋轉一周所成
幾何特征:①上下底面是兩個圓;②側面母線交于原圓錐的頂點;③側面展開圖是一個弓形.
(7)球體:定義:以半圓的直徑所在直線為旋轉軸,半圓面旋轉一周形成的幾何體
幾何特征:①球的截面是圓;②球面上任意一點到球心的距離等于半徑.
2、空間幾何體的三視圖
定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側視圖(從左向右)、
俯視圖(從上向下)
注:正視圖反映了物體的高度和長度;俯視圖反映了物體的長度和寬度;側視圖反映了物體的高度和寬度.
高三數(shù)學重點知識點總結篇二
1.不等式的基本性質:
性質1:如果a>b,b>c,那么a>c(不等式的傳遞性).
性質2:如果a>b,那么a+c>b+c(不等式的可加性).
性質3:如果a>b,c>0,那么ac>bc;如果a>b,c<0,那么acb,c>d,那么a+c>b+d.
性質4:如果a>b>0,c>d>0,那么ac>bd.
性質5:如果a>b>0,n∈n,n>1,那么an>bn
例1:判斷下列命題的真假,并說明理由.若a>b,c=d,則ac2>bd2;(假)若,則a>b;(真)若a>b且ab<0,則;(假)若a若,則a>b;(真)若|a|b2;(充要條件)命題a:a命題a:,命題b:0說明:本題要求學生完成一種規(guī)范的證明或解題過程,在完善解題規(guī)范的過程中完善自身邏輯思維的嚴密性.a,b∈r且a>b,比較a3-b3與ab2-a2b的大小.(≥)說明:強調在最后一步中,說明等號取到的情況,為今后基本不等式求最值作思維準備。
例2:設a>b,n是偶數(shù)且n∈n_,試比較an+bn與an-1b+abn-1的大小.說明:本例條件是a>b,與正值不等式乘方性質相比在于缺少了a,b為正值這一條件,為此我們必須對a,b的取值情況加以分類討論.因為a>b,可由三種情況(1)a>b≥0;(2)a≥0>b;(3)0>a>b.由此得到總有an+bn>an-1b+abn-1.通過本例可以開始滲透分類討論的數(shù)學思想。
高三數(shù)學重點知識點總結篇三
數(shù)列
1、數(shù)列的通項與數(shù)列的前n項和的關系
2、公差不為零的等差數(shù)列{an}的前n項和為sn.若a4是a3與a7的等比中項, s8?32,則s10等于 ( ) a. 18 b. 24 c. 60 d. 90 .3、數(shù)列{an}的前n項和記為sn,a1?t,點(sn,an?1)在直線y?2x?1上,n?n?. (ⅰ)當實數(shù)t為何值時,數(shù)列{an}是等比數(shù)列?(ⅱ)在(ⅰ)的結論下,設bn?log3an?1,tn是數(shù)列
2、給定下列四個命題:
①若一個平面內的兩條直線與另一個平面都平行,那么這兩個平面相互平行;
②若一個平面經過另一個平面的垂線,那么這兩個平面相互垂直;
③垂直于同一直線的兩條直線相互平行;
④若兩個平面垂直,那么一個平面內與它們的交線不垂直的直線與另一個平面也不垂直. 其中,為真命題的是
a.①和② b.②和③ c.③和④ d.②和④
1、若m、n是兩條不同的直線是三個不同的平面,則下列命題中為真命題的是
2
第2 / 4頁
3、一個多面體的直觀圖及三視圖
如圖所示(其中m、n分別表示是
af、bf的點)
(1)求證:mn∥平面cdef;
(2)求二面角a—cf—b的余弦值;
(3)求多面體a—cdef的體積。
高三數(shù)學重點知識點總結篇四
第一,高考數(shù)學中有函數(shù)、數(shù)列、三角函數(shù)、平面向量、不等式、立體幾何等九大章節(jié)
主要是考函數(shù)和導數(shù),這是我們整個高中階段里最核心的板塊,在這個板塊里,重點考察兩個方面:第一個函數(shù)的性質,包括函數(shù)的單調性、奇偶性;第二是函數(shù)的解答題,重點考察的是二次函數(shù)和高次函數(shù),分函數(shù)和它的一些分布問題,但是這個分布重點還包含兩個分析就是二次方程的分布的問題,這是第一個板塊。
第二,平面向量和三角函數(shù)
重點考察三個方面:一個是劃減與求值,第一,重點掌握公式,重點掌握五組基本公式。第二,是三角函數(shù)的圖像和性質,這里重點掌握正弦函數(shù)和余弦函數(shù)的性質,第三,正弦定理和余弦定理來解三角形。難度比較小。
第三,數(shù)列
數(shù)列這個板塊,重點考兩個方面:一個通項;一個是求和。
第四,空間向量和立體幾何
在里面重點考察兩個方面:一個是證明;一個是計算。
第五,概率和統(tǒng)計
這一板塊主要是屬于數(shù)學應用問題的范疇,當然應該掌握下面幾個方面,第一……等可能的概率,第二………事件,第三是獨立事件,還有獨立重復事件發(fā)生的概率。
第六,解析幾何
這是我們比較頭疼的問題,是整個試卷里難度比較大,計算量的題,當然這一類題,我總結下面五類??嫉念}型,包括第一類所講的直線和曲線的位置關系,這是考試最多的內容??忌鷳撜莆账耐ǚ?,第二類我們所講的動點問題,第三類是弦長問題,第四類是對稱問題,這也是2008年高考已經考過的一點,第五類重點問題,這類題時往往覺得有思路,但是沒有答案,當然這里我相等的是,這道題盡管計算量很大,但是造成計算量大的原因,往往有這個原因,我們所選方法不是很恰當,因此,在這一章里我們要掌握比較好的算法,來提高我們做題的準確度,這是我們所講的第六大板塊。
第七,押軸題
考生在備考復習時,應該重點不等式計算的方法,雖然說難度比較大,我建議考生,采取分部得分整個試卷不要留空白。這是高考所考的七大板塊核心的考點。
高三數(shù)學重點知識點總結篇五
1、集合的概念
集合是數(shù)學中最原始的不定義的概念,只能給出,描述性說明:某些制定的且不同的對象集合在一起就稱為一個集合。組成集合的對象叫元素,集合通常用大寫字母a、b、c、…來表示。元素常用小寫字母a、b、c、…來表示。
集合是一個確定的整體,因此對集合也可以這樣描述:具有某種屬性的對象的全體組成的一個集合。
2、元素與集合的關系元素與集合的關系有屬于和不屬于兩種:元素a屬于集合a,記做a∈a;元素a不屬于集合a,記做a?a。
3、集合中元素的特性
(1)確定性:設a是一個給定的集合,x是某一具體對象,則x或者是a的元素,或者不是a的元素,兩種情況必有一種且只有一種成立。例如a={0,1,3,4},可知0∈a,6?a。
(2)互異性:“集合張的元素必須是互異的”,就是說“對于一個給定的集合,它的任何兩個元素都是不同的”。
(3)無序性:集合與其中元素的排列次序無關,如集合{a,b,c}與集合{c,b,a}是同一個集合。
4、集合的分類
集合科根據他含有的元素個數(shù)的多少分為兩類:
有限集:含有有限個元素的集合。如“方程3x+1=0”的解組成的集合”,由“2,4,6,8,組成的集合”,它們的元素個數(shù)是可數(shù)的,因此兩個集合是有限集。
無限集:含有無限個元素的集合,如“到平面上兩個定點的距離相等于所有點”“所有的三角形”,組成上述集合的元素不可數(shù)的,因此他們是無限集。
特別的,我們把不含有任何元素的集合叫做空集,記錯f,如{x?r|+1=0}。
5、特定的集合的表示
為了書寫方便,我們規(guī)定常見的數(shù)集用特定的字母表示,下面是幾種常見的數(shù)集表示方法,請牢記。
(1)全體非負整數(shù)的集合通常簡稱非負整數(shù)集(或自然數(shù)集),記做n。
(2)非負整數(shù)集內排出0的集合,也稱正整數(shù)集,記做n_或n+。
(3)全體整數(shù)的集合通常簡稱為整數(shù)集z。
(4)全體有理數(shù)的集合通常簡稱為有理數(shù)集,記做q。
(5)全體實數(shù)的集合通常簡稱為實數(shù)集,記做r。
【本文地址:http://mlvmservice.com/zuowen/2418930.html】