最新高一數(shù)學(xué)下冊(cè)知識(shí)點(diǎn)歸納(三篇)

格式:DOC 上傳日期:2023-04-05 06:15:54
最新高一數(shù)學(xué)下冊(cè)知識(shí)點(diǎn)歸納(三篇)
時(shí)間:2023-04-05 06:15:54     小編:zdfb

在日常學(xué)習(xí)、工作或生活中,大家總少不了接觸作文或者范文吧,通過(guò)文章可以把我們那些零零散散的思想,聚集在一塊。相信許多人會(huì)覺(jué)得范文很難寫(xiě)?這里我整理了一些優(yōu)秀的范文,希望對(duì)大家有所幫助,下面我們就來(lái)了解一下吧。

高一數(shù)學(xué)下冊(cè)知識(shí)點(diǎn)歸納篇一

(1)若f(x)是偶函數(shù),那么f(x)=f(-x)。

(2)若f(x)是奇函數(shù),0在其定義域內(nèi),則f(0)=0(可用于求參數(shù))。

(3)判斷函數(shù)奇偶性可用定義的等價(jià)形式:f(x)±f(-x)=0或(f(x)≠0)。

(4)若所給函數(shù)的解析式較為復(fù)雜,應(yīng)先化簡(jiǎn),再判斷其奇偶性。

(5)奇函數(shù)在對(duì)稱的單調(diào)區(qū)間內(nèi)有相同的單調(diào)性;偶函數(shù)在對(duì)稱的單調(diào)區(qū)間內(nèi)有相反的單調(diào)性。

2.復(fù)合函數(shù)的有關(guān)問(wèn)題。

(1)復(fù)合函數(shù)定義域求法:若已知的定義域?yàn)閇a,b],其復(fù)合函數(shù)f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域?yàn)閇a,b],求f(x)的定義域,相當(dāng)于x∈[a,b]時(shí),求g(x)的值域(即f(x)的定義域);研究函數(shù)的問(wèn)題一定要注意定義域優(yōu)先的原則。

(2)復(fù)合函數(shù)的單調(diào)性由“同增異減”判定。

3.函數(shù)圖像(或方程曲線的對(duì)稱性)。

(1)證明函數(shù)圖像的對(duì)稱性,即證明圖像上任意點(diǎn)關(guān)于對(duì)稱中心(對(duì)稱軸)的對(duì)稱點(diǎn)仍在圖像上。

(2)證明圖像c1與c2的對(duì)稱性,即證明c1上任意點(diǎn)關(guān)于對(duì)稱中心(對(duì)稱軸)的對(duì)稱點(diǎn)仍在c2上,反之亦然。

(3)曲線c1:f(x,y)=0,關(guān)于y=x+a(y=-x+a)的對(duì)稱曲線c2的方程為f(y-a,x+a)=0(或f(-y+a,-x+a)=0)。

(4)曲線c1:f(x,y)=0關(guān)于點(diǎn)(a,b)的對(duì)稱曲線c2方程為:f(2a-x,2b-y)=0。

(5)若函數(shù)y=f(x)對(duì)x∈r時(shí),f(a+x)=f(a-x)恒成立,則y=f(x)圖像關(guān)于直線x=a對(duì)稱。

4.函數(shù)的周期性。

(1)y=f(x)對(duì)x∈r時(shí),f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恒成立,則y=f(x)是周期為2a的周期函數(shù)。

(2)若y=f(x)是偶函數(shù),其圖像又關(guān)于直線x=a對(duì)稱,則f(x)是周期為2︱a︱的周期函數(shù)。

(3)若y=f(x)奇函數(shù),其圖像又關(guān)于直線x=a對(duì)稱,則f(x)是周期為4︱a︱的周期函數(shù)。

(4)若y=f(x)關(guān)于點(diǎn)(a,0),(b,0)對(duì)稱,則f(x)是周期為2的周期函數(shù)。

5.判斷對(duì)應(yīng)是否為映射時(shí),抓住兩點(diǎn)。

(1)a中元素必須都有象且。

(2)b中元素不一定都有原象,并且a中不同元素在b中可以有相同的象。

6.能熟練地用定義證明函數(shù)的單調(diào)性,求反函數(shù),判斷函數(shù)的奇偶性。

7.對(duì)于反函數(shù),應(yīng)掌握以下一些結(jié)論。

(1)定義域上的單調(diào)函數(shù)必有反函數(shù)。

(2)奇函數(shù)的反函數(shù)也是奇函數(shù)。

(3)定義域?yàn)榉菃卧丶呐己瘮?shù)不存在反函數(shù)。

(4)周期函數(shù)不存在反函數(shù)。

(5)互為反函數(shù)的兩個(gè)函數(shù)具有相同的單調(diào)性。

(6)y=f(x)與y=f-1(x)互為反函數(shù),設(shè)f(x)的定義域?yàn)閍,值域?yàn)閎,則有f[f--1(x)]=x(x∈b),f--1[f(x)]=x(x∈a)。

8.處理二次函數(shù)的問(wèn)題勿忘數(shù)形結(jié)合。

二次函數(shù)在閉區(qū)間上必有最值,求最值問(wèn)題用“兩看法”:一看開(kāi)口方向;二看對(duì)稱軸與所給區(qū)間的相對(duì)位置關(guān)系。

9.依據(jù)單調(diào)性,利用一次函數(shù)在區(qū)間上的保號(hào)性可解決求一類參數(shù)的范圍問(wèn)題。

10.恒成立問(wèn)題的處理方法。

(1)分離參數(shù)法。

(2)轉(zhuǎn)化為一元二次方程的根的分布列不等式(組)求解。

高一數(shù)學(xué)下冊(cè)知識(shí)點(diǎn)歸納篇二

圓的方程定義:

圓的標(biāo)準(zhǔn)方程(x-a)2+(y-b)2=r2中,有三個(gè)參數(shù)a、b、r,即圓心坐標(biāo)為(a,b),只要求出a、b、r,這時(shí)圓的方程就被確定,因此確定圓方程,須三個(gè)獨(dú)立條件,其中圓心坐標(biāo)是圓的定位條件,半徑是圓的定形條件。

直線和圓的位置關(guān)系:

1.直線和圓位置關(guān)系的判定方法一是方程的觀點(diǎn),即把圓的方程和直線的方程聯(lián)立成方程組,利用判別式δ來(lái)討論位置關(guān)系.

①δ>0,直線和圓相交.②δ=0,直線和圓相切.③δ<0,直線和圓相離.

方法二是幾何的觀點(diǎn),即把圓心到直線的距離d和半徑r的大小加以比較.

①dr,直線和圓相離.

2.直線和圓相切,這類問(wèn)題主要是求圓的切線方程.求圓的切線方程主要可分為已知斜率k或已知直線上一點(diǎn)兩種情況,而已知直線上一點(diǎn)又可分為已知圓上一點(diǎn)和圓外一點(diǎn)兩種情況.

3.直線和圓相交,這類問(wèn)題主要是求弦長(zhǎng)以及弦的中點(diǎn)問(wèn)題.

切線的性質(zhì)

⑴圓心到切線的距離等于圓的半徑;

⑵過(guò)切點(diǎn)的半徑垂直于切線;

⑶經(jīng)過(guò)圓心,與切線垂直的直線必經(jīng)過(guò)切點(diǎn);

⑷經(jīng)過(guò)切點(diǎn),與切線垂直的直線必經(jīng)過(guò)圓心;

當(dāng)一條直線滿足

(1)過(guò)圓心;

(2)過(guò)切點(diǎn);

(3)垂直于切線三個(gè)性質(zhì)中的兩個(gè)時(shí),第三個(gè)性質(zhì)也滿足.

切線的判定定理

經(jīng)過(guò)半徑的外端點(diǎn)并且垂直于這條半徑的直線是圓的切線.

切線長(zhǎng)定理

從圓外一點(diǎn)作圓的兩條切線,兩切線長(zhǎng)相等,圓心與這一點(diǎn)的連線平分兩條切線的夾角.

高一數(shù)學(xué)下冊(cè)知識(shí)點(diǎn)歸納篇三

1、集合的概念

集合是集合論中的不定義的原始概念,教材中對(duì)集合的概念進(jìn)行了描述性說(shuō)明:“一般地,把一些能夠確定的不同的對(duì)象看成一個(gè)整體,就說(shuō)這個(gè)整體是由這些對(duì)象的全體構(gòu)成的集合(或集)”。理解這句話,應(yīng)該把握4個(gè)關(guān)鍵詞:對(duì)象、確定的、不同的、整體。

對(duì)象――即集合中的元素。集合是由它的元素確定的。

整體――集合不是研究某一單一對(duì)象的,它關(guān)注的是這些對(duì)象的全體。

確定的――集合元素的確定性――元素與集合的“從屬”關(guān)系。

不同的――集合元素的互異性。

2、有限集、無(wú)限集、空集的意義

有限集和無(wú)限集是針對(duì)非空集合來(lái)說(shuō)的。我們理解起來(lái)并不困難。

我們把不含有任何元素的集合叫做空集,記做φ。理解它時(shí)不妨思考一下“0與φ”及“φ與{φ}”的關(guān)系。

幾個(gè)常用數(shù)集n、n_、n+、z、q、r要記牢。

3、集合的表示方法

(1)列舉法的表示形式比較容易掌握,并不是所有的集合都能用列舉法表示,同學(xué)們需要知道能用列舉法表示的三種集合:

①元素不太多的有限集,如{0,1,8}

②元素較多但呈現(xiàn)一定的規(guī)律的有限集,如{1,2,3,…,100}

③呈現(xiàn)一定規(guī)律的無(wú)限集,如{1,2,3,…,n,…}

●注意a與{a}的區(qū)別

●注意用列舉法表示集合時(shí),集合元素的“無(wú)序性”。

(2)特征性質(zhì)描述法的關(guān)鍵是把所研究的集合的“特征性質(zhì)”找準(zhǔn),然后適當(dāng)?shù)乇硎境鰜?lái)就行了。但關(guān)鍵點(diǎn)也是難點(diǎn)。學(xué)習(xí)時(shí)多加練習(xí)就可以了。另外,弄清“代表元素”也是非常重要的。如{x|y=x2},{y|y=x2},{(x,y)|y=x2}是三個(gè)不同的集合。

4、集合之間的關(guān)系

●注意區(qū)分“從屬”關(guān)系與“包含”關(guān)系

“從屬”關(guān)系是元素與集合之間的關(guān)系。

“包含”關(guān)系是集合與集合之間的關(guān)系。掌握子集、真子集的概念,掌握集合相等的概念,學(xué)會(huì)正確使用“”等符號(hào),會(huì)用venn圖描述集合之間的關(guān)系是基本要求。

●注意辨清φ與{φ}兩種關(guān)系。

【本文地址:http://mlvmservice.com/zuowen/2287309.html】

全文閱讀已結(jié)束,如果需要下載本文請(qǐng)點(diǎn)擊

下載此文檔