最新河南省中考數(shù)學(xué)知識點總結(jié)4篇(匯總)

格式:DOC 上傳日期:2023-06-06 17:04:15
最新河南省中考數(shù)學(xué)知識點總結(jié)4篇(匯總)
時間:2023-06-06 17:04:15     小編:zdfb

無論是身處學(xué)校還是步入社會,大家都嘗試過寫作吧,借助寫作也可以提高我們的語言組織能力。寫范文的時候需要注意什么呢?有哪些格式需要注意呢?下面是小編幫大家整理的優(yōu)質(zhì)范文,僅供參考,大家一起來看看吧。

河南數(shù)學(xué)考點分析河南數(shù)學(xué)考綱及知識歸納篇一

1,平面直角坐標(biāo)系

在平面內(nèi)畫兩條互相垂直且有公共原點的數(shù)軸,就組成了平面直角坐標(biāo)系。

其中,水平的數(shù)軸叫做x軸或橫軸,取向右為正方向;鉛直的數(shù)軸叫做y軸或縱軸,取向上為正方向;兩軸的交點o(即公共的原點)叫做直角坐標(biāo)系的原點;建立了直角坐標(biāo)系的平面,叫做坐標(biāo)平面。

為了便于描述坐標(biāo)平面內(nèi)點的位置,把坐標(biāo)平面被x軸和y軸分割而成的四個部分,分別叫做第一象限、第二象限、第三象限、第四象限。

注意:x軸和y軸上的點,不屬于任何象限。

2、點的坐標(biāo)的概念

點的坐標(biāo)用(a,b)表示,其順序是橫坐標(biāo)在前,縱坐標(biāo)在后,中間有“,”分開,橫、縱坐標(biāo)的位置不能顛倒。平面內(nèi)點的坐標(biāo)是有序?qū)崝?shù)對,當(dāng)時,(a,b)和(b,a)是兩個不同點的坐標(biāo)。

知識點二、不同位置的點的坐標(biāo)的特征

1、各象限內(nèi)點的坐標(biāo)的特征

點p(x,y)在第一象限

點p(x,y)在第二象限

點p(x,y)在第三象限

點p(x,y)在第四象限

2、坐標(biāo)軸上的點的特征

點p(x,y)在x軸上,x為任意實數(shù)

點p(x,y)在y軸上,y為任意實數(shù)

點p(x,y)既在x軸上,又在y軸上x,y同時為零,即點p坐標(biāo)為(0,0)

3、兩條坐標(biāo)軸夾角平分線上點的坐標(biāo)的特征

點p(x,y)在第一、三象限夾角平分線上x與y相等

點p(x,y)在第二、四象限夾角平分線上x與y互為相反數(shù)

4、和坐標(biāo)軸平行的直線上點的坐標(biāo)的特征

位于平行于x軸的直線上的各點的縱坐標(biāo)相同。

位于平行于y軸的直線上的各點的橫坐標(biāo)相同。

5、關(guān)于x軸、y軸或遠(yuǎn)點對稱的點的坐標(biāo)的特征

點p與點p’關(guān)于x軸對稱橫坐標(biāo)相等,縱坐標(biāo)互為相反數(shù)

點p與點p’關(guān)于y軸對稱縱坐標(biāo)相等,橫坐標(biāo)互為相反數(shù)

點p與點p’關(guān)于原點對稱橫、縱坐標(biāo)均互為相反數(shù)

6、點到坐標(biāo)軸及原點的距離

點p(x,y)到坐標(biāo)軸及原點的距離:

(1)點p(x,y)到x軸的距離等于

(2)點p(x,y)到y(tǒng)軸的距離等于

(3)點p(x,y)到原點的距離等于

河南數(shù)學(xué)考點分析河南數(shù)學(xué)考綱及知識歸納篇二

1.線段、角的計算與證明問題

中考的解答題一般是分兩到三部分的。第一部分基本上都是一些簡單題或者中檔題,目的在于考察基礎(chǔ)。第二部分往往就是開始拉分的中難題了。對這些題輕松掌握的意義不僅僅在于獲得分?jǐn)?shù),更重要的是對于整個做題過程中士氣,軍心的影響。線段與角的計算和證明,一般來說難度不會很大,只要找到關(guān)鍵“題眼”,后面的路子自己就“通”了。

2.圖形位置關(guān)系

中學(xué)數(shù)學(xué)當(dāng)中,圖形位置關(guān)系主要包括點、線、三角形、矩形/正方形以及圓這么幾類圖形之間的關(guān)系。在中考中會包含在函數(shù),坐標(biāo)系以及幾何問題當(dāng)中,但主要還是通過圓與其他圖形的關(guān)系來考察,這其中最重要的就是圓與三角形的各種問題。

3.動態(tài)幾何

從歷年中考來看,動態(tài)問題經(jīng)常作為壓軸題目出現(xiàn),得分率也是最低的。動態(tài)問題一般分兩類,一類是代數(shù)綜合方面,在坐標(biāo)系中有動點,動直線,一般是利用多種函數(shù)交叉求解。另一類就是幾何綜合題,在梯形,矩形,三角形中設(shè)立動點、線以及整體平移翻轉(zhuǎn),對考生的綜合分析能力進(jìn)行考察。所以說,動態(tài)問題是中考數(shù)學(xué)當(dāng)中的重中之重,只有完全掌握,才有機(jī)會拼高分。

4.一元二次方程與二次函數(shù)

在這一類問題當(dāng)中,尤以涉及的動態(tài)幾何問題最為艱難。幾何問題的難點在于想象,構(gòu)造,往往有時候一條輔助線沒有想到,整個一道題就卡殼了。相比幾何綜合題來說,代數(shù)綜合題倒不需要太多巧妙的方法,但是對考生的計算能力以及代數(shù)功底有了比較高的要求。中考數(shù)學(xué)當(dāng)中,代數(shù)問題往往是以一元二次方程與二次函數(shù)為主體,多種其他知識點輔助的形式出現(xiàn)的。一元二次方程與二次函數(shù)問題當(dāng)中,純粹的一元二次方程解法通常會以簡單解答題的方式考察。但是在后面的中難檔大題當(dāng)中,通常會和根的判別式,整數(shù)根和拋物線等知識點結(jié)合

5.多種函數(shù)交叉綜合問題

初中數(shù)學(xué)所涉及的函數(shù)就一次函數(shù),反比例函數(shù)以及二次函數(shù)。這類題目本身并不會太難,很少作為壓軸題出現(xiàn),一般都是作為一道中檔次題目來考察考生對于一次函數(shù)以及反比例函數(shù)的掌握。所以在中考中面對這類問題,一定要做到避免失分。

6.列方程(組)解應(yīng)用題

在中考中,有一類題目說難不難,說不難又難,有的時候三兩下就有了思路,有的時候苦思冥想很久也沒有想法,這就是列方程或方程組解應(yīng)用題。方程可以說是初中數(shù)學(xué)當(dāng)中最重要的部分,所以也是中考中必考內(nèi)容。從近年來的中考來看,結(jié)合時事熱點考的比較多,所以還需要考生有一些生活經(jīng)驗。實際考試中,這類題目幾乎要么得全分,要么一分不得,但是也就那么幾種題型,所以考生只需多練多掌握各個題類,總結(jié)出一些定式,就可以從容應(yīng)對了。

7.動態(tài)幾何與函數(shù)問題

整體說來,代幾綜合題大概有兩個側(cè)重,第一個是側(cè)重幾何方面,利用幾何圖形的性質(zhì)結(jié)合代數(shù)知識來考察。而另一個則是側(cè)重代數(shù)方面,幾何性質(zhì)只是一個引入點,更多的考察了考生的計算功夫。但是這兩種側(cè)重也沒有很嚴(yán)格的分野,很多題型都很類似。其中通過圖中已給幾何圖形構(gòu)建函數(shù)是重點考察對象。做這類題時一定要有“減少復(fù)雜性”“增大靈活性”的主體思想。

8.幾何圖形的歸納、猜想問題

中考加大了對考生歸納,總結(jié),猜想這方面能力的考察,但是由于數(shù)列的系統(tǒng)知識要到高中才會正式考察,所以大多放在填空壓軸題來出。對于這類歸納總結(jié)問題來說,思考的方法是最重要的。

9.閱讀理解問題

如今中考題型越來越活,閱讀理解題出現(xiàn)在數(shù)學(xué)當(dāng)中就是的一個亮點。閱讀理解往往是先給一個材料,或介紹一個超綱的知識,或給出針對某一種題目的解法,然后再給條件出題。對于這種題來說,如果考生為求快速而完全無視閱讀材料而直接去做題的話,往往浪費大量時間也沒有思路,得不償失。所以如何讀懂題以及如何利用題就成為了關(guān)鍵。

河南數(shù)學(xué)考點分析河南數(shù)學(xué)考綱及知識歸納篇三

單項式中的數(shù)字因數(shù)叫做這個單項式(或字母因數(shù))的數(shù)字系數(shù),簡稱系數(shù)

當(dāng)一個單項式的系數(shù)是1或-1時,“1”通常省略不寫

一個單項式中,所有字母的指數(shù)的和叫做這個單項式的次數(shù)

1、多項式

有有限個單項式的代數(shù)和組成的式子,叫做多項式

多項式里每個單項式叫做多項式的項,不含字母的項,叫做常數(shù)項

單項式可以看作是多項式的特例

把同類單項式的系數(shù)相加或相減,而單項式中的字母的乘方指數(shù)不變

在多項式中,所含的不同未知數(shù)的個數(shù),稱做這個多項式的元數(shù)經(jīng)過合并同類項后,多項式所含單項式的個數(shù),稱為這個多項式的項數(shù)所含個單項式中次項的次數(shù),就稱為這個多項式的次數(shù)。

2、多項式的值

3、多項式的恒等

對于兩個一元多項式f(x)、g(x)來說,當(dāng)未知數(shù)x同取任一個數(shù)值a時,如果它們所得的值都是相等的,即f(a)=g(a),那么,這兩個多項式就稱為是恒等的記為f(x)==g(x),或簡記為f(x)=g(x)

性質(zhì)1如果f(x)==g(x),那么,對于任一個數(shù)值a,都有f(a)=g(a)

4、一元多項式的根

多項式的加、減法,乘法

1、多項式的加、減法

2、多項式的乘法

單項式相乘,用它們系數(shù)作為積的系數(shù),對于相同的字母因式,則連同它的指數(shù)作為積的一個因式。

3、多項式的乘法外語學(xué)習(xí)網(wǎng)

多項式與多項式相乘,先用一個多項式等每一項乘以另一個多項式的各項,再把所得的積相加。

常用乘法公式

公式i平方差公式

(a+b)(a-b)=a^2-b^2

兩個數(shù)的和與這兩個數(shù)的差的積等于這兩個數(shù)的平方差

河南數(shù)學(xué)考點分析河南數(shù)學(xué)考綱及知識歸納篇四

二.知識概念

1.圓:平面上到定點的距離等于定長的所有點組成的圖形叫做圓。定點稱為圓心,定長稱為半徑。

意兩點的線段叫做弦。經(jīng)過圓心的弦叫做直徑。

3.圓心角和圓周角:頂點在圓心上的角叫做圓心角。頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角。

4.內(nèi)心和外心:過三角形的三個頂點的圓叫做三角形的外接圓,其圓心叫做三角形的外心。和三角形三邊都相切的圓叫做這個三角形的內(nèi)切圓,其圓心稱為內(nèi)心。

5.扇形:在圓上,由兩條半徑和一段弧圍成的圖形叫做扇形。

6.圓錐側(cè)面展開圖是一個扇形。這個扇形的半徑稱為圓錐的母線。

8.直線與圓有3種位置關(guān)系:無公共點為相離;有兩個公共點為相交,這條直線叫做圓的割線;圓與直線有公共點為相切,這條直線叫做圓的切線,這個的公共點叫做切點。

10.切線的判定方法:經(jīng)過半徑外端并且垂直于這條半徑的直線是圓的切線。

11.切線的性質(zhì):(1)經(jīng)過切點垂直于這條半徑的直線是圓的切線。(2)經(jīng)過切點垂直于切線的直線必經(jīng)過圓心。(3)圓的切線垂直于經(jīng)過切點的半徑。

12.垂徑定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧。

13.有關(guān)定理:

平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧.

在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦也相等.

半圓(或直徑)所對的圓周角是直角,90°的圓周角所對的弦是直徑.

15.扇形面積s=π(r^2-r^2)5.圓錐側(cè)面積s=πrl

【本文地址:http://mlvmservice.com/zuowen/2062016.html】

全文閱讀已結(jié)束,如果需要下載本文請點擊

下載此文檔