無論是身處學(xué)校還是步入社會,大家都嘗試過寫作吧,借助寫作也可以提高我們的語言組織能力。寫范文的時候需要注意什么呢?有哪些格式需要注意呢?下面是小編為大家收集的優(yōu)秀范文,供大家參考借鑒,希望可以幫助到有需要的朋友。
高考數(shù)學(xué)解題方法與技巧篇一
故對正確性的要求比解答題更高、更嚴格.
因此,我們在復(fù)習(xí)備考時,要理解各個題型所包含的知識點,只有把各個數(shù)學(xué)知識點掌握住以后才能熟悉做題技巧。要有合理的分析和判斷,要求推理、運算的每一步少算多思將是快速、準確地解答填空題的基本前提。
解答填空題的基本策略是準確、快速、整潔。這跟做選擇題是差不多的,只不過選擇題中我們還有選項支可以做參考,填空題更要求我們對知識的靈活運用!因此,研究填空題的解題技巧非常有必要。
準確是解答填空題的先決條件,填空題不設(shè)中間分,一步失誤,全題無分,所以應(yīng)仔細審題、深入分析、正確推演、謹防疏漏,確保準確;
迅速是贏得時間獲取高分的必要條件,對于填空題的答題時間,應(yīng)該控制在不超過20分鐘左右,速度越快越好,要避免"超時失分"現(xiàn)象的發(fā)生;
整潔是保住得分的充分條件,只有把正確的答案整潔的書寫在答題紙上才能保證閱卷教師正確的批改,在網(wǎng)上閱卷時整潔顯得尤為重要。
高考數(shù)學(xué)填空題一般是基礎(chǔ)題或中檔題,且絕大多數(shù)是計算型(尤其是推理計算型)和概念(性質(zhì))判斷型的試題,應(yīng)答時必須按規(guī)則進行切實的計算或者合乎邏輯的推演和判斷。
直接法
跟選擇題一樣,填空題有些題目也是可以通過套用公式定理性質(zhì)直接求解的,拿到題目后,直接根據(jù)題干提供的信息通過變形、推理、運算等過程,直接得到結(jié)果。它是解填空題的最基本、最常用的方法。使用直接法解填空題,要善于通過現(xiàn)象看本質(zhì),熟練應(yīng)用解方程和解不等式的方法,自覺地、有意識地采取靈活、簡捷的解法。
特殊化法
當(dāng)填空題的結(jié)論或題設(shè)條件中提供的信息暗示答案是一個定值時,而已知條件中含有某些不確定的量,可以將題中變化的不定量選取一些符合條件的恰當(dāng)特殊值(或特殊函數(shù),或特殊角,圖形特殊位置,特殊點,特殊方程,特殊模型等)進行處理,從而得出探求的結(jié)論。這樣可大大地簡化推理、論證的過程。
等價轉(zhuǎn)化法
通過"化復(fù)雜為簡單、化陌生為熟悉",將問題等價地轉(zhuǎn)化成便于解決的問題,從而得出正確的結(jié)果。
高考數(shù)學(xué)解題方法與技巧篇二
1、配方法
所謂配方,就是把一個解析式利用恒等變形的方法,把其中的某些項配成一個或幾個多項式正整數(shù)次冪的和形式。通過配方解決數(shù)學(xué)問題的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是數(shù)學(xué)中一種重要的恒等變形的方法,它的應(yīng)用十分非常廣泛,在因式分解、化簡根式、解方程、證明等式和不等式、求函數(shù)的極值和解析式等方面都經(jīng)常用到它。
2、因式分解法
因式分解,就是把一個多項式化成幾個整式乘積的形式。因式分解是恒等變形的基礎(chǔ),它作為數(shù)學(xué)的一個有力工具、一種數(shù)學(xué)方法在代數(shù)、幾何、三角等的解題中起著重要的作用。因式分解的方法有許多,除中學(xué)課本上介紹的提取公因式法、公式法、分組分解法、十字相乘法等外,還有如利用拆項添項、求根分解、換元、待定系數(shù)等等。
3、換元法
換元法是數(shù)學(xué)中一個非常重要而且應(yīng)用十分廣泛的解題方法。我們通常把未知數(shù)或變數(shù)稱為元,所謂換元法,就是在一個比較復(fù)雜的數(shù)學(xué)式子中,用新的變元去代替原式的一個部分或改造原來的式子,使它簡化,使問題易于解決。
4、判別式法與韋達定理
一元二次方程ax2+bx+c=0(a、b、c屬于r,a≠0)根的判別,△=b2-4ac,不僅用來判定根的性質(zhì),而且作為一種解題方法,在代數(shù)式變形,解方程(組),解不等式,研究函數(shù)乃至幾何、三角運算中都有非常廣泛的應(yīng)用。
韋達定理除了已知一元二次方程的一個根,求另一根;已知兩個數(shù)的和與積,求這兩個數(shù)等簡單應(yīng)用外,還可以求根的對稱函數(shù),計論二次方程根的符號,解對稱方程組,以及解一些有關(guān)二次曲線的問題等,都有非常廣泛的應(yīng)用。
5、待定系數(shù)法
在解數(shù)學(xué)問題時,若先判斷所求的結(jié)果具有某種確定的形式,其中含有某些待定的系數(shù),而后根據(jù)題設(shè)條件列出關(guān)于待定系數(shù)的等式,最后解出這些待定系數(shù)的值或找到這些待定系數(shù)間的某種關(guān)系,從而解答數(shù)學(xué)問題,這種解題方法稱為待定系數(shù)法。它是中學(xué)數(shù)學(xué)中常用的方法之一。
6、構(gòu)造法
在解題時,我們常常會采用這樣的方法,通過對條件和結(jié)論的分析,構(gòu)造輔助元素,它可以是一個圖形、一個方程(組)、一個等式、一個函數(shù)、一個等價命題等,架起一座連接條件和結(jié)論的橋梁,從而使問題得以解決,這種解題的數(shù)學(xué)方法,我們稱為構(gòu)造法。運用構(gòu)造法解題,可以使代數(shù)、三角、幾何等各種數(shù)學(xué)知識互相滲透,有利于問題的解決。
高考數(shù)學(xué)解題方法與技巧篇三
填空題跟選擇題有許多的共同點:小巧靈活,結(jié)構(gòu)簡單運算量不大等特點,考察的知識點范圍比較廣,根據(jù)填空時所填寫的內(nèi)容形式,可以將填空題分成以下幾種類型:
(1)定量型:
要求考生填寫數(shù)值、數(shù)集或數(shù)量關(guān)系,
如方程的解、不等式的解集、
函數(shù)的定義域、值域、值或最小值、
線段長度、角度大小等;
(2)定性型:
要求填寫的是具有某種性質(zhì)的對象
或者填寫給定數(shù)學(xué)對象的某種性質(zhì),
如填寫給定二次曲線的焦點坐標,離心率等.
【本文地址:http://mlvmservice.com/zuowen/2060138.html】