在日常學習、工作或生活中,大家總少不了接觸作文或者范文吧,通過文章可以把我們那些零零散散的思想,聚集在一塊。那么我們該如何寫一篇較為完美的范文呢?接下來小編就給大家介紹一下優(yōu)秀的范文該怎么寫,我們一起來看一看吧。
最新的高三數(shù)學知識點梳理手冊篇一
集合是數(shù)學中最原始的不定義的概念,只能給出,描述性說明:某些制定的且不同的對象集合在一起就稱為一個集合。組成集合的對象叫元素,集合通常用大寫字母a、b、c、…來表示。元素常用小寫字母a、b、c、…來表示。
集合是一個確定的整體,因此對集合也可以這樣描述:具有某種屬性的對象的全體組成的一個集合。
2、元素與集合的關(guān)系元素與集合的關(guān)系有屬于和不屬于兩種:元素a屬于集合a,記做a∈a;元素a不屬于集合a,記做a?a。
3、集合中元素的特性
(1)確定性:設(shè)a是一個給定的集合,x是某一具體對象,則x或者是a的元素,或者不是a的元素,兩種情況必有一種且只有一種成立。例如a={0,1,3,4},可知0∈a,6?a。
(2)互異性:“集合張的元素必須是互異的”,就是說“對于一個給定的集合,它的任何兩個元素都是不同的”。
(3)無序性:集合與其中元素的排列次序無關(guān),如集合{a,b,c}與集合{c,b,a}是同一個集合。
4、集合的分類
集合科根據(jù)他含有的元素個數(shù)的多少分為兩類:
有限集:含有有限個元素的集合。如“方程3x+1=0”的解組成的集合”,由“2,4,6,8,組成的集合”,它們的元素個數(shù)是可數(shù)的,因此兩個集合是有限集。
無限集:含有無限個元素的集合,如“到平面上兩個定點的距離相等于所有點”“所有的三角形”,組成上述集合的元素不可數(shù)的,因此他們是無限集。
特別的,我們把不含有任何元素的集合叫做空集,記錯f,如{x?r|+1=0}。
5、特定的集合的表示
為了書寫方便,我們規(guī)定常見的數(shù)集用特定的字母表示,下面是幾種常見的數(shù)集表示方法,請牢記。
(1)全體非負整數(shù)的集合通常簡稱非負整數(shù)集(或自然數(shù)集),記做n。
(2)非負整數(shù)集內(nèi)排出0的集合,也稱正整數(shù)集,記做n_或n+。
(3)全體整數(shù)的集合通常簡稱為整數(shù)集z。
(4)全體有理數(shù)的集合通常簡稱為有理數(shù)集,記做q。
(5)全體實數(shù)的集合通常簡稱為實數(shù)集,記做r。
最新的高三數(shù)學知識點梳理手冊篇二
高中學習容量大,不但要掌握目前的知識,還要把高中的知識與初中的知識溶為一體才能學好。在讀書、聽課、研習、總結(jié)這四個環(huán)節(jié)都比初中的學習有更高的要求。下面就是小編給大家?guī)淼母呷龜?shù)學知識點,希望能幫助到大家!
不等式分類:
不等式分為嚴格不等式與非嚴格不等式。一般地,用純粹的大于號、小于號“>”“<”連接的不等式稱為嚴格不等式,用不小于號(大于或等于號)、不大于號(小于或等于號)“≥”(大于等于符號)“≤”(小于等于符號)連接的不等式稱為非嚴格不等式,或稱廣義不等式。
通常不等式中的數(shù)是實數(shù),字母也代表實數(shù),不等式的一般形式為f(x,y,……,z)≤g(x,y,……,z)(其中不等號也可以為<,≥,>中某一個),兩邊的解析式的公共定義域稱為不等式的定義域,不等式既可以表達一個命題,也可以表示一個問題。
變化前的點坐標(x,y)
坐標變化
變化后的點坐標
圖形變化平移橫坐標不變,縱坐標加上(或減去)n(n>0)個單位長度
(x,y+n)或(x,y-n)
圖形向上(或向下)平移了n個單位長度
縱坐標不變,橫坐標加上(或減去)n(n>0)個單位長度
(x+n,y)或(x-n,y)
圖形向右(或向左)平移了n個單位長度伸長橫坐標不變,縱坐標擴大n(n>1)倍(x,ny)圖形被縱向拉長為原來的n倍
縱坐標不變,橫坐標擴大n(n>1)倍(nx,y)圖形被橫向拉長為原來的n倍壓縮橫坐標不變,縱坐標縮小n(n>1)倍(x,)圖形被縱向縮短為原來的
縱坐標不變,橫坐標縮小n(n>1)倍(,y)圖形被橫向縮短為原來的放大橫縱坐標同時擴大n(n>1)倍(nx,ny)圖形變?yōu)樵瓉淼膎2倍縮小橫縱坐標同時縮小n(n>1)倍(,)圖形變?yōu)樵瓉淼?/p>
78、求與幾何圖形聯(lián)系的特殊點的坐標,往往是向x軸或y軸引垂線,轉(zhuǎn)化為求線段的長,再根據(jù)點所在的象限,醒上相應的符號。求坐標分兩種情況:(1)求交點,如直線與直線的交點;(2)求距離,再將距離換算成坐標,通常作x軸或y軸的垂線,再解直角三角形。
1、集合的概念
集合是數(shù)學中最原始的不定義的概念,只能給出,描述性說明:某些制定的且不同的對象集合在一起就稱為一個集合。組成集合的對象叫元素,集合通常用大寫字母a、b、c、…來表示。元素常用小寫字母a、b、c、…來表示。
集合是一個確定的整體,因此對集合也可以這樣描述:具有某種屬性的對象的全體組成的一個集合。
2、元素與集合的關(guān)系元素與集合的關(guān)系有屬于和不屬于兩種:元素a屬于集合a,記做a∈a;元素a不屬于集合a,記做a?a。
3、集合中元素的特性
(1)確定性:設(shè)a是一個給定的集合,x是某一具體對象,則x或者是a的元素,或者不是a的元素,兩種情況必有一種且只有一種成立。例如a={0,1,3,4},可知0∈a,6?a。
(2)互異性:“集合張的元素必須是互異的”,就是說“對于一個給定的集合,它的任何兩個元素都是不同的”。
(3)無序性:集合與其中元素的排列次序無關(guān),如集合{a,b,c}與集合{c,b,a}是同一個集合。
4、集合的分類
集合科根據(jù)他含有的元素個數(shù)的多少分為兩類:
有限集:含有有限個元素的集合。如“方程3x+1=0”的解組成的集合”,由“2,4,6,8,組成的集合”,它們的元素個數(shù)是可數(shù)的,因此兩個集合是有限集。
無限集:含有無限個元素的集合,如“到平面上兩個定點的距離相等于所有點”“所有的三角形”,組成上述集合的元素不可數(shù)的,因此他們是無限集。
特別的,我們把不含有任何元素的集合叫做空集,記錯f,如{x?r|+1=0}。
5、特定的集合的表示
為了書寫方便,我們規(guī)定常見的數(shù)集用特定的字母表示,下面是幾種常見的數(shù)集表示方法,請牢記。
(1)全體非負整數(shù)的集合通常簡稱非負整數(shù)集(或自然數(shù)集),記做n。
(2)非負整數(shù)集內(nèi)排出0的集合,也稱正整數(shù)集,記做n_或n+。
(3)全體整數(shù)的集合通常簡稱為整數(shù)集z。
(4)全體有理數(shù)的集合通常簡稱為有理數(shù)集,記做q。
(5)全體實數(shù)的集合通常簡稱為實數(shù)集,記做r。
復數(shù)的概念:
形如a+bi(a,b∈r)的數(shù)叫復數(shù),其中i叫做虛數(shù)單位。全體復數(shù)所成的集合叫做復數(shù)集,用字母c表示。
復數(shù)的表示:
復數(shù)通常用字母z表示,即z=a+bi(a,b∈r),這一表示形式叫做復數(shù)的代數(shù)形式,其中a叫復數(shù)的實部,b叫復數(shù)的虛部。
復數(shù)的幾何意義:
(1)復平面、實軸、虛軸:
點z的橫坐標是a,縱坐標是b,復數(shù)z=a+bi(a、b∈r)可用點z(a,b)表示,這個建立了直角坐標系來表示復數(shù)的平面叫做復平面,x軸叫做實軸,y軸叫做虛軸。顯然,實軸上的點都表示實數(shù),除原點外,虛軸上的點都表示純虛數(shù)
(2)復數(shù)的幾何意義:復數(shù)集c和復平面內(nèi)所有的點所成的集合是一一對應關(guān)系,即
這是因為,每一個復數(shù)有復平面內(nèi)惟一的一個點和它對應;反過來,復平面內(nèi)的每一個點,有惟一的一個復數(shù)和它對應。
這就是復數(shù)的一種幾何意義,也就是復數(shù)的另一種表示方法,即幾何表示方法。
復數(shù)的模:
復數(shù)z=a+bi(a、b∈r)在復平面上對應的點z(a,b)到原點的距離叫復數(shù)的模,記為|z|,即|z|=
虛數(shù)單位i:
(1)它的平方等于-1,即i2=-1;
(2)實數(shù)可以與它進行四則運算,進行四則運算時,原有加、乘運算律仍然成立
(3)i與-1的關(guān)系:i就是-1的一個平方根,即方程x2=-1的一個根,方程x2=-1的另一個根是-i。
(4)i的周期性:i4n+1=i,i4n+2=-1,i4n+3=-i,i4n=1。
復數(shù)模的性質(zhì):
復數(shù)與實數(shù)、虛數(shù)、純虛數(shù)及0的關(guān)系:
對于復數(shù)a+bi(a、b∈r),當且僅當b=0時,復數(shù)a+bi(a、b∈r)是實數(shù)a;當b≠0時,復數(shù)z=a+bi叫做虛數(shù);當a=0且b≠0時,z=bi叫做純虛數(shù);當且僅當a=b=0時,z就是實數(shù)0。
一、柱、錐、臺、球的結(jié)構(gòu)特征
結(jié)構(gòu)特征
圖例
棱柱
(1)兩底面相互平行,其余各面都是平行四邊形;
(2)側(cè)棱平行且相等.
圓柱
(1)兩底面相互平行;(2)側(cè)面的母線平行于圓柱的軸;
(3)是以矩形的一邊所在直線為旋轉(zhuǎn)軸,其余三邊旋轉(zhuǎn)形成的曲面所圍成的幾何體.
棱錐
(1)底面是多邊形,各側(cè)面均是三角形;
(2)各側(cè)面有一個公共頂點.
圓錐
(1)底面是圓;(2)是以直角三角形的一條直角邊所在的直線為旋轉(zhuǎn)軸,其余兩邊旋轉(zhuǎn)形成的曲面所圍成的幾何體.
棱臺
(1)兩底面相互平行;(2)是用一個平行于棱錐底面的平面去截棱錐,底面和截面之間的部分.
圓臺
(1)兩底面相互平行;
(2)是用一個平行于圓錐底面的平面去截圓錐,底面和截面之間的部分.
球
(1)球心到球面上各點的距離相等;(2)是以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體.
二、簡單組合體的結(jié)構(gòu)特征
三、空間幾何體的三視圖
定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側(cè)視圖(從左向右)、俯視圖(從上向下)
注:
正視圖反映了物體上下、左右的位置關(guān)系,即反映了物體的高度和長度;
俯視圖反映了物體左右、前后的位置關(guān)系,即反映了物體的長度和寬度;
側(cè)視圖反映了物體上下、前后的位置關(guān)系,即反映了物體的高度和寬度。
四、空間幾何體的直觀圖——斜二測畫法
斜二測畫法特點:
①原來與x軸平行的線段仍然與x平行且長度不變;
②原來與y軸平行的線段仍然與y平行,長度為原來的一半。
五、柱體、錐體、臺體的表面積與體積
(1)幾何體的表面積為幾何體各個面的面積的和。
(2)特殊幾何體表面積公式(c為底面周長,h為高,h'為斜高,l為母線)
(3)柱體、錐體、臺體的體積公式
(4)球體的表面積和體積公式:
★
高三數(shù)學重要知識點整理總結(jié)2021
★高考數(shù)學備考總復習知識點歸納
★高考數(shù)學必考知識點歸納總結(jié)2021
★2021高中數(shù)學知識點總結(jié)
★高中的數(shù)學知識點2021
★高三數(shù)學的知識點有哪些
★2021高考數(shù)學必考知識點歸納
★2021數(shù)學高考知識點歸納總結(jié)
★2021高考數(shù)學備考知識點歸納
★人教版高三數(shù)學重點復習知識點2021
最新的高三數(shù)學知識點梳理手冊篇三
一、柱、錐、臺、球的結(jié)構(gòu)特征
結(jié)構(gòu)特征
圖例
棱柱
(1)兩底面相互平行,其余各面都是平行四邊形;
(2)側(cè)棱平行且相等.
圓柱
(1)兩底面相互平行;(2)側(cè)面的母線平行于圓柱的軸;
(3)是以矩形的一邊所在直線為旋轉(zhuǎn)軸,其余三邊旋轉(zhuǎn)形成的曲面所圍成的幾何體.
棱錐
(1)底面是多邊形,各側(cè)面均是三角形;
(2)各側(cè)面有一個公共頂點.
圓錐
(1)底面是圓;(2)是以直角三角形的一條直角邊所在的直線為旋轉(zhuǎn)軸,其余兩邊旋轉(zhuǎn)形成的曲面所圍成的幾何體.
棱臺
(1)兩底面相互平行;(2)是用一個平行于棱錐底面的平面去截棱錐,底面和截面之間的部分.
圓臺
(1)兩底面相互平行;
(2)是用一個平行于圓錐底面的平面去截圓錐,底面和截面之間的部分.
球
(1)球心到球面上各點的距離相等;(2)是以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體.
二、簡單組合體的結(jié)構(gòu)特征
三、空間幾何體的三視圖
定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側(cè)視圖(從左向右)、俯視圖(從上向下)
注:
正視圖反映了物體上下、左右的位置關(guān)系,即反映了物體的高度和長度;
俯視圖反映了物體左右、前后的位置關(guān)系,即反映了物體的長度和寬度;
側(cè)視圖反映了物體上下、前后的位置關(guān)系,即反映了物體的高度和寬度。
四、空間幾何體的直觀圖——斜二測畫法
斜二測畫法特點:
①原來與x軸平行的線段仍然與x平行且長度不變;
②原來與y軸平行的線段仍然與y平行,長度為原來的一半。
五、柱體、錐體、臺體的表面積與體積
(1)幾何體的表面積為幾何體各個面的面積的和。
(2)特殊幾何體表面積公式(c為底面周長,h為高,h'為斜高,l為母線)
(3)柱體、錐體、臺體的體積公式
(4)球體的表面積和體積公式:
最新的高三數(shù)學知識點梳理手冊篇四
復數(shù)的概念:
形如a+bi(a,b∈r)的數(shù)叫復數(shù),其中i叫做虛數(shù)單位。全體復數(shù)所成的集合叫做復數(shù)集,用字母c表示。
復數(shù)的表示:
復數(shù)通常用字母z表示,即z=a+bi(a,b∈r),這一表示形式叫做復數(shù)的代數(shù)形式,其中a叫復數(shù)的實部,b叫復數(shù)的虛部。
復數(shù)的幾何意義:
(1)復平面、實軸、虛軸:
點z的橫坐標是a,縱坐標是b,復數(shù)z=a+bi(a、b∈r)可用點z(a,b)表示,這個建立了直角坐標系來表示復數(shù)的平面叫做復平面,x軸叫做實軸,y軸叫做虛軸。顯然,實軸上的點都表示實數(shù),除原點外,虛軸上的點都表示純虛數(shù)
(2)復數(shù)的幾何意義:復數(shù)集c和復平面內(nèi)所有的點所成的集合是一一對應關(guān)系,即
這是因為,每一個復數(shù)有復平面內(nèi)惟一的一個點和它對應;反過來,復平面內(nèi)的每一個點,有惟一的一個復數(shù)和它對應。
這就是復數(shù)的一種幾何意義,也就是復數(shù)的另一種表示方法,即幾何表示方法。
復數(shù)的模:
復數(shù)z=a+bi(a、b∈r)在復平面上對應的點z(a,b)到原點的距離叫復數(shù)的模,記為|z|,即|z|=
虛數(shù)單位i:
(1)它的平方等于-1,即i2=-1;
(2)實數(shù)可以與它進行四則運算,進行四則運算時,原有加、乘運算律仍然成立
(3)i與-1的關(guān)系:i就是-1的一個平方根,即方程x2=-1的一個根,方程x2=-1的另一個根是-i。
(4)i的周期性:i4n+1=i,i4n+2=-1,i4n+3=-i,i4n=1。
復數(shù)模的性質(zhì):
復數(shù)與實數(shù)、虛數(shù)、純虛數(shù)及0的關(guān)系:
對于復數(shù)a+bi(a、b∈r),當且僅當b=0時,復數(shù)a+bi(a、b∈r)是實數(shù)a;當b≠0時,復數(shù)z=a+bi叫做虛數(shù);當a=0且b≠0時,z=bi叫做純虛數(shù);當且僅當a=b=0時,z就是實數(shù)0。
最新的高三數(shù)學知識點梳理手冊篇五
變化前的點坐標(x,y)
坐標變化
變化后的點坐標
圖形變化平移橫坐標不變,縱坐標加上(或減去)n(n>0)個單位長度
(x,y+n)或(x,y-n)
圖形向上(或向下)平移了n個單位長度
縱坐標不變,橫坐標加上(或減去)n(n>0)個單位長度
(x+n,y)或(x-n,y)
圖形向右(或向左)平移了n個單位長度伸長橫坐標不變,縱坐標擴大n(n>1)倍(x,ny)圖形被縱向拉長為原來的n倍
縱坐標不變,橫坐標擴大n(n>1)倍(nx,y)圖形被橫向拉長為原來的n倍壓縮橫坐標不變,縱坐標縮小n(n>1)倍(x,)圖形被縱向縮短為原來的
縱坐標不變,橫坐標縮小n(n>1)倍(,y)圖形被橫向縮短為原來的放大橫縱坐標同時擴大n(n>1)倍(nx,ny)圖形變?yōu)樵瓉淼膎2倍縮小橫縱坐標同時縮小n(n>1)倍(,)圖形變?yōu)樵瓉淼?/p>
78、求與幾何圖形聯(lián)系的特殊點的坐標,往往是向x軸或y軸引垂線,轉(zhuǎn)化為求線段的長,再根據(jù)點所在的象限,醒上相應的符號。求坐標分兩種情況:(1)求交點,如直線與直線的交點;(2)求距離,再將距離換算成坐標,通常作x軸或y軸的垂線,再解直角三角形。
【本文地址:http://mlvmservice.com/zuowen/2060116.html】