2023年高二數(shù)學(xué)知識點歸納總結(jié)人教版 高二數(shù)學(xué)知識點總結(jié)(非常全面(大全9篇)

格式:DOC 上傳日期:2023-06-06 14:36:49
2023年高二數(shù)學(xué)知識點歸納總結(jié)人教版 高二數(shù)學(xué)知識點總結(jié)(非常全面(大全9篇)
時間:2023-06-06 14:36:49     小編:zdfb

總結(jié)不僅僅是總結(jié)成績,更重要的是為了研究經(jīng)驗,發(fā)現(xiàn)做好工作的規(guī)律,也可以找出工作失誤的教訓(xùn)。這些經(jīng)驗教訓(xùn)是非常寶貴的,對工作有很好的借鑒與指導(dǎo)作用,在今后工作中可以改進提高,趨利避害,避免失誤。那關(guān)于總結(jié)格式是怎樣的呢?而個人總結(jié)又該怎么寫呢?那么下面我就給大家講一講總結(jié)怎么寫才比較好,我們一起來看一看吧。

高二數(shù)學(xué)知識點歸納總結(jié)人教版高二數(shù)學(xué)知識點總結(jié)篇一

學(xué)生一定要明確,現(xiàn)在正做著的題,一定不是考試的題目。而是要運用現(xiàn)在正做著的題目的解題思路與方法。因此,要把自己做過的每道題加以反思,總結(jié)一下自己的收獲。

二、主動復(fù)習(xí)與總結(jié)提高

(1)要把課本,筆記,區(qū)單元測驗試卷,校周末測驗試卷,都從頭到尾閱讀一遍。要一邊讀,一邊做標記,標明哪些是過一會兒要摘錄的。要養(yǎng)成一個習(xí)慣,在讀材料時隨時做標記,告訴自己下次再讀這份材料時的閱讀重點。長期保持這個習(xí)慣,學(xué)生就能由博反約,把厚書讀成薄書。積累起自己的獨特的,也就是最適合自己進行復(fù)習(xí)的材料。這樣積累起來的資料才有活力,才能用的上。

(2)把本章節(jié)的內(nèi)容一分為二,一部分是基礎(chǔ)知識,一部分是典型問題。要把對技能的要求(對“鋸,斧,鑿子…”的使用總結(jié)),列進這兩部分中的一部分,不要遺漏。

(3)在基礎(chǔ)知識的疏理中,要羅列出所學(xué)的所有定義,定理,法則,公式。要做到三會兩用。即:會代字表述,會圖象符號表述,會推導(dǎo)證明。同時能從正反兩方面對其進行應(yīng)用。

(4)把重要的,典型的各種問題進行編隊。(怎樣做“板凳,椅子,書架…”)要盡量地把他們分類,找出它們之間的位置關(guān)系,總結(jié)出問題間的來龍去脈。就象我們欣賞一場團體操表演,我們不能只盯住一個人看,看他從哪跑到哪,都做了些什么動作。我們一定要居高臨下地看,看全場的結(jié)構(gòu)和變化。不然的話,陷入題海,徒勞無益。這一點,是提高高中數(shù)學(xué)水平的關(guān)鍵所在。

(5)總結(jié)那些尚未歸類的問題,作為備注進行補充說明。

(6)找一份適當?shù)臏y驗試卷。一定要計時測驗。然后再對照答案,查漏補缺。

三、

重視改錯,錯不重犯

一定要重視改錯工作,做到錯不再犯。高中數(shù)學(xué)課沒有那么多時間,除了少數(shù)幾種典型錯,其它錯誤,不能一一顧及。如果能及時改錯,那么錯誤就可能轉(zhuǎn)變?yōu)樨敻唬蔀椴辉俜高@種錯誤的預(yù)防針。但是,如果不能及時改錯,這個錯誤就將形成一處隱患,一處“地雷”,遲早要惹禍。有的學(xué)生認為,自己考試成績上不去,是因為自己做題太粗心。而且,自己特愛粗心。打一個比方。比如說,學(xué)習(xí)開汽車。右腳下面,往左踩,是踩剎車。往右踩,是踩油門。其機械原理,設(shè)計原因,操作規(guī)程都可以講的清清楚楚。如果新司機真正掌握了這一套,請問,可以同意他開車上街嗎?恐怕他自己也知道自己還缺乏練習(xí)。一兩次能正確地完成任務(wù),并不能說明永遠不出錯。

四、圖是高中數(shù)學(xué)的生命線

圖是初等數(shù)學(xué)的生命線,能不能用圖支撐思維活動是能否學(xué)好初等數(shù)學(xué)的關(guān)鍵。無論是幾何還是代數(shù),拿到題的第一件事都應(yīng)該是畫圖。有的時候,一些簡單題只要把圖畫出來,答案就直接出來了。遇到難題時就更應(yīng)該畫圖,圖可以清楚地呈現(xiàn)出已知條件。而且解難題時至少一問畫一個圖,這樣看起來清晰,做題的時候也好捋順思路。

高二數(shù)學(xué)知識點歸納總結(jié)人教版高二數(shù)學(xué)知識點總結(jié)篇二

第一:高考數(shù)學(xué)中有函數(shù)、數(shù)列、三角函數(shù)、平面向量、不等式、立體幾何等九大章節(jié)。

主要是考函數(shù)和導(dǎo)數(shù),這是我們整個高中階段里最核心的板塊,在這個板塊里,重點考察兩個方面:第一個函數(shù)的性質(zhì),包括函數(shù)的單調(diào)性、奇偶性;第二是函數(shù)的解答題,重點考察的是二次函數(shù)和高次函數(shù),分函數(shù)和它的一些分布問題,但是這個分布重點還包含兩個分析就是二次方程的分布的問題,這是第一個板塊。

第二:平面向量和三角函數(shù)。

重點考察三個方面:

一個是劃減與求值。

第一,重點掌握公式,重點掌握五組基本公式。

第二,是三角函數(shù)的圖像和性質(zhì),這里重點掌握正弦函數(shù)和余弦函數(shù)的性質(zhì)。

第三,正弦定理和余弦定理來解三角形。難度比較小。

第三:數(shù)列。

數(shù)列這個板塊,重點考兩個方面:一個通項;一個是求和。

第四:空間向量和立體幾何。

在里面重點考察兩個方面:一個是證明;一個是計算。

第五:概率和統(tǒng)計。

這一板塊主要是屬于數(shù)學(xué)應(yīng)用問題的范疇,當然應(yīng)該掌握下面幾個方面:

第一……等可能的概率。

第二………事件。

第三是獨立事件,還有獨立重復(fù)事件發(fā)生的概率。

第六:解析幾何。

這是我們比較頭疼的問題,是整個試卷里難度比較大,計算量的題,當然這一類題,我總結(jié)下面五類常考的題型,包括第一類所講的直線和曲線的位置關(guān)系,這是考試最多的內(nèi)容??忌鷳?yīng)該掌握它的通法,第二類我們所講的動點問題,第三類是弦長問題,第四類是對稱問題,這也是20xx年高考已經(jīng)考過的一點,第五類重點問題,這類題時往往覺得有思路,但是沒有答案,當然這里我相等的是,這道題盡管計算量很大,但是造成計算量大的原因,往往有這個原因,我們所選方法不是很恰當,因此,在這一章里我們要掌握比較好的算法,來提高我們做題的準確度,這是我們所講的第六大板塊。

第七:押軸題。

考生在備考復(fù)習(xí)時,應(yīng)該重點不等式計算的方法,雖然說難度比較大,我建議考生,采取分部得分整個試卷不要留空白。這是高考所考的七大板塊核心的考點。

高二數(shù)學(xué)知識點歸納總結(jié)人教版高二數(shù)學(xué)知識點總結(jié)篇三

總結(jié)是對過去一定時期的工作、學(xué)習(xí)或思想情況進行回顧、分析,并做出客觀評價的書面材料,它在我們的學(xué)習(xí)、工作中起到呈上啟下的作用,因此好好準備一份總結(jié)吧??偨Y(jié)怎么寫才不會流于形式呢?下面是小編幫大家整理的高二數(shù)學(xué)知識點歸納總結(jié)大全,希望能夠幫助到大家。

1.集合;2.子集;3.補集;4.交集;5.并集;6.邏輯連結(jié)詞;7.四種命題;8.充要條件。

1.映射;2.函數(shù);3.函數(shù)的單調(diào)性;4.反函數(shù);5.互為反函數(shù)的函數(shù)圖象間的關(guān)系;6.指數(shù)概念的擴充;7.有理指數(shù)冪的運算;8.指數(shù)函數(shù);9.對數(shù);10.對數(shù)的運算性質(zhì);11.對數(shù)函數(shù).12.函數(shù)的應(yīng)用舉例。

1.數(shù)列;2.等差數(shù)列及其通項公式;3.等差數(shù)列前n項和公式;4.等比數(shù)列及其通頂公式;5.等比數(shù)列前n項和公式。

1.角的概念的推廣;2.弧度制;3.任意角的三角函數(shù);4.單位圓中的三角函數(shù)線;5.同角三角函數(shù)的基本關(guān)系式;6.正弦、余弦的誘導(dǎo)公式;7.兩角和與差的正弦、余弦、正切;8.二倍角的正弦、余弦、正切;9.正弦函數(shù)、余弦函數(shù)的圖象和性質(zhì);10.周期函數(shù);11.函數(shù)的奇偶性;12.函數(shù)的圖象;13.正切函數(shù)的圖象和性質(zhì);14.已知三角函數(shù)值求角;15.正弦定理;16.余弦定理;17.斜三角形解法舉例。

1.向量;2.向量的加法與減法;3.實數(shù)與向量的積;4.平面向量的坐標表示;5.線段的定比分點;6.平面向量的數(shù)量積;7.平面兩點間的距離;8.平移。

1.不等式;2.不等式的基本性質(zhì);3.不等式的證明;4.不等式的解法;5.含絕對值的不等式。

1.直線的傾斜角和斜率;2.直線方程的點斜式和兩點式;3.直線方程的一般式;4.兩條直線平行與垂直的條件;5.兩條直線的交角;6.點到直線的距離;7.用二元一次不等式表示平面區(qū)域;8.簡單線性規(guī)劃問題;9.曲線與方程的.概念;10.由已知條件列出曲線方程;11.圓的標準方程和一般方程;12.圓的參數(shù)方程。

1.橢圓及其標準方程;2.橢圓的簡單幾何性質(zhì);3.橢圓的參數(shù)方程;4.雙曲線及其標準方程;5.雙曲線的簡單幾何性質(zhì);6.拋物線及其標準方程;7.拋物線的簡單幾何性質(zhì)。

1.平面及基本性質(zhì);2.平面圖形直觀圖的畫法;3.平面直線;4.直線和平面平行的判定與性質(zhì);5.直線和平面垂直的判定與性質(zhì);6.三垂線定理及其逆定理;7.兩個平面的位置關(guān)系;8.空間向量及其加法、減法與數(shù)乘;9.空間向量的坐標表示;10.空間向量的數(shù)量積;11.直線的方向向量;12.異面直線所成的角;13.異面直線的公垂線;14.異面直線的距離;15.直線和平面垂直的性質(zhì);16.平面的法向量;17.點到平面的距離;18.直線和平面所成的角;19.向量在平面內(nèi)的射影;20.平面與平面平行的性質(zhì);21.平行平面間的距離;22.二面角及其平面角;23.兩個平面垂直的判定和性質(zhì);24.多面體;25.棱柱;26.棱錐;27.正多面體;28.球。

1.分類計數(shù)原理與分步計數(shù)原理;2.排列;3.排列數(shù)公式;4.組合;5.組合數(shù)公式;6.組合數(shù)的兩個性質(zhì);7.二項式定理;8.二項展開式的性質(zhì)。

1.隨機事件的概率;2.等可能事件的概率;3.互斥事件有一個發(fā)生的概率;4.相互獨立事件同時發(fā)生的概率;5.獨立重復(fù)試驗。

選修ⅱ(24個)

時,6個)

1.離散型隨機變量的分布列;2.離散型隨機變量的期望值和方差;3.抽樣方法;4.總體分布的估計;5.正態(tài)分布;6.線性回歸。

1.數(shù)學(xué)歸納法;2.數(shù)學(xué)歸納法應(yīng)用舉例;3.數(shù)列的極限;4.函數(shù)的極限;5.極限的四則運算;6.函數(shù)的連續(xù)性。

1.導(dǎo)數(shù)的概念;2.導(dǎo)數(shù)的幾何意義;3.幾種常見函數(shù)的導(dǎo)數(shù);4.兩個函數(shù)的和、差、積、商的導(dǎo)數(shù);5.復(fù)合函數(shù)的導(dǎo)數(shù);6.基本導(dǎo)數(shù)公式;7.利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和極值;8.函數(shù)的最大值和最小值。

1.復(fù)數(shù)的概念;2.復(fù)數(shù)的加法和減法;3.復(fù)數(shù)的乘法和除法;4.復(fù)數(shù)的一元二次方程和二項方程的解法。

高二數(shù)學(xué)知識點歸納總結(jié)人教版高二數(shù)學(xué)知識點總結(jié)篇四

1.集合;2.子集;3.補集;4.交集;5.并集;6.邏輯連結(jié)詞;7.四種命題;8.充要條件。

1.映射;2.函數(shù);3.函數(shù)的單調(diào)性;4.反函數(shù);5.互為反函數(shù)的函數(shù)圖象間的關(guān)系;6.指數(shù)概念的擴充;7.有理指數(shù)冪的運算;8.指數(shù)函數(shù);9.對數(shù);10.對數(shù)的運算性質(zhì);11.對數(shù)函數(shù).12.函數(shù)的應(yīng)用舉例。

1.數(shù)列;2.等差數(shù)列及其通項公式;3.等差數(shù)列前n項和公式;4.等比數(shù)列及其通頂公式;5.等比數(shù)列前n項和公式。

1.角的概念的推廣;2.弧度制;3.任意角的三角函數(shù);4.單位圓中的三角函數(shù)線;5.同角三角函數(shù)的基本關(guān)系式;6.正弦、余弦的誘導(dǎo)公式;7.兩角和與差的正弦、余弦、正切;8.二倍角的正弦、余弦、正切;9.正弦函數(shù)、余弦函數(shù)的圖象和性質(zhì);10.周期函數(shù);11.函數(shù)的奇偶性;12.函數(shù)的圖象;13.正切函數(shù)的圖象和性質(zhì);14.已知三角函數(shù)值求角;15.正弦定理;16.余弦定理;17.斜三角形解法舉例。

1.向量;2.向量的加法與減法;3.實數(shù)與向量的積;4.平面向量的坐標表示;5.線段的定比分點;6.平面向量的數(shù)量積;7.平面兩點間的距離;8.平移。

1.不等式;2.不等式的基本性質(zhì);3.不等式的證明;4.不等式的解法;5.含絕對值的不等式。

1.直線的傾斜角和斜率;2.直線方程的點斜式和兩點式;3.直線方程的一般式;4.兩條直線平行與垂直的條件;5.兩條直線的交角;6.點到直線的距離;7.用二元一次不等式表示平面區(qū)域;8.簡單線性規(guī)劃問題;9.曲線與方程的概念;10.由已知條件列出曲線方程;11.圓的標準方程和一般方程;12.圓的參數(shù)方程。

1.橢圓及其標準方程;2.橢圓的簡單幾何性質(zhì);3.橢圓的參數(shù)方程;4.雙曲線及其標準方程;5.雙曲線的簡單幾何性質(zhì);6.拋物線及其標準方程;7.拋物線的簡單幾何性質(zhì)。

1.平面及基本性質(zhì);2.平面圖形直觀圖的畫法;3.平面直線;4.直線和平面平行的判定與性質(zhì);5.直線和平面垂直的判定與性質(zhì);6.三垂線定理及其逆定理;7.兩個平面的位置關(guān)系;8.空間向量及其加法、減法與數(shù)乘;9.空間向量的坐標表示;10.空間向量的數(shù)量積;11.直線的方向向量;12.異面直線所成的角;13.異面直線的公垂線;14.異面直線的距離;15.直線和平面垂直的性質(zhì);16.平面的法向量;17.點到平面的距離;18.直線和平面所成的角;19.向量在平面內(nèi)的射影;20.平面與平面平行的性質(zhì);21.平行平面間的距離;22.二面角及其平面角;23.兩個平面垂直的判定和性質(zhì);24.多面體;25.棱柱;26.棱錐;27.正多面體;28.球。

1.分類計數(shù)原理與分步計數(shù)原理;2.排列;3.排列數(shù)公式;4.組合;5.組合數(shù)公式;6.組合數(shù)的兩個性質(zhì);7.二項式定理;8.二項展開式的性質(zhì)。

1.隨機事件的概率;2.等可能事件的概率;3.互斥事件有一個發(fā)生的概率;4.相互獨立事件同時發(fā)生的概率;5.獨立重復(fù)試驗。

1.離散型隨機變量的分布列;2.離散型隨機變量的期望值和方差;3.抽樣方法;4.總體分布的估計;5.正態(tài)分布;6.線性回歸。

1.數(shù)學(xué)歸納法;2.數(shù)學(xué)歸納法應(yīng)用舉例;3.數(shù)列的極限;4.函數(shù)的極限;5.極限的四則運算;6.函數(shù)的連續(xù)性。

1.導(dǎo)數(shù)的概念;2.導(dǎo)數(shù)的幾何意義;3.幾種常見函數(shù)的導(dǎo)數(shù);4.兩個函數(shù)的和、差、積、商的導(dǎo)數(shù);5.復(fù)合函數(shù)的導(dǎo)數(shù);6.基本導(dǎo)數(shù)公式;7.利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和極值;8.函數(shù)的最大值和最小值。

1.復(fù)數(shù)的概念;2.復(fù)數(shù)的加法和減法;3.復(fù)數(shù)的乘法和除法;4.復(fù)數(shù)的一元二次方程和二項方程的解法。

高二數(shù)學(xué)知識點歸納總結(jié)人教版高二數(shù)學(xué)知識點總結(jié)篇五

(1)直線的傾斜角

(2)直線的斜率

①定義:傾斜角不是90°的'直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。

②過兩點的直線的斜率公式:

(2)k與p1、p2的順序無關(guān);

(3)以后求斜率可不通過傾斜角而由直線上兩點的坐標直接求得;

(4)求直線的傾斜角可由直線上兩點的坐標先求斜率得到。

(3)直線方程

①點斜式:直線斜率k,且過點

注意:當直線的斜率為0°時,k=0,直線的方程是y=y1。

當直線的斜率為90°時,直線的斜率不存在,它的方程不能用點斜式表示。但因l上每一點的橫坐標都等于x1,所以它的方程是x=x1。

②斜截式:直線斜率為k,直線在y軸上的截距為b

③兩點式:()直線兩點,

④截矩式:

其中直線與軸交于點,與軸交于點,即與軸、軸的截距分別為。

⑤一般式:(a,b不全為0)

注意:各式的適用范圍特殊的方程如:

平行于x軸的直線:(b為常數(shù));平行于y軸的直線:(a為常數(shù));

(5)直線系方程:即具有某一共同性質(zhì)的直線

(一)平行直線系

平行于已知直線(是不全為0的常數(shù))的直線系:(c為常數(shù))

(二)垂直直線系

垂直于已知直線(是不全為0的常數(shù))的直線系:(c為常數(shù))

(三)過定點的直線系

(?。┬甭蕿閗的直線系:,直線過定點;

(ⅱ)過兩條直線,的交點的直線系方程為

(為參數(shù)),其中直線不在直線系中。

(6)兩直線平行與垂直當,時,;

注意:利用斜率判斷直線的平行與垂直時,要注意斜率的存在與否。

(7)兩條直線的交點相交

交點坐標即方程組的一組解。

方程組無解;方程組有無數(shù)解與重合

(8)兩點間距離公式:設(shè)是平面直角坐標系中的兩個點,

(9)點到直線距離公式:一點到直線的距離

(10)兩平行直線距離公式

在任一直線上任取一點,再轉(zhuǎn)化為點到直線的距離進行求解。

高二數(shù)學(xué)知識點歸納總結(jié)人教版高二數(shù)學(xué)知識點總結(jié)篇六

(3)確定事件:必然事件和不可能事件統(tǒng)稱為相對于條件s的確定事件;

(5)頻數(shù)與頻率:在相同的條件s下重復(fù)n次試驗,觀察某一事件a是否出現(xiàn),稱n次試驗中事件a出現(xiàn)的次數(shù)na為事件a出現(xiàn)的頻數(shù);稱事件a出現(xiàn)的比例fn(a)=nna為事件a出現(xiàn)的概率:對于給定的隨機事件a,如果隨著試驗次數(shù)的增加,事件a發(fā)生的頻率fn(a)穩(wěn)定在某個常數(shù)上,把這個常數(shù)記作p(a),稱為事件a的概率。

(6)頻率與概率的區(qū)別與聯(lián)系:隨機事件的頻率,指此事件發(fā)生的次數(shù)na與試驗總次數(shù)n的比值nna,它具有一定的穩(wěn)定性,總在某個常數(shù)附近擺動,且隨著試驗次數(shù)的不斷增多,這種擺動幅度越來越小。我們把這個常數(shù)叫做隨機事件的概率,概率從數(shù)量上反映了隨機事件發(fā)生的可能性的大小。頻率在大量重復(fù)試驗的前提下可以近似地作為這個事件的概率。

高二數(shù)學(xué)知識點歸納總結(jié)人教版高二數(shù)學(xué)知識點總結(jié)篇七

1、幾何概型的定義:如果每個事件發(fā)生的概率只與構(gòu)成該事件區(qū)域的長度(面積或體積)成比例,則稱這樣的概率模型為幾何概率模型,簡稱幾何概型。

試驗的全部結(jié)果所構(gòu)成的區(qū)域長度(面積或體積)

3、幾何概型的特點:

1)試驗中所有可能出現(xiàn)的結(jié)果(基本事件)有無限多個;

2)每個基本事件出現(xiàn)的可能性相等、

4、幾何概型與古典概型的比較:一方面,古典概型具有有限性,即試驗結(jié)果是可數(shù)的;而幾何概型則是在試驗中出現(xiàn)無限多個結(jié)果,且與事件的區(qū)域長度(或面積、體積等)有關(guān),即試驗結(jié)果具有無限性,是不可數(shù)的。這是二者的不同之處;另一方面,古典概型與幾何概型的試驗結(jié)果都具有等可能性,這是二者的共性。

通過以上對于幾何概型的基本知識點的梳理,我們不難看出其要核是:要抓住幾何概型具有無限性和等可能性兩個特點,無限性是指在一次試驗中,基本事件的個數(shù)可以是無限的,這是區(qū)分幾何概型與古典概型的關(guān)鍵所在;等可能性是指每一個基本事件發(fā)生的可能性是均等的,這是解題的基本前提。因此,用幾何概型求解的概率問題和古典概型的基本思路是相同的,同屬于“比例法”,即隨機事件a的概率可以用“事件a包含的基本事件所占的圖形的長度、面積(體積)和角度等”與“試驗的基本事件所占總長度、面積(體積)和角度等”之比來表示。下面就幾何概型常見類型題作一歸納梳理。

高二數(shù)學(xué)知識點歸納總結(jié)人教版高二數(shù)學(xué)知識點總結(jié)篇八

一、集合、簡易邏輯(14課時,8個)

1、集合;

2、子集;

3、補集;

4、交集;

5、并集;

6、邏輯連結(jié)詞;

7、四種命題;

8、充要條件。

二、函數(shù)(30課時,12個)

1、映射;

2、函數(shù);

3、函數(shù)的單調(diào)性;

4、反函數(shù);

5、互為反函數(shù)的函數(shù)圖象間的關(guān)系;

6、指數(shù)概念的擴充;

7、有理指數(shù)冪的運算;

8、指數(shù)函數(shù);

9、對數(shù);

10、對數(shù)的運算性質(zhì);

11、對數(shù)函數(shù)。

12、函數(shù)的應(yīng)用舉例。

三、數(shù)列(12課時,5個)

1、數(shù)列;

2、等差數(shù)列及其通項公式;

3、等差數(shù)列前n項和公式;

4、等比數(shù)列及其通頂公式;

5、等比數(shù)列前n項和公式。

四、三角函數(shù)(46課時,17個)

1、角的概念的推廣;

2、弧度制;

3、任意角的三角函數(shù);

4、單位圓中的三角函數(shù)線;

5、同角三角函數(shù)的基本關(guān)系式;

6、正弦、余弦的誘導(dǎo)公式;

7、兩角和與差的正弦、余弦、正切;

8、二倍角的正弦、余弦、正切;

9、正弦函數(shù)、余弦函數(shù)的圖象和性質(zhì);

10、周期函數(shù);

11、函數(shù)的奇偶性;

12、函數(shù)的圖象;

13、正切函數(shù)的圖象和性質(zhì);

14、已知三角函數(shù)值求角;

15、正弦定理;

16、余弦定理;

17、斜三角形解法舉例。

五、平面向量(12課時,8個)

1、向量;

2、向量的加法與減法;

3、實數(shù)與向量的積;

4、平面向量的坐標表示;

5、線段的定比分點;

6、平面向量的數(shù)量積;

7、平面兩點間的距離;

8、平移。

六、不等式(22課時,5個)

1、不等式;

2、不等式的基本性質(zhì);

3、不等式的證明;

4、不等式的解法;

5、含絕對值的不等式。

七、直線和圓的方程(22課時,12個)

1、直線的傾斜角和斜率;

2、直線方程的點斜式和兩點式;

3、直線方程的一般式;

4、兩條直線平行與垂直的條件;

5、兩條直線的交角;

6、點到直線的距離;

7、用二元一次不等式表示平面區(qū)域;

8、簡單線性規(guī)劃問題;

9、曲線與方程的概念;

10、由已知條件列出曲線方程;

11、圓的標準方程和一般方程;

12、圓的參數(shù)方程。

高二數(shù)學(xué)知識點歸納總結(jié)人教版高二數(shù)學(xué)知識點總結(jié)篇九

如果等到把課堂內(nèi)容遺忘得差不多時才復(fù)習(xí),就幾乎等于重新學(xué)習(xí),所以課堂學(xué)習(xí)的新知識必須及時復(fù)習(xí)。

可以一個人單獨回憶,也可以幾個人在一起互相啟發(fā),補充回憶。一般按照教師板書的提綱和要領(lǐng)進行,也可以按教材綱目結(jié)構(gòu)進行,從課題到重點內(nèi)容,再到例題的每部分的細節(jié),循序漸進地進行復(fù)習(xí)。在復(fù)習(xí)過程中要不失時機整理筆記,因為整理筆記也是一種有效的復(fù)習(xí)方法。

即使是復(fù)習(xí)過的內(nèi)容仍須定期鞏固,但是復(fù)習(xí)的次數(shù)應(yīng)隨時間的增長而逐步減小,間隔也可以逐漸拉長??梢援斕祆柟绦轮R,每周進行周小結(jié),每月進行階段性總結(jié),期中、期末進行全面系統(tǒng)的學(xué)期復(fù)習(xí)。從內(nèi)容上看,每課知識即時回顧,每單元進行知識梳理,每章節(jié)進行知識歸納總結(jié),必須把相關(guān)知識串聯(lián)在一起,形成知識網(wǎng)絡(luò),達到對知識和方法的整體把握。

復(fù)習(xí)一般可以分為集中復(fù)習(xí)和分散復(fù)習(xí)。實驗證明,分散復(fù)習(xí)的效果優(yōu)于集中復(fù)習(xí),特殊情況除外。分散復(fù)習(xí),可以把需要識記的材料適當分類,并且與其他的學(xué)習(xí)或娛樂或休息交替進行,不至于單調(diào)使用某種思維方式,形成疲勞。分散復(fù)習(xí)也應(yīng)結(jié)合各自認知水平,以及識記素材的特點,把握重復(fù)次數(shù)與間隔時間,并非間隔時間越長越好,而要適合自己的復(fù)習(xí)規(guī)律。

對所學(xué)的素材要進行分析、歸類,找出重、難點,分清主次。在復(fù)習(xí)過程中,特別要關(guān)注難點及容易造成誤解的問題,應(yīng)分析其關(guān)鍵點和易錯點,找出原因,必要時還可以把這類問題進行梳理,記錄在一個專題本上,也可以在電腦上做一個重難點“超市”,可隨時點擊,進行復(fù)習(xí)。

隨著時間的推移,復(fù)習(xí)的效果會產(chǎn)生變化,有的淡化、有的模糊、有的不準確,到底各環(huán)節(jié)的內(nèi)容掌握得如何,需進行效果檢測,如:周周練、月月測、單元過關(guān)練習(xí)、期中考試、期末考試等,都是為了檢測學(xué)習(xí)效果。檢測時必須獨立,限時完成,保證檢測出的效果的真實性,如果存在問題,應(yīng)該找到錯誤的根源,并適時采取補救措施進行校正。目前市場上練習(xí)冊多如牛毛,請在老師的指導(dǎo)下選用。

【本文地址:http://mlvmservice.com/zuowen/2057446.html】

全文閱讀已結(jié)束,如果需要下載本文請點擊

下載此文檔