教案的編寫要體現(xiàn)教學(xué)過程的靈活性和創(chuàng)造性,以適應(yīng)不同學(xué)生的學(xué)習(xí)需求。編寫教案時,可以借鑒一些優(yōu)秀的教學(xué)案例,提高教學(xué)效果。下面是一份精心編寫的教案范例,供教師們參考。
高一數(shù)學(xué)必修函數(shù)教案篇一
教學(xué)目標(biāo)。
熟悉兩角和與差的正、余公式的推導(dǎo)過程,提高邏輯推理能力。
掌握兩角和與差的正、余弦公式,能用公式解決相關(guān)問題。
教學(xué)重難點。
熟練兩角和與差的正、余弦公式的正用、逆用和變用技巧。
教學(xué)過程。
復(fù)習(xí)。
兩角差的余弦公式。
用-b代替b看看有什么結(jié)果?
高一數(shù)學(xué)必修函數(shù)教案篇二
(2)了解區(qū)間的概念;。
(2)了解區(qū)間的概念就是指能夠體會用區(qū)間表示數(shù)集的意義和作用;。
【問題診斷分析】在本節(jié)課的教學(xué)中,學(xué)生可能遇到的問題是函數(shù)的概念及符號的理解,產(chǎn)生這一問題的原因是:函數(shù)本身就是一個抽象的概念,對學(xué)生來說一個難點。要解決這一問題,就要在通過從實際問題中抽象概況函數(shù)的概念,培養(yǎng)學(xué)生的抽象概況能力,其中關(guān)鍵是理論聯(lián)系實際,把抽象轉(zhuǎn)化為具體。
問題1:一枚炮彈發(fā)射后,經(jīng)過26s落到地面擊中目標(biāo).炮彈的射高為845m,且炮彈距離地面的高度h(單位:m)隨時間t(單位:s)變化的規(guī)律是:h=130t-5t2.
1.1這里的變量t的變化范圍是什么?變量h的變化范圍是什么?試用集合表示?
1.2高度變量h與時間變量t之間的對應(yīng)關(guān)系是否為函數(shù)?若是,其自變量是什么?
設(shè)計意圖:通過以上問題,讓學(xué)生正確理解讓學(xué)生體會用解析式或圖象刻畫兩個變量之間的依賴關(guān)系,從問題的實際意義可知,在t的變化范圍內(nèi)任給一個t,按照給定的對應(yīng)關(guān)系,都有的一個高度h與之對應(yīng)。
問題2:分析教科書中的實例(2),引導(dǎo)學(xué)生看圖并啟發(fā):在t的變化t按照給定的`圖象,都有的一個臭氧層空洞面積s與之相對應(yīng)。
問題3:要求學(xué)生仿照實例(1)、(2),描述實例(3)中恩格爾系數(shù)和時間的關(guān)系。
設(shè)計意圖:通過這些問題,讓學(xué)生理解得到函數(shù)的定義,培養(yǎng)學(xué)生的歸納、概況的能力。
高一數(shù)學(xué)必修函數(shù)教案篇三
用坐標(biāo)法解決幾何問題的步驟:
第二步:通過代數(shù)運算,解決代數(shù)問題;
第三步:將代數(shù)運算結(jié)果“翻譯”成幾何結(jié)論、
重點與難點:直線與圓的方程的應(yīng)用、
問 題設(shè)計意圖師生活動
生:回顧,說出自己的看法、
2、解決直線與圓的位置關(guān)系,你將采用什么方法?
生:回顧、思考、討論、交流,得到解決問題的方法、
問 題設(shè)計意圖師生活動
3、閱讀并思考教科書上的例4,你將選擇什么方 法解決例4的'問題
生:自 學(xué)例4,并完成練習(xí)題1、2、
生:建立適當(dāng)?shù)闹苯亲鴺?biāo)系, 探求解決問題的方法、
8、小結(jié):
(1)利用“坐標(biāo)法”解決問對知識進行歸納概括,體會利 師:指導(dǎo) 學(xué)生完成練習(xí)題、
生:閱讀教科書的例3,并完成第
問 題設(shè)計意圖師生活動
題的需要準(zhǔn)備什么工作?
(2)如何建立直角坐標(biāo)系,才能易于解決平面幾何問題?
(3)你認(rèn)為學(xué)好“坐標(biāo)法”解決問題的關(guān)鍵是什么?
高一數(shù)學(xué)必修函數(shù)教案篇四
3.通過參與編題解題,激發(fā)學(xué)生學(xué)習(xí)的愛好.
教學(xué)重點是通項公式的熟悉;教學(xué)難點是對公式的靈活運用.
實物投影儀,多媒體軟件,電腦.
研探式.
一.復(fù)習(xí)提問
等差數(shù)列的概念是從相鄰兩項的關(guān)系加以定義的,這個關(guān)系用遞推公式來表示比較簡單,但我們要圍繞通項公式作進一步的理解與應(yīng)用.
二.主體設(shè)計
通項公式反映了項與項數(shù)之間的函數(shù)關(guān)系,當(dāng)?shù)炔顢?shù)列的首項與公差確定后,數(shù)列的每一項便確定了,可以求指定的項(即已知求).找學(xué)生試舉一例如:“已知等差數(shù)列中,首項,公差,求.”這是通項公式的簡單應(yīng)用,由學(xué)生解答后,要求每個學(xué)生出一些運用等差數(shù)列通項公式的題目,包括正用、反用與變用,簡單、復(fù)雜,定量、定性的均可,教師巡視將好題搜集起來,分類投影在屏幕上.
1.方程思想的運用
(1)已知等差數(shù)列中,首項,公差,則-397是該數(shù)列的第x項.
(2)已知等差數(shù)列中,首項,則公差
(3)已知等差數(shù)列中,公差,則首項
這一類問題先由學(xué)生解決,之后教師點評,四個量,在一個等式中,運用方程的思想方法,已知其中三個量的值,可以求得第四個量.
2.基本量方法的使用
(1)已知等差數(shù)列中,求的值.
(2)已知等差數(shù)列中,求.
若學(xué)生的題目只有這兩種類型,教師可以小結(jié)(請出題者、解題者概括):因為已知條件可以化為關(guān)于和的二元方程組,所以這些等差數(shù)列是確定的,由和寫出通項公式,便可歸結(jié)為前一類問題.解決這類問題只需把兩個條件(等式)化為關(guān)于和的二元方程組,以求得和,和稱作基本量.
教師提出新的問題,已知等差數(shù)列的一個條件(等式),能否確定一個等差數(shù)列?學(xué)生回答后,教師再啟發(fā),由這一個條件可得到關(guān)于和的二元方程,這是一個和的`制約關(guān)系,從這個關(guān)系可以得到什么結(jié)論?舉例說明(例題可由學(xué)生或教師給出,視具體情況而定).
如:已知等差數(shù)列中,…
由條件可得即,可知,這是比較顯然的,與之相關(guān)的還能有什么結(jié)論?若學(xué)生答不出可提示,一定得某一項的值么?能否與兩項有關(guān)?多項有關(guān)?由學(xué)生發(fā)現(xiàn)規(guī)律,完善問題(3)已知等差數(shù)列中,求;;;;….
類似的還有
(4)已知等差數(shù)列中,求的值.
以上屬于對數(shù)列的項進行定量的研究,有無定性的判定?引出
3.研究等差數(shù)列的單調(diào)性
4.研究項的符號
這是為研究等差數(shù)列前項和的最值所做的預(yù)備工作.可配備的題目如
(1)已知數(shù)列的通項公式為,問數(shù)列從第幾項開始小于0?
(2)等差數(shù)列從第x項起以后每項均為負(fù)數(shù).
三.小結(jié)
1.用方程思想熟悉等差數(shù)列通項公式;
2.用函數(shù)思想解決等差數(shù)列問題.
四.板書設(shè)計
等差數(shù)列通項公式1.方程思想的運用
2.基本量方法的使用
3.研究等差數(shù)列的單調(diào)性
4.研究項的符號
高一數(shù)學(xué)必修函數(shù)教案篇五
1.閱讀課本練習(xí)止。
2.回答問題:
(1)課本內(nèi)容分成幾個層次?每個層次的中心內(nèi)容是什么?
(2)層次間的聯(lián)系是什么?
(3)對數(shù)函數(shù)的定義是什么?
(4)對數(shù)函數(shù)與指數(shù)函數(shù)有什么關(guān)系?
3.完成練習(xí)。
4.小結(jié)。
二、方法指導(dǎo)。
1.在學(xué)習(xí)對數(shù)函數(shù)時,同學(xué)們應(yīng)從熟悉的指數(shù)問題出發(fā),通過對指數(shù)函數(shù)的認(rèn)識逐步轉(zhuǎn)化為對對數(shù)函數(shù)的認(rèn)識,而且畫對數(shù)函數(shù)圖象時,既要考慮到對底數(shù)的分類討論而且對每一類問題也可以多選幾個不同的底,畫在同一個坐標(biāo)系內(nèi),便于觀察圖象的特征,找出共性,歸納性質(zhì)。
2.本節(jié)課的主線是對數(shù)函數(shù)是指數(shù)函數(shù)的反函數(shù),所有的問題都應(yīng)圍繞著這條主線展開,同學(xué)們在學(xué)習(xí)時應(yīng)該把兩個函數(shù)進行類比,通過互為反函數(shù)的兩個函數(shù)的關(guān)系由已知函數(shù)研究未知函數(shù)的性質(zhì)。
一、提問題。
1.對數(shù)函數(shù)的自變量和函數(shù)分別在指數(shù)函數(shù)中是什么?
2.兩個函數(shù)如果互為反函數(shù),則他們的值域,定義域有什么關(guān)系?
3.是否所有的函數(shù)都有反函數(shù)?試舉例說明。
二、變題目。
1.試求下列函數(shù)的反函數(shù):
(1);(2);(3);(4)。
2.求下列函數(shù)的定義域:。
(1);(2);(3)。
3.已知則=;的定義域為。
1.對數(shù)函數(shù)的有關(guān)概念。
(1)把函數(shù)叫做對數(shù)函數(shù),叫做對數(shù)函數(shù)的底數(shù)。
(2)以10為底數(shù)的對數(shù)函數(shù)為常用對數(shù)函數(shù)。
(3)以無理數(shù)為底數(shù)的對數(shù)函數(shù)為自然對數(shù)函數(shù)。
2.反函數(shù)的概念。
在指數(shù)函數(shù)中,是自變量,是的函數(shù),其定義域是,值域是;在對數(shù)函數(shù)中,是自變量,是的函數(shù),其定義域是,值域是,像這樣的兩個函數(shù)叫做互為反函數(shù)。
3.與對數(shù)函數(shù)有關(guān)的定義域的求法:
4.舉例說明如何求反函數(shù)。
一、課外作業(yè):習(xí)題3-5a組1,2,3,b組1,
二、課外思考:
1.求定義域:
2.求使函數(shù)的函數(shù)值恒為負(fù)值的的取值范圍。
高一數(shù)學(xué)必修函數(shù)教案篇六
教學(xué)目標(biāo)。
理解以兩角差的余弦公式為基礎(chǔ),推導(dǎo)兩角和、差正弦和正切公式的方法,體會三角恒等變換特點的過程,理解推導(dǎo)過程,掌握其應(yīng)用.
教學(xué)重難點。
1.教學(xué)重點:兩角和、差正弦和正切公式的推導(dǎo)過程及運用;。
2.教學(xué)難點:兩角和與差正弦、余弦和正切公式的靈活運用.
教學(xué)過程。
高一數(shù)學(xué)必修函數(shù)教案篇七
本節(jié)知識包括函數(shù)的單調(diào)性、函數(shù)的奇偶性、函數(shù)的周期性、函數(shù)的最值、函數(shù)的對稱性和函數(shù)的圖象等知識點。函數(shù)的單調(diào)性、函數(shù)的奇偶性、函數(shù)的周期性、函數(shù)的最值、函數(shù)的對稱性是學(xué)習(xí)函數(shù)的圖象的基礎(chǔ),函數(shù)的圖象是它們的綜合。所以理解了前面的幾個知識點,函數(shù)的圖象就迎刃而解了。
1、函數(shù)單調(diào)性的定義。
2、函數(shù)單調(diào)性的判斷和證明:
(1)定義法。
(2)復(fù)合函數(shù)分析法。
(3)導(dǎo)數(shù)證明法。
(4)圖象法。
1、函數(shù)的奇偶性和周期性的定義。
2、函數(shù)的奇偶性的判定和證明方法。
3、函數(shù)的周期性的判定方法。
1、函數(shù)圖象的作法。
(1)描點法。
(2)圖象變換法。
2、圖象變換包括圖象:平移變換、伸縮變換、對稱變換、翻折變換。
本節(jié)是段考和高考必不可少的考查內(nèi)容,是段考和高考考查的重點和難點。選擇題、填空題和解答題都有,并且題目難度較大。在解答題中,它可以和高中數(shù)學(xué)的每一章聯(lián)合考查,多屬于拔高題。多考查函數(shù)的單調(diào)性、最值和圖象等。
1、求函數(shù)的單調(diào)區(qū)間,必須先求函數(shù)的定義域,即遵循“函數(shù)問題定義域優(yōu)先的原則”。
2、單調(diào)區(qū)間必須用區(qū)間來表示,不能用集合或不等式,單調(diào)區(qū)間一般寫成開區(qū)間,不必考慮端點問題。
3、在多個單調(diào)區(qū)間之間不能用“或”和“”連接,只能用逗號隔開。
4、判斷函數(shù)的奇偶性,首先必須考慮函數(shù)的定義域,如果函數(shù)的定義域不關(guān)于原點對稱,則函數(shù)一定是非奇非偶函數(shù)。
5、作函數(shù)的圖象,一般是首先化簡解析式,然后確定用描點法或圖象變換法作函數(shù)的圖象。
高一數(shù)學(xué)必修函數(shù)教案篇八
(1)能根據(jù)定義判斷形如什么樣的函數(shù)是指數(shù)函數(shù),了解對底數(shù)的限制條件的合理性,明確指數(shù)函數(shù)的定義域.
(2)能在基本性質(zhì)的指導(dǎo)下,用列表描點法畫出指數(shù)函數(shù)的圖象,能從數(shù)形兩方面認(rèn)識指數(shù)函數(shù)的性質(zhì).
(3)能利用指數(shù)函數(shù)的性質(zhì)比較某些冪形數(shù)的大小,會利用指數(shù)函數(shù)的圖象畫出形如。
的圖象.
2.通過對指數(shù)函數(shù)的概念圖象性質(zhì)的學(xué)習(xí),培養(yǎng)學(xué)生觀察,分析歸納的能力,進一步體會數(shù)形結(jié)合的思想方法.
3.通過對指數(shù)函數(shù)的研究,讓學(xué)生認(rèn)識到數(shù)學(xué)的應(yīng)用價值,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣.使學(xué)生善于從現(xiàn)實生活中數(shù)學(xué)的發(fā)現(xiàn)問題,解決問題.
教學(xué)建議。
教材分析。
(1)指數(shù)函數(shù)是在學(xué)生系統(tǒng)學(xué)習(xí)了函數(shù)概念,基本掌握了函數(shù)的性質(zhì)的基礎(chǔ)上進行研究的,它是重要的基本初等函數(shù)之一,作為常見函數(shù),它既是函數(shù)概念及性質(zhì)的第一次應(yīng)用,也是今后學(xué)習(xí)對數(shù)函數(shù)的基礎(chǔ),同時在生活及生產(chǎn)實際中有著廣泛的應(yīng)用,所以指數(shù)函數(shù)應(yīng)重點研究.
(2)本節(jié)的教學(xué)重點是在理解指數(shù)函數(shù)定義的基礎(chǔ)上掌握指數(shù)函數(shù)的圖象和性質(zhì).難點是對底數(shù)在和時,函數(shù)值變化情況的區(qū)分.
(3)指數(shù)函數(shù)是學(xué)生完全陌生的一類函數(shù),對于這樣的函數(shù)應(yīng)怎樣進行較為系統(tǒng)的理論研究是學(xué)生面臨的重要問題,所以從指數(shù)函數(shù)的研究過程中得到相應(yīng)的結(jié)論固然重要,但更為重要的是要了解系統(tǒng)研究一類函數(shù)的方法,所以在教學(xué)中要特別讓學(xué)生去體會研究的方法,以便能將其遷移到其他函數(shù)的研究.
教法建議。
(1)關(guān)于指數(shù)函數(shù)的定義按照課本上說法它是一種形式定義即解析式的特征必須是。
的樣子,不能有一點差異,諸如。
(2)對底數(shù)。
的限制條件的理解與認(rèn)識也是認(rèn)識指數(shù)函數(shù)的重要內(nèi)容.如果有可能盡量讓學(xué)生自己去研究對底數(shù),指數(shù)都有什么限制要求,教師再給予補充或用具體例子加以說明,因為對這個條件的認(rèn)識不僅關(guān)系到對指數(shù)函數(shù)的認(rèn)識及性質(zhì)的分類討論,還關(guān)系到后面學(xué)習(xí)對數(shù)函數(shù)中底數(shù)的認(rèn)識,所以一定要真正了解它的由來.
關(guān)于指數(shù)函數(shù)圖象的繪制,雖然是用列表描點法,但在具體教學(xué)中應(yīng)避免描點前的盲目列表計算,也應(yīng)避免盲目的連點成線,要把表列在關(guān)鍵之處,要把點連在恰當(dāng)之處,所以應(yīng)在列表描點前先把函數(shù)的性質(zhì)作一些簡單的討論,取得對要畫圖象的存在范圍,大致特征,變化趨勢的大概認(rèn)識后,以此為指導(dǎo)再列表計算,描點得圖象.
高一數(shù)學(xué)必修函數(shù)教案篇九
(1)理解函數(shù)的概念;。
(2)了解區(qū)間的概念;。
2、目標(biāo)解析。
(2)了解區(qū)間的概念就是指能夠體會用區(qū)間表示數(shù)集的意義和作用;。
【問題診斷分析】在本節(jié)課的教學(xué)中,學(xué)生可能遇到的問題是函數(shù)的概念及符號的理解,產(chǎn)生這一問題的原因是:函數(shù)本身就是一個抽象的概念,對學(xué)生來說一個難點。要解決這一問題,就要在通過從實際問題中抽象概況函數(shù)的概念,培養(yǎng)學(xué)生的抽象概況能力,其中關(guān)鍵是理論聯(lián)系實際,把抽象轉(zhuǎn)化為具體。
【教學(xué)過程】。
問題1:一枚炮彈發(fā)射后,經(jīng)過26s落到地面擊中目標(biāo).炮彈的射高為845m,且炮彈距離地面的高度h(單位:m)隨時間t(單位:s)變化的規(guī)律是:h=130t-5t2.
1.1這里的變量t的變化范圍是什么?變量h的變化范圍是什么?試用集合表示?
1.2高度變量h與時間變量t之間的對應(yīng)關(guān)系是否為函數(shù)?若是,其自變量是什么?
設(shè)計意圖:通過以上問題,讓學(xué)生正確理解讓學(xué)生體會用解析式或圖象刻畫兩個變量之間的依賴關(guān)系,從問題的實際意義可知,在t的變化范圍內(nèi)任給一個t,按照給定的對應(yīng)關(guān)系,都有的一個高度h與之對應(yīng)。
問題2:分析教科書中的實例(2),引導(dǎo)學(xué)生看圖并啟發(fā):在t的變化t按照給定的圖象,都有的一個臭氧層空洞面積s與之相對應(yīng)。
問題3:要求學(xué)生仿照實例(1)、(2),描述實例(3)中恩格爾系數(shù)和時間的關(guān)系。
設(shè)計意圖:通過這些問題,讓學(xué)生理解得到函數(shù)的定義,培養(yǎng)學(xué)生的歸納、概況的能力。
高一數(shù)學(xué)必修函數(shù)教案篇十
>教學(xué)目標(biāo)
落實情況.
解?絕對值不等式注意不要丟掉?這部分解集.。
五、作業(yè)。
1.閱讀課本?含絕對值不等式解法.。
2.習(xí)題?2、3、4。
課堂教學(xué)設(shè)計說明。
1.抓住解型絕對值不等式的關(guān)鍵是絕對值的意義,為此首先通過復(fù)習(xí)讓學(xué)生掌握好絕對值的意義,為解絕對值不等式打下牢固的基礎(chǔ).
2.在解與絕對值不等式中的關(guān)鍵處設(shè)問、質(zhì)疑、點撥,讓學(xué)生融會貫通的掌握它們解法之間的內(nèi)在聯(lián)系,以達到提高學(xué)生解題能力的目的.
3.針對學(xué)生解()絕對值不等式容易出現(xiàn)丟掉這部分解集的錯誤,在教學(xué)中應(yīng)根據(jù)絕對值的意義從數(shù)軸進行突破,并在練習(xí)中糾正這個錯誤,以提高學(xué)生的運算能力.
高一數(shù)學(xué)必修函數(shù)教案篇十一
(1)掌握與()型的絕對值不等式的解法.
(2)掌握與()型的絕對值不等式的解法.
(3)通過用數(shù)軸來表示含絕對值不等式的解集,培養(yǎng)學(xué)生數(shù)形結(jié)合的能力;。
教學(xué)重點:型的不等式的解法;。
教學(xué)難點:利用絕對值的意義分析、解決問題.
教學(xué)過程設(shè)計。
教師活動。
學(xué)生活動。
設(shè)計意圖。
一、導(dǎo)入新課。
【提問】正數(shù)的絕對值什么?負(fù)數(shù)的絕對值是什么?零的絕對值是什么?舉例說明?
【概括】。
?
口答。
二、新課。
【提問】如何解絕對值方程?.。
【質(zhì)疑】?的解集有幾部分?為什么?也是它的解集?
【練習(xí)】解下列不等式:
(1)?;
(2)。
【設(shè)問】如果在?中的?,也就是?怎樣解?
【點撥】可以把?看成一個整體,也就是把?看成?,按照?的解法來解.。
所以,原不等式的解集是。
【設(shè)問】如果?中的?是?,也就是?怎樣解?
【點撥】可以把?看成一個整體,也就是把?看成?,按照?的解法來解.。
或?。
由?得。
由?得。
所以,原不等式的解集是。
口答.畫出數(shù)軸后在數(shù)軸上表示絕對值等于2的數(shù).。
畫出數(shù)軸,思考答案。
不等式?的解集表示為。
畫出數(shù)軸。
思考答案。
???不等式?的解集為。
或表示為?,或。
筆答。
(1)。
(2)?,或。
筆答。
筆答。
根據(jù)絕對值的意義自然引出絕對值方程?(?)的解法.。
由淺入深,循序漸進,在?()型絕對值方程的基礎(chǔ)上引出(?)型絕對值方程的解法.。
針對解?(?)絕對值不等式學(xué)生常出現(xiàn)的情況,運用數(shù)軸質(zhì)疑、解惑.。
落實會正確解出?與?(?)絕對值不等式。
高一數(shù)學(xué)必修函數(shù)教案篇十二
函數(shù)是高考數(shù)學(xué)中的重點內(nèi)容,學(xué)習(xí)函數(shù)需要首先掌握函數(shù)的各個知識點,然后運用函數(shù)的各種性質(zhì)來解決具體的問題。
2.函數(shù)的定義域。
函數(shù)的定義域分為自然定義域和實際定義域兩種,如果給定的函數(shù)的解析式(不注明定義域),其定義域應(yīng)指的是使該解析式有意義的自變量的取值范圍(稱為自然定義域),如果函數(shù)是有實際問題確定的,這時應(yīng)根據(jù)自變量的實際意義來確定,函數(shù)的值域是由全體函數(shù)值組成的集合。
3.求解析式。
求函數(shù)的解析式一般有三種種情況:
(1)根據(jù)實際問題建立函數(shù)關(guān)系式,這種情況需引入合適的變量,根據(jù)數(shù)學(xué)的有關(guān)知識找出函數(shù)關(guān)系式。
(2)有時體中給出函數(shù)特征,求函數(shù)的解析式,可用待定系數(shù)法。
(3)換元法求解析式,f[h(x)]=g(x)求f(x)的問題,往往可設(shè)h(x)=t,從中解出x,代入g(x)進行換元來解。掌握求函數(shù)解析式的前提是,需要對各種函數(shù)的性質(zhì)了解且熟悉。
目前我們已經(jīng)學(xué)習(xí)了常數(shù)函數(shù)、指數(shù)與指數(shù)函數(shù)、對數(shù)與對數(shù)函數(shù)、冪函數(shù)、三角函數(shù)、反比例函數(shù)、二次函數(shù)以及由以上幾種函數(shù)加減乘除,或者復(fù)合的一些相對較復(fù)雜的函數(shù),但是這種函數(shù)也是初等函數(shù)。
高一數(shù)學(xué)必修函數(shù)教案篇十三
1.掌握對數(shù)函數(shù)的概念,圖象和性質(zhì),且在掌握性質(zhì)的基礎(chǔ)上能進行初步的應(yīng)用.
(1)能在指數(shù)函數(shù)及反函數(shù)的概念的基礎(chǔ)上理解對數(shù)函數(shù)的定義,了解對底數(shù)的要求,及對定義域的要求,能利用互為反函數(shù)的兩個函數(shù)圖象間的關(guān)系正確描繪對數(shù)函數(shù)的圖象.
(2)能把握指數(shù)函數(shù)與對數(shù)函數(shù)的實質(zhì)去研究認(rèn)識對數(shù)函數(shù)的性質(zhì),初步學(xué)會用對數(shù)函數(shù)的性質(zhì)解決簡單的問題.
2.通過對數(shù)函數(shù)概念的學(xué)習(xí),樹立相互聯(lián)系相互轉(zhuǎn)化的觀點,通過對數(shù)函數(shù)圖象和性質(zhì)的學(xué)習(xí),滲透數(shù)形結(jié)合,分類討論等思想,注重培養(yǎng)學(xué)生的觀察,分析,歸納等邏輯思維能力.
3.通過指數(shù)函數(shù)與對數(shù)函數(shù)在圖象與性質(zhì)上的對比,對學(xué)生進行對稱美,簡潔美等審美教育,調(diào)動學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性.
教學(xué)建議。
教材分析。
(1)對數(shù)函數(shù)又是函數(shù)中一類重要的基本初等函數(shù),它是在學(xué)生已經(jīng)學(xué)過對數(shù)與常用對數(shù),反函數(shù)以及指數(shù)函數(shù)的基礎(chǔ)上引入的.故是對上述知識的應(yīng)用,也是對函數(shù)這一重要數(shù)學(xué)思想的進一步認(rèn)識與理解.對數(shù)函數(shù)的概念,圖象與性質(zhì)的學(xué)習(xí)使學(xué)生的知識體系更加完整,系統(tǒng),同時又是對數(shù)和函數(shù)知識的拓展與延伸.它是解決有關(guān)自然科學(xué)領(lǐng)域中實際問題的重要工具,是學(xué)生今后學(xué)習(xí)對數(shù)方程,對數(shù)不等式的基礎(chǔ).
(2)本節(jié)的教學(xué)重點是理解對數(shù)函數(shù)的定義,掌握對數(shù)函數(shù)的圖象性質(zhì).難點是利用指數(shù)函數(shù)的圖象和性質(zhì)得到對數(shù)函數(shù)的圖象和性質(zhì).由于對數(shù)函數(shù)的概念是一個抽象的形式,學(xué)生不易理解,而且又是建立在指數(shù)與對數(shù)關(guān)系和反函數(shù)概念的基礎(chǔ)上,故應(yīng)成為教學(xué)的重點.
(1)對數(shù)函數(shù)在引入時,就應(yīng)從學(xué)生熟悉的指數(shù)問題出發(fā),通過對指數(shù)函數(shù)的認(rèn)識逐步轉(zhuǎn)化為對對數(shù)函數(shù)的認(rèn)識,而且畫對數(shù)函數(shù)圖象時,既要考慮到對底數(shù)的分類討論而且對每一類問題也可以多選幾個不同的底,畫在同一個坐標(biāo)系內(nèi),便于觀察圖象的特征,找出共性,歸納性質(zhì).
高一數(shù)學(xué)必修函數(shù)教案篇十四
2cos2α=1+cos2α2sin2α=1-cos2α。
注意:倍角公式揭示了具有倍數(shù)關(guān)系的兩個角的三角函數(shù)的運算規(guī)律,可實現(xiàn)函數(shù)式的降冪的變化。
注:(1)兩角和與差的三角函數(shù)公式能夠解答的三類基本題型:求值題,化簡題,證明題。
(2)對公式會“正用”,“逆用”,“變形使用”;。
(3)掌握“角的演變”規(guī)律,
(4)將公式和其它知識銜接起來使用。
重點難點。
重點:幾組三角恒等式的應(yīng)用。
難點:靈活應(yīng)用和、差、倍角等公式進行三角式化簡、求值、證明恒等式。
【精典范例】。
例1已知。
求證:
例2已知求的取值范圍。
分析難以直接用的式子來表達,因此設(shè),并找出應(yīng)滿足的等式,從而求出的取值范圍.
例3求函數(shù)的值域.
例4已知。
且、、均為鈍角,求角的值.
【選修延伸】。
例5已知。
求的值.
例6已知,
求的值.
例7已知。
求的值.
例8求值:(1)(2)。
【追蹤訓(xùn)練】。
1.等于()。
a.b.c.d.
2.已知,且。
則的值等于()。
a.b.c.d.
3.求值:=.
4.求證:(1)。
高一數(shù)學(xué)必修函數(shù)教案篇十五
3、函數(shù)的三要素:定義域、值域和對應(yīng)法則。
4、兩個函數(shù)能成為同一函數(shù)的條件
當(dāng)且僅當(dāng)兩個函數(shù)的定義域和對應(yīng)法則完全相同時,這兩個函數(shù)才是同一函數(shù)。
5、區(qū)間的概念和記號
6、函數(shù)的表示方法
函數(shù)的表示方法有三種。(1)解析法(2)列表法(3)圖像法
7、分段函數(shù)
本節(jié)是段考和高考必不可少的考查部分,多以選擇題和填空題的形式出現(xiàn)。段考中??疾楹瘮?shù)的定義域、值域、對應(yīng)法則、同一函數(shù)、函數(shù)的解析式和分段函數(shù)。高考中可以和高中數(shù)學(xué)的大部分章節(jié)知識聯(lián)合考查,但是難度不大,屬于容易題。多考查函數(shù)的定義域、函數(shù)的表示方法和分段函數(shù)。
1、映射是一種特殊的函數(shù),映射中的集合a,b可以是數(shù)集,也可以是點集或其他集合,這兩個集合有先后順序。a到b的映射與b到a的映射是不同的。而函數(shù)是數(shù)集到數(shù)集的映射,所以函數(shù)是特殊的映射,但是映射不一定是函數(shù)。
2、函數(shù)的問題,要遵循“定義域優(yōu)先”的原則。無論是簡單的函數(shù),還是復(fù)雜的函數(shù),無論是具體的函數(shù),還是抽象的函數(shù),必須優(yōu)先考慮函數(shù)的定義域。之所以要做到這一點,不僅是為了防止出現(xiàn)錯誤,有時還會為解題帶來方便。
3、分段函數(shù)是一個函數(shù),而不是幾個函數(shù)。分段函數(shù)書寫時,注意格式規(guī)范,一般在左邊的區(qū)間寫在上面,右邊的區(qū)間寫在下面,每一段自變量的取值范圍的交集為空集,所有段的自變量的取值范圍的并集是函數(shù)的定義域。
高一數(shù)學(xué)必修函數(shù)教案篇十六
細胞膜、細胞壁、細胞核、細胞質(zhì)均不是細胞器。
一、細胞器之間分工。
1.線粒體:細胞進行有氧呼吸的主要場所。雙層膜(內(nèi)膜向內(nèi)折疊形成脊),分布在動植物細胞體內(nèi)。
2.葉綠體:進行光合作用,“能量轉(zhuǎn)換站”,雙層膜,分布在植物的葉肉細胞。
3.內(nèi)質(zhì)網(wǎng):蛋白質(zhì)合成和加工,以及脂質(zhì)合成的“車間”,單層膜,動植物都有。分為光面內(nèi)質(zhì)網(wǎng)和粗面內(nèi)質(zhì)網(wǎng)(上有核糖體附著)。
4.高爾基體:對來自內(nèi)質(zhì)網(wǎng)的蛋白質(zhì)進行加工、分類和包裝,單層膜,動植物都有,植物細胞中參與了細胞壁的形成。
5.核糖體:無膜,合成蛋白質(zhì)的主要場所。生產(chǎn)蛋白質(zhì)的機器。
包括游離的核糖體(合成胞內(nèi)蛋白)和附著在內(nèi)質(zhì)網(wǎng)上的核糖體(合成分泌蛋白)。
6.溶酶體:內(nèi)含有多種水解酶,能分解衰老、損傷的細胞器,吞噬并殺死侵入細胞的病毒或病菌,單層膜。
溶酶體吞噬過程體現(xiàn)生物膜的流動性。溶酶體起源于高爾基體。
7.液泡:主要存在與植物細胞中,內(nèi)有細胞液,含糖類、無機鹽、色素和蛋白質(zhì)等物質(zhì),可以調(diào)節(jié)植物細胞內(nèi)的環(huán)境,充盈的液泡還可以使植物細胞保持堅挺。與植物細胞的滲透吸水有關(guān)。
8.中心體:動物和某些低等植物的細胞,由兩個相互垂直排列的中心粒及周圍物質(zhì)組成,與細胞的有絲分裂有關(guān),無膜。一個中心體有兩個中心粒組成。
二、分類比較:
1.雙層膜:葉綠體、線粒體(細胞核膜)。
單層膜:內(nèi)質(zhì)網(wǎng)、高爾基體、液泡、溶酶體(細胞膜、類囊體薄膜)。
無膜:中心體、核糖體。
2.植物特有:葉綠體、液泡動物特有(低等植物):中心體。
3.含核酸的細胞器:線粒體、葉綠體(dna)線粒體、葉綠體、核糖體(rna)。
4.增大膜面積的細胞器:線粒體、內(nèi)質(zhì)網(wǎng)、葉綠體。
5.含色素:葉綠體、液泡。
6.能產(chǎn)生atp的:線粒體、葉綠體(細胞質(zhì)基質(zhì))。
7.能自主復(fù)制的細胞器:線粒體、葉綠體、中心體。
8.與有絲分裂有關(guān)的細胞器:核糖體、線粒體、高爾基體(形成細胞壁)、中心體。
9.發(fā)生堿基互補配對:線粒體、葉綠體、核糖體。
10.與主動運輸有關(guān):核糖體、線粒體。
高一數(shù)學(xué)必修函數(shù)教案篇十七
1、教材(教學(xué)內(nèi)容)。
2、設(shè)計理念。
3、教學(xué)目標(biāo)。
情感態(tài)度與價值觀目標(biāo):引導(dǎo)學(xué)生學(xué)會閱讀數(shù)學(xué)教材,學(xué)會發(fā)現(xiàn)和欣賞數(shù)學(xué)的理性之美、
4、重點難點。
重點:任意角三角函數(shù)的定義、
難點:任意角三角函數(shù)這一概念的理解(函數(shù)模型的建立)、類比與化歸思想的滲透、
5、學(xué)情分析。
6、教法分析。
7、學(xué)法分析。
本課時先通過“閱讀”學(xué)習(xí)法,引導(dǎo)學(xué)生改造已有的認(rèn)知結(jié)構(gòu),再通過類比學(xué)習(xí)法引導(dǎo)學(xué)生形成“任意角的三角函數(shù)的定義”,最后引導(dǎo)學(xué)生運用類比學(xué)習(xí)法,來研究三角函數(shù)一些基本性質(zhì)和符號問題,從而使學(xué)生形成新的認(rèn)識結(jié)構(gòu),達成教學(xué)目標(biāo)。
【本文地址:http://mlvmservice.com/zuowen/18257159.html】