最新初二數(shù)學(xué)教案勾股定理(專業(yè)15篇)

格式:DOC 上傳日期:2023-12-08 09:16:02
最新初二數(shù)學(xué)教案勾股定理(專業(yè)15篇)
時(shí)間:2023-12-08 09:16:02     小編:飛雪

教案是教師進(jìn)行授課和教學(xué)管理的重要依據(jù),也是學(xué)生學(xué)習(xí)的重要參考。要編寫一份較為完美的教案,首先要清楚教學(xué)的目標(biāo)和要求。下面是一些設(shè)計(jì)精良的教案,能夠提供教學(xué)活動(dòng)和案例,為您的備課提供參考。

初二數(shù)學(xué)教案勾股定理篇一

學(xué)會(huì)觀察圖形,勇于探索圖形間的關(guān)系,培養(yǎng)學(xué)生的空間觀念。

2、過程與方法。

(1)經(jīng)歷一般規(guī)律的探索過程,發(fā)展學(xué)生的抽象思維能力。

(2)在將實(shí)際問題抽象成幾何圖形過程中,提高分析問題、解決問題的能力及滲透數(shù)學(xué)建模的思想。

3、情感態(tài)度與價(jià)值觀。

(1)通過有趣的問題提高學(xué)習(xí)數(shù)學(xué)的興趣。

(2)在解決實(shí)際問題的過程中,體驗(yàn)數(shù)學(xué)學(xué)習(xí)的實(shí)用性。

教學(xué)重點(diǎn):

探索、發(fā)現(xiàn)事物中隱含的勾股定理及其逆及理,并用它們解決生活實(shí)際問題。

教學(xué)難點(diǎn):

利用數(shù)學(xué)中的建模思想構(gòu)造直角三角形,利用勾股定理及逆定理,解決實(shí)際問題。

教學(xué)準(zhǔn)備:

多媒體。

教學(xué)過程:

第一環(huán)節(jié):創(chuàng)設(shè)情境,引入新課(3分鐘,學(xué)生觀察、猜想)。

情景:

第二環(huán)節(jié):合作探究(15分鐘,學(xué)生分組合作探究)。

學(xué)生分為4人活動(dòng)小組,合作探究螞蟻爬行的最短路線,充分討論后,匯總各小組的方案,在全班范圍內(nèi)討論每種方案的路線計(jì)算方法,通過具體計(jì)算,總結(jié)出最短路線。讓學(xué)生發(fā)現(xiàn):沿圓柱體母線剪開后展開得到矩形,研究“螞蟻怎么走最近”就是研究?jī)牲c(diǎn)連線最短問題,引導(dǎo)學(xué)生體會(huì)利用數(shù)學(xué)解決實(shí)際問題的方法:建立數(shù)學(xué)模型,構(gòu)圖,計(jì)算。

第三環(huán)節(jié):做一做(7分鐘,學(xué)生合作探究)。

教材23頁。

李叔叔想要檢測(cè)雕塑底座正面的ad邊和bc邊是否分別垂直于底邊ab,但他隨身只帶了卷尺。

(1)你能替他想辦法完成任務(wù)嗎?

第四環(huán)節(jié):鞏固練習(xí)(10分鐘,學(xué)生獨(dú)立完成)。

2.如圖,臺(tái)階a處的螞蟻要爬到b處搬運(yùn)食物,它怎么走最近?并求出最近距離。

第五環(huán)節(jié)課堂小結(jié)(3分鐘,師生問答)。

內(nèi)容:如何利用勾股定理及逆定理解決最短路程問題?

第六環(huán)節(jié):布置作業(yè)(2分鐘,學(xué)生分別記錄)。

作業(yè):1.課本習(xí)題1.5第1,2,3題.。

要求:a組(學(xué)優(yōu)生):1、2、3。

b組(中等生):1、2。

c組(后三分之一生):1。

初二數(shù)學(xué)教案勾股定理篇二

勾股定理是揭示三角形三條邊數(shù)量關(guān)系的一條非常重要的性質(zhì),也是幾何中最重要的定理之一。它是解直角三角形的主要依據(jù)之一,同時(shí)在實(shí)際生活中具有廣泛的用途,“數(shù)學(xué)源于生活,又用于生活”正是這章書所體現(xiàn)的主要思想。教材在編寫時(shí)注意培養(yǎng)學(xué)生的動(dòng)手操作能力和分析問題的能力,通過實(shí)際操作,使學(xué)生獲得較為直觀的印象;通過聯(lián)系比較、探索、歸納,幫助學(xué)生理解勾股定理,以利于進(jìn)行正確的應(yīng)用。

本節(jié)教科書從畢達(dá)哥拉斯觀察地面發(fā)現(xiàn)勾股定理的傳說談起,讓學(xué)生通過觀察計(jì)算一些以直角三角形兩條直角邊為邊長(zhǎng)的小正方形的面積與以斜邊為邊長(zhǎng)的正方形的面積的關(guān)系,發(fā)現(xiàn)兩直角邊為邊長(zhǎng)的小正方形的面積的和,等于以斜邊為邊長(zhǎng)的正方形的面積,從而發(fā)現(xiàn)勾股定理,這時(shí)教科書以命題的形式呈現(xiàn)了勾股定理。關(guān)于勾股定理的證明方法有很多,教科書正文中介紹了我國(guó)古人趙爽的證法。之后,通過三個(gè)探究欄目,研究了勾股定理在解決實(shí)際問題和解決數(shù)學(xué)問題中的應(yīng)用,使學(xué)生對(duì)勾股定理的作用有一定的認(rèn)識(shí)。

一、知識(shí)與技能。

1、探索直角三角形三邊關(guān)系,掌握勾股定理,發(fā)展幾何思維。

2、應(yīng)用勾股定理解決簡(jiǎn)單的實(shí)際問題。

3學(xué)會(huì)簡(jiǎn)單的合情推理與數(shù)學(xué)說理。

二、過程與方法。

引入兩段中西關(guān)于勾股定理的史料,激發(fā)同學(xué)們的興趣,引發(fā)同學(xué)們的思考。通過動(dòng)手操作探索與發(fā)現(xiàn)直角三角形三邊關(guān)系,經(jīng)歷小組協(xié)作與討論,進(jìn)一步發(fā)展合作交流能力和數(shù)學(xué)表達(dá)能力,并感受勾股定理的應(yīng)用知識(shí)。

三、情感與態(tài)度目標(biāo)。

通過對(duì)勾股定理歷史的了解,感受數(shù)學(xué)文化,激發(fā)學(xué)習(xí)興趣;在探究活動(dòng)中,學(xué)生親自動(dòng)手對(duì)勾股定理進(jìn)行探索與驗(yàn)證,培養(yǎng)學(xué)生的合作交流意識(shí)和探索精神,以及自主學(xué)習(xí)的能力。

四、重點(diǎn)與難點(diǎn)。

一、創(chuàng)設(shè)情景,揭示課題。

1、教師展示圖片并介紹第一情景。

以中國(guó)最早的一部數(shù)學(xué)著作——《周髀算經(jīng)》的開頭為引,介紹周公向商高請(qǐng)教數(shù)學(xué)知識(shí)時(shí)的對(duì)話,為勾股定理的出現(xiàn)埋下伏筆。

周公問:“竊聞乎大夫善數(shù)也,請(qǐng)問古者包犧立周天歷度.夫天不可階而升,地不可得尺寸而度,請(qǐng)問數(shù)安從出?”商高答:“數(shù)之法出于圓方,圓出于方,方出于矩,矩出九九八十一,故折矩以為勾廣三,股修四,徑隅五。既方其外,半之一矩,環(huán)而共盤.得成三、四、五,兩矩共長(zhǎng)二十有五,是謂積矩。故禹之所以治天下者,此數(shù)之所由生也?!?/p>

2、教師展示圖片并介紹第二情景。

畢達(dá)哥拉斯是古希臘著名的數(shù)學(xué)家。相傳在2500年以前,他在朋友家做客時(shí),發(fā)現(xiàn)朋友家用地磚鋪成的地面反映了直角三角形的某種特性。

二、師生協(xié)作,探究問題。

1、現(xiàn)在請(qǐng)你也動(dòng)手?jǐn)?shù)一下格子,你能有什么發(fā)現(xiàn)嗎?

2、等腰直角三角形是特殊的直角三角形,一般的直角三角形是否也有這樣的特點(diǎn)呢?

3、你能得到什么結(jié)論嗎?

三、得出命題。

勾股定理:如果直角三角形的兩直角邊長(zhǎng)分別為a、b,斜邊長(zhǎng)為c,那么,即直角三角形兩直角邊的平方和等于斜邊的平方。解釋:由于我國(guó)古代把直角三角形中較短的直角邊稱為勾,較長(zhǎng)的邊稱為股,斜邊稱為弦,所以,把它叫做勾股定理。

第一種方法:邊長(zhǎng)為的正方形可以看作是由4個(gè)直角邊分別為、,斜邊為的直角三角形圍在外面形成的。因?yàn)檫呴L(zhǎng)為的正方形面積加上4個(gè)直角三角形的面積等于外圍正方形的面積,所以可以列出等式,化簡(jiǎn)得。

第二種方法:邊長(zhǎng)為的正方形可以看作是由4個(gè)直角邊分別為、,斜邊為的。

角三角形拼接形成的(虛線表示),不過中間缺出一個(gè)邊長(zhǎng)為的正方形“小洞”。

因?yàn)檫呴L(zhǎng)為的正方形面積等于4個(gè)直角三角形的面積加上正方形“小洞”的面積,所以可以列出等式,化簡(jiǎn)得。

這種證明方法很簡(jiǎn)明,很直觀,它表現(xiàn)了我國(guó)古代數(shù)學(xué)家趙爽高超的證題思想和對(duì)數(shù)學(xué)的鉆研精神,是我們中華民族的驕傲。

五、應(yīng)用舉例,拓展訓(xùn)練,鞏固反饋。

勾股定理的靈活運(yùn)用勾股定理在實(shí)際的生產(chǎn)生活當(dāng)中有著廣泛的應(yīng)用。勾股定理的發(fā)現(xiàn)和使用解決了許多生活中的問題,今天我們就來運(yùn)用勾股定理解決一些問題,你可以嗎?試一試。

六、歸納總結(jié)。

2、方法歸納:數(shù)方格看圖找關(guān)系,利用面積不變的方法。用直角三角形三邊表示正方形的面積觀察歸納注意畫一個(gè)直角三角形表示正方形面積,再次驗(yàn)證自己的發(fā)現(xiàn)。

七、討論交流。

讓學(xué)生發(fā)表自己的意見,提出他們模糊不清的概念,給他們一個(gè)梳理知識(shí)的機(jī)會(huì),通過提示性的引導(dǎo),讓學(xué)生對(duì)勾股定理的概念豁然開朗,為后面勾股定理的應(yīng)用打下基礎(chǔ)。

我們班的同學(xué)很聰明。大家很快就通過數(shù)格子發(fā)現(xiàn)了勾股定理的規(guī)律。還有什么地方不懂的嗎?跟大家一起來交流一下。請(qǐng)同學(xué)們課后在反思天地中都發(fā)表一下自己的學(xué)習(xí)心得。

初二數(shù)學(xué)教案勾股定理篇三

本節(jié)課探究體驗(yàn)貫穿始終,展示交流貫穿始終,習(xí)慣養(yǎng)成貫穿始終,情感教育貫穿始終,文化育人貫穿始終。

采用“七巧板”代替教材中“畢達(dá)哥拉斯地板磚”利用我國(guó)傳統(tǒng)文化引入課題,趙爽弦圖證明定理,符合本節(jié)課以我國(guó)數(shù)學(xué)文化為主線這一設(shè)計(jì)理念,展現(xiàn)了我國(guó)古代數(shù)學(xué)璀璨的歷史,激發(fā)學(xué)生再創(chuàng)數(shù)學(xué)輝煌的愿望。

初二數(shù)學(xué)教案勾股定理篇四

從知識(shí)結(jié)構(gòu)上看,勾股定理揭示了直角三角形三條邊之間的數(shù)量關(guān)系,為后續(xù)學(xué)習(xí)解直角三角形提供重要的理論依據(jù),在現(xiàn)實(shí)生活中有著廣泛的應(yīng)用。

從學(xué)生認(rèn)知結(jié)構(gòu)上看,它把形的特征轉(zhuǎn)化成數(shù)量關(guān)系,架起了幾何與代數(shù)之間的橋梁;

勾股定理又是對(duì)學(xué)生進(jìn)行愛國(guó)主義教育的良好素材,因此具有相當(dāng)重要的地位和作用。

根據(jù)數(shù)學(xué)新課程標(biāo)準(zhǔn)以及八年級(jí)學(xué)生的認(rèn)知水平我確定如下學(xué)習(xí)目標(biāo):知識(shí)技能、數(shù)學(xué)思考、問題解決、情感態(tài)度。其中【情感態(tài)度】方面,以我國(guó)數(shù)學(xué)文化為主線,激發(fā)學(xué)生熱愛祖國(guó)悠久文化的情感。

(二)重點(diǎn)與難點(diǎn)。

為變被動(dòng)接受為主動(dòng)探究,我確定本節(jié)課的重點(diǎn)為:勾股定理的探索過程。限于八年級(jí)學(xué)生的思維水平,我將面積法(拼圖法)發(fā)現(xiàn)勾股定理確定為本節(jié)課的難點(diǎn),我將引導(dǎo)學(xué)生動(dòng)手實(shí)驗(yàn)突出重點(diǎn),合作交流突破難點(diǎn)。

初二數(shù)學(xué)教案勾股定理篇五

1、知識(shí)與技能目標(biāo):探索并理解直角三角形的三邊之間的數(shù)量關(guān)系,通過探究能夠發(fā)現(xiàn)直角三角形中兩個(gè)直角邊的平方和等于斜邊的平方和。

2、過程與方法目標(biāo):經(jīng)歷用測(cè)量和數(shù)格子的辦法探索勾股定理的過程,進(jìn)一步發(fā)展學(xué)生的合情推理能力。

3、情感態(tài)度與價(jià)值觀目標(biāo):通過本節(jié)課的學(xué)習(xí),培養(yǎng)主動(dòng)探究的習(xí)慣,并進(jìn)一步體會(huì)數(shù)學(xué)與現(xiàn)實(shí)生活的緊密聯(lián)系。

初二數(shù)學(xué)教案勾股定理篇六

理解并掌握勾股定理的逆定理,會(huì)應(yīng)用定理判定直角三角形;理解勾股定理與勾股定理逆定理的區(qū)別與聯(lián)系;理解原命題和逆命題的概念,知道二者的關(guān)系及二者真假性的關(guān)系。

【過程與方法】。

經(jīng)歷得出猜想、推理證明的過程,提升自主探究、分析問題、解決問題的能力。

【情感、態(tài)度與價(jià)值觀】。

體會(huì)事物之間的聯(lián)系,感受幾何的魅力。

【重點(diǎn)】勾股定理的逆定理及其證明。

【難點(diǎn)】勾股定理的逆定理的證明。

(一)導(dǎo)入新課。

復(fù)習(xí)勾股定理,分清其題設(shè)和結(jié)論。

提問學(xué)生畫直角三角形的方法(可用尺類工具),然后要求不能用繩子以外的工具。

出示古埃及人利用等長(zhǎng)的3、4、5個(gè)繩結(jié)間距畫直角三角形的方法,以其中蘊(yùn)含何道理為切入點(diǎn)引出課題。

(二)講解新知。

請(qǐng)學(xué)生思考3,4,5之間的關(guān)系,結(jié)合勾股定理的學(xué)習(xí)經(jīng)驗(yàn)明確。

出示數(shù)據(jù)2.5cm,6cm,6.5cm,請(qǐng)學(xué)生計(jì)算驗(yàn)證數(shù)據(jù)滿足上述平方和關(guān)系,并畫出相應(yīng)邊長(zhǎng)的三角形檢驗(yàn)是否為直角三角形。

學(xué)生活動(dòng):同桌兩人一組,將三邊換成其他滿足上述平方和關(guān)系的數(shù)據(jù),如4cm,7.5cm,8.5cm,畫出相應(yīng)邊長(zhǎng)的三角形檢驗(yàn)是否為直角三角形。

初二數(shù)學(xué)教案勾股定理篇七

教學(xué)方法葉圣陶說過“教師之為教,不在全盤授予,而在相機(jī)誘導(dǎo)?!币虼私處熇脦缀沃庇^提出問題,引導(dǎo)學(xué)生由淺入深的探索,設(shè)計(jì)實(shí)驗(yàn)讓學(xué)生進(jìn)行驗(yàn)證,感悟其中所蘊(yùn)涵的思想方法。

學(xué)法指導(dǎo)為把學(xué)習(xí)的主動(dòng)權(quán)還給學(xué)生,教師鼓勵(lì)學(xué)生采用動(dòng)手實(shí)踐,自主探索、合作交流的學(xué)習(xí)方法,讓學(xué)生親自感知體驗(yàn)知識(shí)的形成過程。

初二數(shù)學(xué)教案勾股定理篇八

本節(jié)將利用勾股定理及其逆定理解決一些具體的實(shí)際問題,其中需要學(xué)生了解空間圖形、對(duì)一些空間圖形進(jìn)行展開、折疊等活動(dòng).學(xué)生在學(xué)習(xí)七年級(jí)上第一章時(shí)對(duì)生活中的立體圖形已經(jīng)有了一定的認(rèn)識(shí),并從事過相應(yīng)的實(shí)踐活動(dòng),因而學(xué)生已經(jīng)具備解決本課問題所需的知識(shí)基礎(chǔ)和活動(dòng)經(jīng)驗(yàn)基礎(chǔ).

二、教學(xué)任務(wù)分析。

本節(jié)是義務(wù)教育課程標(biāo)準(zhǔn)北師大版實(shí)驗(yàn)教科書八年級(jí)(上)第一章《勾股定理》第3節(jié).具體內(nèi)容是運(yùn)用勾股定理及其逆定理解決簡(jiǎn)單的實(shí)際問題.當(dāng)然,在這些具體問題的解決過程中,需要經(jīng)歷幾何圖形的抽象過程,需要借助觀察、操作等實(shí)踐活動(dòng),這些都有助于發(fā)展學(xué)生的分析問題、解決問題能力和應(yīng)用意識(shí);一些探究活動(dòng)具體一定的難度,需要學(xué)生相互間的合作交流,有助于發(fā)展學(xué)生合作交流的能力.

本節(jié)課的教學(xué)目標(biāo)是:

1.通過觀察圖形,探索圖形間的關(guān)系,發(fā)展學(xué)生的空間觀念.

2.在將實(shí)際問題抽象成數(shù)學(xué)問題的過程中,提高分析問題、解決問題的能力及滲透數(shù)學(xué)建模的思想.

3.在利用勾股定理解決實(shí)際問題的過程中,體驗(yàn)數(shù)學(xué)學(xué)習(xí)的實(shí)用性.

利用數(shù)學(xué)中的建模思想構(gòu)造直角三角形,利用勾股定理及逆定理,解決實(shí)際問題是本節(jié)課的重點(diǎn)也是難點(diǎn).

四、教法學(xué)法。

1.教學(xué)方法。

引導(dǎo)—探究—?dú)w納。

本節(jié)課的教學(xué)對(duì)象是初二學(xué)生,他們的參與意識(shí)教強(qiáng),思維活躍,為了實(shí)現(xiàn)本節(jié)課的教學(xué)目標(biāo),我力求以下三個(gè)方面對(duì)學(xué)生進(jìn)行引導(dǎo):

(1)從創(chuàng)設(shè)問題情景入手,通過知識(shí)再現(xiàn),孕育教學(xué)過程;。

(2)從學(xué)生活動(dòng)出發(fā),順勢(shì)教學(xué)過程;。

(3)利用探索研究手段,通過思維深入,領(lǐng)悟教學(xué)過程.

2.課前準(zhǔn)備。

教具:教材、電腦、多媒體課件.

學(xué)具:用矩形紙片做成的圓柱、剪刀、教材、筆記本、課堂練習(xí)本、文具.

五、教學(xué)過程分析。

本節(jié)課設(shè)計(jì)了七個(gè)環(huán)節(jié).第一環(huán)節(jié):情境引入;第二環(huán)節(jié):合作探究;第三環(huán)節(jié):做一做;第四環(huán)節(jié):小試牛刀;第五環(huán)節(jié):舉一反三;第六環(huán)節(jié):交流小結(jié);第七環(huán)節(jié):布置作業(yè).

初二數(shù)學(xué)教案勾股定理篇九

知識(shí)與技能:

1、了解勾股定理的文化背景,體驗(yàn)勾股定理的探索過程,了解利用拼圖驗(yàn)證勾股定理的方法。

2、了解勾股定理的內(nèi)容。

3、能利用已知兩邊求直角三角形另一邊的長(zhǎng)。

過程與方法:

1、通過拼圖活動(dòng),體驗(yàn)數(shù)學(xué)思維的嚴(yán)謹(jǐn)性,發(fā)展形象思維。

2、在探索活動(dòng)中,學(xué)會(huì)與人合作,并能與他人交流思維的過程和探索的結(jié)果。

情感與態(tài)度:

1、通過對(duì)勾股定理歷史的了解,對(duì)比介紹我國(guó)古代和西方數(shù)學(xué)家關(guān)于勾股定理的研究,激發(fā)學(xué)生熱愛祖國(guó)悠久文化的情感,激勵(lì)學(xué)生奮發(fā)學(xué)習(xí)。

2、在探索勾股定理的過程中,體驗(yàn)獲得結(jié)論的快樂,鍛煉克服困難的勇氣,培養(yǎng)合作意識(shí)和探索精神。

二教學(xué)重、難點(diǎn)。

重點(diǎn):探索和證明勾股定理難點(diǎn):用拼圖方法證明勾股定理。

三、學(xué)情分析。

學(xué)生對(duì)幾何圖形的觀察,幾何圖形的分析能力已初步形成。部分學(xué)生解題思維能力比較高,能夠正確歸納所學(xué)知識(shí),通過學(xué)習(xí)小組討論交流,能夠形成解決問題的思路。

四、教學(xué)策略。

本節(jié)課采用探究發(fā)現(xiàn)式教學(xué),由淺入深,由特殊到一般地提出問題,鼓勵(lì)學(xué)生采用觀察分析、自主探索、合作交流的學(xué)習(xí)方法,讓學(xué)生經(jīng)歷數(shù)學(xué)知識(shí)的形成與應(yīng)用過程。

五、教學(xué)過程。

教學(xué)環(huán)節(jié)。

教學(xué)內(nèi)容。

活動(dòng)和意圖。

創(chuàng)設(shè)情境導(dǎo)入新課。

以“航天員在太空中遇到外星人時(shí),用什么語言進(jìn)行溝通”導(dǎo)入新課,讓孩子們盡情發(fā)揮他們的想象.而華羅庚建議可以用勾股定理的圖形進(jìn)行和外星人溝通,為什么呢?通過一段vcr說明原因。

[設(shè)計(jì)意圖]激發(fā)學(xué)生對(duì)勾股定理的興趣,從而較自然的引入課題。

新知探究。

畢達(dá)哥拉斯是古希臘著名的數(shù)學(xué)家。相傳在2500年以前,他在朋友家做客時(shí),發(fā)現(xiàn)朋友家用地磚鋪成的地面反映了直角三角形的三邊的某種數(shù)量關(guān)系。

(1)同學(xué)們,請(qǐng)你也來觀察下圖中的地面,看看能發(fā)現(xiàn)些什么?

(2)你能找出圖18.1-1中正方形1、2、3面積之間的關(guān)系嗎?

通過講述故事來進(jìn)一步激發(fā)學(xué)生學(xué)習(xí)興趣,使學(xué)生在不知不覺中進(jìn)入學(xué)習(xí)的最佳狀態(tài)。

如圖,每個(gè)小方格代表1個(gè)單位面積,我們分別以a,b,c三邊為邊長(zhǎng)作正方形。

回答以下內(nèi)容:

(1)想一想,怎樣利用小方格計(jì)算正方形a、b、c面積?

(2)怎樣求出正方形面積c?

(3)觀察所得的各組數(shù)據(jù),你有什么發(fā)現(xiàn)?

(4)將正方形a,b,c分別移開,你能發(fā)現(xiàn)直角三角形邊長(zhǎng)a,b,c有何數(shù)量關(guān)系?

引導(dǎo)學(xué)生將邊不在格線上的圖形轉(zhuǎn)化為邊在格線上的圖形,以便于計(jì)算圖形面積.

問題是思維的起點(diǎn)”,通過層層設(shè)問,引導(dǎo)學(xué)生發(fā)現(xiàn)新知。

探究交流歸納。

拼圖驗(yàn)證加深理解。

如圖,每個(gè)小方格代表1個(gè)單位面積,我們分別以a,b,c三邊為邊長(zhǎng)作正方形。

回答以下內(nèi)容:

(1)想一想,怎樣利用小方格計(jì)算正方形p、q、r的面積?

(2)怎樣求出正方形面積r?

(3)觀察所得的各組數(shù)據(jù),你有什么發(fā)現(xiàn)?

(4)將正方形p,q,r分別移開,你能發(fā)現(xiàn)直角三角形邊長(zhǎng)a,b,c有何數(shù)量關(guān)系?

由以上兩問題可得猜想:

直角三角形兩直角邊的平方和等于斜邊的平方。

而猜想要通過證明才能成為定理。

活動(dòng)探究:

(1)讓學(xué)生利用學(xué)具進(jìn)行拼圖。

(2)多媒體課件展示拼圖過程及證明過程理解數(shù)學(xué)的嚴(yán)密性。

從特殊的等腰直角三角形過渡到一般的直角三角形。

滲透從特殊到一般的數(shù)學(xué)思想.為學(xué)生提供參與數(shù)學(xué)活動(dòng)的時(shí)間和空間,發(fā)揮學(xué)生的主體作用;培養(yǎng)學(xué)生的類比遷移能力及探索問題的能力,使學(xué)生在相互欣賞、爭(zhēng)辯、互助中得到提高。

通過這些實(shí)際操作,學(xué)生進(jìn)行一步加深對(duì)數(shù)形結(jié)合的理解,拼圖也會(huì)產(chǎn)生感性認(rèn)識(shí),也為論證勾股定理做好準(zhǔn)備。

利用分組討論,加強(qiáng)合作意識(shí)。

1、經(jīng)歷所拼圖形與多媒體展示圖形的聯(lián)系與區(qū)別。

2、加強(qiáng)數(shù)學(xué)嚴(yán)密教育,從而更好地理解代數(shù)與圖形相結(jié)合。

應(yīng)用新知解決問題。

在應(yīng)用新知這個(gè)環(huán)節(jié),我把以往的單純求解邊長(zhǎng)之類的題目換成了幾個(gè)運(yùn)用勾股定理來解決問題的古算題。

把生活中的實(shí)物抽象成幾何圖形,讓學(xué)生了解豐富變幻的圖形世界,培養(yǎng)了學(xué)生抽象思維能力,特別注重培養(yǎng)學(xué)生認(rèn)識(shí)事物,探索問題,解決實(shí)際的能力。

回顧小結(jié)整體感知。

在最后的小結(jié)中,不但對(duì)知識(shí)進(jìn)行小結(jié)更對(duì)方法要進(jìn)行小節(jié),還可向?qū)W生介紹了美麗的圖案畢達(dá)哥拉斯樹,讓學(xué)生切身感受到其實(shí)數(shù)學(xué)與生活是緊密聯(lián)系的,進(jìn)一步發(fā)現(xiàn)數(shù)學(xué)的另一種美。

學(xué)生通過對(duì)學(xué)習(xí)過程的小結(jié),領(lǐng)會(huì)其中的數(shù)學(xué)思想方法;通過梳理所學(xué)內(nèi)容,形成完整知識(shí)結(jié)構(gòu),培養(yǎng)歸納概括能力。。

布置作業(yè)鞏固加深。

必做題:

1.完成課本習(xí)題1,2,3題。

選做題:

針對(duì)學(xué)生認(rèn)知的差異設(shè)計(jì)了有層次的作業(yè)題,既使學(xué)生鞏固知識(shí),形成技能,讓感興趣的學(xué)生課后探索,感受數(shù)學(xué)證明的靈活、優(yōu)美與精巧,感受勾股定理的豐富文化。

初二數(shù)學(xué)教案勾股定理篇十

教學(xué)目標(biāo):

1、知識(shí)與技能目標(biāo):理解和掌握勾股定理的內(nèi)容,能夠靈活運(yùn)用勾股定理進(jìn)行計(jì)算,并解決一些簡(jiǎn)單的實(shí)際問題。

2、過程與方法目標(biāo):通過觀察分析,大膽猜想,并探索勾股定理,培養(yǎng)學(xué)生動(dòng)手操作、合作交流、邏輯推理的能力。

3、情感、態(tài)度與價(jià)值觀目標(biāo):了解中國(guó)古代的數(shù)學(xué)成就,激發(fā)學(xué)生愛國(guó)熱情;學(xué)生通過自己的努力探索出結(jié)論獲得成就感,培養(yǎng)探索熱情和鉆研精神;同時(shí)體驗(yàn)數(shù)學(xué)的美感,從而了解數(shù)學(xué),喜歡幾何。

教學(xué)重點(diǎn):

引導(dǎo)學(xué)生經(jīng)歷探索及驗(yàn)證勾股定理的過程,并能運(yùn)用勾股定理解決一些簡(jiǎn)單的實(shí)際問題。

教學(xué)難點(diǎn):

課前準(zhǔn)備:

多媒體ppt,相關(guān)圖片。

教學(xué)過程:

(一)情境導(dǎo)入。

1、多媒體課件放映圖片欣賞:勾股定理數(shù)形圖,1955年希臘發(fā)行的一枚紀(jì)念郵票,美麗的勾股樹,國(guó)際數(shù)學(xué)大會(huì)會(huì)標(biāo)等。通過圖形欣賞,感受數(shù)學(xué)之美,感受勾股定理的文化價(jià)值。

已知一直角三角形的兩邊,如何求第三邊?

學(xué)習(xí)了今天的這節(jié)課后,同學(xué)們就會(huì)有辦法解決了。

(二)學(xué)習(xí)新課。

初二數(shù)學(xué)教案勾股定理篇十一

師生行為學(xué)生分組討論,交流總結(jié);教師引導(dǎo)學(xué)生回憶.。

師:那么,一個(gè)三角形滿足什么條件,才能是直角三角形呢?

生:有一個(gè)內(nèi)角是90°,那么這個(gè)三角形就為直角三角形.。

生:如果一個(gè)三角形,有兩個(gè)角的和是90°,那么這個(gè)三角形也是直角三角形.。

二、講授新課。

是不是三角形的三邊只要有兩邊的平方和等于第三邊的平方,就能得到一個(gè)直角三角形呢?

活動(dòng)3下面的三組數(shù)分別是一個(gè)三角形的三邊長(zhǎng)?

初二數(shù)學(xué)教案勾股定理篇十二

例1 某數(shù)的3倍減2等于某數(shù)與4的和,求某數(shù)、

(首先,用算術(shù)方法解,由學(xué)生回答,教師板書)

解法1:(4+2)÷(3-1)=3、

答:某數(shù)為3、

(其次,用代數(shù)方法來解,教師引導(dǎo),學(xué)生口述完成)

解法2:設(shè)某數(shù)為x,則有3x-2=x+4、

解之,得x=3、

答:某數(shù)為3、

師生共同分析:

1、本題中給出的已知量和未知量各是什么?

2、已知量與未知量之間存在著怎樣的相等關(guān)系?(原來重量-運(yùn)出重量=剩余重量)

上述分析過程可列表如下:

解:設(shè)原來有x千克面粉,那么運(yùn)出了15%x千克,由題意,得

x-15%x=42 500,

所以 x=50 000、

答:原來有 50 000千克面粉、

(還有,原來重量=運(yùn)出重量+剩余重量;原來重量-剩余重量=運(yùn)出重量)

教師應(yīng)指出:

(2)例2的解方程過程較為簡(jiǎn)捷,同學(xué)應(yīng)注意模仿、

依據(jù)例2的分析與解答過程,首先請(qǐng)同學(xué)們思考列一元一次方程解應(yīng)用題的方法和步驟;然后,采取提問的方式,進(jìn)行反饋;最后,根據(jù)學(xué)生總結(jié)的情況,教師總結(jié)如下:

(2)根據(jù)題意找出能夠表示應(yīng)用題全部含義的一個(gè)相等關(guān)系、(這是關(guān)鍵一步);

(4)求出所列方程的解;

(仿照例2的分析方法分析本題,如學(xué)生在某處感到困難,教師應(yīng)做適當(dāng)點(diǎn)撥、解答過程請(qǐng)一名學(xué)生板演,教師巡視,及時(shí)糾正學(xué)生在書寫本題時(shí)可能出現(xiàn)的各種錯(cuò)誤、并嚴(yán)格規(guī)范書寫格式)

解:設(shè)第一小組有x個(gè)學(xué)生,依題意,得

3x+9=5x-(5-4),

解這個(gè)方程: 2x=10,

所以 x=5、

其蘋果數(shù)為 3× 5+9=24、

答:第一小組有5名同學(xué),共摘蘋果24個(gè)、

學(xué)生板演后,引導(dǎo)學(xué)生探討此題是否可有其他解法,并列出方程、

(設(shè)第一小組共摘了x個(gè)蘋果,則依題意,得 )

3、某工廠女工人占全廠總?cè)藬?shù)的 35%,男工比女工多 252人,求全廠總?cè)藬?shù)、

首先,讓學(xué)生回答如下問題:

1、本節(jié)課學(xué)習(xí)了哪些內(nèi)容?

2、列一元一次方程解應(yīng)用題的方法和步驟是什么?

3、在運(yùn)用上述方法和步驟時(shí)應(yīng)注意什么?

依據(jù)學(xué)生的回答情況,教師總結(jié)如下:

(2)以上步驟同學(xué)應(yīng)在理解的基礎(chǔ)上記憶、

1、買3千克蘋果,付出10元,找回3角4分、問每千克蘋果多少錢?

2、用76厘米長(zhǎng)的鐵絲做一個(gè)長(zhǎng)方形的教具,要使寬是16厘米,那么長(zhǎng)是多少厘米?

初二數(shù)學(xué)教案勾股定理篇十三

1.經(jīng)歷平行四邊形判別條件的探索過程,發(fā)現(xiàn)平行四邊形的常用判別條件。

2.掌握平行四邊形的判別條件;對(duì)角線互相平分的四邊形是平行四邊形;一組對(duì)邊平行且相等的四邊形是平行四邊形;兩組對(duì)邊分別相等的四邊形是平行四邊形。

3.逐步掌握說理的基本方法。

1.在探索平行四邊形的判別條件的過程中,發(fā)展學(xué)生的合情推理意識(shí),主動(dòng)探索的習(xí)慣。

2.鼓勵(lì)學(xué)生用多種方法進(jìn)行說理。

1.培養(yǎng)學(xué)生探索創(chuàng)新的能力,開拓學(xué)生思路,發(fā)展學(xué)生的思維能力。

2.培養(yǎng)學(xué)生合作學(xué)習(xí),增強(qiáng)學(xué)生的自我評(píng)價(jià)意識(shí)。

教材通過創(chuàng)設(shè)“釘制平行四邊形框架”這一情境,便于學(xué)生發(fā)現(xiàn)和探索平行四邊形的常用判別方法。如有條件可要求學(xué)生自己準(zhǔn)備,由學(xué)生自我操作。也可由教師演示。

教學(xué)重點(diǎn):平行四邊形的判別方法。

教學(xué)難點(diǎn):利用平行四邊形的判別方法進(jìn)行正確的說理。

初二學(xué)生對(duì)平面圖形的認(rèn)識(shí)能力正在形成,抽象思維還不夠,學(xué)習(xí)幾何知識(shí)處于現(xiàn)象描述和說理的過渡時(shí)期。因此,對(duì)這部分內(nèi)容的學(xué)習(xí),要引導(dǎo)學(xué)生學(xué)會(huì)正確的說理,理清楚四邊形在什么條件下用判定定理,在什么條件下用性質(zhì)定理。

一、創(chuàng)設(shè)情境,引入新課

師:請(qǐng)同學(xué)們拿出課前準(zhǔn)備的小木條,幫助小明的爸爸釘制平行四邊形的框架。

學(xué)生活動(dòng):學(xué)生按小組進(jìn)行探索。

初二數(shù)學(xué)教案勾股定理篇十四

教學(xué)目標(biāo):

1、知識(shí)與技能目標(biāo):理解和掌握勾股定理的內(nèi)容,能夠靈活運(yùn)用勾股定理進(jìn)行計(jì)算,并解決一些簡(jiǎn)單的實(shí)際問題。

2、過程與方法目標(biāo):通過觀察分析,大膽猜想,并探索勾股定理,培養(yǎng)學(xué)生動(dòng)手操作、合作交流、邏輯推理的能力。

3、情感、態(tài)度與價(jià)值觀目標(biāo):了解中國(guó)古代的數(shù)學(xué)成就,激發(fā)學(xué)生愛國(guó)熱情;學(xué)生通過自己的努力探索出結(jié)論獲得成就感,培養(yǎng)探索熱情和鉆研精神;同時(shí)體驗(yàn)數(shù)學(xué)的美感,從而了解數(shù)學(xué),喜歡幾何。

教學(xué)重點(diǎn):

引導(dǎo)學(xué)生經(jīng)歷探索及驗(yàn)證勾股定理的過程,并能運(yùn)用勾股定理解決一些簡(jiǎn)單的實(shí)際問題。

教學(xué)難點(diǎn):

課前準(zhǔn)備:

多媒體ppt,相關(guān)圖片。

教學(xué)過程:

(一)情境導(dǎo)入。

1、多媒體課件放映圖片欣賞:勾股定理數(shù)形圖,1955年希臘發(fā)行的一枚紀(jì)念郵票,美麗的勾股樹,20國(guó)際數(shù)學(xué)大會(huì)會(huì)標(biāo)等。通過圖形欣賞,感受數(shù)學(xué)之美,感受勾股定理的文化價(jià)值。

初二數(shù)學(xué)教案勾股定理篇十五

勾股定理能夠幫助我們解決直角三角形中的邊長(zhǎng)的計(jì)算或直角三角形中線段之間的關(guān)系的證明問題。在使用勾股定理時(shí),必須把握直角三角形的前提條件,了解直角三角形中,斜邊和直角邊各是什么,以便運(yùn)用勾股定理進(jìn)行計(jì)算,應(yīng)設(shè)法添加輔助線(通常作垂線),構(gòu)造直角三角形,以便正確使用勾股定理進(jìn)行求解。

【本文地址:http://mlvmservice.com/zuowen/18079712.html】

全文閱讀已結(jié)束,如果需要下載本文請(qǐng)點(diǎn)擊

下載此文檔