八年級上數(shù)學(xué)導(dǎo)學(xué)案教案(精選17篇)

格式:DOC 上傳日期:2023-12-07 15:14:03
八年級上數(shù)學(xué)導(dǎo)學(xué)案教案(精選17篇)
時間:2023-12-07 15:14:03     小編:飛雪

教案應(yīng)該具有明確的教學(xué)目標(biāo)和適合的教學(xué)方法,以便有針對性地引導(dǎo)學(xué)生的學(xué)習(xí)。編寫教案時如何考慮學(xué)生的評價和反饋,以及教師的自我評估?教案范文中的教學(xué)活動設(shè)計精彩紛呈,能夠激發(fā)學(xué)生的學(xué)習(xí)興趣和動力。

八年級上數(shù)學(xué)導(dǎo)學(xué)案教案篇一

在推理判斷中得出同底數(shù)冪乘法的運(yùn)算法則,并掌握“法則”的應(yīng)用.2.過程與方法。

在小組合作交流中,培養(yǎng)協(xié)作精神、探究精神,增強(qiáng)學(xué)習(xí)信心.重、難點(diǎn)與關(guān)鍵。

1.重點(diǎn):同底數(shù)冪乘法運(yùn)算性質(zhì)的推導(dǎo)和應(yīng)用.2.難點(diǎn):同底數(shù)冪的乘法的法則的應(yīng)用.

一、創(chuàng)設(shè)情境,故事引入【情境導(dǎo)入】。

力一劈,把混沌的宇宙劈成兩半,上面是天,下面是地,從此宇宙有了天地之分,盤古完成了這樣一個壯舉,累死了,他的左眼變成了太陽,右眼變成了月亮,毛發(fā)變成了森林和草原,骨頭變成了高山和高原,肌肉變成了平原與谷地,血液變成了河流.

八年級上數(shù)學(xué)導(dǎo)學(xué)案教案篇二

一、教材分析:

《正方形》這節(jié)課是九年義務(wù)教育人教版數(shù)學(xué)教材八年級下冊第十九章第二節(jié)的內(nèi)容??v觀整個初中教材,《正方形》是在學(xué)生掌握了平行線、三角形、平行四邊形、矩形、菱形等有關(guān)知識及簡單圖形的平移和旋轉(zhuǎn)等平面幾何知識,并且具備有初步的觀察、操作等活動經(jīng)驗(yàn)的基礎(chǔ)上出現(xiàn)的。既是前面所學(xué)知識的延續(xù),又是對平行四邊形、菱形、矩形進(jìn)行綜合的不可缺少的重要環(huán)節(jié)。

本節(jié)課的重點(diǎn)是正方形的概念和性質(zhì),難點(diǎn)是理解正方形與平行四邊形、矩形、菱形之間的內(nèi)在聯(lián)系。根據(jù)大綱要求,本節(jié)課制定了知識、能力、情感三方面的目標(biāo)。

(一)知識目標(biāo):

1、要求學(xué)生掌握正方形的概念及性質(zhì);

2、能正確運(yùn)用正方形的性質(zhì)進(jìn)行簡單的計算、推理、論證;

(二)能力目標(biāo):

1、通過本節(jié)課培養(yǎng)學(xué)生觀察、動手、探究、分析、歸納、總結(jié)等能力;

2、發(fā)展學(xué)生合情推理意識,主動探究的習(xí)慣,逐步掌握說理的基本方法;

(三)情感目標(biāo):

1、讓學(xué)生樹立科學(xué)、嚴(yán)謹(jǐn)、理論聯(lián)系實(shí)際的良好學(xué)風(fēng);

2、培養(yǎng)學(xué)生互相幫助、團(tuán)結(jié)協(xié)作、相互討論的團(tuán)隊精神;

3、通過正方形圖形的完美性,培養(yǎng)學(xué)生品格的完美性。

二、學(xué)生分析:

該段學(xué)生具有一定的獨(dú)立思考和探究的能力,但語言表達(dá)能力方面稍有欠缺,所以在本節(jié)課的教學(xué)過程中,特意設(shè)計了讓學(xué)生自己組織語言培養(yǎng)說理能力,讓學(xué)生們能逐步提高。

三、教法分析:

針對本節(jié)課的特點(diǎn),采用"實(shí)踐--觀察--總結(jié)歸納--運(yùn)用"為主線的教學(xué)方法。

通過學(xué)生動手,采取幾種不同的方法構(gòu)造出正方形,然后引導(dǎo)學(xué)生探究正方形的概念。通過觀察、討論、歸納、總結(jié)出正方形性質(zhì)定理,最后以課堂練習(xí)加以鞏固定理,并通過一道拔高題對定義、性質(zhì)理解、鞏固加以升華。

四、學(xué)法分析:

本節(jié)課重點(diǎn)是從培養(yǎng)學(xué)生探索精神和分析歸納總結(jié)能力為出發(fā)點(diǎn),著重指導(dǎo)學(xué)生動手、觀察、思考、分析、總結(jié)得出結(jié)論。在小組討論中通過互相學(xué)習(xí),讓學(xué)生體驗(yàn)合作學(xué)習(xí)的樂趣。

五、教學(xué)程序:

第一環(huán)節(jié):相關(guān)知識回顧。

以提問的形式復(fù)習(xí)的平行四邊形、矩形、菱形的定義及性質(zhì)之后,引導(dǎo)學(xué)生發(fā)現(xiàn)矩形、菱形的實(shí)質(zhì)是由平行四邊形角度、邊長的變化得到的。并啟發(fā)學(xué)生考慮,若這兩種變化同時發(fā)生在平行四邊形上,則會得到什么樣的圖形?讓學(xué)生們通過手上的學(xué)具演示以上兩種變化,從而得出結(jié)論。

第二環(huán)節(jié):新課講解通過學(xué)生們的發(fā)現(xiàn)引出課題“正方形”

1、正方形的定義:引導(dǎo)學(xué)生說出自己變化出正方形的過程,并再次利用課件形象演示出由平行四邊形的邊、角的變化演變出正方形的過程。請同學(xué)們舉手發(fā)言,歸納總結(jié)出正方形定義:一組鄰邊相等,且一個角是直角的平行四邊形是正方形。再由此定義啟發(fā)學(xué)生們發(fā)現(xiàn)正方形的三個必要條件,并且由這三個條件通過重新組合即一組鄰邊相等與平行四邊形組成菱形再加上一個角是直角可得到正方形的另兩個定義:一個角是直角的菱形是正方形;一組鄰邊相等的矩形是正方形。此內(nèi)容借助課件演示其變化過程,進(jìn)一步啟發(fā)學(xué)生發(fā)現(xiàn),正方形既是特殊的菱形,又是特殊的矩形,從而總結(jié)出正方形的性質(zhì)。

2、正方形的性質(zhì)。

定理1:正方形的四個角都是直角,四條邊都相等;

定理2:正方形的兩條對角線相等,并且互相垂直、平分,每條對角線平分一組對角。

以上是對正方形定義和性質(zhì)的學(xué)習(xí),之后是進(jìn)行例題講解。

4、課堂練習(xí):第一部分采用三道有關(guān)正方形的周長、面積、對角線、邊長計算的填空題,目的是對正方形性質(zhì)的進(jìn)一步理解,并考察學(xué)生掌握的情況。

第二部分是選擇題,通過體現(xiàn)生活中實(shí)際問題,來提升學(xué)生所學(xué)的知識,并加以綜合練習(xí),提高他們的綜合素質(zhì),使他們充分認(rèn)識到數(shù)學(xué)實(shí)質(zhì)是來源于生活并要服務(wù)于生活。

5、課堂小結(jié):此環(huán)節(jié)我是通過圖框的形式小結(jié)正方形和前階段所學(xué)特殊四邊形之間的內(nèi)在聯(lián)系,通過對所學(xué)幾種四邊形內(nèi)在聯(lián)系體現(xiàn)正方形完美的本質(zhì),渲染學(xué)生們應(yīng)追求象正方形一樣方正的品質(zhì),從而要努力學(xué)習(xí)以豐富的知識充實(shí)自己,達(dá)到理想中的完美。

6、作業(yè)設(shè)計:作業(yè)是教材159頁,第12、14兩小道證明題,通過此作業(yè)讓同學(xué)們進(jìn)一步鞏固有關(guān)正方形的知識。

八年級上數(shù)學(xué)導(dǎo)學(xué)案教案篇三

教學(xué)目標(biāo):

〔知識與技能〕。

1.探索作出軸對稱圖形的對稱軸的方法.掌握軸對稱圖形對稱軸的作法.

2.在探索的過程中,培養(yǎng)學(xué)生分析、歸納的能力.

〔過程與方法〕。

2、在靈活運(yùn)用知識解決有關(guān)問題的過程中,體驗(yàn)并掌握探索、歸納圖形性質(zhì)的推理方法,進(jìn)一步培說理和進(jìn)行簡單推理的能力。

〔情感、態(tài)度與價值觀〕。

1、體會數(shù)學(xué)與現(xiàn)實(shí)生活的聯(lián)系,增強(qiáng)克服困難的勇氣和信心;2、會應(yīng)用數(shù)學(xué)知識解決一些簡單的實(shí)際問題,增強(qiáng)應(yīng)用意識。

教學(xué)重點(diǎn):

軸對稱圖形對稱軸的作法.

教學(xué)難點(diǎn):

探索軸對稱圖形對稱軸的作法.

教具準(zhǔn)備:圓規(guī)、三角尺。

教學(xué)過程。

一.提出問題,引入新課。

2.軸對稱圖形性質(zhì).如果兩個圖形關(guān)于某條直線對稱,那么對稱軸是任何一對對稱點(diǎn)所連線段的垂直平分線.軸對稱圖形的對稱軸,是任何一對對稱點(diǎn)所連線段的垂直平分線.

3.找到一對對應(yīng)點(diǎn),作出連結(jié)它們的線段的垂直平分線,就可以得到這兩個圖形的對稱軸了.

4.問題:如何作出線段的垂直平分線?

二.導(dǎo)入新課。

1.要作出線段的垂直平分線,根據(jù)垂直平分線的判定定理,到線段兩端點(diǎn)距離相等的點(diǎn)在這條線段的垂直平分線上,又由兩點(diǎn)確定一條直線這個公理,那么必須找到兩個到線段兩端點(diǎn)距離相等的點(diǎn),這樣才能確定已知線段的垂直平分線.

[例]如圖(1),點(diǎn)a和點(diǎn)b關(guān)于某條直線成軸對稱,你能作出這條直線嗎?

已知:線段ab[如圖(1)].

求作:線段ab的垂直平分線.

作法:如圖(2)。

(1).分別以點(diǎn)a、b為圓心,以大于。

(2).作直線cd.

直線cd就是線段ab的垂直平分線.

2.[例]圖中的五角星有幾條對稱軸?作出這些對稱軸.

作法:

1.找出五角星的一對對應(yīng)點(diǎn)a和a′,

連結(jié)aa′.

2.作出線段aa′的垂直平分線l.

則l就是這個五角星的一條對稱軸.

用同樣的方法,可以找出五條對稱軸,所以五角星有五條對稱軸.

三.隨堂練習(xí)。

(一)課本35練習(xí)1、2、3。

如圖,與圖形a成軸對稱的是哪個圖形?畫出它們的對稱軸.

1ab的長為半徑作弧,兩弧相交于c和d兩點(diǎn);2。

答案:與a成軸對稱的是圖形d(或b).

四.課時小結(jié)。

方法:找出軸對稱圖形的任意一對對應(yīng)點(diǎn),連結(jié)這對對應(yīng)點(diǎn),?作出連線的垂直平分線,該垂直平分線就是這個軸對稱圖形的一條對稱軸.

五.課后作業(yè)。

八年級上數(shù)學(xué)導(dǎo)學(xué)案教案篇四

(一)、知識與技能:

(1)使學(xué)生了解因式分解的意義,理解因式分解的概念。

(2)認(rèn)識因式分解與整式乘法的相互關(guān)系——互逆關(guān)系,并能運(yùn)用這種關(guān)系尋求因式分解的方法。

(二)、過程與方法:

(1)由學(xué)生自主探索解題途徑,在此過程中,通過觀察、類比等手段,尋求因式分解與因數(shù)分解之間的關(guān)系,培養(yǎng)學(xué)生的觀察能力,進(jìn)一步發(fā)展學(xué)生的類比思想。

(2)由整式乘法的逆運(yùn)算過渡到因式分解,發(fā)展學(xué)生的逆向思維能力。

(3)通過對分解因式與整式的乘法的觀察與比較,培養(yǎng)學(xué)生的分析問題能力與綜合應(yīng)用能力。

(三)、情感態(tài)度與價值觀:讓學(xué)生初步感受對立統(tǒng)一的辨證觀點(diǎn)以及實(shí)事求是的科學(xué)態(tài)度。

二、教學(xué)重點(diǎn)和難點(diǎn)。

重點(diǎn):因式分解的概念及提公因式法。

難點(diǎn):正確找出多項(xiàng)式各項(xiàng)的公因式及分解因式與整式乘法的區(qū)別和聯(lián)系。

三、教學(xué)過程。

教學(xué)環(huán)節(jié):

活動1:復(fù)習(xí)引入。

看誰算得快:用簡便方法計算:

(1)7/9×13-7/9×6+7/9×2=;

(2)-2.67×132+25×2.67+7×2.67=;

(3)992–1=。

設(shè)計意圖:

注意事項(xiàng):學(xué)生對于(1)(2)兩小題逆向利用乘法的分配律進(jìn)行運(yùn)算的方法是很熟悉,對于第(3)小題的逆向利用平方差公式的運(yùn)算則有一定的困難,因此,有必要引導(dǎo)學(xué)生復(fù)習(xí)七年級所學(xué)過的整式的乘法運(yùn)算中的平方差公式,幫助他們順利地逆向運(yùn)用平方差公式。

活動2:導(dǎo)入課題。

p165的探究(略);

2.看誰想得快:993–99能被哪些數(shù)整除?你是怎么得出來的?

設(shè)計意圖:

引導(dǎo)學(xué)生把這個式子分解成幾個數(shù)的積的形式,繼續(xù)強(qiáng)化學(xué)生對因數(shù)分解的理解,為學(xué)生類比因式分解提供必要的精神準(zhǔn)備。

活動3:探究新知。

看誰算得準(zhǔn):

計算下列式子:

(1)3x(x-1)=;

(2)(a+b+c)=;

(3)(+4)(-4)=;

(4)(-3)2=;

(5)a(a+1)(a-1)=;

根據(jù)上面的算式填空:

(1)a+b+c=;

(2)3x2-3x=;

(3)2-16=;

(4)a3-a=;

(5)2-6+9=。

在第一組的整式乘法的計算上,學(xué)生通過對第一組式子的觀察得出第二組式子的結(jié)果,然后通過對這兩組式子的結(jié)果的比較,使學(xué)生對因式分解有一個初步的意識,由整式乘法的逆運(yùn)算逐步過渡到因式分解,發(fā)展學(xué)生的逆向思維能力。

活動4:歸納、得出新知。

比較以下兩種運(yùn)算的聯(lián)系與區(qū)別:

a(a+1)(a-1)=a3-a。

a3-a=a(a+1)(a-1)。

在第三環(huán)節(jié)的運(yùn)算中還有其它類似的例子嗎?除此之外,你還能找到類似的例子嗎?

八年級上數(shù)學(xué)導(dǎo)學(xué)案教案篇五

1.了解方差的定義和計算公式。

2.理解方差概念的產(chǎn)生和形成的過程。

3.會用方差計算公式來比較兩組數(shù)據(jù)的波動大小。

1.重點(diǎn):方差產(chǎn)生的必要性和應(yīng)用方差公式解決實(shí)際問題。

2.難點(diǎn):理解方差公式。

3.難點(diǎn)的突破方法:

方差公式:s=[(-)+(-)+…+(-)]比較復(fù)雜,學(xué)生理解和記憶這個公式都會有一定困難,以致應(yīng)用時常常出現(xiàn)計算的錯誤,為突破這一難點(diǎn),我安排了幾個環(huán)節(jié),將難點(diǎn)化解。

(1)首先應(yīng)使學(xué)生知道為什么要學(xué)習(xí)方差和方差公式,目的不明確學(xué)生很難對本節(jié)課內(nèi)容產(chǎn)生興趣和求知欲望。教師在授課過程中可以多舉幾個生活中的小例子,不如選擇儀仗隊隊員、選擇運(yùn)動員、選擇質(zhì)量穩(wěn)定的電器等。學(xué)生從中可以體會到生活中為了更好的做出選擇判斷經(jīng)常要去了解一組數(shù)據(jù)的波動程度,僅僅知道平均數(shù)是不夠的。

(2)波動性可以通過什么方式表現(xiàn)出來?第一環(huán)節(jié)中點(diǎn)明了為什么去了解數(shù)據(jù)的波動性,第二環(huán)節(jié)則主要使學(xué)生知道描述數(shù)據(jù),波動性的方法??梢援嬚劬€圖方法來反映這種波動大小,可是當(dāng)波動大小區(qū)別不大時,僅用畫折線圖方法去描述恐怕不會準(zhǔn)確,這自然希望可以出現(xiàn)一種數(shù)量來描述數(shù)據(jù)波動大小,這就引出方差產(chǎn)生的必要性。

(3)第三環(huán)節(jié)教師可以直接對方差公式作分析和解釋,波動大小指的是與平均數(shù)之間差異,那么用每個數(shù)據(jù)與平均值的差完全平方后便可以反映出每個數(shù)據(jù)的波動大小,整體的波動大小可以通過對每個數(shù)據(jù)的波動大小求平均值得到。所以方差公式是能夠反映一組數(shù)據(jù)的波動大小的一個統(tǒng)計量,教師也可以根據(jù)學(xué)生程度和課堂時間決定是否介紹平均差等可以反映數(shù)據(jù)波動大小的其他統(tǒng)計量。

1.教材p125的討論問題的意圖:

(1).創(chuàng)設(shè)問題情境,引起學(xué)生的學(xué)習(xí)興趣和好奇心。

(2).為引入方差概念和方差計算公式作鋪墊。

(3).介紹了一種比較直觀的衡量數(shù)據(jù)波動大小的方法——畫折線法。

(4).客觀上反映了在解決某些實(shí)際問題時,求平均數(shù)或求極差等方法的'局限性,使學(xué)生體會到學(xué)習(xí)方差的意義和目的。

2.教材p154例1的設(shè)計意圖:

(1).例1放在方差計算公式和利用方差衡量數(shù)據(jù)波動大小的規(guī)律之后,不言而喻其主要目的是及時復(fù)習(xí),鞏固對方差公式的掌握。

(2).例1的解題步驟也為學(xué)生做了一個示范,學(xué)生以后可以模仿例1的格式解決其他類似的實(shí)際問題。

除采用教材中的引例外,可以選擇一些更時代氣息、更有現(xiàn)實(shí)意義的引例。例如,通過學(xué)生觀看2004年奧運(yùn)會劉翔勇奪110米欄冠軍的錄像,進(jìn)而引導(dǎo)教練員根據(jù)平時比賽成績選擇參賽隊員這樣的實(shí)際問題上,這樣引入自然而又真實(shí),學(xué)生也更感興趣一些。

教材xxx例x在分析過程中應(yīng)抓住以下幾點(diǎn):

1.題目中“整齊”的含義是什么?說明在這個問題中要研究一組數(shù)據(jù)的什么?學(xué)生通過思考可以回答出整齊即波動小,所以要研究兩組數(shù)據(jù)波動大小,這一環(huán)節(jié)是明確題意。

2.在求方差之前先要求哪個統(tǒng)計量,為什么?學(xué)生也可以得出先求平均數(shù),因?yàn)楣街行枰骄?,這個問題可以使學(xué)生明確利用方差計算步驟。

3.方差怎樣去體現(xiàn)波動大?。?/p>

這一問題的提出主要復(fù)習(xí)鞏固方差,反映數(shù)據(jù)波動大小的規(guī)律。

1.從甲、乙兩種農(nóng)作物中各抽取1株苗,分別測得它的苗高如下:(單位:cm)。

甲:9、10、11、12、7、13、10、8、12、8;。

乙:8、13、12、11、10、12、7、7、9、11;。

問:(1)哪種農(nóng)作物的苗長的比較高?

(2)哪種農(nóng)作物的苗長得比較整齊?

測試次數(shù)12345。

段巍1314131213。

金志強(qiáng)1013161412。

參考答案:1.(1)甲、乙兩種農(nóng)作物的苗平均高度相同;(2)甲整齊。

的成績比xx的成績要穩(wěn)定。

略。

八年級上數(shù)學(xué)導(dǎo)學(xué)案教案篇六

教學(xué)目標(biāo):

〔知識與技能〕。

1.在生活實(shí)例中認(rèn)識軸對稱圖.

2.分析軸對稱圖形,理解軸對稱的概念.軸對稱圖形的概念。

〔過程與方法〕。

2、在靈活運(yùn)用知識解決有關(guān)問題的過程中,體驗(yàn)并掌握探索、歸納圖形性質(zhì)的推理方法,進(jìn)一步培說理和進(jìn)行簡單推理的能力。

〔情感、態(tài)度與價值觀〕。

辯證唯物主義觀點(diǎn)。

教學(xué)重點(diǎn):.

理解軸對稱的概念。

教學(xué)難點(diǎn)。

能夠識別軸對稱圖形并找出它的對稱軸.

教具準(zhǔn)備:三角尺。

教學(xué)過程。

一.創(chuàng)設(shè)情境,引入新課。

1.舉實(shí)例說明對稱的重要性和生活充滿著對稱。

2.對稱給我們帶來多少美的感受!初步掌握對稱的奧秒,不僅可以幫助我們發(fā)現(xiàn)一些圖形的特征,還可以使我們感受到自然界的美與和諧.

3.軸對稱是對稱中重要的一種,讓我們一起走進(jìn)軸對稱世界,探索它的秘密吧!

二.導(dǎo)入新課。

1.觀察:幾幅圖片(出示圖片),觀察它們都有些什么共同特征.

強(qiáng)調(diào):對稱現(xiàn)象無處不在,從自然景觀到分子結(jié)構(gòu),從建筑物到藝術(shù)作品,?甚至日常生活用品,人們都可以找到對稱的例子.

練習(xí):從學(xué)生生活周圍的事物中來找一些具有對稱特征的例子.

3.如果一個圖形沿一直線折疊,直線兩旁的部分能夠互相重合,這個圖形就叫做軸對稱圖形,這條直線就是它的對稱軸.我們也說這個圖形關(guān)于這條直線(成軸)?對稱.

4.動手操作:取一張質(zhì)地較硬的紙,將紙對折,并用小刀在紙的中央隨意。

刻出一個圖案,將紙打開后鋪平,你得到兩個成軸對稱的圖案了嗎?

歸納小結(jié):由此我們進(jìn)一步了解了軸對稱圖形的特征:一個圖形沿一條直線折疊后,折痕兩側(cè)的圖形完全重合.

5.練習(xí):你能找出它們的對稱軸嗎?分小組討論.

思考:大家想一想,你發(fā)現(xiàn)了什么?

小結(jié)得出:.像這樣,?把一個圖形沿著某一條直線折疊,如果它能夠與另一個圖形重合,那么就說這兩個圖形關(guān)于這條直線對稱,?這條直線叫做對稱軸,折疊后重合的點(diǎn)是對應(yīng)點(diǎn),叫做對稱點(diǎn).

三.隨堂練習(xí)。

1、課本60練習(xí)1、2。

四.課時小結(jié)。

分了軸對稱圖形和兩個圖形成軸對稱.

五.課后作業(yè)。

習(xí)題13.1.1、2、6題.

六.教后記。

八年級上數(shù)學(xué)導(dǎo)學(xué)案教案篇七

調(diào)查中,所要考察對象的全體稱為總體,而組成總體的每一個考察對象稱為個體。

例如,某班10名女生的考試成績是總體,每一名女生的考試成績是個體。

從總體中抽取部分個體進(jìn)行調(diào)查,這種調(diào)查稱為抽樣調(diào)查,其中從總體中抽取的一部分個體叫做總體的一個樣本。

例如,要調(diào)查全縣農(nóng)村中學(xué)生學(xué)生平均每周每人的零花錢數(shù),由于人數(shù)較多(一般涉及幾萬人),我們從中抽取500名學(xué)生進(jìn)行調(diào)查,就是抽樣調(diào)查,這500名學(xué)生平均每周每人的零花錢數(shù),就是總體的一個樣本。

將一組數(shù)據(jù)按照由小到大(或由大到?。┑捻樞蚺帕校绻麛?shù)據(jù)的個數(shù)是奇數(shù),則處于中間位置的數(shù)稱為這組數(shù)據(jù)的中位數(shù);如果數(shù)據(jù)的個數(shù)是偶數(shù),則中間兩個數(shù)據(jù)的平均數(shù)稱為這組數(shù)據(jù)的中位數(shù)。

一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)就是這組數(shù)據(jù)的眾數(shù)。

例如:求一組數(shù)據(jù)3,2,3,5,3,1的眾數(shù)。

解:這組數(shù)據(jù)中3出現(xiàn)3次,2,5,1均出現(xiàn)1次。所以3是這組數(shù)據(jù)的眾數(shù)。

又如:求一組數(shù)據(jù)2,3,5,2,3,6的眾數(shù)。

解:這組數(shù)據(jù)中2出現(xiàn)2次,3出現(xiàn)2次,5,6各出現(xiàn)1次。

所以這組數(shù)據(jù)的眾數(shù)是2和3。

【規(guī)律方法小結(jié)】。

(1)平均數(shù)、中位數(shù)、眾數(shù)都是描述一組數(shù)據(jù)集中趨勢的量。

(2)平均數(shù)反映一組數(shù)據(jù)的平均水平,與這組數(shù)據(jù)中的每個數(shù)據(jù)都有關(guān),是最為重要的量。

(3)中位數(shù)不受個別偏大或偏小數(shù)據(jù)的影響,當(dāng)一組數(shù)據(jù)中的個別數(shù)據(jù)變動較大時,一般用它來描述集中趨勢。

(4)眾數(shù)只與數(shù)據(jù)出現(xiàn)的頻數(shù)有關(guān),不受個別數(shù)據(jù)影響,有時是我們最為關(guān)心的統(tǒng)計數(shù)據(jù)。

探究交流。

1、一組數(shù)據(jù)的中位數(shù)一定是這組數(shù)據(jù)中的一個,這句話對嗎?為什么?

解析:不對,一組數(shù)據(jù)的中位數(shù)不一定是這組數(shù)據(jù)中的一個,當(dāng)這組數(shù)據(jù)有偶數(shù)個時,中位數(shù)由中間兩個數(shù)的平均數(shù)決定,若中間兩數(shù)相等,則這組數(shù)據(jù)的中位數(shù)在這組數(shù)據(jù)之中,反之,中位數(shù)不在這組數(shù)據(jù)之中。

總結(jié):

(1)中位數(shù)在一組數(shù)據(jù)中是唯一的,可能是這組數(shù)據(jù)中的一個,也可能不是這組數(shù)據(jù)中的數(shù)據(jù)。

(2)求中位數(shù)時,先將數(shù)據(jù)按由小到大的順序排列(或按由大到小的順序排列)。若這組數(shù)據(jù)是奇數(shù)個,則最中間的數(shù)據(jù)是中位數(shù);若這組數(shù)據(jù)是偶數(shù)個,則最中間的兩個數(shù)據(jù)的平均數(shù)是中位數(shù)。

(3)中位數(shù)的單位與數(shù)據(jù)的單位相同。

(4)中位數(shù)與數(shù)據(jù)排序有關(guān)。當(dāng)一組數(shù)據(jù)中的個別數(shù)據(jù)變動較大時,可用中位數(shù)來描述這組數(shù)據(jù)的集中趨勢。

課堂檢測。

基本概念題。

1、填空題。

(1)數(shù)據(jù)15,23,17,18,22的平均數(shù)是;

(4)為了考察某公園一年中每天進(jìn)園的人數(shù),在其中的30天里,對進(jìn)園的人數(shù)進(jìn)行了統(tǒng)計,這個問題中的總體是________,樣本是________,個體是________。

基礎(chǔ)知識應(yīng)用題。

2、某公交線路總站設(shè)在一居民小區(qū)附近,為了了解高峰時段從總站乘車出行的人數(shù),隨機(jī)抽查了10個班次的乘車人數(shù),結(jié)果如下:20,23,26,25,29,28,30,25,21,23。

(1)計算這10個班次乘車人數(shù)的平均數(shù);

(2)如果在高峰時段從總站共發(fā)車60個班次,根據(jù)前面的計算結(jié)果,估計在高峰時段從總站乘該路車出行的乘客共有多少。

八年級上數(shù)學(xué)導(dǎo)學(xué)案教案篇八

2、范例講解。

(學(xué)生嘗試練習(xí)后,教師講評)。

例1:解方程例2:解方程例3:解方程講評時強(qiáng)調(diào):

1、怎樣確定最簡公分母?(先將各分母因式分解)。

2、解分式方程的步驟、

鞏固練習(xí):p1471t,2t、

課堂小結(jié):解分式方程的一般步驟。

布置作業(yè):見作業(yè)本。

八年級上數(shù)學(xué)導(dǎo)學(xué)案教案篇九

在教學(xué)中努力推進(jìn)九年義務(wù)教育,落實(shí)新課改,體現(xiàn)新理念,培養(yǎng)創(chuàng)新精神。

通過數(shù)學(xué)課的教學(xué),使學(xué)生切實(shí)學(xué)好從事現(xiàn)代化建設(shè)和進(jìn)一步學(xué)習(xí)現(xiàn)代化科學(xué)技術(shù)所必需的數(shù)學(xué)基本知識和基本技能;努力培養(yǎng)學(xué)生的運(yùn)算能力、邏輯思維能力,以及分析問題和解決問題的能力。

二、學(xué)情分析

八年級是初中學(xué)習(xí)過程中的關(guān)鍵時期,學(xué)生基礎(chǔ)的好壞,直接影響到將來是否能升學(xué)。優(yōu)生不多,思想不夠活躍,有少數(shù)學(xué)生不上進(jìn),思維跟不上。要在本期獲得理想成績,老師和學(xué)生都要付出努力,充分發(fā)揮學(xué)生是學(xué)習(xí)的主體,教師是教的主體作用,注重方法,培養(yǎng)能力。

三、本學(xué)期教學(xué)內(nèi)容分析

本學(xué)期教學(xué)內(nèi)容共計六章。

第一章《三角形的證明》

本章將證明與等腰三角形和直角三角形的性質(zhì)及判定有關(guān)的一些結(jié)論,證明線段垂直平分線和角平分線的有關(guān)性質(zhì),將研究直角三角形全等的判定,進(jìn)一步體會證明的必要性。

第二章《一元一次不等式和一元一次不等式組》

本章通過具體實(shí)例建立不等式,探索不等式的基本性質(zhì),了解一般不等式的解、解集、解集在數(shù)軸上的表示,一元一次不等式的解法及應(yīng)用;通過具體實(shí)例滲透一元一次不等式、一元一次方程和一次函數(shù)的內(nèi)在聯(lián)系.最后研究一元一次不等式組的解集和應(yīng)。

第三章《圖形的平移與旋轉(zhuǎn)》

本章將在小學(xué)學(xué)習(xí)的基礎(chǔ)上進(jìn)一步認(rèn)識平面圖形的平移與旋轉(zhuǎn),探索平移,旋轉(zhuǎn)的性質(zhì),認(rèn)識并欣賞平移,中心對稱在自然界和現(xiàn)實(shí)生活中的應(yīng)用。

第四章《分解因式》

本章通過具體實(shí)例分析分解因式與整式的乘法之間的關(guān)系揭示分解因式的實(shí)質(zhì),最后學(xué)習(xí)分解因式的幾種基本方法。

第五章《分式與分式方程》

本章通過分?jǐn)?shù)的有關(guān)性質(zhì)的回顧建立了分式的概念、性質(zhì)和運(yùn)算法則,并在此基礎(chǔ)上學(xué)習(xí)分式的化簡求值、解分式方程及列分式方程解應(yīng)用題,能解決簡單的實(shí)際應(yīng)用問題。

第六章《平行四邊形》

本章將研究平行四邊形的性質(zhì)與判定,以及三角形中位線的性質(zhì),還將探索多邊形的內(nèi)角和,外角和的規(guī)律;經(jīng)歷操作,實(shí)驗(yàn)等幾何發(fā)現(xiàn)之旅,享受證明之美。

四、主要措施

1、面向全體學(xué)生。

由于學(xué)生在知識、技能方面的發(fā)展和興趣、特長等不盡相同,所以要因材施教。在組織教學(xué)時,應(yīng)從大多數(shù)學(xué)生的實(shí)際出發(fā),并兼顧學(xué)習(xí)有困難的和學(xué)有余力的學(xué)生。對學(xué)習(xí)有困難的學(xué)生,要特別予以關(guān)心,及時采取有效措施,激發(fā)他們學(xué)習(xí)數(shù)學(xué)的興趣,指導(dǎo)他們改進(jìn)學(xué)習(xí)方法。幫助他們解決學(xué)習(xí)中的困難,使他們經(jīng)過努力,能夠達(dá)到大綱中規(guī)定的基本要求,對學(xué)有余力的學(xué)生,要通過講授選學(xué)內(nèi)容和組織課外活動等多種形式,滿足他們的學(xué)習(xí)愿望,發(fā)展他們的數(shù)學(xué)才能。

2、重視改進(jìn)教學(xué)方法,堅持啟發(fā)式,反對注入式。

教師在課前先布置學(xué)生預(yù)習(xí),同時要指導(dǎo)學(xué)生預(yù)習(xí),提出預(yù)習(xí)要求,并布置與課本內(nèi)容相關(guān)、難度適中的嘗試題材由學(xué)生課前完成,教學(xué)中教師應(yīng)幫助學(xué)生梳理新課知識,指出重點(diǎn)和易錯點(diǎn),解答學(xué)生預(yù)習(xí)時遇到的問題,再設(shè)計提高題由學(xué)生進(jìn)行嘗試,使學(xué)生在學(xué)習(xí)中體會成功,調(diào)動學(xué)習(xí)積極性,同時也可激勵學(xué)生自我編題。努力培養(yǎng)學(xué)生發(fā)現(xiàn)、得出、分析、解決問題的能力,包括將實(shí)際問題上升為數(shù)學(xué)模型的能力,注意激勵學(xué)生的創(chuàng)新意識。

3、 改革作業(yè)結(jié)構(gòu)減輕學(xué)生負(fù)擔(dān)。將學(xué)生按學(xué)習(xí)能力分成幾個層次,分別布置難、中、淺三個層次作業(yè),使每類學(xué)生都能在原有基礎(chǔ)上提高。

4、課后輔導(dǎo)實(shí)行流動分層。

5、運(yùn)用新課程標(biāo)準(zhǔn)的理念指導(dǎo)教學(xué),積極更新自己腦海中固有的教育理念,不同的教育理念將帶來不同的教育效果。

6、培養(yǎng)學(xué)生良好的學(xué)習(xí)習(xí)慣,陶行知說:教育就是培養(yǎng)習(xí)慣,有助于學(xué)生穩(wěn)步提高學(xué)習(xí)成績,發(fā)展學(xué)生的'非智力因素,彌補(bǔ)智力上的不足。

7、開展課題的研究,課外調(diào)查,操作實(shí)踐,帶動班級學(xué)生學(xué)習(xí)數(shù)學(xué),同時發(fā)展這一部分學(xué)生的特長。

8、進(jìn)行個別輔導(dǎo),優(yōu)生提升能力,扎實(shí)打牢基礎(chǔ)知識;對學(xué)困生,一些關(guān)鍵知識,輔導(dǎo)他們過關(guān),為他們以后的發(fā)展鋪平道路。

9、培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的良好習(xí)慣。

四、教學(xué)進(jìn)度

第一章《三角形的證明》13課時

1.1等腰三角形 4課時

1.2直角三角形 2課時

1.3線段的垂直平分線 2課時

1.4角平分線 2課時

復(fù)習(xí)小節(jié)與檢測 3課時

第二章《一元一次不等式和一元一次不等式組》 12課時

2.1 不等關(guān)系 1課時

2.2 不等式的基本性質(zhì) 1課時

2.3 不等式的解集 1課時

2.4 一元一次不等式2課時

2.5 一元一次不等式與一次函數(shù)2課時

2.6 一元一次不等式組 2課時

復(fù)習(xí)小節(jié) 與檢測 3課時

第三章《圖形的平移與旋轉(zhuǎn)》 10課時

3.1圖形的平移 3課時

3.2圖形的旋轉(zhuǎn) 2 課時

3.3中心對稱 1課時

3.4簡單的圖形設(shè)計 1 課時

復(fù)習(xí)小節(jié)與檢測 3課時

期中考試復(fù)習(xí)2 課時

第四章《分解因式》7課時

4.1分解因式1課時

4.2提公因式法 2課時

4.3公式法 2課時

4.4重心 2課時

復(fù)習(xí)小節(jié)與檢測 2課時

第五章《分式與分式方程》 11課時

5.1認(rèn)識分式 2課時

5.2 分式的乘除法 1課時

5.3分式的加減法 3課時

5.4分式方程 3課時

復(fù)習(xí)小節(jié)與檢測 2課時

第六章《平行四邊形》 10課時

4.1平行四邊形的性質(zhì) 2課時

4.2特殊的平行四邊形的判定 3課時

4.3三角形的中位線 1課時

4.4多邊形的內(nèi)角和外角和 2課時

復(fù)習(xí)小節(jié)與檢測 2課時

八年級上數(shù)學(xué)導(dǎo)學(xué)案教案篇十

《基礎(chǔ)教育課程改革綱要(試行)》指出:“大力推進(jìn)多媒體信息技術(shù)在教學(xué)過程中的普遍應(yīng)用,促進(jìn)信息技術(shù)與學(xué)科課程的整合,逐步實(shí)現(xiàn)教學(xué)內(nèi)容的呈現(xiàn)方式、學(xué)生的學(xué)習(xí)方式、教師的教學(xué)方式和師生互動方式的變革,充分發(fā)揮信息技術(shù)的優(yōu)勢,為學(xué)生的學(xué)習(xí)和發(fā)展提供豐富多彩的教育環(huán)境和有力的學(xué)習(xí)工具。”教師運(yùn)用現(xiàn)代多媒體信息技術(shù)對教學(xué)活動進(jìn)行創(chuàng)造性設(shè)計,發(fā)揮計算機(jī)輔助教學(xué)的特有功能,把信息技術(shù)和數(shù)學(xué)教學(xué)的學(xué)科特點(diǎn)結(jié)合起來,可以使教學(xué)的表現(xiàn)形式更加形象化、多樣化、視覺化,有利于充分揭示數(shù)學(xué)概念的形成與發(fā)展,數(shù)學(xué)思維的過程和實(shí)質(zhì),展示數(shù)學(xué)思維的形成過程,使數(shù)學(xué)課堂教學(xué)收到事半功倍的效果。

本節(jié)課內(nèi)容是學(xué)生在小學(xué)階段初步了解特殊四邊形以及學(xué)過《三角形》這章的基礎(chǔ)上進(jìn)行的,在知識結(jié)構(gòu)上打破了教材的編寫順序,從整體的角度探究特殊四邊形性質(zhì)。運(yùn)用多媒體教學(xué)體現(xiàn)出直觀、課容量大、容易接受的特點(diǎn),為進(jìn)一步的理論證明及應(yīng)用起著提供數(shù)據(jù)和宏觀指導(dǎo)作用,使學(xué)生學(xué)習(xí)本章具體內(nèi)容時知道身在何處,使知識體系更加系統(tǒng)。本節(jié)課內(nèi)容是四邊形這章的理論基礎(chǔ),在該章占有非常重要的地位。

本班經(jīng)歷了一年多課改實(shí)踐,學(xué)生對運(yùn)用現(xiàn)代多媒體信息技術(shù)的教學(xué)方式有濃厚的興趣,能運(yùn)用《幾何畫板》這一工具進(jìn)行簡單的操作,形成自主探索和合作交流的學(xué)風(fēng),從而樂于在教師的指導(dǎo)下主動與同學(xué)探索、發(fā)現(xiàn)、歸納、經(jīng)歷數(shù)學(xué)知識于實(shí)踐的過程。

本節(jié)課充分利用現(xiàn)有的先進(jìn)教學(xué)設(shè)備(兩名學(xué)生一臺電腦),利用筆者自制,借助《幾何畫板》把學(xué)生帶入數(shù)學(xué)模擬實(shí)驗(yàn)室,以研究電動門的機(jī)械原理為切入點(diǎn),從學(xué)生已有的生活經(jīng)驗(yàn)出發(fā),讓學(xué)生親身經(jīng)歷數(shù)學(xué)知識的形成并進(jìn)行解釋與應(yīng)用過程。組員相互配合分別測量、搜集、分析、整理特殊四邊形的邊長、角度、對角線長度等數(shù)據(jù),并總結(jié)其性質(zhì),通過人機(jī)對話方式把靜態(tài)、抽象的幾何圖形變?yōu)閯討B(tài)、直觀地演示出來。在此過程中教師當(dāng)好課堂教學(xué)的組織者、決策者、創(chuàng)造者和參與者,教給學(xué)生自覺主動地探究新知識的方法,激發(fā)學(xué)生的思維,培養(yǎng)學(xué)生的科學(xué)精神和創(chuàng)新思維習(xí)慣,使學(xué)生獲得對數(shù)學(xué)理解的同時,在思維能力、情感態(tài)度與價值觀等多方面得到發(fā)展。

1、初步理解特殊四邊形性質(zhì);

2、培養(yǎng)學(xué)生自主收集、描述和分析數(shù)據(jù)的能力;

1、了解特殊四邊形性質(zhì)的形成過程;

2、初步了解探究新知識的一些方法;

1、了解特殊四邊形在日常生活中的應(yīng)用;

2、學(xué)生在觀察、歸納、類比及實(shí)驗(yàn)教學(xué)活動中,體會成功后的喜悅;

3、初步具有感性認(rèn)識上升到理性認(rèn)識的辯證唯物主義思想。

教學(xué)環(huán)境:

多媒體計算機(jī)網(wǎng)絡(luò)教室。

教學(xué)課型:

試驗(yàn)探究式。

教學(xué)重點(diǎn):

特殊四邊形性質(zhì)。

教學(xué)難點(diǎn):

特殊四邊形性質(zhì)的發(fā)現(xiàn)。

一、設(shè)置情景,提出問題。

提出問題:

1、電動門的網(wǎng)格和結(jié)點(diǎn)能組成哪些四邊形?

2、在開(關(guān))門過程中這些四邊形是如何變化的?

3、你還發(fā)現(xiàn)了什么?

解決問題:

學(xué)生猜想:包括平行四邊形、矩形、菱形、等腰梯形、直角梯形……;

當(dāng)我們學(xué)習(xí)完本節(jié)知識后,其他問題就容易解決了。

(意圖:用《幾何畫板》的動態(tài)演示生活事例,充分展示了數(shù)學(xué)的美妙,可以使學(xué)生容易進(jìn)入情境和保持積極學(xué)習(xí)狀態(tài),激起學(xué)生探究解決問題的求知欲望。)。

二、整體了解,形成系統(tǒng)。

本節(jié)課從整體角度研究特殊四邊形性質(zhì),為今后的個體研究打下良好的基礎(chǔ)。我們先研究四邊形中的特殊與一般的關(guān)系。

提出問題:

1、本章主要研究哪些特殊四邊形?

2、從哪幾方面研究這些特殊四邊形?

解決問題:

學(xué)生操作電腦(用幾何畫板),了解本章研究的主要圖形;教師個別指導(dǎo)。

1、包括:平行四邊形、矩形、菱形、梯形、等腰梯形、直角梯形。

3、等腰梯形和直角梯形后面應(yīng)該是矩形,但不符合梯形定義,所以沒有圖形。

(意圖:學(xué)生自主觀察、分組討論了解本章知識結(jié)構(gòu),從而形成系統(tǒng);通過假設(shè)、猜想、推理、論證、否定假設(shè)獲得新知識)。

三、個體研究、總結(jié)性質(zhì)。

1、平行四邊形性質(zhì)。

提出問題:

在平行四邊形的形狀、位置、大小變化過程中,請觀察數(shù)據(jù)并找出邊長、角度、對角線長度相對不變的性質(zhì)。

解決問題:

教師引導(dǎo)學(xué)生拖動b點(diǎn)(學(xué)生操作電腦),改變平行四邊形的形狀、位置、大小,并觀察數(shù)據(jù)的變化,從中找出相對不變的要素。

在圖形變化過程中,

(1)對邊相等;

(2)對角相等;

(3)通過ao=co、bo=do,可得對角線互相平分;

(4)通過鄰角互補(bǔ),可得對邊平行;

(5)內(nèi)外角和都等于360度;

(6)鄰角互補(bǔ);

……。

指導(dǎo)學(xué)生填表:

平行四邊形性質(zhì)矩形性質(zhì)正方形性質(zhì)。

菱形性質(zhì)。

梯形性質(zhì)等腰梯形性質(zhì)。

直角梯形性質(zhì)。

(既屬于平行四邊形性質(zhì)又屬于矩形性質(zhì)可以畫箭頭)。

按照平行四邊形性質(zhì)的探索思路,分別研究:

2、矩形性質(zhì);

3、菱形性質(zhì);

4、正方形性質(zhì);

5、梯形性質(zhì);

6、等腰梯形性質(zhì);

7、直角梯形的性質(zhì)。

(意圖:學(xué)生運(yùn)用電腦自主收集、描述、分析數(shù)據(jù),把抽象的性質(zhì)變?yōu)橹庇^化、形象化,培養(yǎng)獨(dú)立探究,自主自信,使學(xué)生體驗(yàn)到科學(xué)探索的樂趣。)。

教師總結(jié):

(意圖:掌握畫箭頭的方法,使學(xué)生了解事物個體既有該事物一般性質(zhì),又有自己的特點(diǎn)。既清楚地表達(dá),又節(jié)省時間。)。

四、聯(lián)系生活,解決問題。

解決問題:

學(xué)生操作電腦,觀察圖形、分組討論,教師個別指導(dǎo)。

學(xué)生在分別演示開(關(guān))門過程中,觀察數(shù)據(jù)并總結(jié):邊長、角度、對角線長度的變化引起四邊形的形狀、大小、位置的變化。

四邊形具有不穩(wěn)定性,而三角形沒有這個特點(diǎn)……。

(意圖:使學(xué)生體會到數(shù)學(xué)于生活、又服務(wù)于生活,更重要的是培養(yǎng)學(xué)生應(yīng)用知識解決實(shí)際問題的能力,體會成功后的喜悅。)。

五、小結(jié)。

1.研究問題從整體到局部的方法;

2.主要從邊長、角度、對角線長度三方面研究特殊四邊形性質(zhì)。

六、作業(yè)。

1.平行四邊形內(nèi)角中,既有兩個相鄰的角相等,又有一組鄰邊相等,試判斷它是什么圖形。

2.觀察實(shí)際生活中的電動門,在開(關(guān))門過程中特殊四邊形的變化。

針對教學(xué)內(nèi)容、學(xué)生特點(diǎn)及設(shè)計方案,預(yù)計下列學(xué)習(xí)效果:

利用多媒體信息技術(shù)圖文并茂、形象直觀的特點(diǎn),通過學(xué)生自主測量、分析、整理數(shù)據(jù)并總結(jié)其性質(zhì),培養(yǎng)學(xué)生收集、描述和分析數(shù)據(jù)的能力,并達(dá)到初步理解特殊四邊形性質(zhì)的目標(biāo)。

在問題引入、了解整體、測量個體、總結(jié)性質(zhì)的過程中,符合事物的認(rèn)識規(guī)律及探究新知識的一般方法,初步形成感性認(rèn)識上升到理性認(rèn)識的辯證唯物主義思想。

由于個體差異,針對教學(xué)目標(biāo)難以達(dá)到的個別學(xué)生,根據(jù)教學(xué)的進(jìn)展,通過師生之間、學(xué)生之間的對話交流及時指導(dǎo),使教學(xué)目標(biāo)得以實(shí)現(xiàn)。

八年級上數(shù)學(xué)導(dǎo)學(xué)案教案篇十一

1.經(jīng)歷分式方程的概念,能將實(shí)際問題中的等量關(guān)系用分式方程 表示,體會分式方程的模型作用.

2.經(jīng)歷實(shí)際問題-分式方程方程模型的過程,發(fā)展學(xué)生分析問題、解決問題的能力,滲透數(shù)學(xué)的轉(zhuǎn)化思想人體,培養(yǎng)學(xué)生的應(yīng)用意識。

3.在活動中培養(yǎng)學(xué)生樂于探究、合作學(xué)習(xí)的習(xí)慣,培養(yǎng)學(xué) 生努力尋找 解決問題的進(jìn)取心,體會數(shù)學(xué)的應(yīng)用價值.

將實(shí)際問題中的等量 關(guān)系用分式方程表示

找實(shí)際問題中的等量關(guān)系

有兩塊面積相同的小麥試驗(yàn)田,第一塊使用原品種,第二 塊使用新品種,分別收獲小麥9000 kg和15000 kg。已知第一塊試驗(yàn)田每公頃的產(chǎn)量比第二塊少3000 kg,分別求這兩塊試驗(yàn)田每 公頃 的產(chǎn)量。你能找出這一問題中的所有等量關(guān)系嗎?(分組交流)

如果設(shè)第一塊試驗(yàn)田 每公頃的產(chǎn)量為 kg,那么第二塊試驗(yàn)田每公頃的產(chǎn)量是________kg。

根據(jù)題意,可得方程___________________

從甲地到乙地有兩條公路:一條是全長600 km的普通 公路,另一條是全長480 km的高速公路。某客 車在 高速公路上行駛的平均速度比在普通公路上快45 km/h,由高速 公路從甲地到乙地所需的時間 是由普通公路從甲地到乙地所需時間的一半。求該客車由高速公路從 甲地到乙地所需的時間。

這 一問題中有哪些等量關(guān)系?

如果設(shè)客車由高速公路從甲地到乙地 所需的時間為 h,那么它由普通公路從甲地到乙地所需的時間為_________h。

根據(jù)題意,可得方程_ _____________________。

學(xué)生分組探討、交流,列出方程.

上面所得到的方程有什么共同特點(diǎn)?

分母中含有未知數(shù)的方程叫做分式方程

分式方程與整式方程有什么區(qū)別?

(3)根據(jù)分式方程 編一道應(yīng)用題,然后同組交流,看誰編得好

本節(jié)課你學(xué)到了哪些知識?有什么感想?

八年級上數(shù)學(xué)導(dǎo)學(xué)案教案篇十二

1、掌握平行四邊形的判定定理1、2、3、4,并能與性質(zhì)定理、定義綜合應(yīng)用。

2、使學(xué)生理解判定定理與性質(zhì)定理的區(qū)別與聯(lián)系。

3、會根據(jù)簡單的條件畫出平行四邊形,并說明畫圖的依據(jù)是哪幾個定理。

1、通過“探索式試明法”開拓學(xué)生思路,發(fā)展學(xué)生思維能力。

2、通過教學(xué),使學(xué)生逐步學(xué)會分別從題設(shè)或結(jié)論出發(fā)尋求論證思路的分析方法,進(jìn)一步提高學(xué)生分析問題,解決問題的能力。

通過一題多解激發(fā)學(xué)生的學(xué)習(xí)興趣。

通過學(xué)習(xí),體會幾何證明的方法美。

構(gòu)造逆命題,分析探索證明,啟發(fā)講解。

1、教學(xué)重點(diǎn):平行四邊形的判定定理1、2、3的應(yīng)用。

2、教學(xué)難點(diǎn):綜合應(yīng)用判定定理和性質(zhì)定理。

(強(qiáng)調(diào)在求證平行四邊形時用判定定理在已知平行四邊形時用性質(zhì)定理)。

八年級上數(shù)學(xué)導(dǎo)學(xué)案教案篇十三

學(xué)會可化為一元一次方程或一元二次方程的分式方程的解法,會用去分母求方程的解、掌握解分式方程的一般步驟。

去分母法解可化為一元一次方程或一元二次方程的分式方程、驗(yàn)根的方法、

解分式方程的一般步驟。

1、什么叫分式方程?

2、解分式方程的基本思想:

分式方程整式方程。

3、解方程(學(xué)生板演)。

1、由上述學(xué)生的板演歸納出解分式方程的一般步驟。

(1)去分母:在方程的兩邊都乘以最簡公分母,化為整式方程;

(2)解這個整式方程;

2、范例講解。

(學(xué)生嘗試練習(xí)后,教師講評)。

例1:解方程例2:解方程例3:解方程講評時強(qiáng)調(diào):

1、怎樣確定最簡公分母?(先將各分母因式分解)。

2、解分式方程的步驟、

鞏固練習(xí):p1471t,2t、

課堂小結(jié):解分式方程的一般步驟。

布置作業(yè):見作業(yè)本。

八年級上數(shù)學(xué)導(dǎo)學(xué)案教案篇十四

1.了解算術(shù)平方根的概念,會用根號表示正數(shù)的算術(shù)平方根,并了解算術(shù)平方根的非負(fù)性。

2.了解開方與乘方互為逆運(yùn)算,會用平方運(yùn)算求某些非負(fù)數(shù)的算術(shù)平方根。

算術(shù)平方根的概念。

根據(jù)算術(shù)平方根的概念正確求出非負(fù)數(shù)的算術(shù)平方根。

這就要用到平方根的概念,也就是本章的主要學(xué)習(xí)內(nèi)容.這節(jié)課我們先學(xué)習(xí)有關(guān)算術(shù)平方根的概念.

1、提出問題:(書p68頁的問題)

你是怎樣算出畫框的邊長等于5dm的呢?(學(xué)生思考并交流解法)

這個問題相當(dāng)于在等式擴(kuò)=25中求出正數(shù)x的值.

一般地,如果一個正數(shù)x的平方等于a,即=a,那么這個正數(shù)x叫做a的算術(shù)平方根.a的算術(shù)平方根記為,讀作根號a,a叫做被開方數(shù).規(guī)定:0的算術(shù)平方根是0.

也就是,在等式=a (x0)中,規(guī)定x = .

2、試一試:你能根據(jù)等式:=144說出144的算術(shù)平方根是多少嗎?并用等式表示出來.

3、想一想:下列式子表示什么意思?你能求出它們的值嗎?

建議:求值時,要按照算術(shù)平方根的意義,寫出應(yīng)該滿足的關(guān)系式,然后按照算術(shù)平方根的記法寫出對應(yīng)的值.例如表示25的算術(shù)平方根。

4、例1求下列各數(shù)的算術(shù)平方根:

(1)100;(2)1;(3) ;(4)0.0001

p69練習(xí)1、2

怎樣用兩個面積為1的小正方形拼成一個面積為2的大正方形?

方法1:課本中的方法,略;

方法2:

可還有其他方法,鼓勵學(xué)生探究。

問題:這個大正方形的邊長應(yīng)該是多少呢?

大正方形的邊長是,表示2的算術(shù)平方根,它到底是個多大的數(shù)?你能求出它的值嗎?

建議學(xué)生觀察圖形感受的大小.小正方形的對角線的長是多少呢?(用刻度尺測量它與大正方形的邊長的大小)它的近似值我們將在下節(jié)課探究.

1、這節(jié)課學(xué)習(xí)了什么呢?

2、算術(shù)平方根的具體意義是怎么樣的?

3、怎樣求一個正數(shù)的算術(shù)平方根

p75習(xí)題13.1活動第1、2、3題

八年級上數(shù)學(xué)導(dǎo)學(xué)案教案篇十五

1、了解方差的定義和計算公式。

2、理解方差概念產(chǎn)生和形成過程。

3、會用方差計算公式比較兩組數(shù)據(jù)波動大小。

重點(diǎn):掌握方差產(chǎn)生的必要性和應(yīng)用方差公式解決實(shí)際問題。

難點(diǎn):理解方差公式。

(一)知識詳解:

方差:設(shè)有n個數(shù)據(jù),各數(shù)據(jù)與它們的平均數(shù)的差的平方分別為。

用它們的平均數(shù)表示這組數(shù)據(jù)的方差,即。

給力小貼士:方差越小說明這組數(shù)據(jù)越穩(wěn)定,波動性越低。

(二)自主檢測小練習(xí):

1、已知一組數(shù)據(jù)為2.0、-1.3、-4,則這組數(shù)據(jù)的方差為。

2、甲、乙兩組數(shù)據(jù)如下:

甲組:1091181213107;

乙組:7891011121112。

分別計算出這兩組數(shù)據(jù)的極差和方差,并說明哪一組數(shù)據(jù)波動較小。

引例:問題:從甲、乙兩種農(nóng)作物中各抽取10株苗,分別測得它的苗高如下(單位:cm):

甲:9.10.10.13.7.13.10.8.11.8;

乙:8.13.12.11.10.12.7.7.10.10;

問:(1)哪種農(nóng)作物的苗長較高(可以計算它們的平均數(shù):=)?

(2)哪種農(nóng)作物的苗長較整齊?(可以計算它們的極差,你可以發(fā)現(xiàn))。

歸納:方差:設(shè)有n個數(shù)據(jù),各數(shù)據(jù)與它們的平均數(shù)的差的平方分別為。

用它們的平均數(shù)表示這組數(shù)據(jù)的方差,即用來表示。

(一)例題講解:

金志強(qiáng)1013161412。

提示:先求平均數(shù),然后使用公式計算方差。

(二)小試身手。

1、甲、乙兩名學(xué)生在相同條件下各射擊靶10次,命中的環(huán)數(shù)如下:

甲:7.8.6.8.6.5.9.10.7.4。

乙:9.5.7.8.7.6.8.6.7.7。

經(jīng)過計算,兩人射擊環(huán)數(shù)的平均數(shù)是,但s=,s=,則ss,所以確定去參加比賽。

1、求下列數(shù)據(jù)的眾數(shù):

(1)3.2.5.3.1.2.3(2)5.2.1.5.3.5.2.2。

方差公式:

提示:方差越小,說明這組數(shù)據(jù)越集中。波動性越小。

每課一首詩:求方差,有公式;先平均,再求差;求平方,再平均;所得數(shù),是方差。

1、小爽和小兵在10次百米跑步練習(xí)中的成績?nèi)缦卤硭荆?單位:秒)。

如果根據(jù)這些成績選拔一人參加比賽,你會選誰呢?

必做題:教材141頁練習(xí)1.2;選做題:練習(xí)冊對應(yīng)部分習(xí)題。

寫下你的收獲,交流你的經(jīng)驗(yàn),分享你的成果,你會感到無比的快樂!

八年級上數(shù)學(xué)導(dǎo)學(xué)案教案篇十六

1.在探索平行四邊形的判別條件中,理解并掌握用邊、對角線來判定平行四邊形的方法.

2.會綜合運(yùn)用平行四邊形的判定方法和性質(zhì)來解決問題。

平行四邊形的判定方法及應(yīng)用。

閱讀教材p44至p45。

利用手中的學(xué)具——硬紙板條,通過觀察、測量、猜想、驗(yàn)證、探索構(gòu)成平行四邊形的條件,思考并探討:

(1)你能適當(dāng)選擇手中的硬紙板條搭建一個平行四邊形嗎?

(2)你怎樣驗(yàn)證你搭建的四邊形一定是平行四邊形?

(3)你能說出你的做法及其道理嗎?

(5)你還能找出其他方法嗎?

平行四邊形判定方法1兩組對邊分別相等的四邊形是平行四邊形。

平行四邊形判定方法2對角線互相平分的四邊形是平行四邊形。

平行四邊形判定方法1兩組對邊分別相等的四邊形是平行四邊形。

證明:(畫出圖形)。

平行四邊形判定方法2一組對邊平行且相等的四邊形是平行四邊形。

八年級上數(shù)學(xué)導(dǎo)學(xué)案教案篇十七

認(rèn)知基礎(chǔ):學(xué)生在七年級下冊第四章已學(xué)習(xí)了《變量之間的關(guān)系》,對變量間互相依存的關(guān)系有了一定的認(rèn)識,但對于變量間的變化規(guī)律尚不明確,理解的很膚淺,也缺乏理論高度,另外本章在認(rèn)知方式和思維深度上對學(xué)生有較高的要求,學(xué)生在理解和運(yùn)用時會有一定的難度。

活動經(jīng)驗(yàn)基礎(chǔ):在七年級下冊《變量之間的關(guān)系》一章中,學(xué)生接觸了大量的生活實(shí)例額,體會了變量之間相互依賴關(guān)系的普遍性,感受到了學(xué)習(xí)變量關(guān)系的必要性,初步具備了一定的識圖能力和主動參與、合作的意識和初步的觀察、分析、抽象概括的能力。

知識與技能目標(biāo):

(1)初步掌握函數(shù)概念,能判斷兩個變量之間的關(guān)系是否可以看作函數(shù)。

(2)根據(jù)兩個變量之間的關(guān)系式,給定其中一個變量的值相應(yīng)的會求出另一個變量的值。

(3)會對一個具體實(shí)例進(jìn)行概括抽象成為函數(shù)問題。

過程與方法目標(biāo):

(1)通過函數(shù)概念初步形成利用函數(shù)的觀點(diǎn)認(rèn)識現(xiàn)實(shí)世界的意識和能力。

(2)經(jīng)歷具體實(shí)例的抽象概括過程,進(jìn)一步發(fā)展學(xué)生的抽象思維能力。

情感態(tài)度與價值觀目標(biāo):

(1)經(jīng)歷函數(shù)概念的抽象概括過程,體會函數(shù)的模型思想。

(2)能主動從事觀察、操作、交流、歸納等探索活動,形成自己對數(shù)學(xué)知識的理解和有效的學(xué)習(xí)模式。

【本文地址:http://mlvmservice.com/zuowen/17922696.html】

全文閱讀已結(jié)束,如果需要下載本文請點(diǎn)擊

下載此文檔