在教學(xué)過程中,教案扮演著橋梁和紐帶的角色,能夠幫助教師有效地組織和安排課堂活動。教案中的教學(xué)步驟應(yīng)該清晰明確,有助于學(xué)生理解和學(xué)習(xí)。這是一份經(jīng)過多次實(shí)踐和改進(jìn)的教案,希望能給大家提供一些啟示。
三角函數(shù)的教案設(shè)計(jì)篇一
2結(jié)合的圖象及函數(shù)周期性的定義了解三角函數(shù)的周期性,及最小正周期。
3會用代數(shù)方法求等函數(shù)的周期。
4理解周期性的幾何意義。
周期函數(shù)的概念,周期的`求解。
1、是周期函數(shù)是指對定義域中所有都有。
即應(yīng)是恒等式。
2、周期函數(shù)一定會有周期,但不一定存在最小正周期。
例1、若鐘擺的高度與時(shí)間之間的函數(shù)關(guān)系如圖所示。
(2)求時(shí)鐘擺的高度。
(1)(2)。
總結(jié):(1)函數(shù)(其中均為常數(shù),且。
的周期t=。
(2)函數(shù)(其中均為常數(shù),且。
的周期t=。
例3、求證:的周期為。
例4、(1)研究和函數(shù)的圖象,分析其周期性。
(2)求證:的周期為(其中均為常數(shù),
且
總結(jié):函數(shù)(其中均為常數(shù),且。
的周期t=。
例5、(1)求的周期。
(2)已知滿足,求證:是周期函數(shù)。
課后思考:能否利用單位圓作函數(shù)的圖象。
六、作業(yè):
七、自主體驗(yàn)與運(yùn)用。
a、b、c、d、
a、b、c、d、
a、b、c、d、
a、b、c、d、
5、設(shè)是定義域?yàn)閞,最小正周期為的函數(shù),
若,則的值等于()。
a、1b、c、0d、
7、已知函數(shù)的最小正周期不大于2,則正整數(shù)。
的最小值是。
8、求函數(shù)的最小正周期為t,且,則正整數(shù)。
的最大值是。
9、已知函數(shù)是周期為6的奇函數(shù),且則。
10、若函數(shù),則。
11、用周期的定義分析的周期。
12、已知函數(shù),如果使的周期在內(nèi),求。
正整數(shù)的值。
13、一機(jī)械振動中,某質(zhì)子離開平衡位置的位移與時(shí)間之間的。
函數(shù)關(guān)系如圖所示:
(2)求時(shí),該質(zhì)點(diǎn)離開平衡位置的位移。
14、已知是定義在r上的函數(shù),且對任意有。
成立,
(1)證明:是周期函數(shù);。
(2)若求的值。
三角函數(shù)的教案設(shè)計(jì)篇二
1、教材的地位和作用:
同角三角函數(shù)的基本關(guān)系這一節(jié)的內(nèi)容選自人民教育出版社普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書a版必修4第一章第二節(jié)第二課時(shí),是學(xué)生學(xué)習(xí)了任意角和弧度值,任意角的三角函數(shù)后,安排的一節(jié)繼續(xù)深入學(xué)習(xí)的內(nèi)容,是求三角函數(shù)值、化簡三角函數(shù)式、證明三角恒等式的基本工具,是整個(gè)三角函數(shù)的基礎(chǔ),在教材中起著承上啟下的作用。同時(shí),它體現(xiàn)的數(shù)學(xué)思想與方法在整個(gè)中學(xué)數(shù)學(xué)學(xué)習(xí)中都有著重要的作用。所以本節(jié)課的重點(diǎn)是同角三角函數(shù)基本關(guān)系式及在求值中的應(yīng)用。
2、教學(xué)目標(biāo)。
根據(jù)教學(xué)大綱的要求和學(xué)生的實(shí)際水平,確定了本次課的教學(xué)目標(biāo):
(1)知識與技能:讓學(xué)生理解公式的推導(dǎo)過程,熟練掌握同角三角函數(shù)的基本關(guān)系,并能在已知某角的一個(gè)三角函數(shù)值的情況下,求出其他三角函數(shù)值。
(2)過程與方法:通過公式的推導(dǎo)、證明和應(yīng)用,培養(yǎng)學(xué)生邏輯推理能力;通過例題與練習(xí)的教學(xué)提高學(xué)生運(yùn)算能力和分析解決問題的能力。
(3)情感態(tài)度與價(jià)值觀:培養(yǎng)學(xué)生積極參與大膽探索的精神;讓學(xué)生通過自主學(xué)習(xí)體驗(yàn)學(xué)習(xí)的成就感,培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和信心。
3、教學(xué)重點(diǎn)和難點(diǎn)。
(1)教學(xué)重點(diǎn):同角三角函數(shù)的基本關(guān)系。
(2)教學(xué)難點(diǎn):三角函數(shù)值的符號的確定,同角三角函數(shù)的基本關(guān)系式的變式運(yùn)用。
二、學(xué)情分析。
為本節(jié)課的學(xué)習(xí)奠定了良好的思想基礎(chǔ)和能力基礎(chǔ),但在探究問題的能力,合作交流的意識等方面還有待加強(qiáng)。所以同角三角函數(shù)關(guān)系式在解題中的靈活選取,及使用公式時(shí)由函數(shù)值正負(fù)號的選取而導(dǎo)致的角的范圍的分類討論是本節(jié)課的一個(gè)難點(diǎn)。
三、教法分析。
本節(jié)課主要采用自主探究式教學(xué)方法.充分利用已學(xué)過的知識,盡可能地增加教學(xué)過程的趣味性、實(shí)踐性.在教師的啟發(fā)指導(dǎo)下,強(qiáng)調(diào)學(xué)生的主動參與,讓學(xué)生自己去分析、探索,在探索過程中研究和領(lǐng)悟得出的結(jié)論,從而達(dá)到使學(xué)生既獲得知識又發(fā)展智能的目的。通過教師在教學(xué)過程中的點(diǎn)撥,啟發(fā)學(xué)生通過主動觀察、主動思考、動手操作、自主探究來達(dá)到對知識的發(fā)現(xiàn)和接受。
四、學(xué)法指導(dǎo)。
在引導(dǎo)分析時(shí),留出學(xué)生的思考空間,讓學(xué)生去聯(lián)想、探索,同時(shí)鼓勵學(xué)生大膽質(zhì)疑,圍繞中心各抒己見,通過合作交流、共同探索來尋求解決問題的方法。
五、教學(xué)方法:
引導(dǎo)發(fā)現(xiàn)法、啟發(fā)法。
三角函數(shù)的教案設(shè)計(jì)篇三
1、下列命題中正確的是()。
a、第一象限角一定不是負(fù)角b、負(fù)角是第四象限角。
c、鈍角一定是第二象限角d、第二象限角一定是鈍角。
e、銳角是小于的角f、第一象限角一定是銳角。
g、第二象限角比第一象限角大h、終邊相同的角一定相等。
2、集合的關(guān)系是()。
a、b、c、d、以上都不對。
3、若三角形的兩內(nèi)角、滿足,則此三角形形狀是()。
a、銳角三角形b、鈍角三角形c、直角三角形d、不能確定。
4、若,且,則為第_______象限角。
5、已知角終邊經(jīng)過點(diǎn),且=,則=_________。
6、化簡:(1)(2)。
例1、已知與角的終邊相同,判斷和是第幾象限角。
變:已知是第三象限角,判斷和是第幾象限角。
例2、已知扇形的周長為,圓心角為,則扇形的弧長和面積為多少?
例3、已知,求,的值。
例4、已知2,求下列各式的值:
(1)(2)。
例5、已知點(diǎn)在角的終邊上,且,求的值。
例6、已知sin=,求的值。
班級:高一()班姓名__________。
1、若角與角的`終邊相同,則。
2、若是第二象限角,則是第象限角,是第象限角。
3、在半徑為的輪子上有一點(diǎn),輪子按順時(shí)針方向旋轉(zhuǎn)二周半,則圓心與點(diǎn)的連線所轉(zhuǎn)過的角的弧度數(shù)為_________,點(diǎn)經(jīng)過的路程為_________。
4、若,則______________。
5、若,則_________________。
6、已知2,求下列各式的值:
(1)(2)。
7、已知,求下列各式的值:
(1)(2)(3)。
8、已知,且,求的值。
9、化簡:(3)(4)。
10、設(shè),求的值。
三角函數(shù)的教案設(shè)計(jì)篇四
教學(xué)反思:
銳角三角函數(shù)在解決現(xiàn)實(shí)問題中有著重要的作用,但是銳角三角函數(shù)首先是放在直角三角形中研究的,顯示的是邊角之間的關(guān)系。銳角三角函數(shù)值是邊與邊之間的比值,銳角三角函數(shù)溝通了邊與角之間的聯(lián)系,它是解直角三角形最有力的工具之一。
在今后教學(xué)過程中,自己還要多注意以下兩點(diǎn):
(1)還要多下點(diǎn)工夫在如何調(diào)動課堂氣氛,使語言和教態(tài)更加生動上。初中學(xué)生的.注意力還是比較容易分散的,興趣也比較容易轉(zhuǎn)移,因此,越是生動形象的語言,越是寬松活潑的氣氛,越容易被他們接受。如何找到適合自己適合學(xué)生的教學(xué)風(fēng)格?或嚴(yán)謹(jǐn)有序,或生動活潑,或詼諧幽默,或詩情畫意,或春風(fēng)細(xì)雨潤物細(xì)無聲,或激情飛揚(yáng),每一種都是教學(xué)魅力和人格魅力的展現(xiàn)。我將不斷摸索,不斷實(shí)踐。
(2)我將盡我可能站在學(xué)生的角度上思考問題,設(shè)計(jì)好教學(xué)的每一個(gè)細(xì)節(jié),上課前多揣摩。讓學(xué)生更多地參與到課堂的教學(xué)過程中,讓學(xué)生體驗(yàn)思考的過程,體驗(yàn)成功的喜悅和失敗的挫折,舍得把課堂讓給學(xué)生,讓學(xué)生做課堂這個(gè)小小舞臺的主角。而我將盡我最大可能在課堂上投入更多的情感因素,豐富課堂語言,使課堂更加鮮活,充滿人性魅力,下課后多反思,做好反饋工作,不斷總結(jié)得失,不斷進(jìn)步。只有這樣,才能真正提高課堂教學(xué)效率。
三角函數(shù)的教案設(shè)計(jì)篇五
數(shù)學(xué)的大題是由小題堆積起來的,只是增加了邏輯過程;難題是由易題延伸出來的,只是將定義與概念以及原理隱藏的更深而已。所以,三角函數(shù)的學(xué)習(xí),更加注重對定義域概念的學(xué)習(xí)和深刻的理解。在平時(shí)的學(xué)習(xí)中,更應(yīng)立足教材,學(xué)好用好教材,深入地鉆研定義與概念,切忌眼高手低,偏重難題,搞題海戰(zhàn)術(shù)!比如,弧度制下角的概念,六種三角函數(shù)的定義,所有的公式來源,三角函數(shù)圖像的平移與放縮,等等。說句狠話:弄不懂概念,你就別做題!你做了題,就要弄明白你是在使用什么概念什么定義什么公式!不要追求方法與技巧,因?yàn)榉椒ㄅc技巧來源于概念與定義。
2、記住公式不是靠背。
任何一種學(xué)習(xí)活動,都是先有理解,再有記憶,而后是靈變與應(yīng)用。面對眾多的三角公式,很多同學(xué)采用錯(cuò)誤的做法:死記硬背!其結(jié)果是仍然會用錯(cuò),仍然記不住。與其花費(fèi)大量的時(shí)間稀里糊涂做題,不如花點(diǎn)時(shí)間先從最原始的定義與概念推到公式!我曾經(jīng)有過一種比較極端然而卻非常有效的做法,讓一位一想到三角函數(shù)公式就暈就錯(cuò)的學(xué)生先不做題,先整理理論,用定義與概念相互說明,用公式與公式相互推導(dǎo)。理論系統(tǒng)明白了,解題的思路和方法技巧也就順理成章了。
3、學(xué)會反思與整合。
建構(gòu)主義學(xué)習(xí)觀認(rèn)為知識并不是簡單的由教師或者其他人傳授給學(xué)生的,而只能由學(xué)生依據(jù)自身已有的知識、經(jīng)驗(yàn),主動地加以建構(gòu)。建構(gòu)一詞包含有兩重含義,一是悟,二是創(chuàng)造。一個(gè)批判、選擇、和存疑的過程,一個(gè)充滿想象、探索和體驗(yàn)的過程。你不想學(xué),老師強(qiáng)行的逼迫是不容易的或者說是作用不大,俗話說“強(qiáng)扭的瓜不甜”嘛!數(shù)學(xué)學(xué)習(xí)不但要對概念、結(jié)論和技能進(jìn)行記憶,積累和模仿,而且還要動手實(shí)踐,自主探索,并且在獲得知識的基礎(chǔ)上進(jìn)行反思與整合。所以我們在平時(shí)學(xué)習(xí)中要注意反思,只有這樣才能使內(nèi)容得到鞏固,知識的得到拓展,能力得到提高,思維得到優(yōu)化,創(chuàng)新能力得到真正的發(fā)展,希望大能夠讓數(shù)學(xué)反思與整合成為我們的自然的習(xí)慣!
三角函數(shù)的教案設(shè)計(jì)篇六
一、弄清對鄰斜。
銳角三角函數(shù)是定義在直角三角形中的研究邊角之間的關(guān)系。而銳角三角函數(shù)值實(shí)質(zhì)上就是邊與邊之間的'一種比值,它能溝通了邊與角之間的聯(lián)系,為解直角三角形提供了角邊關(guān)系的根據(jù)。不管角怎樣變,斜邊是固定的,直角邊或是某一銳角的對邊或是某一銳角的鄰邊。不要死記硬背a,b,c的比值。記清對鄰斜兩者之比。
三、應(yīng)用公式變形解決實(shí)際問題。
三角函數(shù)的教案設(shè)計(jì)篇七
3.探究發(fā)現(xiàn)任意角與的三角函數(shù)值的關(guān)系.
利用誘導(dǎo)公式(二),口答下列三角函數(shù)值.
(1).;(2).;(3)..
喜悅之后讓我們重新啟航,接受新的挑戰(zhàn),引入新的問題.
由sin300=出發(fā),用三角的定義引導(dǎo)學(xué)生求出sin(-300),sin1500值,讓學(xué)生聯(lián)想若已知sin=,能否求出sin(),sin()的值.
1.探究任意角與的三角函數(shù)又有什么關(guān)系;。
2.探究任意角與的三角函數(shù)之間又有什么關(guān)系.
遺忘的規(guī)律是先快后慢,過程的再現(xiàn)是深刻記憶的重要途徑,在經(jīng)歷思考問題-觀察發(fā)現(xiàn)-到一般化結(jié)論的探索過程,從特殊到一般,數(shù)形結(jié)合,學(xué)生對知識的理解與掌握以深入腦中,此時(shí)以類同問題的提出,大膽的放手讓學(xué)生分組討論,重現(xiàn)了探索的整個(gè)過程,加深了知識的深刻記憶,對學(xué)生無形中鼓舞了氣勢,增強(qiáng)了自信,加大了挑戰(zhàn).而新知識點(diǎn)的自主探討,對教師駕馭課堂的能力也充滿了極大的挑戰(zhàn).彼此相信,彼此信任,產(chǎn)生了師生的默契,師生共同進(jìn)步.
誘導(dǎo)公式(三)、(四)。
給出本節(jié)課的課題。
標(biāo)題的后出,讓學(xué)生在經(jīng)歷整個(gè)探索過程后,還回味在探索,發(fā)現(xiàn)的成功喜悅中,猛然回頭,哦,原來知識點(diǎn)已經(jīng)輕松掌握,同時(shí)也是對本節(jié)課內(nèi)容的小結(jié).
的三角函數(shù)值,等于的同名函數(shù)值,前面加上一個(gè)把看成銳角時(shí)原函數(shù)值的符合.(即:函數(shù)名不變,符號看象限.)。
設(shè)計(jì)意圖。
簡便記憶公式.
設(shè)計(jì)意圖。
本練習(xí)的設(shè)置重點(diǎn)體現(xiàn)一題多解,讓學(xué)生不僅學(xué)會靈活運(yùn)用應(yīng)用三角函數(shù)的誘導(dǎo)公式,還能養(yǎng)成靈活處理問題的良好習(xí)慣.這里還要給學(xué)生指出課本中的“負(fù)角”化為“正角”是針對具體負(fù)角而言的.
學(xué)生練習(xí)。
化簡:.
設(shè)計(jì)意圖。
1.小結(jié)使用誘導(dǎo)公式化簡任意角的三角函數(shù)為銳角的步驟.
2.體會數(shù)形結(jié)合、對稱、化歸的思想.
3.“學(xué)會”學(xué)習(xí)的習(xí)慣.
1.課本p-27,第1,2,3小題;。
2.附加課外題略.
設(shè)計(jì)意圖。
加強(qiáng)學(xué)生對三角函數(shù)的誘導(dǎo)公式的記憶及靈活應(yīng)用,附加題的'設(shè)置有利于有能力的同學(xué)“更上一樓”.
八.課后反思。
對本節(jié)內(nèi)容在進(jìn)行教學(xué)設(shè)計(jì)之前,本人反復(fù)閱讀了課程標(biāo)準(zhǔn)和教材,針對教材的內(nèi)容,編排了一系列問題,讓學(xué)生親歷知識發(fā)生、發(fā)展的過程,積極投入到思維活動中來,通過與學(xué)生的互動交流,關(guān)注學(xué)生的思維發(fā)展,在逐漸展開中,引導(dǎo)學(xué)生用已學(xué)的知識、方法予以解決,并獲得知識體系的更新與拓展,收到了一定的預(yù)期效果,尤其是練習(xí)的處理,讓學(xué)生通過個(gè)人、小組、集體等多種解難釋疑的嘗試活動,感受“觀察——?dú)w納——概括——應(yīng)用”等環(huán)節(jié),在知識的形成、發(fā)展過程中展開思維,逐步培養(yǎng)學(xué)生發(fā)現(xiàn)問題、探索問題、解決問題的能力和創(chuàng)造性思維的能力,充分發(fā)揮了學(xué)生的主體作用,也提高了學(xué)生主體的合作意識,達(dá)到了設(shè)計(jì)中所預(yù)想的目標(biāo)。
然而還有一些缺憾:對本節(jié)內(nèi)容,難度不高,本人認(rèn)為,教師的干預(yù)(講解)還是太多。
在以后的教學(xué)中,對于一些較簡單的內(nèi)容,應(yīng)放手讓學(xué)生多一些探究與合作。隨著教育改革的深化,教學(xué)理念、教學(xué)模式、教學(xué)內(nèi)容等教學(xué)因素,都在不斷更新,作為數(shù)學(xué)教師要更新教學(xué)觀念,從學(xué)生的全面發(fā)展來設(shè)計(jì)課堂教學(xué),關(guān)注學(xué)生個(gè)性和潛能的發(fā)展,使教學(xué)過程更加切合《課程標(biāo)準(zhǔn)》的要求。用全新的理論來武裝自己,讓自己的課堂更有效。
三角函數(shù)的教案設(shè)計(jì)篇八
這是一節(jié)初三總復(fù)習(xí)課,內(nèi)容是銳角三角函數(shù)。王老師以基礎(chǔ)知識的復(fù)習(xí)、基本技能的訓(xùn)練為主,緊跟教學(xué)大綱,選擇了幾個(gè)典型例題,開拓了學(xué)生的知識面,豐富了學(xué)生的題型結(jié)構(gòu)。同時(shí)向?qū)W生進(jìn)行了一題多種解法思想的滲透,這樣活躍了學(xué)生的思維,豐富了學(xué)生的知識內(nèi)涵。老師對教材,教學(xué)大綱理解得非常透徹,對課堂把握能力強(qiáng),反應(yīng)很快,能積極跟上學(xué)生的思維,因時(shí)制宜的調(diào)整教學(xué)節(jié)奏,語速快而清晰,教態(tài)、板書也能給學(xué)生有積極的影響,富有感染力。例題的選擇合理、新穎且有難度,即有常見的基本計(jì)算與證明,也有一定難度的探索型、操作型問題,更有對于知識點(diǎn)綜合應(yīng)用的綜合題,層次鮮明,滿足了不同奮斗目標(biāo)學(xué)生的不同要求。教學(xué)上多媒體的運(yùn)用,較直觀地了解題意,提高解答的準(zhǔn)確率,課堂上充分發(fā)揮了學(xué)生的主體性,以學(xué)生的發(fā)展為本,通過小組合作,增強(qiáng)了學(xué)生的合作意識,又取長補(bǔ)短,互相競爭,營造了良好的教學(xué)氛圍,而教師知識組織者,只是參與、啟發(fā)、點(diǎn)撥、糾偏,培養(yǎng)了學(xué)生的創(chuàng)造能力和發(fā)散思維能力。
三角函數(shù)的教案設(shè)計(jì)篇九
(2)能熟練運(yùn)用正弦函數(shù)的性質(zhì)解題。
2、過程與方法。
通過正弦函數(shù)在r上的圖像,讓學(xué)生探索出正弦函數(shù)的性質(zhì);講解例題,總結(jié)方法,鞏固練習(xí)。
3、情感態(tài)度與價(jià)值觀。
通過本節(jié)的學(xué)習(xí),培養(yǎng)學(xué)生創(chuàng)新能力、探索歸納能力;讓學(xué)生體驗(yàn)自身探索成功的喜悅感,培養(yǎng)學(xué)生的自信心;使學(xué)生認(rèn)識到轉(zhuǎn)化“矛盾”是解決問題的有效途經(jīng);培養(yǎng)學(xué)生形成實(shí)事求是的科學(xué)態(tài)度和鍥而不舍的鉆研精神。
三角函數(shù)的教案設(shè)計(jì)篇十
《考試說明》和《考綱》是每位考生必須熟悉的最權(quán)威最準(zhǔn)確的高考信息,通過研究應(yīng)明確“考什么”、“考多難”、“怎樣考”這三個(gè)問題。
命題通常注意試題背景,強(qiáng)調(diào)數(shù)學(xué)思想,注重?cái)?shù)學(xué)應(yīng)用;試題強(qiáng)調(diào)問題性、啟發(fā)性,突出基礎(chǔ)性;重視通性通法,淡化特殊技巧,凸顯數(shù)學(xué)的問題思考;強(qiáng)化主干知識;關(guān)注知識點(diǎn)的銜接,考察創(chuàng)新意識。
《考綱》明確指出“創(chuàng)新意識是理性思維的高層次表現(xiàn)”。因此試題都比較新穎活潑。所以復(fù)習(xí)中你就要加強(qiáng)對新題型的練習(xí),揭示問題的本質(zhì),創(chuàng)造性地解決問題。
2.多維審視知識結(jié)構(gòu)。
高考數(shù)學(xué)試題一直注重對思維方法的考查,數(shù)學(xué)思維和方法是數(shù)學(xué)知識在更高層次上的抽象和概括。知識是思維能力的載體,因此通過對知識的考察達(dá)到考察數(shù)學(xué)思維的目的。你需要建立各部分內(nèi)容的知識網(wǎng)絡(luò);全面、準(zhǔn)確地把握概念,在理解的基礎(chǔ)上加強(qiáng)記憶;加強(qiáng)對易錯(cuò)、易混知識的梳理;要多角度、多方位地去理解問題的實(shí)質(zhì);體會數(shù)學(xué)思想和解題的方法。
3.把答案蓋住看例題。
參考書上例題不能看一下就過去了,因?yàn)榭磿r(shí)往往覺得什么都懂,其實(shí)自己并沒有理解透徹。所以,在看例題時(shí),把解答蓋住,自己去做,做完或做不出時(shí)再去看,這時(shí)要想一想,自己做的與解答哪里不同,哪里沒想到,該注意什么,哪一種方法更好,還有沒有另外的解法。經(jīng)過上面的`訓(xùn)練,自己的思維空間擴(kuò)展了,看問題也全面了。如果把題目的來源搞清了,在題后加上幾個(gè)批注,說明此題的“題眼”及巧妙之處,收益將更大。
4.研究每題都考什么。
數(shù)學(xué)能力的提高離不開做題,“熟能生巧”這個(gè)簡單的道理大家都懂。但做題不是搞題海戰(zhàn)術(shù),要通過一題聯(lián)想到多題。你需要著重研究解題的思維過程,弄清基本數(shù)學(xué)知識和基本數(shù)學(xué)思想在解題中的意義和作用,研究運(yùn)用不同的思維方法解決同一數(shù)學(xué)問題的多條途徑,在分析解決問題的過程中既構(gòu)建知識的橫向聯(lián)系又養(yǎng)成多角度思考問題的習(xí)慣。
與其一節(jié)課抓緊時(shí)間大汗淋淋地做二、三十道考查思路重復(fù)的題,不如深入透徹地掌握一道典型題。例如深入理解一個(gè)概念的多種內(nèi)涵,對一個(gè)典型題,盡力做到從多條思路用多種方法處理,即一題多解;對具有共性的問題要努力摸索規(guī)律,即多題一解;不斷改變題目的條件,從各個(gè)側(cè)面去檢驗(yàn)自己的知識,即一題多變。習(xí)題的價(jià)值不在于做對、做會,而在于你明白了這道題想考你什么。
5.答題少費(fèi)時(shí)多辦事。
解題上要抓好三個(gè)字:數(shù),式,形;閱讀、審題和表述上要實(shí)現(xiàn)數(shù)學(xué)的三種語言自如轉(zhuǎn)化(文字語言、符號語言、圖形語言)。要重視和加強(qiáng)選擇題的訓(xùn)練和研究。不能僅僅滿足于答案正確,還要學(xué)會優(yōu)化解題過程,追求解題質(zhì)量,少費(fèi)時(shí),多辦事,以贏得足夠的時(shí)間思考解答高檔題。要不斷積累解選擇題的經(jīng)驗(yàn),盡可能小題小做,除直接法外,還要靈活運(yùn)用特殊值法、排除法、檢驗(yàn)法、數(shù)形結(jié)合法、估計(jì)法來解題。在做解答題時(shí),書寫要簡明、扼要、規(guī)范,不要“小題大做”,只要寫出“得分點(diǎn)”即可。
6.錯(cuò)一次反思一次。
每次考試或多或少會發(fā)生一些錯(cuò)誤,這并不可怕,要緊的是避免類似的錯(cuò)誤在今后的考試中重現(xiàn)。
因此平時(shí)要注意把錯(cuò)題記下來,做錯(cuò)題筆記包括三個(gè)方面:
(1)記下錯(cuò)誤是什么,最好用紅筆劃出。
(2)錯(cuò)誤原因是什么,從審題、題目歸類、重現(xiàn)知識和找出答案四個(gè)環(huán)節(jié)來分析。
(3)錯(cuò)誤糾正方法及注意事項(xiàng)。根據(jù)錯(cuò)誤原因的分析提出糾正方法并提醒自己下次碰到類似的情況應(yīng)注意些什么。你若能將每次考試或練習(xí)中出現(xiàn)的錯(cuò)誤記錄下來分析,并盡力保證在下次考試時(shí)不發(fā)生同樣錯(cuò)誤,那么在高考時(shí)發(fā)生錯(cuò)誤的概率就會大大減少。
7.分析試卷總結(jié)經(jīng)驗(yàn)。
每次考試結(jié)束試卷發(fā)下來,要認(rèn)真分析得失,總結(jié)經(jīng)驗(yàn)教訓(xùn)。特別是將試卷中出現(xiàn)的錯(cuò)誤進(jìn)行分類。
(1)遺憾之錯(cuò)。就是分明會做,反而做錯(cuò)了的題。
(2)似非之錯(cuò)。記憶不準(zhǔn)確,理解不夠透徹,應(yīng)用不夠自如;回答不嚴(yán)密不完整等等。
(3)無為之錯(cuò)。由于不會答錯(cuò)了或猜錯(cuò)了,或者根本沒有作答,這是無思路、不理解,更談不上應(yīng)用的問題。原因找到后就盡早消除遺憾、弄懂似非、力爭有為。切實(shí)解決“會而不對、對而不全”的老大難問題。
8.優(yōu)秀是一種習(xí)慣。
柏拉圖說:“優(yōu)秀是一種習(xí)慣”。好的習(xí)慣終生受益,不好的習(xí)慣終生后悔、吃虧。如“審題之錯(cuò)”是否出在急于求成?可采取“一慢一快”戰(zhàn)術(shù),即審題要慢,要看清楚,步驟要到位,動作要快,步步為營,穩(wěn)中求快,立足于一次成功,不要養(yǎng)成唯恐做不完,匆匆忙忙搶著做,寄希望于檢查的壞習(xí)慣。
三角函數(shù)的教案設(shè)計(jì)篇十一
1、銳角三角形中,任意兩個(gè)內(nèi)角的和都屬于區(qū)間,且滿足不等式:。
即:一角的正弦大于另一個(gè)角的余弦。
2、若,則,。
3、的圖象的對稱中心為(),對稱軸方程為。
4、的圖象的對稱中心為(),對稱軸方程為。
5、及的圖象的對稱中心為()。
6、常用三角公式:。
有理公式:;。
降次公式:,;。
萬能公式:,,(其中)。
7、輔助角公式:,其中。輔助角的位置由坐標(biāo)決定,即角的終邊過點(diǎn)。
8、時(shí),。
9、。
其中為內(nèi)切圓半徑,為外接圓半徑。
特別地:直角中,設(shè)c為斜邊,則內(nèi)切圓半徑,外接圓半徑。
10、的圖象的圖象(時(shí),向左平移個(gè)單位,時(shí),向右平移個(gè)單位)。
11、解題時(shí),條件中若有出現(xiàn),則可設(shè),。
則。
12、等腰三角形中,若且,則。
13、若等邊三角形的邊長為,則其中線長為,面積為。
14、;。
三角函數(shù)的教案設(shè)計(jì)篇十二
本課教學(xué)雖然是復(fù)習(xí)課,但是學(xué)生興趣盎然,通過本節(jié)課的學(xué)習(xí)把學(xué)生學(xué)習(xí)的三角形單元的各個(gè)零散的知識點(diǎn)進(jìn)行系統(tǒng)梳理,形成知識網(wǎng)絡(luò).還通過解決一些實(shí)際問題加深對所學(xué)知識的理解和運(yùn)用,還通過一些題組練習(xí)區(qū)別學(xué)生容易混淆的知識點(diǎn)。這樣一邊整理知識點(diǎn),一邊應(yīng)用這些知識點(diǎn)解決實(shí)際問題,使學(xué)生在不知不覺中把三角形的不同知識點(diǎn)有機(jī)的聯(lián)系起來,形成一個(gè)完整的知識網(wǎng)絡(luò)。
1.探索與實(shí)踐環(huán)節(jié)。
設(shè)計(jì)目的是讓學(xué)生感受到復(fù)習(xí)課,不僅是已學(xué)知識的整理復(fù)習(xí),同時(shí)還是所學(xué)知識的延續(xù),更是探索新知的起點(diǎn)。我設(shè)計(jì)的題目是應(yīng)用三角形的內(nèi)角和來探索n邊形的內(nèi)角和,同時(shí)也想滲透一點(diǎn)完全歸納法的思想,當(dāng)然并不是要讓學(xué)生知道完全歸納法。
2.數(shù)學(xué)的發(fā)展史環(huán)節(jié)。
主要是讓學(xué)生了解三角形知識的發(fā)展史,既是數(shù)學(xué)的發(fā)展史。通過神秘的金字塔中三角形知識的運(yùn)用,讓學(xué)生體會到數(shù)學(xué)歷史以及學(xué)習(xí)數(shù)學(xué)的快樂,增強(qiáng)學(xué)習(xí)數(shù)學(xué)濃厚興趣。
3.評價(jià)與反思環(huán)節(jié)。
設(shè)計(jì)目的是讓學(xué)生初步感受更深層次的數(shù)學(xué)學(xué)習(xí)評價(jià),讓學(xué)生逐漸明白學(xué)習(xí)數(shù)學(xué)不僅僅只有通過單元測試卷這種書面的形式來評價(jià)自己的學(xué)習(xí)能力和水平,還有更多的評價(jià)方法和評價(jià)標(biāo)準(zhǔn),特別是要提醒學(xué)生,評價(jià)自己是否掌握了學(xué)習(xí)數(shù)學(xué)的方法往往比做對了一道題更為重要。
本課重視建構(gòu)知識網(wǎng)絡(luò),發(fā)展了學(xué)生觀察、推理的能力,使學(xué)生在復(fù)習(xí)整理舊知識的同時(shí)還能有所獲有所得,真正體現(xiàn)了新課提出的練中獲得新知,提高了學(xué)生的分析綜合能力。但是本節(jié)課在教學(xué)中還沒有完全讓學(xué)生自主回顧、有效參與舊知的整理。
三角函數(shù)的教案設(shè)計(jì)篇十三
數(shù)學(xué)是一門培養(yǎng)人的思維,發(fā)展人的思維的重要學(xué)科。因此,在教學(xué)中,不僅要使學(xué)生“知其然”而且要使學(xué)生“知其所以然”。所以在學(xué)生為主體,教師為主導(dǎo)的原則下,要充分揭示獲取知識和方法的思維過程。因此本節(jié)課我以建構(gòu)主義的“創(chuàng)設(shè)問題情境――提出數(shù)學(xué)問題――嘗試解決問題――驗(yàn)證解決方法”為主,主要采用觀察、啟發(fā)、類比、引導(dǎo)、探索相結(jié)合的教學(xué)方法。在教學(xué)手段上,則采用多媒體輔助教學(xué),將抽象問題形象化,使教學(xué)目標(biāo)體現(xiàn)的更加完美。
三角函數(shù)的教案設(shè)計(jì)篇十四
1.近幾年高考對三角變換的考查要求有所降低,而對本章的內(nèi)容的考查有逐步加強(qiáng)的趨勢,主要表現(xiàn)在對三角函數(shù)的圖象與性質(zhì)的考查上有所加強(qiáng)。
(3)應(yīng)用同角變換和誘導(dǎo)公式,求三角函數(shù)值及化簡和等式證明的問題;
(4)與周期有關(guān)的問題。
3.基本的解題規(guī)律為:觀察差異(或角,或函數(shù),或運(yùn)算),尋找聯(lián)系(借助于熟知的公式、方法或技巧),分析綜合(由因?qū)Ч驁?zhí)果索因),實(shí)現(xiàn)轉(zhuǎn)化。解題規(guī)律:在三角函數(shù)求值問題中的解題思路,一般是運(yùn)用基本公式,將未知角變換為已知角求解;在最值問題和周期問題中,解題思路是合理運(yùn)用基本公式將表達(dá)式轉(zhuǎn)化為由一個(gè)三角函數(shù)表達(dá)的形式求解。
4.立足課本、抓好基礎(chǔ)。從前面敘述可知,我們已經(jīng)看到近幾年高考已逐步拋棄了對復(fù)雜三角變換和特殊技巧的考查,而重點(diǎn)轉(zhuǎn)移到對三角函數(shù)的圖象與性質(zhì)的考查,對基礎(chǔ)知識和基本技能的考查上來,所以在復(fù)習(xí)中首先要打好基礎(chǔ)。在考查利用三角公式進(jìn)行恒等變形的同時(shí),也直接考查了三角函數(shù)的性質(zhì)及圖象的變換,可見高考在降低對三角函數(shù)恒等變形的要求下,加強(qiáng)了對三角函數(shù)性質(zhì)和圖象的考查力度。
三角函數(shù)的教案設(shè)計(jì)篇十五
本學(xué)期我上了一堂銳角三角函數(shù)的復(fù)習(xí)課,按照考綱銳角三角函數(shù)難度應(yīng)該不是很大,自己在了解學(xué)生的學(xué)情情況下,從銳角三角比的定義、特殊角三角函數(shù)值、會解直角三角形等幾個(gè)方面來著手復(fù)習(xí);為了鞏固學(xué)生對特殊角的三角函數(shù)值掌握,給出了一個(gè)表格讓學(xué)生回答30°,45°,60°角的三角函數(shù)值,其實(shí)可能還有很多學(xué)生都沒有鞏固,集體回答也可能就是走了一下形式罷了,如果當(dāng)時(shí)采用作業(yè)的`形式課前發(fā)給學(xué)生做練習(xí),效果可能會截然不同。
上復(fù)習(xí)課時(shí)所取的題目還是過多,內(nèi)容也太多,讓復(fù)習(xí)課成為練習(xí)課,復(fù)習(xí)的時(shí)候沒有注意到知識的綜合運(yùn)用,對于一個(gè)問題沒有講精講透。如這堂復(fù)習(xí)課我準(zhǔn)備了3題解直角三角形,又準(zhǔn)備了3題構(gòu)造直角三角形解決數(shù)學(xué)問題,最后還拿了一題生活應(yīng)用題,感覺還是以做題目來達(dá)到復(fù)習(xí)的目的。
在分析題目時(shí)候還是以老師講為主,沒有給予學(xué)生足夠的思考時(shí)間,拿到題目后,就幫助學(xué)生分析題目,讓學(xué)生的思路朝自己預(yù)設(shè)的方向發(fā)展。而且對于這樣的一個(gè)實(shí)際問題,拿出問題后就給學(xué)生畫好圖,這樣降低了學(xué)生解題的難度,可是將一個(gè)實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題往往是學(xué)生的難點(diǎn)。此題應(yīng)該讓學(xué)生自己動手將題目中的已知條件轉(zhuǎn)化為數(shù)學(xué)問題。
最后就是做為一個(gè)教初三的老師,上課時(shí)候總喜歡面面俱到,生怕自己講得太少,講得不夠到位。拿到題目都是急著替學(xué)生分析,這樣會使學(xué)生思路狹隘,甚至平時(shí)不愿意去自己分析。所以以后我會試著改變自己的教學(xué)方式,多讓學(xué)生講,讓學(xué)生自己講怎樣把題目分解,找到突破口。教學(xué)中我也會注意不要為了完成自己的教學(xué)任務(wù)而忽略學(xué)生,我會更加注重分析學(xué)生學(xué)情,備好學(xué)生和教材,讓每一節(jié)課都能讓每個(gè)學(xué)生有收獲,還要注重課堂的氣氛,給學(xué)生營造一個(gè)舒適的學(xué)習(xí)環(huán)境,讓學(xué)生喜歡數(shù)學(xué),愿意認(rèn)真投入的學(xué)。
【本文地址:http://mlvmservice.com/zuowen/17548571.html】