教案是教學過程中必不可少的工具,可以提高教學效果。教案編寫時應該注重對學生鞏固與拓展知識的機會,以便提高學習效果。以下是小編為大家收集的教案范例,供大家參考。
八年級數(shù)學下勾股定理的證明二教案篇一
理解勾股定理的逆定理的證明方法并能證明勾股定理的逆定理;利用勾股定理的逆定理判定一個三角形是不是直角三角形。
【過程與方法】。
通過勾股定理的逆定理的證明,體會數(shù)與形結(jié)合方法在問題解決中的作用,并能運用勾股定理的逆定理解決相關(guān)問題。
【情感態(tài)度與價值觀】。
通過一系列富有探究性的問題,滲透與他人交流、合作的意識和探究精神。
二、教學重難點。
【重點】。
【難點】。
三、教學過程。
(一)導入新課。
復習回顧出勾股定理。
師生活動:學生獨立回憶勾股定理,師生共同分析得出其題設和結(jié)論,教師引導指出勾股定理是從形的特殊性得出三邊之間的數(shù)量關(guān)系。
追問1:你能把勾股定理的題設與結(jié)論交換得到一個新的命題嗎?
師生活動:師生共同得出新的命題,教師指出其為勾股定理的逆命題。
(四)小結(jié)作業(yè)。
作業(yè):總結(jié)一下判定一個三角形是直角三角形的方法。
八年級數(shù)學下勾股定理的證明二教案篇二
教學目標:
〔知識與技能〕。
1.在生活實例中認識軸對稱圖.
2.分析軸對稱圖形,理解軸對稱的概念.軸對稱圖形的概念。
〔過程與方法〕。
2、在靈活運用知識解決有關(guān)問題的過程中,體驗并掌握探索、歸納圖形性質(zhì)的推理方法,進一步培說理和進行簡單推理的能力。
〔情感、態(tài)度與價值觀〕。
辯證唯物主義觀點。
教學重點:.
理解軸對稱的概念。
教學難點。
能夠識別軸對稱圖形并找出它的對稱軸.
教具準備:三角尺。
教學過程。
一.創(chuàng)設情境,引入新課。
1.舉實例說明對稱的重要性和生活充滿著對稱。
2.對稱給我們帶來多少美的感受!初步掌握對稱的奧秒,不僅可以幫助我們發(fā)現(xiàn)一些圖形的特征,還可以使我們感受到自然界的美與和諧.
3.軸對稱是對稱中重要的一種,讓我們一起走進軸對稱世界,探索它的秘密吧!
二.導入新課。
1.觀察:幾幅圖片(出示圖片),觀察它們都有些什么共同特征.
強調(diào):對稱現(xiàn)象無處不在,從自然景觀到分子結(jié)構(gòu),從建筑物到藝術(shù)作品,?甚至日常生活用品,人們都可以找到對稱的例子.
練習:從學生生活周圍的事物中來找一些具有對稱特征的例子.
3.如果一個圖形沿一直線折疊,直線兩旁的部分能夠互相重合,這個圖形就叫做軸對稱圖形,這條直線就是它的對稱軸.我們也說這個圖形關(guān)于這條直線(成軸)?對稱.
4.動手操作:取一張質(zhì)地較硬的紙,將紙對折,并用小刀在紙的中央隨意。
刻出一個圖案,將紙打開后鋪平,你得到兩個成軸對稱的圖案了嗎?
歸納小結(jié):由此我們進一步了解了軸對稱圖形的特征:一個圖形沿一條直線折疊后,折痕兩側(cè)的圖形完全重合.
5.練習:你能找出它們的對稱軸嗎?分小組討論.
思考:大家想一想,你發(fā)現(xiàn)了什么?
小結(jié)得出:.像這樣,?把一個圖形沿著某一條直線折疊,如果它能夠與另一個圖形重合,那么就說這兩個圖形關(guān)于這條直線對稱,?這條直線叫做對稱軸,折疊后重合的點是對應點,叫做對稱點.
三.隨堂練習。
1、課本60練習1、2。
四.課時小結(jié)。
分了軸對稱圖形和兩個圖形成軸對稱.
五.課后作業(yè)。
習題13.1.1、2、6題.
六.教后記。
八年級數(shù)學下勾股定理的證明二教案篇三
今天聽了馬牧池中學吉老師的一節(jié)課和薛校長的報告學到了很多東西,特別是在小組合作學習方面。吉老師的這節(jié)課勾股定理是節(jié)很難講的一節(jié)課,吉老師從知識的形成過程讓學生知道了勾股定理是怎么來的`,從而鍛煉了學生的思維能力。在平時的學習過程中吉老師也很注意及時的總結(jié)規(guī)律性的東西。特別是在小組方面的問題比如有的學生之間的差異比較大,他們會對同步進行分布置任務。每節(jié)課他們都會有課堂達標的小測驗,學校也會進行抽測。
薛校長的報告從很多的實際介紹了他們的經(jīng)驗。要夯實自主學習,給學生自主學習的時間。我們要把臺階難度要都設的小一點,讓學生都能參入進來從而讓他們體會到學習的樂趣。我們還要給學生充分的自主學習的時間和空間。只有他們把問題討論清楚了以后再遇到他們才能找到頭緒。我們在課堂上要注重追問,注重互助,探究結(jié)論的形成過程。
通過這次的學習以后在自己的課堂中要注意這些問題,真正培養(yǎng)起學生的邏輯思維能力來。
八年級數(shù)學下勾股定理的證明二教案篇四
一、學情分析:
知識技能基礎:學生在小學已經(jīng)學過分數(shù)的乘除法,掌握了分數(shù)的乘除法法則,在學習分式的乘除法法則時可通過與分數(shù)的乘除法法則進行類比學習。在前面學習了整式乘法和因式分解,為分式的運算和結(jié)果的化簡奠定基礎。
能力基礎:在過去的數(shù)學學習過程中,學生已初步具備觀察、分析、歸納的能力和類比的學習方法。
二、教學目標:
知識目標:1、分式的乘除運算法則。
2、會進行簡單的分式的乘除法運算。
能力目標:1、類比分數(shù)的乘除運算法則,探索分式的乘除運算法則。
2、能解決一些與分式有關(guān)的簡單的實際問題。
情感目標:1、通過師生討論、交流,培養(yǎng)學生合作探究的意識和能力。
2、培養(yǎng)學生的創(chuàng)新意識和應用意識。
三、教學重點、難點。
重點:分式乘除法的法則及應用。
難點:分子、分母是多項式的分式的乘除法的運算。
三、教學過程:
第一環(huán)節(jié)復習舊知識。
復習小學學的分數(shù)乘除法法則,
活動目的:
復習小學學過的分數(shù)的乘除法運算,為學習分式乘除法的法則做準備。
第二環(huán)節(jié)引入新課。
活動內(nèi)容。
你能總結(jié)分式乘除法的法則嗎?與同伴交流。
分式的乘除法的法則:。
兩個分式相乘,把分子相乘的積作為積的分子,把分母相乘的積作為積的分母;。
兩個分式相除,把除式的分子和分母顛倒位置后再與被除式相乘.
活動目的:
讓學生觀察運算,通過小組討論交流,并與分數(shù)的乘除法的法則類比,讓學生自己總結(jié)出分式的乘除法的法則。
第三環(huán)節(jié)知識運用。
活動內(nèi)容。
例題1:。
(1)(2)例題2。
(1)(2)活動目的:
通過例題講解,使學生會根據(jù)法則,理解每一步的算理,從而進行簡單的分式的乘除法運算,并能解決一些與分式有關(guān)的簡單的實際問題,增強學生代數(shù)推理的能力與應用意識。需要給學生強調(diào)的是分式運算的結(jié)果通常要化成最簡分式或整式,對于這一點,很多學生在開始學習分式計算時往往沒有注意到結(jié)果要化簡。
第四環(huán)節(jié)走進中考。
(2012.漳州)第五環(huán)節(jié)課時小結(jié)。
活動內(nèi)容:
1.分式的乘除法的法則。
2.分式運算的結(jié)果通常要化成最簡分式或整式.
3.學會類比的數(shù)學方法。
第六環(huán)節(jié)當堂檢測。
八年級數(shù)學下勾股定理的證明二教案篇五
1.在探索平行四邊形的判別條件中,理解并掌握用邊、對角線來判定平行四邊形的方法.
2.會綜合運用平行四邊形的判定方法和性質(zhì)來解決問題。
平行四邊形的判定方法及應用。
閱讀教材p44至p45。
利用手中的學具——硬紙板條,通過觀察、測量、猜想、驗證、探索構(gòu)成平行四邊形的條件,思考并探討:
(1)你能適當選擇手中的硬紙板條搭建一個平行四邊形嗎?
(2)你怎樣驗證你搭建的四邊形一定是平行四邊形?
(3)你能說出你的做法及其道理嗎?
(5)你還能找出其他方法嗎?
平行四邊形判定方法1兩組對邊分別相等的四邊形是平行四邊形。
平行四邊形判定方法2對角線互相平分的四邊形是平行四邊形。
平行四邊形判定方法1兩組對邊分別相等的四邊形是平行四邊形。
證明:(畫出圖形)。
平行四邊形判定方法2一組對邊平行且相等的四邊形是平行四邊形。
八年級數(shù)學下勾股定理的證明二教案篇六
教學目標:
1、知道一次函數(shù)與正比例函數(shù)的意義.
2、能寫出實際問題中正比例關(guān)系與一次函數(shù)關(guān)系的解析式.
3、滲透數(shù)學建模的思想,使學生體會到數(shù)學的抽象性和廣泛的應用性.
4、激發(fā)學生學習數(shù)學的興趣,培養(yǎng)學生分析問題、解決問題的能力.
教學重點:對于一次函數(shù)與正比例函數(shù)概念的理解.
教學難點:根據(jù)具體條件求一次函數(shù)與正比例函數(shù)的解析式.
教學方法:結(jié)構(gòu)教學法、以學生“再創(chuàng)造”為主的教學方法。
教學過程:
1、復習舊課。
前面我們學習了函數(shù)的相關(guān)知識,(教師在黑板上畫出本章結(jié)構(gòu)并讓學生說出前三。
2、引入新課。
就象以前我們學習方程、一元一次方程;不等式、一元一次不等式的內(nèi)容時一樣,我們在學習了函數(shù)這個概念以后,要學習一些具體的函數(shù),今天我們要學習的是一次函數(shù).顧名思義,誰能根據(jù)一次函數(shù)這個名字,類比一元一次方程、一元一次不等式的概念能舉出一些一次函數(shù)的例子?(學生完全具備這種類比的能力,所以要快、不要耽誤太多時間叫幾個同學回答就可以了.教師將學生的正確的例子寫在黑板上)。
這些函數(shù)有什么共同特點呢?(注意根據(jù)學生情況適當引導,看能否歸納出一般結(jié)果.)不難看出函數(shù)都是用自變量的一次式表示的,可以寫成()的形式.一般地,如果(是常數(shù),)(括號內(nèi)用紅字強調(diào))那么y叫做x的一次函數(shù).特別地,當b=0時,一次函數(shù)就成為(是常數(shù),)。
3、例題講解。
例1、某油管因地震破裂,導致每分鐘漏出原油30公升。
(1)如果x分鐘共漏出y公升,寫出y與x之間的函數(shù)關(guān)系式。
(2)破裂3.5小時后,共漏出原油多少公升。
分析:y與x成正比例。
解:(1)(2)(升)。
例2、小丸子的存折上已經(jīng)有500元存款了,從現(xiàn)在開始她每個月可以得到150元的零用錢,小丸子計劃每月將零用錢的60%存入銀行,用以購買她期盼已久的cd隨身聽(價值1680元)。
(1)列出小丸子的銀行存款(不計利息)y與月數(shù)x的函數(shù)關(guān)系式;。
(2)多長時間以后,小丸子的銀行存款才能買隨身聽?
分析:銀行存款數(shù)由兩部分構(gòu)成:原有的存款500元,后存入的零用錢。
例3、已知函數(shù)是正比例函數(shù),求的值。
分析:本題考察的是正比例函數(shù)的概念。
解:
4、小結(jié)。
由學生對本節(jié)課知識進行總結(jié),教師板書即可.
5、布置作業(yè)。
書面作業(yè):1、書后習題2、自己寫出一個實際中的一次函數(shù)的例子并進行討論。
八年級數(shù)學下勾股定理的證明二教案篇七
1.知識與技能目標:會用勾股定理及直角三角形的判定條件解決實際問題。
2.過程與方法目標:經(jīng)歷勾股定理的應用過程,熟練掌握其應用方法,明確應用的條件。
3.情感態(tài)度與價值觀目標:通過自主學習的發(fā)展體驗獲取數(shù)學知識的感受;通過有關(guān)勾股定理的歷史講解,對學生進行德育教育。
一、知識點講解。
知識點1:(已知兩邊求第三邊)。
1.在直角三角形中,若兩直角邊的長分別為1cm,2cm,則斜邊長為_____________。
2.已知直角三角形的兩邊長為3、4,則另一條邊長是______________。
3.三角形abc中,ab=10,ac=17,bc邊上的高線ad=8,求bc的長?
知識點2:
利用方程求線段長。
(1)使得c,d兩村到e站的距離相等,e站建在離a站多少km處?
(2)de與ce的位置關(guān)系。
(3)使得c,d兩村到e站的距離最短,e站建在離a站多少km處?
利用方程解決翻折問題。
3、在矩形紙片abcd中,ad=4cm,ab=10cm,按圖所示方式折疊,使點b與點d重合,折痕為ef,求de的長。
5、折疊矩形abcd的一邊ad,折痕為ae,且使點d落在bc邊上的點f處,已知ab=8cm,bc=10cm,以b點為原點,bc為x軸,ba為y軸建立平面直角坐標系。求點f和點e坐標。
6、邊長為8和4的矩形oabc的兩邊分別在直角坐標系的x軸和y軸上,若沿對角線ac折疊后,點b落在第四象限b1處,設b1c交x軸于點d,求(1)三角形adc的面積,(2)點b1的坐標,(3)ab1所在的直線解析式.
知識點3:判斷一個三角形是否為直角三角形間接給出三邊的長度或比例關(guān)系。
1.(1).若一個三角形的周長12cm,一邊長為3cm,其他兩邊之差為1cm,則這個三角形是___________。
(2).將直角三角形的三邊擴大相同的倍數(shù)后,得到的三角形是____________。
(3)在abc中,a:b:c=1:1:,那么abc的確切形狀是_____________。
二、課堂小結(jié)。
談一談你這節(jié)課都有哪些收獲?
三、課堂練習以上習題。
四、課后作業(yè)卷子。
本節(jié)課是人教版數(shù)學八年級下冊第十七章第一節(jié)第二課時的內(nèi)容,是學生在學習了三角形的有關(guān)知識,了解了直角三角形的概念,掌握了直角三角形的性質(zhì)和一個三角形是直角三角形的條件的基礎上學習勾股定理,加深對勾股定理的理解,提高學生對數(shù)形結(jié)合的應用與理解。本節(jié)第一課時安排了對勾股定理的觀察、計算、猜想、證明及簡單應用的過程;第二課時是通過例題分析與講解,讓學生感受勾股定理在實際生活中的應用,通過從實際問題中抽象出直角三角形這一模型,強化轉(zhuǎn)化思想,培養(yǎng)學生解決問題的意識和應用能力。
針對本班學生的特點,學生知識水平、學習能力的差距,本節(jié)課安排了如下幾個環(huán)節(jié):
一、復習引入。
對上節(jié)課勾股定理內(nèi)容進行回顧,強調(diào)易錯點。由于學生的注意力集中時間較短,學生知識水平低,引入內(nèi)容簡短明了,花費時間短。
二、例題講解,鞏固練習,總結(jié)數(shù)學思想方法。
活動一:用對媒體展示搬運工搬木板的問題,讓學生以小組交流合作,如何將木板運進門內(nèi)?需要知道們的寬、高,還是其他的條件?學生展示交流結(jié)果,之后教師引導學生書寫板書。整個活動以學生為主體,教師及時的引導和強調(diào)。
活動二:解決例二梯子滑落的問題。學生自主討論解決問題,書寫過程,之后投影學生書寫過程,教師與學生一起合作修改解題過程。
活動三:學生討論總結(jié)如何將實際生活中的問題轉(zhuǎn)化為數(shù)學問題,然后利用勾股定理解決問題。利用勾股定理的前提是什么?如何作輔助線構(gòu)造這一前提條件?在數(shù)學活動中發(fā)展了學生的探究意識和合作交流的習慣;體會勾股定理的應用價值,讓學生體會到數(shù)學來源于生活,又應用到生活中去,在學習的過程中體會獲得成功的喜悅,提高了學生學習數(shù)學的興趣和信心。
二、鞏固練習,熟練新知。
通過測量旗桿活動,發(fā)展學生的探究意識,培養(yǎng)學生動手操作的能力,增加學生應用數(shù)學知識解決實際問題的經(jīng)驗和感受。
在教學設計的實施中,也存在著一些問題:
1.由于本班學生能力的差距,本想著通過學生幫帶活動,使學困生充分參與課堂,但在學生合作交流是由于學習能力強的學生,對問題的分析解決所用時間短,而在整個環(huán)節(jié)設計中轉(zhuǎn)接的快,未給學困生充分的時間,導致部分學生未能真正的參與到課堂中來。
2.課堂上質(zhì)疑追問要起到好處,不要增加學生展示的難度,影響展示進程出現(xiàn)中斷或偏離主題的現(xiàn)象。
3.對學生課堂展示的評價方式應體現(xiàn)生評生,師評生,及評價的針對性和及時性。
八年級數(shù)學下勾股定理的證明二教案篇八
知識與技能:
1、了解勾股定理的文化背景,體驗勾股定理的探索過程,了解利用拼圖驗證勾股定理的方法。
2、了解勾股定理的內(nèi)容。
3、能利用已知兩邊求直角三角形另一邊的長。
過程與方法:
1、通過拼圖活動,體驗數(shù)學思維的嚴謹性,發(fā)展形象思維。
2、在探索活動中,學會與人合作,并能與他人交流思維的過程和探索的結(jié)果。
情感與態(tài)度:
1、通過對勾股定理歷史的了解,對比介紹我國古代和西方數(shù)學家關(guān)于勾股定理的研究,激發(fā)學生熱愛祖國悠久文化的情感,激勵學生奮發(fā)學習。
2、在探索勾股定理的過程中,體驗獲得結(jié)論的快樂,鍛煉克服困難的勇氣,培養(yǎng)合作意識和探索精神。
二教學重、難點。
重點:探索和證明勾股定理難點:用拼圖方法證明勾股定理。
三、學情分析。
學生對幾何圖形的觀察,幾何圖形的分析能力已初步形成。部分學生解題思維能力比較高,能夠正確歸納所學知識,通過學習小組討論交流,能夠形成解決問題的思路。
四、教學策略。
本節(jié)課采用探究發(fā)現(xiàn)式教學,由淺入深,由特殊到一般地提出問題,鼓勵學生采用觀察分析、自主探索、合作交流的學習方法,讓學生經(jīng)歷數(shù)學知識的形成與應用過程。
五、教學過程。
教學環(huán)節(jié)。
教學內(nèi)容。
活動和意圖。
創(chuàng)設情境導入新課。
以“航天員在太空中遇到外星人時,用什么語言進行溝通”導入新課,讓孩子們盡情發(fā)揮他們的想象.而華羅庚建議可以用勾股定理的圖形進行和外星人溝通,為什么呢?通過一段vcr說明原因。
[設計意圖]激發(fā)學生對勾股定理的興趣,從而較自然的引入課題。
新知探究。
畢達哥拉斯是古希臘著名的數(shù)學家。相傳在2500年以前,他在朋友家做客時,發(fā)現(xiàn)朋友家用地磚鋪成的地面反映了直角三角形的三邊的某種數(shù)量關(guān)系。
(1)同學們,請你也來觀察下圖中的地面,看看能發(fā)現(xiàn)些什么?
(2)你能找出圖18.1-1中正方形1、2、3面積之間的關(guān)系嗎?
通過講述故事來進一步激發(fā)學生學習興趣,使學生在不知不覺中進入學習的最佳狀態(tài)。
如圖,每個小方格代表1個單位面積,我們分別以a,b,c三邊為邊長作正方形。
回答以下內(nèi)容:
(1)想一想,怎樣利用小方格計算正方形a、b、c面積?
(2)怎樣求出正方形面積c?
(3)觀察所得的各組數(shù)據(jù),你有什么發(fā)現(xiàn)?
(4)將正方形a,b,c分別移開,你能發(fā)現(xiàn)直角三角形邊長a,b,c有何數(shù)量關(guān)系?
引導學生將邊不在格線上的圖形轉(zhuǎn)化為邊在格線上的圖形,以便于計算圖形面積.
問題是思維的起點”,通過層層設問,引導學生發(fā)現(xiàn)新知。
探究交流歸納。
拼圖驗證加深理解。
如圖,每個小方格代表1個單位面積,我們分別以a,b,c三邊為邊長作正方形。
回答以下內(nèi)容:
(1)想一想,怎樣利用小方格計算正方形p、q、r的面積?
(2)怎樣求出正方形面積r?
(3)觀察所得的各組數(shù)據(jù),你有什么發(fā)現(xiàn)?
(4)將正方形p,q,r分別移開,你能發(fā)現(xiàn)直角三角形邊長a,b,c有何數(shù)量關(guān)系?
由以上兩問題可得猜想:
直角三角形兩直角邊的平方和等于斜邊的平方。
而猜想要通過證明才能成為定理。
活動探究:
(1)讓學生利用學具進行拼圖。
(2)多媒體課件展示拼圖過程及證明過程理解數(shù)學的嚴密性。
從特殊的等腰直角三角形過渡到一般的直角三角形。
滲透從特殊到一般的數(shù)學思想.為學生提供參與數(shù)學活動的時間和空間,發(fā)揮學生的主體作用;培養(yǎng)學生的類比遷移能力及探索問題的能力,使學生在相互欣賞、爭辯、互助中得到提高。
通過這些實際操作,學生進行一步加深對數(shù)形結(jié)合的理解,拼圖也會產(chǎn)生感性認識,也為論證勾股定理做好準備。
利用分組討論,加強合作意識。
1、經(jīng)歷所拼圖形與多媒體展示圖形的聯(lián)系與區(qū)別。
2、加強數(shù)學嚴密教育,從而更好地理解代數(shù)與圖形相結(jié)合。
應用新知解決問題。
在應用新知這個環(huán)節(jié),我把以往的單純求解邊長之類的題目換成了幾個運用勾股定理來解決問題的古算題。
把生活中的實物抽象成幾何圖形,讓學生了解豐富變幻的圖形世界,培養(yǎng)了學生抽象思維能力,特別注重培養(yǎng)學生認識事物,探索問題,解決實際的能力。
回顧小結(jié)整體感知。
在最后的小結(jié)中,不但對知識進行小結(jié)更對方法要進行小節(jié),還可向?qū)W生介紹了美麗的圖案畢達哥拉斯樹,讓學生切身感受到其實數(shù)學與生活是緊密聯(lián)系的,進一步發(fā)現(xiàn)數(shù)學的另一種美。
學生通過對學習過程的小結(jié),領(lǐng)會其中的數(shù)學思想方法;通過梳理所學內(nèi)容,形成完整知識結(jié)構(gòu),培養(yǎng)歸納概括能力。。
布置作業(yè)鞏固加深。
必做題:
1.完成課本習題1,2,3題。
選做題:
針對學生認知的差異設計了有層次的作業(yè)題,既使學生鞏固知識,形成技能,讓感興趣的學生課后探索,感受數(shù)學證明的靈活、優(yōu)美與精巧,感受勾股定理的豐富文化。
八年級數(shù)學下勾股定理的證明二教案篇九
在教學中努力推進九年義務教育,落實新課改,體現(xiàn)新理念,培養(yǎng)創(chuàng)新精神。
通過數(shù)學課的教學,使學生切實學好從事現(xiàn)代化建設和進一步學習現(xiàn)代化科學技術(shù)所必需的數(shù)學基本知識和基本技能;努力培養(yǎng)學生的運算能力、邏輯思維能力,以及分析問題和解決問題的能力。
二、學情分析
八年級是初中學習過程中的關(guān)鍵時期,學生基礎的好壞,直接影響到將來是否能升學。優(yōu)生不多,思想不夠活躍,有少數(shù)學生不上進,思維跟不上。要在本期獲得理想成績,老師和學生都要付出努力,充分發(fā)揮學生是學習的主體,教師是教的主體作用,注重方法,培養(yǎng)能力。
三、本學期教學內(nèi)容分析
本學期教學內(nèi)容共計六章。
第一章《三角形的證明》
本章將證明與等腰三角形和直角三角形的性質(zhì)及判定有關(guān)的一些結(jié)論,證明線段垂直平分線和角平分線的有關(guān)性質(zhì),將研究直角三角形全等的判定,進一步體會證明的必要性。
第二章《一元一次不等式和一元一次不等式組》
本章通過具體實例建立不等式,探索不等式的基本性質(zhì),了解一般不等式的解、解集、解集在數(shù)軸上的表示,一元一次不等式的解法及應用;通過具體實例滲透一元一次不等式、一元一次方程和一次函數(shù)的內(nèi)在聯(lián)系.最后研究一元一次不等式組的解集和應。
第三章《圖形的平移與旋轉(zhuǎn)》
本章將在小學學習的基礎上進一步認識平面圖形的平移與旋轉(zhuǎn),探索平移,旋轉(zhuǎn)的性質(zhì),認識并欣賞平移,中心對稱在自然界和現(xiàn)實生活中的應用。
第四章《分解因式》
本章通過具體實例分析分解因式與整式的乘法之間的關(guān)系揭示分解因式的實質(zhì),最后學習分解因式的幾種基本方法。
第五章《分式與分式方程》
本章通過分數(shù)的有關(guān)性質(zhì)的回顧建立了分式的概念、性質(zhì)和運算法則,并在此基礎上學習分式的化簡求值、解分式方程及列分式方程解應用題,能解決簡單的實際應用問題。
第六章《平行四邊形》
本章將研究平行四邊形的性質(zhì)與判定,以及三角形中位線的性質(zhì),還將探索多邊形的內(nèi)角和,外角和的規(guī)律;經(jīng)歷操作,實驗等幾何發(fā)現(xiàn)之旅,享受證明之美。
四、主要措施
1、面向全體學生。
由于學生在知識、技能方面的發(fā)展和興趣、特長等不盡相同,所以要因材施教。在組織教學時,應從大多數(shù)學生的實際出發(fā),并兼顧學習有困難的和學有余力的學生。對學習有困難的學生,要特別予以關(guān)心,及時采取有效措施,激發(fā)他們學習數(shù)學的興趣,指導他們改進學習方法。幫助他們解決學習中的困難,使他們經(jīng)過努力,能夠達到大綱中規(guī)定的基本要求,對學有余力的學生,要通過講授選學內(nèi)容和組織課外活動等多種形式,滿足他們的學習愿望,發(fā)展他們的數(shù)學才能。
2、重視改進教學方法,堅持啟發(fā)式,反對注入式。
教師在課前先布置學生預習,同時要指導學生預習,提出預習要求,并布置與課本內(nèi)容相關(guān)、難度適中的嘗試題材由學生課前完成,教學中教師應幫助學生梳理新課知識,指出重點和易錯點,解答學生預習時遇到的問題,再設計提高題由學生進行嘗試,使學生在學習中體會成功,調(diào)動學習積極性,同時也可激勵學生自我編題。努力培養(yǎng)學生發(fā)現(xiàn)、得出、分析、解決問題的能力,包括將實際問題上升為數(shù)學模型的能力,注意激勵學生的創(chuàng)新意識。
3、 改革作業(yè)結(jié)構(gòu)減輕學生負擔。將學生按學習能力分成幾個層次,分別布置難、中、淺三個層次作業(yè),使每類學生都能在原有基礎上提高。
4、課后輔導實行流動分層。
5、運用新課程標準的理念指導教學,積極更新自己腦海中固有的教育理念,不同的教育理念將帶來不同的教育效果。
6、培養(yǎng)學生良好的學習習慣,陶行知說:教育就是培養(yǎng)習慣,有助于學生穩(wěn)步提高學習成績,發(fā)展學生的'非智力因素,彌補智力上的不足。
7、開展課題的研究,課外調(diào)查,操作實踐,帶動班級學生學習數(shù)學,同時發(fā)展這一部分學生的特長。
8、進行個別輔導,優(yōu)生提升能力,扎實打牢基礎知識;對學困生,一些關(guān)鍵知識,輔導他們過關(guān),為他們以后的發(fā)展鋪平道路。
9、培養(yǎng)學生學習數(shù)學的良好習慣。
四、教學進度
第一章《三角形的證明》13課時
1.1等腰三角形 4課時
1.2直角三角形 2課時
1.3線段的垂直平分線 2課時
1.4角平分線 2課時
復習小節(jié)與檢測 3課時
第二章《一元一次不等式和一元一次不等式組》 12課時
2.1 不等關(guān)系 1課時
2.2 不等式的基本性質(zhì) 1課時
2.3 不等式的解集 1課時
2.4 一元一次不等式2課時
2.5 一元一次不等式與一次函數(shù)2課時
2.6 一元一次不等式組 2課時
復習小節(jié) 與檢測 3課時
第三章《圖形的平移與旋轉(zhuǎn)》 10課時
3.1圖形的平移 3課時
3.2圖形的旋轉(zhuǎn) 2 課時
3.3中心對稱 1課時
3.4簡單的圖形設計 1 課時
復習小節(jié)與檢測 3課時
期中考試復習2 課時
第四章《分解因式》7課時
4.1分解因式1課時
4.2提公因式法 2課時
4.3公式法 2課時
4.4重心 2課時
復習小節(jié)與檢測 2課時
第五章《分式與分式方程》 11課時
5.1認識分式 2課時
5.2 分式的乘除法 1課時
5.3分式的加減法 3課時
5.4分式方程 3課時
復習小節(jié)與檢測 2課時
第六章《平行四邊形》 10課時
4.1平行四邊形的性質(zhì) 2課時
4.2特殊的平行四邊形的判定 3課時
4.3三角形的中位線 1課時
4.4多邊形的內(nèi)角和外角和 2課時
復習小節(jié)與檢測 2課時
八年級數(shù)學下勾股定理的證明二教案篇十
1、了解方差的定義和計算公式。
2、理解方差概念產(chǎn)生和形成過程。
3、會用方差計算公式比較兩組數(shù)據(jù)波動大小。
重點:掌握方差產(chǎn)生的必要性和應用方差公式解決實際問題。
難點:理解方差公式。
(一)知識詳解:
方差:設有n個數(shù)據(jù),各數(shù)據(jù)與它們的平均數(shù)的差的平方分別為。
用它們的平均數(shù)表示這組數(shù)據(jù)的方差,即。
給力小貼士:方差越小說明這組數(shù)據(jù)越穩(wěn)定,波動性越低。
(二)自主檢測小練習:
1、已知一組數(shù)據(jù)為2.0、-1.3、-4,則這組數(shù)據(jù)的方差為。
2、甲、乙兩組數(shù)據(jù)如下:
甲組:1091181213107;
乙組:7891011121112。
分別計算出這兩組數(shù)據(jù)的極差和方差,并說明哪一組數(shù)據(jù)波動較小。
引例:問題:從甲、乙兩種農(nóng)作物中各抽取10株苗,分別測得它的苗高如下(單位:cm):
甲:9.10.10.13.7.13.10.8.11.8;
乙:8.13.12.11.10.12.7.7.10.10;
問:(1)哪種農(nóng)作物的苗長較高(可以計算它們的平均數(shù):=)?
(2)哪種農(nóng)作物的苗長較整齊?(可以計算它們的極差,你可以發(fā)現(xiàn))。
歸納:方差:設有n個數(shù)據(jù),各數(shù)據(jù)與它們的平均數(shù)的差的平方分別為。
用它們的平均數(shù)表示這組數(shù)據(jù)的方差,即用來表示。
(一)例題講解:
金志強1013161412。
提示:先求平均數(shù),然后使用公式計算方差。
(二)小試身手。
1、甲、乙兩名學生在相同條件下各射擊靶10次,命中的環(huán)數(shù)如下:
甲:7.8.6.8.6.5.9.10.7.4。
乙:9.5.7.8.7.6.8.6.7.7。
經(jīng)過計算,兩人射擊環(huán)數(shù)的平均數(shù)是,但s=,s=,則ss,所以確定去參加比賽。
1、求下列數(shù)據(jù)的眾數(shù):
(1)3.2.5.3.1.2.3(2)5.2.1.5.3.5.2.2。
方差公式:
提示:方差越小,說明這組數(shù)據(jù)越集中。波動性越小。
每課一首詩:求方差,有公式;先平均,再求差;求平方,再平均;所得數(shù),是方差。
1、小爽和小兵在10次百米跑步練習中的成績?nèi)缦卤硭荆?單位:秒)。
如果根據(jù)這些成績選拔一人參加比賽,你會選誰呢?
必做題:教材141頁練習1.2;選做題:練習冊對應部分習題。
寫下你的收獲,交流你的經(jīng)驗,分享你的成果,你會感到無比的快樂!
八年級數(shù)學下勾股定理的證明二教案篇十一
一、本節(jié)課的成功之處:。
本節(jié)課以活動為主線,通過從估算到實驗活動結(jié)果的產(chǎn)生讓學生總結(jié)過程,最后回到解決生活中實際問題,思路清晰,脈絡明了。
例如:活動1問題:據(jù)說古埃及人用下圖的方法畫直角:把一根長蠅打上等距離的13個結(jié),然后以3個結(jié),4個結(jié)、5個結(jié)的長度為邊長,用木樁釘成一個三角形,其中一個角便是直角.
這個問題意味著,如果圍成的三角形的三邊分別為3、4、5.有下面的`關(guān)系“32+42=52”.那么圍成的三角形是直角三角形.
2、體現(xiàn)了“數(shù)學源于生活,寓于生活,用于生活”的教育思想;突出了“特征讓學生觀察,思路讓學生探索,方法讓學生思考意義讓學生概括,結(jié)論讓學生驗證,難點讓學生突破,以學生為主體”的教學思路。例如:命題2如果三角形的三邊長a,b,c滿足a2+b2=c2那么這個三角形是直角三角形.
如下圖,欲過基線mn上的一點c作它的垂線,可由三名工人操作:一人手拿布尺或測繩的0和12尺處,固定在c點;另一人拿4尺處,把尺拉直,在mn上定出a點,再由一人拿9尺處,把尺拉直,定出b點,于是連結(jié)bc,就是mn的垂線.
建筑工人用了3,4,5作出了一個直角,能不能用其他的整數(shù)組作出直角呢?
生:可以,例如7,24,25;8,15,17等.
3、在本節(jié)教學活動過程中,我經(jīng)常走下講臺,到學生中去,以學生身份和學生一起探討問題。用一切可能的方式,激勵回答問題的學生,激發(fā)學生的求知欲,使師生在和諧的教學環(huán)境中零距離的接觸。課堂上學生們的思維空前活躍,發(fā)言的人數(shù)不斷增多,學生能從多角度認識問題,爭先恐后地交流不同的意見和方法,收到比較好的效果。這是本節(jié)課的特色。
二、本節(jié)課的不足之處及改進方法:。
1、本節(jié)課我沒有利用多媒體輔助教學,如學習目標的發(fā)展、習題訓練內(nèi)容的展示、學生活動的要求、作業(yè)布置等,這些內(nèi)容都是為教學服務的。如果用多媒體課件的展示,可以增大了教學密度,使學生的雙基訓練得到了加強,使傳統(tǒng)的課堂走向了開放,使學生真正感受到學習方式在發(fā)生變化。在以后的教學中我應加強。
八年級數(shù)學下勾股定理的證明二教案篇十二
正比例函數(shù)的概念。
2、內(nèi)容解析。
一次函數(shù)是最基本的初等函數(shù),是初中函數(shù)學習的重要內(nèi)容,正比例函數(shù)是特殊的一次函數(shù),也是初中學生接觸到的第一種函數(shù),要通過對正比例函數(shù)內(nèi)容的學習,為后續(xù)類比學習一般一次函數(shù)打好基礎,了解研究函數(shù)的基本套路和方法,積累研究一般一次函數(shù)乃至其他各種函數(shù)的基本經(jīng)驗。
對正比例函數(shù)概念的學習,既要借助具體的函數(shù)進一步加深對函數(shù)概念的理解,即實際問題的兩個變量中,當一個變量變化時,另一個變量隨著它的變化而變化,而且對于這個變量的每一個確定的值,另一個變量都有唯一確定的值與之對應,這是理解正比例函數(shù)的核心;也要加強對正比例函數(shù)基本特征的認識,即根據(jù)實際問題構(gòu)建的函數(shù)模型中,函數(shù)和自變量每一對對應值的比值是一定的,等于比例系數(shù),反映在函數(shù)解析式上,這些函數(shù)都是常數(shù)與自變量的積的形式,這是正比例函數(shù)的基本特征。
本節(jié)課主要是通過對生活中大量實際問題的分析,寫出變量間的函數(shù)關(guān)系式,觀察比較概括出這些函數(shù)關(guān)系式具有的共同特征,根據(jù)共同特征抽象出正比例函數(shù)的基本模型,歸納得出正比例函數(shù)的概念,再用正比例函數(shù)的概念對具體函數(shù)進行辨析,對實際事例進行分析,根據(jù)已知條件寫出正比例函數(shù)的解析式。
基于以上分析,確定本節(jié)課的教學重點:正比例函數(shù)的概念。
1、目標。
(1)經(jīng)歷正比例函數(shù)概念的形成過程,理解正比例函數(shù)的概念;
(2)能根據(jù)已知條件確定正比例函數(shù)的解析式,體會函數(shù)建模思想。
2、目標解析。
達成目標(1)的標志是:通過對實際問題的分析,知道自變量和對應函數(shù)成正比例的特征,能概括抽象出正比例函數(shù)的概念。
達成目標(2)的標志是:能根據(jù)實際問題中的已知條件確定變量間的正比例函數(shù)關(guān)系式,將實際問題抽象為函數(shù)模型,體會函數(shù)建模思想。
正比例函數(shù)是是初中學生接觸到的第一種初等函數(shù),由于函數(shù)概念比較抽象,學生對函數(shù)基本概念理解未必深刻,在對實際問題進行分析過程中,需進一步強化對函數(shù)概念的理解:即實際問題的兩個變量中,當一個變量變化時,另一個變量隨著它的變化而變化,而且對于這個變量的`每一個確定的值,另一個變量都有唯一確定的值與之對應;對正比例函數(shù)概念的理解關(guān)鍵是對正比例函數(shù)基本特征的認識,要通過大量實例分析,寫出變量間的函數(shù)關(guān)系式,觀察比較發(fā)現(xiàn)這些函數(shù)具有的共同特征,即函數(shù)與自變量的每一對對應值的比值一定,都等于自變量前的常數(shù),這些函數(shù)都是常數(shù)與自變量的積的形式,再根據(jù)共同特征抽象出正比例函數(shù)的基本模型,歸納得出正比例函數(shù)的概念。對正比例函數(shù)基本特征的認識和正比例函數(shù)概念的抽象歸納過程學生有一定難度。
因此本節(jié)課的教學難點是:對正比例函數(shù)基本特征的認識和正比例函數(shù)概念的抽象歸納過程。
八年級數(shù)學下勾股定理的證明二教案篇十三
2、范例講解。
(學生嘗試練習后,教師講評)。
例1:解方程例2:解方程例3:解方程講評時強調(diào):
1、怎樣確定最簡公分母?(先將各分母因式分解)。
2、解分式方程的步驟、
鞏固練習:p1471t,2t、
課堂小結(jié):解分式方程的一般步驟。
布置作業(yè):見作業(yè)本。
八年級數(shù)學下勾股定理的證明二教案篇十四
1、理解極差的定義,知道極差是用來反映數(shù)據(jù)波動范圍的一個量.
2、會求一組數(shù)據(jù)的極差.
1、重點:會求一組數(shù)據(jù)的極差.
2、難點:本節(jié)課內(nèi)容較容易接受,不存在難點、
從表中你能得到哪些信息?
比較兩段時間氣溫的高低,求平均氣溫是一種常用的方法、
這是不是說,兩個時段的氣溫情況沒有什么差異呢?
根據(jù)兩段時間的氣溫情況可繪成的折線圖、
觀察一下,它們有區(qū)別嗎?說說你觀察得到的結(jié)果、
本節(jié)課在教材中沒有相應的例題,教材p152習題分析。
問題1可由極差計算公式直接得出,由于差值較大,結(jié)合本題背景可以說明該村貧富差距較大、問題2涉及前一個學期統(tǒng)計知識首先應回憶復習已學知識、問題3答案并不唯一,合理即可。
八年級數(shù)學下勾股定理的證明二教案篇十五
《正方形》這節(jié)課是九年義務教育人教版數(shù)學教材八年級下冊第十九章第二節(jié)的內(nèi)容??v觀整個初中教材,《正方形》是在學生掌握了平行線、三角形、平行四邊形、矩形、菱形等有關(guān)知識及簡單圖形的平移和旋轉(zhuǎn)等平面幾何知識,并且具備有初步的觀察、操作等活動經(jīng)驗的基礎上出現(xiàn)的。既是前面所學知識的延續(xù),又是對平行四邊形、菱形、矩形進行綜合的不可缺少的重要環(huán)節(jié)。
本節(jié)課的重點是正方形的概念和性質(zhì),難點是理解正方形與平行四邊形、矩形、菱形之間的內(nèi)在聯(lián)系。根據(jù)大綱要求,本節(jié)課制定了知識、能力、情感三方面的目標。
(一)知識目標:
1、要求學生掌握正方形的概念及性質(zhì);
2、能正確運用正方形的性質(zhì)進行簡單的計算、推理、論證;
(二)能力目標:
1、通過本節(jié)課培養(yǎng)學生觀察、動手、探究、分析、歸納、總結(jié)等能力;
2、發(fā)展學生合情推理意識,主動探究的習慣,逐步掌握說理的基本方法;
(三)情感目標:
1、讓學生樹立科學、嚴謹、理論聯(lián)系實際的良好學風;
2、培養(yǎng)學生互相幫助、團結(jié)協(xié)作、相互討論的團隊精神;
3、通過正方形圖形的完美性,培養(yǎng)學生品格的完美性。
該段學生具有一定的獨立思考和探究的能力,但語言表達能力方面稍有欠缺,所以在本節(jié)課的教學過程中,特意設計了讓學生自己組織語言培養(yǎng)說理能力,讓學生們能逐步提高。
針對本節(jié)課的特點,采用"實踐--觀察--總結(jié)歸納--運用"為主線的教學方法。
通過學生動手,采取幾種不同的方法構(gòu)造出正方形,然后引導學生探究正方形的概念。通過觀察、討論、歸納、總結(jié)出正方形性質(zhì)定理,最后以課堂練習加以鞏固定理,并通過一道拔高題對定義、性質(zhì)理解、鞏固加以升華。
本節(jié)課重點是從培養(yǎng)學生探索精神和分析歸納總結(jié)能力為出發(fā)點,著重指導學生動手、觀察、思考、分析、總結(jié)得出結(jié)論。在小組討論中通過互相學習,讓學生體驗合作學習的樂趣。
第一環(huán)節(jié):相關(guān)知識回顧。
以提問的形式復習平行四邊形、矩形、菱形的定義及性質(zhì)之后,引導學生發(fā)現(xiàn)矩形、菱形的實質(zhì)是由平行四邊形角度、邊長的變化得到的。并啟發(fā)學生考慮,若這兩種變化同時發(fā)生在平行四邊形上,則會得到什么樣的圖形?讓學生們通過手上的學具演示以上兩種變化,從而得出結(jié)論。
第二環(huán)節(jié):新課講解通過學生們的發(fā)現(xiàn)引出課題“正方形”
1、正方形的定義:引導學生說出自己變化出正方形的過程,并再次利用課件形象演示出由平行四邊形的邊、角的變化演變出正方形的過程。請同學們舉手發(fā)言,歸納總結(jié)出正方形定義:一組鄰邊相等,且一個角是直角的平行四邊形是正方形。再由此定義啟發(fā)學生們發(fā)現(xiàn)正方形的三個必要條件,并且由這三個條件通過重新組合即一組鄰邊相等與平行四邊形組成菱形再加上一個角是直角可得到正方形的另兩個定義:一個角是直角的菱形是正方形;一組鄰邊相等的矩形是正方形。此內(nèi)容借助課件演示其變化過程,進一步啟發(fā)學生發(fā)現(xiàn),正方形既是特殊的菱形,又是特殊的矩形,從而總結(jié)出正方形的性質(zhì)。
2、正方形的性質(zhì)定理1:正方形的四個角都是直角,四條邊都相等;
定理2:正方形的兩條對角線相等,并且互相垂直、平分,每條對角線平分一組對角。
以上是對正方形定義和性質(zhì)的學習,之后是進行例題講解。
4、課堂練習:第一部分采用三道有關(guān)正方形的周長、面積、對角線、邊長計算的填空題,目的是對正方形性質(zhì)的進一步理解,并考察學生掌握的情況。
第二部分是選擇題,通過體現(xiàn)生活中實際問題,來提升學生所學的知識,并加以綜合練習,提高他們的綜合素質(zhì),使他們充分認識到數(shù)學實質(zhì)是來源于生活并要服務于生活。
5、課堂小結(jié):此環(huán)節(jié)我是通過圖框的形式小結(jié)正方形和前階段所學特殊四邊形之間的內(nèi)在聯(lián)系,通過對所學幾種四邊形內(nèi)在聯(lián)系體現(xiàn)正方形完美的本質(zhì),渲染學生們應追求象正方形一樣方正的品質(zhì),從而要努力學習以豐富的知識充實自己,達到理想中的完美。
6、作業(yè)設計:作業(yè)是教材159頁,第12、14兩小道證明題,通過此作業(yè)讓同學們進一步鞏固有關(guān)正方形的知識。
八年級數(shù)學下勾股定理的證明二教案篇十六
今后的教學中:
(1)立足教材,鉆研教學大綱的要求;試卷中較多題目是根據(jù)課本的題目改編而來,從學生的考試情況來看課本的題目掌握不理想,這說明在平時的教學中對書本的重視不夠,過多地追求課外題目的訓練,但忽略學生實實在在地理解課本知識,提高思維能力。課堂上盡量把課堂還給學生,讓學生積極參與到課堂中,多機會給學生展示,表演,講題,把思路和方法講出來,使學生更清淅地理解題目,提升自己對數(shù)學的理解。多點讓學生獨立思考,發(fā)現(xiàn)問題,解決問題。
(2)注重培養(yǎng)學生良好的學習習慣。
(3)加強例題示范教學,培養(yǎng)學生解題書寫表達。
(4)多一些數(shù)學方法、數(shù)學思想的滲透,少一些知識的生搬硬套。
(5)在數(shù)學教學過程中,課堂上系統(tǒng)地對數(shù)學知識進行整理、歸納、溝通知識間的內(nèi)在聯(lián)系,形成縱向、橫向知識鏈,從知識的聯(lián)系和整體上把握基礎知識。
(6)針對學生的兩極分化,加強課外作業(yè)布置的針對性。讓每個學生課外有適合的作業(yè)做,對不同層次的學生布置不同難度的作業(yè),提高課外學習的效率,減輕學生課外作業(yè)的負擔。正確看待學生學習數(shù)學的差異,克服兩極分化。數(shù)學課堂上多考慮、關(guān)照中下生,讓他們在數(shù)學課堂上聽得進,肯用手。
(7)教師在平時的課堂教學中必須致力于改變教師的教學行為和學生的學習方式,加強學法指導,提高學生的閱讀能力,平時培養(yǎng)學生的自學能力,使學生實實在在地理解課本知識,提高思維能力。平時要關(guān)注課本、關(guān)注運算能力、關(guān)注教學中的薄弱環(huán)節(jié)。
八年級數(shù)學下勾股定理的證明二教案篇十七
在講解勾股定理的結(jié)論時,為了讓學生更好地理解和掌握勾股定理的探索過程,先讓學生自己進行探索,然后同學進行討論,最后上臺演示。這樣可以加深學生的參與,也讓師生間、生生間有了互動。然后老師再利用電腦演示直角三角形中勾股定理的探索過程。反復演示幾遍,讓學生自己感覺并最后體會到勾股定理的結(jié)論。通過動畫演示體會到解決問題的方法是多種多樣,使得這課的重難點輕易地突破,大大提高了教學效率,培養(yǎng)了學生的解決問題的能力和創(chuàng)新能力。學生在這一過程中各顯神通,都得到了解決問題的滿足感和自豪感。
在教學應用勾股定理時,老是運用公式計算,學生感覺比較厭倦,為了吸引學生注意力,活躍課堂氣氛,拓寬學生思路,運用多媒體出示了一道“智慧爺爺”出的思考題:即折竹抵地問題。同學們一看,興趣來了。最后讓學生互相討論,就這樣讓學生在開放自由的情況下解決了該題,同時培養(yǎng)了學生的想像力。
最后介紹了勾股定理的歷史,并且推薦了一些網(wǎng)站,讓學生下課之后進行查閱、了解。只是為了方便學生到更廣闊的知識海洋中去尋找知識寶藏,利用網(wǎng)絡檢索相關(guān)信息,充實、豐富、拓展課堂學習資源,提供各種學習方式,讓學生學會選擇、整理、重組、再用這些更廣泛的資源。這種對網(wǎng)絡資源的重新組織,使學生對知識的需求由窄到寬,有力的促進了自主學習。這樣學生不僅能在課堂上學習到知識,還讓他們有了怎樣學習知識的方法。這就達到了新課標新理念的預定目標。
八年級數(shù)學下勾股定理的證明二教案篇十八
多媒體投影一組圖片,讓同學們從中抽象出平面圖形,從而引出課題。
二、自主學習,指向目標。
學習至此:請完成《學生用書》相應部分。
三、合作探究,達成目標。
多邊形的定義及有關(guān)概念。
活動一:閱讀教材p19。
小組討論:結(jié)合具體圖形說出多邊形的邊、內(nèi)角、外角?
反思小結(jié):多邊形的定義及相關(guān)概念。
針對訓練:見《學生用書》相應部分。
多邊形的對角線。
活動二:(1)十邊形的對角線有35條。
(2)如果經(jīng)過多邊形的一個頂點有36條對角線,這個多邊形是39邊形。
反思小結(jié):當n為已知時,可以直接代入求得對角線的條數(shù),當對角線條數(shù)已知時,可以化為方程來求多邊形的邊數(shù)。
小組討論:如何靈活運用多邊形對角線條數(shù)的規(guī)律解題?
針對訓練:見《學生用書》相應部分。
正多邊形的有關(guān)概念。
活動二:閱讀教材p20。
小組討論:判斷一個多邊形是否是正多邊形的條件?
反思小結(jié):由正多邊形的概念知:滿足各邊、各角分別相等的多邊形是正多邊形。
針對訓練:見《學生用書》相應部分。
四、總結(jié)梳理,內(nèi)化目標。
本節(jié)學習的數(shù)學知識是:
1、多邊形、多邊形的外角,多邊形的對角線。
2、凸凹多邊形的概念。
五、達標檢測,反思目標。
1、下列敘述正確的是(d)。
a、每條邊都相等的多邊形是正多邊形。
c、每個角都相等的多邊形叫正多邊形。
d、每條邊、每個角都相等的多邊形叫正多邊形。
2、小學學過的下列圖形中不可能是正多邊形的是(d)。
a、三角形b。正方形c。四邊形d。梯形。
3、多邊形的內(nèi)角是指多邊形相鄰兩邊組成的角;多邊形的外角是指多邊形的邊與它的鄰邊的延長線組成的角;多邊形的內(nèi)角和它相鄰的外角是鄰補角關(guān)系。
4、已知一個四邊形的四個內(nèi)角的比為1∶2∶3∶4,求這個四邊形的各個內(nèi)角的度數(shù)。
八年級數(shù)學下勾股定理的證明二教案篇十九
1.了解算術(shù)平方根的概念,會用根號表示正數(shù)的算術(shù)平方根,并了解算術(shù)平方根的非負性。
2.了解開方與乘方互為逆運算,會用平方運算求某些非負數(shù)的算術(shù)平方根。
算術(shù)平方根的概念。
根據(jù)算術(shù)平方根的概念正確求出非負數(shù)的算術(shù)平方根。
這就要用到平方根的概念,也就是本章的主要學習內(nèi)容.這節(jié)課我們先學習有關(guān)算術(shù)平方根的概念.
1、提出問題:(書p68頁的問題)
你是怎樣算出畫框的邊長等于5dm的呢?(學生思考并交流解法)
這個問題相當于在等式擴=25中求出正數(shù)x的值.
一般地,如果一個正數(shù)x的平方等于a,即=a,那么這個正數(shù)x叫做a的算術(shù)平方根.a的算術(shù)平方根記為,讀作根號a,a叫做被開方數(shù).規(guī)定:0的算術(shù)平方根是0.
也就是,在等式=a (x0)中,規(guī)定x = .
2、試一試:你能根據(jù)等式:=144說出144的算術(shù)平方根是多少嗎?并用等式表示出來.
3、想一想:下列式子表示什么意思?你能求出它們的值嗎?
建議:求值時,要按照算術(shù)平方根的意義,寫出應該滿足的關(guān)系式,然后按照算術(shù)平方根的記法寫出對應的值.例如表示25的算術(shù)平方根。
4、例1求下列各數(shù)的算術(shù)平方根:
(1)100;(2)1;(3) ;(4)0.0001
p69練習1、2
怎樣用兩個面積為1的小正方形拼成一個面積為2的大正方形?
方法1:課本中的方法,略;
方法2:
可還有其他方法,鼓勵學生探究。
問題:這個大正方形的邊長應該是多少呢?
大正方形的邊長是,表示2的算術(shù)平方根,它到底是個多大的數(shù)?你能求出它的值嗎?
建議學生觀察圖形感受的大小.小正方形的對角線的長是多少呢?(用刻度尺測量它與大正方形的邊長的大小)它的近似值我們將在下節(jié)課探究.
1、這節(jié)課學習了什么呢?
2、算術(shù)平方根的具體意義是怎么樣的?
3、怎樣求一個正數(shù)的算術(shù)平方根
p75習題13.1活動第1、2、3題
八年級數(shù)學下勾股定理的證明二教案篇二十
《基礎教育課程改革綱要(試行)》指出:“大力推進多媒體信息技術(shù)在教學過程中的普遍應用,促進信息技術(shù)與學科課程的整合,逐步實現(xiàn)教學內(nèi)容的呈現(xiàn)方式、學生的學習方式、教師的教學方式和師生互動方式的變革,充分發(fā)揮信息技術(shù)的優(yōu)勢,為學生的學習和發(fā)展提供豐富多彩的教育環(huán)境和有力的學習工具。”教師運用現(xiàn)代多媒體信息技術(shù)對教學活動進行創(chuàng)造性設計,發(fā)揮計算機輔助教學的特有功能,把信息技術(shù)和數(shù)學教學的學科特點結(jié)合起來,可以使教學的表現(xiàn)形式更加形象化、多樣化、視覺化,有利于充分揭示數(shù)學概念的形成與發(fā)展,數(shù)學思維的過程和實質(zhì),展示數(shù)學思維的形成過程,使數(shù)學課堂教學收到事半功倍的效果。
本節(jié)課內(nèi)容是學生在小學階段初步了解特殊四邊形以及學過《三角形》這章的基礎上進行的,在知識結(jié)構(gòu)上打破了教材的編寫順序,從整體的角度探究特殊四邊形性質(zhì)。運用多媒體教學體現(xiàn)出直觀、課容量大、容易接受的特點,為進一步的理論證明及應用起著提供數(shù)據(jù)和宏觀指導作用,使學生學習本章具體內(nèi)容時知道身在何處,使知識體系更加系統(tǒng)。本節(jié)課內(nèi)容是四邊形這章的理論基礎,在該章占有非常重要的地位。
本班經(jīng)歷了一年多課改實踐,學生對運用現(xiàn)代多媒體信息技術(shù)的教學方式有濃厚的興趣,能運用《幾何畫板》這一工具進行簡單的操作,形成自主探索和合作交流的學風,從而樂于在教師的指導下主動與同學探索、發(fā)現(xiàn)、歸納、經(jīng)歷數(shù)學知識于實踐的過程。
本節(jié)課充分利用現(xiàn)有的先進教學設備(兩名學生一臺電腦),利用筆者自制,借助《幾何畫板》把學生帶入數(shù)學模擬實驗室,以研究電動門的機械原理為切入點,從學生已有的生活經(jīng)驗出發(fā),讓學生親身經(jīng)歷數(shù)學知識的形成并進行解釋與應用過程。組員相互配合分別測量、搜集、分析、整理特殊四邊形的邊長、角度、對角線長度等數(shù)據(jù),并總結(jié)其性質(zhì),通過人機對話方式把靜態(tài)、抽象的幾何圖形變?yōu)閯討B(tài)、直觀地演示出來。在此過程中教師當好課堂教學的組織者、決策者、創(chuàng)造者和參與者,教給學生自覺主動地探究新知識的方法,激發(fā)學生的思維,培養(yǎng)學生的科學精神和創(chuàng)新思維習慣,使學生獲得對數(shù)學理解的同時,在思維能力、情感態(tài)度與價值觀等多方面得到發(fā)展。
1、初步理解特殊四邊形性質(zhì);
2、培養(yǎng)學生自主收集、描述和分析數(shù)據(jù)的能力;
1、了解特殊四邊形性質(zhì)的形成過程;
2、初步了解探究新知識的一些方法;
1、了解特殊四邊形在日常生活中的應用;
2、學生在觀察、歸納、類比及實驗教學活動中,體會成功后的喜悅;
3、初步具有感性認識上升到理性認識的辯證唯物主義思想。
教學環(huán)境:
多媒體計算機網(wǎng)絡教室。
教學課型:
試驗探究式。
教學重點:
特殊四邊形性質(zhì)。
教學難點:
特殊四邊形性質(zhì)的發(fā)現(xiàn)。
一、設置情景,提出問題。
提出問題:
1、電動門的網(wǎng)格和結(jié)點能組成哪些四邊形?
2、在開(關(guān))門過程中這些四邊形是如何變化的?
3、你還發(fā)現(xiàn)了什么?
解決問題:
學生猜想:包括平行四邊形、矩形、菱形、等腰梯形、直角梯形……;
當我們學習完本節(jié)知識后,其他問題就容易解決了。
(意圖:用《幾何畫板》的動態(tài)演示生活事例,充分展示了數(shù)學的美妙,可以使學生容易進入情境和保持積極學習狀態(tài),激起學生探究解決問題的求知欲望。)。
二、整體了解,形成系統(tǒng)。
本節(jié)課從整體角度研究特殊四邊形性質(zhì),為今后的個體研究打下良好的基礎。我們先研究四邊形中的特殊與一般的關(guān)系。
提出問題:
1、本章主要研究哪些特殊四邊形?
2、從哪幾方面研究這些特殊四邊形?
解決問題:
學生操作電腦(用幾何畫板),了解本章研究的主要圖形;教師個別指導。
1、包括:平行四邊形、矩形、菱形、梯形、等腰梯形、直角梯形。
3、等腰梯形和直角梯形后面應該是矩形,但不符合梯形定義,所以沒有圖形。
(意圖:學生自主觀察、分組討論了解本章知識結(jié)構(gòu),從而形成系統(tǒng);通過假設、猜想、推理、論證、否定假設獲得新知識)。
三、個體研究、總結(jié)性質(zhì)。
1、平行四邊形性質(zhì)。
提出問題:
在平行四邊形的形狀、位置、大小變化過程中,請觀察數(shù)據(jù)并找出邊長、角度、對角線長度相對不變的性質(zhì)。
解決問題:
教師引導學生拖動b點(學生操作電腦),改變平行四邊形的形狀、位置、大小,并觀察數(shù)據(jù)的變化,從中找出相對不變的要素。
在圖形變化過程中,
(1)對邊相等;
(2)對角相等;
(3)通過ao=co、bo=do,可得對角線互相平分;
(4)通過鄰角互補,可得對邊平行;
(5)內(nèi)外角和都等于360度;
(6)鄰角互補;
……。
指導學生填表:
平行四邊形性質(zhì)矩形性質(zhì)正方形性質(zhì)。
菱形性質(zhì)。
梯形性質(zhì)等腰梯形性質(zhì)。
直角梯形性質(zhì)。
(既屬于平行四邊形性質(zhì)又屬于矩形性質(zhì)可以畫箭頭)。
按照平行四邊形性質(zhì)的探索思路,分別研究:
2、矩形性質(zhì);
3、菱形性質(zhì);
4、正方形性質(zhì);
5、梯形性質(zhì);
6、等腰梯形性質(zhì);
7、直角梯形的性質(zhì)。
(意圖:學生運用電腦自主收集、描述、分析數(shù)據(jù),把抽象的性質(zhì)變?yōu)橹庇^化、形象化,培養(yǎng)獨立探究,自主自信,使學生體驗到科學探索的樂趣。)。
教師總結(jié):
(意圖:掌握畫箭頭的方法,使學生了解事物個體既有該事物一般性質(zhì),又有自己的特點。既清楚地表達,又節(jié)省時間。)。
四、聯(lián)系生活,解決問題。
解決問題:
學生操作電腦,觀察圖形、分組討論,教師個別指導。
學生在分別演示開(關(guān))門過程中,觀察數(shù)據(jù)并總結(jié):邊長、角度、對角線長度的變化引起四邊形的形狀、大小、位置的變化。
四邊形具有不穩(wěn)定性,而三角形沒有這個特點……。
(意圖:使學生體會到數(shù)學于生活、又服務于生活,更重要的是培養(yǎng)學生應用知識解決實際問題的能力,體會成功后的喜悅。)。
五、小結(jié)。
1.研究問題從整體到局部的方法;
2.主要從邊長、角度、對角線長度三方面研究特殊四邊形性質(zhì)。
六、作業(yè)。
1.平行四邊形內(nèi)角中,既有兩個相鄰的角相等,又有一組鄰邊相等,試判斷它是什么圖形。
2.觀察實際生活中的電動門,在開(關(guān))門過程中特殊四邊形的變化。
針對教學內(nèi)容、學生特點及設計方案,預計下列學習效果:
利用多媒體信息技術(shù)圖文并茂、形象直觀的特點,通過學生自主測量、分析、整理數(shù)據(jù)并總結(jié)其性質(zhì),培養(yǎng)學生收集、描述和分析數(shù)據(jù)的能力,并達到初步理解特殊四邊形性質(zhì)的目標。
在問題引入、了解整體、測量個體、總結(jié)性質(zhì)的過程中,符合事物的認識規(guī)律及探究新知識的一般方法,初步形成感性認識上升到理性認識的辯證唯物主義思想。
由于個體差異,針對教學目標難以達到的個別學生,根據(jù)教學的進展,通過師生之間、學生之間的對話交流及時指導,使教學目標得以實現(xiàn)。
八年級數(shù)學下勾股定理的證明二教案篇二十一
我對本節(jié)課的教學過程是這樣設計的:
1、欣賞圖片,激發(fā)興趣。
通過欣賞xxxx年在我國北京召開的國際數(shù)學家大會的會徽圖案,引出“趙爽弦圖”,讓學生了解我國古代輝煌的數(shù)學成就,引入課題。
接下來,讓學生欣賞傳說故事:相傳25前,畢達格拉斯在朋友家做客時,發(fā)現(xiàn)朋友家用磚鋪成的地面中反映了直角三角形三邊的某種數(shù)量關(guān)系。通過故事使學生明白:科學家的偉大成就多數(shù)都是在看似平淡無奇的現(xiàn)象中發(fā)現(xiàn)和研究出來的;生活中處處有數(shù)學,我們應該學會觀察、思考,將學習與生活緊密結(jié)合起來。
這樣,一方面激發(fā)學生的求知欲望,另一方面,也對學生進行了學習方法指導和解決問題能力的培養(yǎng)。
2、分析探究,得出猜想。
通過對地板圖形中的等腰直角三角形到一般直角三角形中三邊關(guān)系的探究,讓同學們體驗由特殊到一般的探究過程,學習這種研究方法。
在這一過程中,學生充分利用學具去嘗試解決,力求讓學生自己探索,先在小組內(nèi)交流,然后在全班交流,盡量學習更多的方法。
3、拼圖證明,得出定理。
先了解趙爽的證明思路,然后讓學生利用學具自己剪拼,并利用圖形進行證明。
由于難度比較大,組織學生開展小組合作學習。教師要巡回輔導,給予學生必要的幫助。
4、反思歸納,總結(jié)升華。
一是讓學生自己回顧總結(jié)本節(jié)的收獲。(當然多數(shù)為具體的知識和方法)。二是教師要引導學生學習科學家敏銳的觀察力和勤于思考的作風,不斷提高自己的數(shù)學素養(yǎng),適時對大家進行思想教育。
5、練習鞏固。
主要練習勾股定理的其它證明方法。
6、作業(yè)設計。
請你利用網(wǎng)絡資源,收集有關(guān)勾股定理的證明方法來進行學習。寫出有關(guān)勾股定理知識的小論文。一個月過去了,我已忘記了這一項特殊的作業(yè),但部分學生卻寫出了出乎意料的小論文。
通過這節(jié)課的兩種不同的上法,以及學生的不同表現(xiàn)與收獲,讓我更深刻地認識到:
(3)要相信學生的能力,為學生創(chuàng)造自我學習和創(chuàng)造的機會(如布置開放性的學習任務:數(shù)學實踐活動、研究學習、寫小論文等)。
我相信:只要堅持不懈地這樣去做,不但能很好地實施新課改,實現(xiàn)教育的本來目標,而且也一定能讓學生“考出”好的成績;不過,這樣教師一定不會輕松。
【本文地址:http://mlvmservice.com/zuowen/17288662.html】