函數(shù)的教案(優(yōu)質(zhì)16篇)

格式:DOC 上傳日期:2023-12-04 12:58:13
函數(shù)的教案(優(yōu)質(zhì)16篇)
時間:2023-12-04 12:58:13     小編:LZ文人

編寫教案可以提高教學(xué)效果,幫助教師更好地組織和實施教學(xué)。教師在編寫教案時,應(yīng)當(dāng)關(guān)注學(xué)生的學(xué)習(xí)態(tài)度和學(xué)習(xí)情感,培養(yǎng)積極健康的學(xué)習(xí)情緒。以下是一些教師在實際教學(xué)中積累的教案,其中融合了許多教學(xué)經(jīng)驗和教學(xué)理念。

函數(shù)的教案篇一

1.能從二倍角的正弦、余弦、正切公式導(dǎo)出半角公式,了解它們的內(nèi)在聯(lián)系;揭示知識背景,引發(fā)學(xué)生學(xué)習(xí)興趣,激發(fā)學(xué)生分析、探求的學(xué)習(xí)態(tài)度,強化學(xué)生的參與意識.并培養(yǎng)學(xué)生綜合分析能力.

2.掌握公式及其推導(dǎo)過程,會用公式進行化簡、求值和證明。

3.通過公式推導(dǎo),掌握半角與倍角之間及半角公式與倍角公式之間的聯(lián)系,培養(yǎng)邏輯推理能力。

二、過程與方法。

2.通過例題講解,總結(jié)方法.通過做練習(xí),鞏固所學(xué)知識.

三、情感、態(tài)度與價值觀。

1.通過公式的推導(dǎo),了解半角公式和倍角公式之間的內(nèi)在聯(lián)系,從而培養(yǎng)邏輯推理能力和辯證唯物主義觀點。

2.培養(yǎng)用聯(lián)系的觀點看問題的觀點。

【教學(xué)重點與難點】:

重點:半角公式的推導(dǎo)與應(yīng)用(求值、化簡、證明)。

難點:半角公式與倍角公式之間的內(nèi)在聯(lián)系,以及運用公式時正負號的選取。

【學(xué)法與教學(xué)用具】:

1.學(xué)法:

(1)自主+探究性學(xué)習(xí):讓學(xué)生自己由和角公式導(dǎo)出倍角公式,領(lǐng)會從一般化歸為特殊的數(shù)學(xué)思想,體會公式所蘊涵的和諧美,激發(fā)學(xué)生學(xué)數(shù)學(xué)的興趣。

(2)反饋練習(xí)法:以練習(xí)來檢驗知識的應(yīng)用情況,找出未掌握的內(nèi)容及其存在的差距.

2.教學(xué)方法:觀察、歸納、啟發(fā)、探究相結(jié)合的教學(xué)方法。

引導(dǎo)學(xué)生復(fù)習(xí)二倍角公式,按課本知識結(jié)構(gòu)設(shè)置提問引導(dǎo)學(xué)生動手推導(dǎo)出半角公式,課堂上在老師引導(dǎo)下,以學(xué)生為主體,分析公式的結(jié)構(gòu)特征,會根據(jù)公式特點得出公式的應(yīng)用,用公式來進行化簡證明和求值,老師為學(xué)生創(chuàng)設(shè)問題情景,鼓勵學(xué)生積極探究。

3.教學(xué)用具:多媒體、實物投影儀.

【授課類型】:新授課。

【課時安排】:1課時。

【教學(xué)思路】:

一、創(chuàng)設(shè)情景,揭示課題。

二、研探新知。

四、鞏固深化,反饋矯正。

五、歸納整理,整體認識。

1.鞏固倍角公式,會推導(dǎo)半角公式、和差化積及積化和差公式。

2.熟悉"倍角"與"二次"的關(guān)系(升角--降次,降角--升次).

3.特別注意公式的三角表達形式,且要善于變形:

4.半角公式左邊是平方形式,只要知道角終邊所在象限,就可以開平方;公式的"本質(zhì)"是用?角的余弦表示角的正弦、余弦、正切.

5.注意公式的結(jié)構(gòu),尤其是符號.

六、承上啟下,留下懸念。

七、板書設(shè)計(略)。

八、課后記:略。

函數(shù)的教案篇二

1.使學(xué)生了解反函數(shù)的概念,初步掌握求反函數(shù)的方法.

2.通過反函數(shù)概念的學(xué)習(xí),培養(yǎng)學(xué)生分析問題,解決問題的能力及抽象概括的能力.

3.通過反函數(shù)的學(xué)習(xí),幫助學(xué)生樹立辨證唯物主義的世界觀.

重點是反函數(shù)概念的形成與認識.

難點是掌握求反函數(shù)的方法.

投影儀。

自主學(xué)習(xí)與啟發(fā)結(jié)合法。

一.揭示課題。

今天我們將學(xué)習(xí)函數(shù)中一個重要的概念----反函數(shù).

(一)反函數(shù)的概念(板書)。

二.講解新課。

教師首先提出這樣一個問題:在函數(shù)中,如果把當(dāng)作因變量,把當(dāng)作自變量,能否構(gòu)成一個函數(shù)呢?(讓學(xué)生思考后回答,要講明理由)可以根據(jù)函數(shù)的定義在的允許取值范圍內(nèi)的任一值,按照法則都有唯一的與之相對應(yīng).(還可以讓學(xué)生畫出函數(shù)的圖象,從形的角度解釋“任一對唯一”)。

學(xué)生很快會意識到是的反函數(shù),教師可再引申為與是互為反函數(shù)的.然后利用問題再引申:是不是所有的函數(shù)都有反函數(shù)呢?如果有,請舉出例子.在教師啟發(fā)下學(xué)生可以舉出象這樣的函數(shù),若將當(dāng)自變量,當(dāng)作因變量,在允許取值范圍內(nèi)一個可能對兩個(可畫圖輔助說明,當(dāng)時,對應(yīng)),不能構(gòu)成函數(shù),說明此函數(shù)沒有反函數(shù).

通過剛才的例子,了解了什么是反函數(shù),把對的反函數(shù)的研究過程一般化,概括起來就可以得到反函數(shù)的定義,但這個數(shù)學(xué)的抽象概括,要求比較高,因此我們一起閱讀書上相關(guān)的內(nèi)容.

1.反函數(shù)的定義:(板書)(用投影儀打出反函數(shù)的定義)。

為了幫助學(xué)生理解,還可以把定義中的換成某個具體簡單的函數(shù)如解釋每一步驟,如得,再判斷它是個函數(shù),最后改寫為.給出定義后,再對概念作點深入研究.

2.對概念得理解(板書)。

教師先提出問題:反函數(shù)的“反”字應(yīng)當(dāng)是相對原來給出的函數(shù)而言,指的是兩者的關(guān)系你能否從函數(shù)三要素的角度解釋“反”的含義呢?(仍可以與為例來說)。

學(xué)生很容易先想到對應(yīng)法則是“反”過來的,把與的位置換位了,教師再追問它們的互換還會帶來什么變化?啟發(fā)學(xué)生找出另兩個要素之間的關(guān)系.最后得出結(jié)論:的定義域和值域分別由的值域和定義域決定的.再把結(jié)論從特殊發(fā)展到一般,概括為:反函數(shù)的三要素是由原來函數(shù)的三要素決定的.給出的函數(shù)確定了,反函數(shù)的三要素就已經(jīng)確定了.簡記為“三定”.

(1)“三定”(板書)。

最后教師進一步明確“反”實際體現(xiàn)為“三反”,“三反”中起決定作用的是與的位置的反置,正是由于它的反置,才把它的范圍也帶走了,引起了另外兩“反”.

(2)“三反”(板書)。

此時教師可把問題再次引向深入,提出:如果一個函數(shù)存在反函數(shù),應(yīng)怎樣求這個反函數(shù)呢?下面我給出兩個函數(shù),請同學(xué)們根據(jù)自己對概念的理解來求一下它們的反函數(shù).

例1.求的反函數(shù).(板書)。

(由學(xué)生說求解過程,有錯或不規(guī)范之處,暫時不追究,待例2解完之后再一起講評)。

解:由得,所求反函數(shù)為.(板書)。

例2.求,的反函數(shù).(板書)。

解:由得,又得,。

故所求反函數(shù)為.(板書)。

求完后教師請同學(xué)們作評價,學(xué)生之間可以討論,充分暴露表述中得問題,讓學(xué)生自行發(fā)現(xiàn),自行解決.最后找代表發(fā)表意見,指出例2中問題,結(jié)果應(yīng)為,.

教師可先明知故問,與,有什么不同?讓學(xué)生明確指出兩個函數(shù)定義域分別是和,所以它們是不同的函數(shù).再追問從何而來呢?讓學(xué)生能從三定和三反中找出理由,是從原來函數(shù)的值域而來.

在此基礎(chǔ)上,教師最后明確要求,由于反函數(shù)的定義域必是原來函數(shù)的值域,而不是從自身解析式出發(fā)尋求滿足的條件,所以求反函數(shù),就必須先求出原來函數(shù)的值域.之后由學(xué)生調(diào)整剛才的求解過程.

解:由得,又得,。

又的值域是,。

故所求反函數(shù)為,.

(可能有的學(xué)生會提出例1中為什么不求原來函數(shù)的值域的問題,此時不妨讓學(xué)生去具體算一算,會發(fā)現(xiàn)原來函數(shù)的值域域求出的函數(shù)解析式中所求定義域時一致的,所以使得最后結(jié)果沒有出錯.但教師必須指出結(jié)論得一致性只是偶然,而不是必然,因此為規(guī)范求解過程要求大家一定先求原來函數(shù)的值域,并且在最后所求結(jié)果上注明反函數(shù)的定義域,同時讓學(xué)生調(diào)整例的表述,將過程補充完整)。

最后讓學(xué)生一起概括求反函數(shù)的步驟.

3.求反函數(shù)的步驟(板書)。

(1)反解:。

(2)互換。

(3)改寫:。

對以上環(huán)節(jié)教師可稍作解釋,然后提出再通過下面的練習(xí)來檢驗是否真正理解了.

三.鞏固練習(xí)。

練習(xí):求下列函數(shù)的反函數(shù).

(1)(2).(由兩名學(xué)生上黑板寫)。

解答過程略.

教師可針對學(xué)生解答中出現(xiàn)的問題,進行講評.(如正負的選取,值域的計算,符號的使用)。

四.小結(jié)。

1.對反函數(shù)概念的認識:。

2.求反函數(shù)的基本步驟:。

五.作業(yè)。

課本第68頁習(xí)題2.4第1題中4,6,8,第2題.

六.板書設(shè)計。

2.4反函數(shù)例1.練習(xí).

一.反函數(shù)的概念(1)(2)。

1.定義。

2.對概念的理解例2.

(1)三定(2)三反。

3.求反函數(shù)的步驟。

(1)反解(2)互換(3)改寫。

函數(shù)的教案篇三

啟發(fā)研討式。

投影儀。

教學(xué)過程。

一、引入新課。

提問:什么是指數(shù)函數(shù)?指數(shù)函數(shù)存在反函數(shù)嗎?

由學(xué)生說出是指數(shù)函數(shù),它是存在反函數(shù)的、并由一個學(xué)生口答求反函數(shù)的過程:

由得、又的值域為,所求反函數(shù)為、

那么我們今天就是研究指數(shù)函數(shù)的反函數(shù)對數(shù)函數(shù)、

1、作圖方法。

具體操作時,要求學(xué)生做到:

(1)指數(shù)函數(shù)和的圖像要盡量準確(關(guān)鍵點的位置,圖像的變化趨勢等)、

(2)畫出直線、

學(xué)生在筆記本完成具體操作,教師在學(xué)生完成后將關(guān)鍵步驟在黑板上演示一遍,畫出和的.圖像、(此時同底的指數(shù)函數(shù)和對數(shù)函數(shù)畫在同一坐標系內(nèi))如圖:

2、草圖。

教師畫完圖后再利用投影儀將和的圖像畫在同一坐標系內(nèi),如圖:

然后提出讓學(xué)生根據(jù)圖像說出對數(shù)函數(shù)的性質(zhì)(要求從幾何與代數(shù)兩個角度說明)。

3、性質(zhì)。

(1)定義域:

(2)值域:

由以上兩條可說明圖像位于軸的右側(cè)、

(3)截距:令得,即在軸上的截距為1,與軸無交點即以軸為漸近線、

(4)奇偶性:既不是奇函數(shù)也不是偶函數(shù),即它不關(guān)于原點對稱,也不關(guān)于軸對稱、

(5)單調(diào)性:與有關(guān)、當(dāng)時,在上是增函數(shù)、即圖像是上升的。

當(dāng)時,在上是減函數(shù),即圖像是下降的、

之后可以追問學(xué)生有沒有最大值和最小值,當(dāng)?shù)玫椒穸ù鸢笗r,可以再問能否看待何時函數(shù)值為正?學(xué)生看著圖可以答出應(yīng)有兩種情況:

當(dāng)時,有;當(dāng)時,有、

最后教師在總結(jié)時,強調(diào)記住性質(zhì)的關(guān)鍵在于要腦中有圖、且應(yīng)將其性質(zhì)與指數(shù)函數(shù)的性質(zhì)對比記憶、(特別強調(diào)它們單調(diào)性的一致性)。

對圖像和性質(zhì)有了一定的了解后,一起來看看它們的應(yīng)用、

三、鞏固練習(xí)。

練習(xí):若,求的取值范圍、

四、小結(jié)五、作業(yè)略。

函數(shù)的教案篇四

3.能夠利用二次函數(shù)的圖象求一元二次方程的近似根。

1.體會方程與函數(shù)之間的聯(lián)系。

2.能夠利用二次函數(shù)的圖象求一元二次方程的近似根。

1.探索方程與函數(shù)之間關(guān)系的過程。

2.理解二次函數(shù)與x軸交點的個數(shù)與一元二次方程的根的個數(shù)之間的關(guān)系。

啟發(fā)引導(dǎo) 合作交流

課件

計算機、實物投影。

檢查預(yù)習(xí) 引出課題

1.解方程:(1)x2+x-2=0; (2) x2-6x+9=0; (3) x2-x+1=0; (4) x2-2x-2=0.

2. 回顧一次函數(shù)與一元一次方程的關(guān)系,利用函數(shù)的圖象求方程3x-4=0的解.

教師展示預(yù)習(xí)作業(yè)的內(nèi)容,指名回答,師生共同回顧舊知,教師做出適當(dāng)總結(jié)和評價。

學(xué)生回答問題結(jié)論準確性,能否把前后知識聯(lián)系起來,2題的格式要規(guī)范。

這兩道預(yù)習(xí)題目是對舊知識的回顧,為本課的教學(xué)起到鋪墊的作用,1題中的三個方程是課本中觀察欄目中的三個函數(shù)式的變式,這三個方程把二次方程的根的三種情況體現(xiàn)出來,讓學(xué)生回顧二次方程的相關(guān)知識;2題是一次函數(shù)與一元一次方程的關(guān)系的問題,這題的設(shè)計是讓學(xué)生用學(xué)過的熟悉的知識類比探究本課新知識。

函數(shù)的教案篇五

3.,(0,+)。

【拓展引導(dǎo)】。

當(dāng)時,的取值范圍是。

當(dāng)時,的取值范圍是。

【總結(jié)】20xx年數(shù)學(xué)網(wǎng)為小編在此為您收集了此文章高一數(shù)學(xué)教案:對數(shù)函數(shù),今后還會發(fā)布更多更好的'文章希望對大家有所幫助,祝您在數(shù)學(xué)網(wǎng)學(xué)習(xí)愉快!

函數(shù)的教案篇六

1.使學(xué)生掌握指數(shù)函數(shù)的概念,圖象和性質(zhì).

(1)能根據(jù)定義判斷形如什么樣的函數(shù)是指數(shù)函數(shù),了解對底數(shù)的限制條件的合理性,明確指數(shù)函數(shù)的定義域.

(2)能在基本性質(zhì)的指導(dǎo)下,用列表描點法畫出指數(shù)函數(shù)的圖象,能從數(shù)形兩方面認識指數(shù)函數(shù)的性質(zhì).

(3)能利用指數(shù)函數(shù)的性質(zhì)比較某些冪形數(shù)的大小,會利用指數(shù)函數(shù)的圖象畫出形如的圖象.

2.通過對指數(shù)函數(shù)的概念圖象性質(zhì)的學(xué)習(xí),培養(yǎng)學(xué)生觀察,分析歸納的能力,進一步體會數(shù)形結(jié)合的思想方法.

3.通過對指數(shù)函數(shù)的研究,讓學(xué)生認識到數(shù)學(xué)的應(yīng)用價值,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣.使學(xué)生善于從現(xiàn)實生活中數(shù)學(xué)的發(fā)現(xiàn)問題,解決問題.

教材分析。

(1)指數(shù)函數(shù)是在學(xué)生系統(tǒng)學(xué)習(xí)了函數(shù)概念,基本掌握了函數(shù)的性質(zhì)的基礎(chǔ)上進行研究的,它是重要的基本初等函數(shù)之一,作為常見函數(shù),它既是函數(shù)概念及性質(zhì)的第一次應(yīng)用,也是今后學(xué)習(xí)對數(shù)函數(shù)的基礎(chǔ),同時在生活及生產(chǎn)實際中有著廣泛的應(yīng)用,所以指數(shù)函數(shù)應(yīng)重點研究.

(2)本節(jié)的教學(xué)重點是在理解指數(shù)函數(shù)定義的基礎(chǔ)上掌握指數(shù)函數(shù)的圖象和性質(zhì).難點是對底數(shù)在和時,函數(shù)值變化情況的區(qū)分.

(3)指數(shù)函數(shù)是學(xué)生完全陌生的一類函數(shù),對于這樣的函數(shù)應(yīng)怎樣進行較為系統(tǒng)的理論研究是學(xué)生面臨的重要問題,所以從指數(shù)函數(shù)的研究過程中得到相應(yīng)的結(jié)論固然重要,但更為重要的是要了解系統(tǒng)研究一類函數(shù)的方法,所以在教學(xué)中要特別讓學(xué)生去體會研究的方法,以便能將其遷移到其他函數(shù)的研究.

教法建議。

(1)關(guān)于指數(shù)函數(shù)的定義按照課本上說法它是一種形式定義即解析式的特征必須是的樣子,不能有一點差異,諸如,等都不是指數(shù)函數(shù).

(2)對底數(shù)的限制條件的理解與認識也是認識指數(shù)函數(shù)的重要內(nèi)容.如果有可能盡量讓學(xué)生自己去研究對底數(shù),指數(shù)都有什么限制要求,教師再給予補充或用具體例子加以說明,因為對這個條件的認識不僅關(guān)系到對指數(shù)函數(shù)的認識及性質(zhì)的分類討論,還關(guān)系到后面學(xué)習(xí)對數(shù)函數(shù)中底數(shù)的認識,所以一定要真正了解它的由來.

關(guān)于指數(shù)函數(shù)圖象的繪制,雖然是用列表描點法,但在具體教學(xué)中應(yīng)避免描點前的盲目列表計算,也應(yīng)避免盲目的連點成線,要把表列在關(guān)鍵之處,要把點連在恰當(dāng)之處,所以應(yīng)在列表描點前先把函數(shù)的性質(zhì)作一些簡單的討論,取得對要畫圖象的存在范圍,大致特征,變化趨勢的大概認識后,以此為指導(dǎo)再列表計算,描點得圖象.

教學(xué)重點和難點。

重點是理解指數(shù)函數(shù)的定義,把握圖象和性質(zhì).

難點是認識底數(shù)對函數(shù)值影響的認識.

教學(xué)用具。

投影儀。

教學(xué)方法。

啟發(fā)討論研究式。

教學(xué)過程。

一.引入新課。

我們前面學(xué)習(xí)了指數(shù)運算,在此基礎(chǔ)上,今天我們要來研究一類新的常見函數(shù)-------指數(shù)函數(shù).

這類函數(shù)之所以重點介紹的原因就是它是實際生活中的一種需要.比如我們看下面的問題:。

由學(xué)生回答:與之間的關(guān)系式,可以表示為.

問題2:有一根1米長的繩子,第一次剪去繩長一半,第二次再剪去剩余繩子的一半,……剪了次后繩子剩余的長度為米,試寫出與之間的函數(shù)關(guān)系.

由學(xué)生回答:.

在以上兩個實例中我們可以看到這兩個函數(shù)與我們前面研究的函數(shù)有所區(qū)別,從形式上冪的形式,且自變量均在指數(shù)的位置上,那么就把形如這樣的函數(shù)稱為指數(shù)函數(shù).

1.定義:形如的函數(shù)稱為指數(shù)函數(shù).(板書)。

教師在給出定義之后再對定義作幾點說明.

2.幾點說明(板書)。

(1)關(guān)于對的規(guī)定:。

教師首先提出問題:為什么要規(guī)定底數(shù)大于0且不等于1呢?(若學(xué)生感到有困難,可將問題分解為若會有什么問題?如,此時,等在實數(shù)范圍內(nèi)相應(yīng)的函數(shù)值不存在.

若對于都無意義,若則無論取何值,它總是1,對它沒有研究的必要.為了避免上述各種情況的.發(fā)生,所以規(guī)定且.

教師引導(dǎo)學(xué)生回顧指數(shù)范圍,發(fā)現(xiàn)指數(shù)可以取有理數(shù).此時教師可指出,其實當(dāng)指數(shù)為無理數(shù)時,也是一個確定的實數(shù),對于無理指數(shù)冪,學(xué)過的有理指數(shù)冪的性質(zhì)和運算法則它都適用,所以將指數(shù)范圍擴充為實數(shù)范圍,所以指數(shù)函數(shù)的定義域為.擴充的另一個原因是因為使她它更具代表更有應(yīng)用價值.

(3)關(guān)于是否是指數(shù)函數(shù)的判斷(板書)。

剛才分別認識了指數(shù)函數(shù)中底數(shù),指數(shù)的要求,下面我們從整體的角度來認識一下,根據(jù)定義我們知道什么樣的函數(shù)是指數(shù)函數(shù),請看下面函數(shù)是否是指數(shù)函數(shù).

(1),(2),(3)。

(4),(5).

學(xué)生回答并說明理由,教師根據(jù)情況作點評,指出只有(1)和(3)是指數(shù)函數(shù),其中(3)可以寫成,也是指數(shù)圖象.

最后提醒學(xué)生指數(shù)函數(shù)的定義是形式定義,就必須在形式上一摸一樣才行,然后把問題引向深入,有了定義域和初步研究的函數(shù)的性質(zhì),此時研究的關(guān)鍵在于畫出它的圖象,再細致歸納性質(zhì).

3.歸納性質(zhì)。

作圖的用什么方法.用列表描點發(fā)現(xiàn),教師準備明確性質(zhì),再由學(xué)生回答.

函數(shù)。

1.定義域:。

2.值域:。

3.奇偶性:既不是奇函數(shù)也不是偶函數(shù)。

4.截距:在軸上沒有,在軸上為1.

對于性質(zhì)1和2可以兩條合在一起說,并追問起什么作用.(確定圖象存在的大致位置)對第3條還應(yīng)會證明.對于單調(diào)性,我建議找一些特殊點.,先看一看,再下定論.對最后一條也是指導(dǎo)函數(shù)圖象畫圖的依據(jù).(圖象位于軸上方,且與軸不相交.)。

在此基礎(chǔ)上,教師可指導(dǎo)學(xué)生列表,描點了.取點時還要提醒學(xué)生由于不具備對稱性,故的值應(yīng)有正有負,且由于單調(diào)性不清,所取點的個數(shù)不能太少.

此處教師可利用計算機列表描點,給出十組數(shù)據(jù),而學(xué)生自己列表描點,至少六組數(shù)據(jù).連點成線時,一定提醒學(xué)生圖象的變化趨勢(當(dāng)越小,圖象越靠近軸,越大,圖象上升的越快),并連出光滑曲線.

二.圖象與性質(zhì)(板書)。

1.圖象的畫法:性質(zhì)指導(dǎo)下的列表描點法.

2.草圖:。

當(dāng)畫完第一個圖象之后,可問學(xué)生是否需要再畫第二個?它是否具有代表性?(教師可提示底數(shù)的條件是且,取值可分為兩段)讓學(xué)生明白需再畫第二個,不妨取為例.

此時畫它的圖象的方法應(yīng)讓學(xué)生來選擇,應(yīng)讓學(xué)生意識到列表描點不是唯一的方法,而圖象變換的方法更為簡單.即=與圖象之間關(guān)于軸對稱,而此時的圖象已經(jīng)有了,具備了變換的條件.讓學(xué)生自己做對稱,教師借助計算機畫圖,在同一坐標系下得到的圖象.

最后問學(xué)生是否需要再畫.(可能有兩種可能性,若學(xué)生認為無需再畫,則追問其原因并要求其說出性質(zhì),若認為還需畫,則教師可利用計算機再畫出如的圖象一起比較,再找共性)。

由于圖象是形的特征,所以先從幾何角度看它們有什么特征.教師可列一個表,如下:。

以上內(nèi)容學(xué)生說不齊的,教師可適當(dāng)提出觀察角度讓學(xué)生去描述,然后再讓學(xué)生將幾何的特征,翻譯為函數(shù)的性質(zhì),即從代數(shù)角度的描述,將表中另一部分填滿.

填好后,讓學(xué)生仿照此例再列一個的表,將相應(yīng)的內(nèi)容填好.為進一步整理性質(zhì),教師可提出從另一個角度來分類,整理函數(shù)的性質(zhì).

3.性質(zhì).

(1)無論為何值,指數(shù)函數(shù)都有定義域為,值域為,都過點.

(2)時,在定義域內(nèi)為增函數(shù),時,為減函數(shù).

(3)時,,時,.

總結(jié)之后,特別提醒學(xué)生記住函數(shù)的圖象,有了圖,從圖中就可以能讀出性質(zhì).

三.簡單應(yīng)用(板書)。

一類函數(shù)研究完它的概念,圖象和性質(zhì)后,最重要的是利用它解決一些簡單的問題.首先我們來看下面的問題.

例1.比較下列各組數(shù)的大小。

(1)與;(2)與;。

(3)與1.(板書)。

首先讓學(xué)生觀察兩個數(shù)的特點,有什么相同?由學(xué)生指出它們底數(shù)相同,指數(shù)不同.再追問根據(jù)這個特點,用什么方法來比較它們的大小呢?讓學(xué)生聯(lián)想指數(shù)函數(shù),提出構(gòu)造函數(shù)的方法,即把這兩個數(shù)看作某個函數(shù)的函數(shù)值,利用它的單調(diào)性比較大小.然后以第(1)題為例,給出解答過程.

解:在上是增函數(shù),且。

(板書)。

教師最后再強調(diào)過程必須寫清三句話:。

(1)構(gòu)造函數(shù)并指明函數(shù)的單調(diào)區(qū)間及相應(yīng)的單調(diào)性.

(2)自變量的大小比較.

(3)函數(shù)值的大小比較.

后兩個題的過程略.要求學(xué)生仿照第(1)題敘述過程.

例2.比較下列各組數(shù)的大小。

(1)與;(2)與;。

(3)與.(板書)。

先讓學(xué)生觀察例2中各組數(shù)與例1中的區(qū)別,再思考解決的方法.引導(dǎo)學(xué)生發(fā)現(xiàn)對(1)來說可以寫成,這樣就可以轉(zhuǎn)化成同底的問題,再用例1的方法解決,對(2)來說可以寫成,也可轉(zhuǎn)化成同底的,而(3)前面的方法就不適用了,考慮新的轉(zhuǎn)化方法,由學(xué)生思考解決.(教師可提示學(xué)生指數(shù)函數(shù)的函數(shù)值與1有關(guān),可以用1來起橋梁作用)。

最后由學(xué)生說出1,1,.

解決后由教師小結(jié)比較大小的方法。

(1)構(gòu)造函數(shù)的方法:數(shù)的特征是同底不同指(包括可轉(zhuǎn)化為同底的)。

(2)搭橋比較法:用特殊的數(shù)1或0.

三.鞏固練習(xí)。

練習(xí):比較下列各組數(shù)的大小(板書)。

(1)與(2)與;。

(3)與;(4)與.解答過程略。

四.小結(jié)。

3.簡單應(yīng)用。

函數(shù)的教案篇七

(要求學(xué)生盡量用自己的話描述初中函數(shù)的定義,并試舉出各類學(xué)過的函數(shù)例子)

提問1.是函數(shù)嗎?

(由學(xué)生討論,發(fā)表各自的意見,有的認為它不是函數(shù),理由是沒有兩個變量,也有的認為是函數(shù),理由是可以可做.)

二、新課

現(xiàn)在請同學(xué)們打開書翻到第50頁,從這開始閱讀有關(guān)的內(nèi)容,再回答我的問題.(約2-3分鐘或開始提問)

提問2.新的函數(shù)的定義是什么?能否用最簡單的語言來概括一下.

(板書)2.2函數(shù)

一、函數(shù)的概念

問題3:映射與函數(shù)有何關(guān)系?(函數(shù)一定是映射嗎?映射一定是函數(shù)嗎?)

引導(dǎo)學(xué)生發(fā)現(xiàn),函數(shù)是特殊的映射,特殊在集合a,b必是非空的數(shù)集.

2.本質(zhì):函數(shù)是非空數(shù)集到非空數(shù)集的映射.(板書)

然后讓學(xué)生試回答剛才關(guān)于是不是函數(shù)的問題,要求從映射的角度解釋.

此時學(xué)生可以清楚的看到滿足映射觀點下的函數(shù)定義,故是一個函數(shù),這樣解釋就很自然.

教師繼續(xù)把問題引向深入,提出在映射的觀點下如何解釋是個函數(shù)?

從映射角度看可以是其中定義域是,值域是.

3.函數(shù)的三要素及其作用(板書)

以下關(guān)系式表示函數(shù)嗎?為什么?

(1);(2).

解:(1)由有意義得,解得.由于定義域是空集,故它不能表示函數(shù).

(2)由有意義得,解得.定義域為,值域為.

由以上兩題可以看出三要素的作用

(1)判斷一個函數(shù)關(guān)系是否存在.(板書)

(1);(2) (3);(4).

解:先認清,它是(定義域)到(值域)的映射,其中

再看(1)定義域為且,是不同的;(2)定義域為,是不同的;

(4),法則是不同的;

而(3)定義域是,值域是,法則是乘2減1,與完全相同.

(2)判斷兩個函數(shù)是否相同.(板書)

4.對函數(shù)符號的理解(板書)

已知函數(shù)試求(板書)

分析:首先讓學(xué)生認清的含義,要求學(xué)生能從變量觀點和映射觀點解釋,再進行計算.

含義1:當(dāng)自變量取3時,對應(yīng)的函數(shù)值即;

含義2:定義域中原象3的象,根據(jù)求象的方法知.而應(yīng)表示原象的象,即.

計算之后,要求學(xué)生了解與的區(qū)別,是常量,而是變量,只是中一個特殊值.

三、小結(jié)

1.函數(shù)的定義

2.對函數(shù)三要素的認識

3.對函數(shù)符號的認識

四、作業(yè):略

五、

2.2函數(shù)例1.例3.

一.函數(shù)的概念

1.定義

2.本質(zhì)例2.小結(jié):

3.函數(shù)三要素的認識及作用

4.對函數(shù)符號的理解

答案:

函數(shù)的教案篇八

(1)是在學(xué)生系統(tǒng)學(xué)習(xí)了函數(shù)概念,基本掌握了函數(shù)的性質(zhì)的基礎(chǔ)上進行研究的,它是重要的基本初等函數(shù)之一,作為常見函數(shù),它既是函數(shù)概念及性質(zhì)的第一次應(yīng)用,也是今后學(xué)習(xí)對數(shù)函數(shù)的基礎(chǔ),同時在生活及生產(chǎn)實際中有著廣泛的應(yīng)用,所以應(yīng)重點研究.

(2)本節(jié)的教學(xué)重點是在理解定義的基礎(chǔ)上掌握的圖象和性質(zhì).難點是對底數(shù)在和時,函數(shù)值變化情況的區(qū)分.

(3)是學(xué)生完全陌生的一類函數(shù),對于這樣的函數(shù)應(yīng)怎樣進行較為系統(tǒng)的理論研究是學(xué)生面臨的重要問題,所以從的研究過程中得到相應(yīng)的結(jié)論固然重要,但更為重要的是要了解系統(tǒng)研究一類函數(shù)的方法,所以在教學(xué)中要特別讓學(xué)生去體會研究的方法,以便能將其遷移到其他函數(shù)的研究.

教法建議。

(1)關(guān)于的定義按照課本上說法它是一種形式定義即解析式的特征必須是的樣子,不能有一點差異,諸如,等都不是.

(2)對底數(shù)的限制條件的理解與認識也是認識的重要內(nèi)容.如果有可能盡量讓學(xué)生自己去研究對底數(shù),指數(shù)都有什么限制要求,教師再給予補充或用具體例子加以說明,因為對這個條件的認識不僅關(guān)系到對的認識及性質(zhì)的分類討論,還關(guān)系到后面學(xué)習(xí)對數(shù)函數(shù)中底數(shù)的認識,所以一定要真正了解它的由來.

關(guān)于圖象的繪制,雖然是用列表描點法,但在具體教學(xué)中應(yīng)避免描點前的盲目列表計算,也應(yīng)避免盲目的連點成線,要把表列在關(guān)鍵之處,要把點連在恰當(dāng)之處,所以應(yīng)在列表描點前先把函數(shù)的性質(zhì)作一些簡單的討論,取得對要畫圖象的存在范圍,大致特征,變化趨勢的大概認識后,以此為指導(dǎo)再列表計算,描點得圖象.

函數(shù)的教案篇九

1.使學(xué)生掌握的概念,圖象和性質(zhì).

(1)能根據(jù)定義判斷形如什么樣的函數(shù)是,了解對底數(shù)的限制條件的合理性,明確的定義域.

(2)能在基本性質(zhì)的指導(dǎo)下,用列表描點法畫出的圖象,能從數(shù)形兩方面認識的性質(zhì).

(3)能利用的性質(zhì)比較某些冪形數(shù)的大小,會利用的圖象畫出形如的圖象.

2.通過對的概念圖象性質(zhì)的學(xué)習(xí),培養(yǎng)學(xué)生觀察,分析歸納的能力,進一步體會數(shù)形結(jié)合的思想方法.

3.通過對的研究,讓學(xué)生認識到數(shù)學(xué)的應(yīng)用價值,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣.使學(xué)生善于從現(xiàn)實生活中數(shù)學(xué)的發(fā)現(xiàn)問題,解決問題.

函數(shù)的教案篇十

通過對這節(jié)課的教學(xué)研究,我深刻地認識到新課程背景下的數(shù)學(xué)課堂教學(xué)應(yīng)注意:

1、教師要“放得開”,做一個邊緣人。我們應(yīng)該充分相信學(xué)生,給學(xué)生成長的機會和空間。不再搞“包辦代替”,不能急性子。凡是學(xué)生能做的,就應(yīng)該讓他們自主去做;凡是學(xué)生之間能合作完成的,就應(yīng)該讓他們自主探究。給學(xué)生一滴水的機會,也許他會收獲一片海洋。

2、要做到“問題引領(lǐng)”,用問題牽引學(xué)習(xí)。本節(jié)課的設(shè)計給予學(xué)生的基礎(chǔ),設(shè)計了多個學(xué)生容易解決的問題串,這樣,能夠在循序漸進中學(xué)到知識。

3、要創(chuàng)造性地使用教材。教學(xué)過程中,不應(yīng)局限于教材,而應(yīng)充分利用教材這個平臺,伸向與教材有關(guān)的領(lǐng)域。數(shù)學(xué)是思維的體操,因此,若能對數(shù)學(xué)教材科學(xué)安排,對問題妙引導(dǎo),有意識地引導(dǎo)學(xué)生有意識地主動學(xué)習(xí)更多更全面的數(shù)學(xué)知識,變“傳授”為“探究”,充分暴露知識的發(fā)生發(fā)展過程,以探索者的身份去發(fā)現(xiàn)問題、總結(jié)規(guī)律。

4、注重探究,體驗知識的形成過程。數(shù)學(xué)教學(xué)從本質(zhì)上講,是教師和學(xué)生以課堂為主渠道的交流活動,是教師和學(xué)生在某種教學(xué)情境中的探究活動。這節(jié)課教師本著“讓學(xué)生充分經(jīng)歷知識的形成、發(fā)展和應(yīng)用過程,充分體驗數(shù)學(xué)的發(fā)現(xiàn)和創(chuàng)造歷程”的教學(xué)理念,對教學(xué)過程和教學(xué)手段作了充分的準備。整節(jié)課學(xué)生在教師的引導(dǎo)下逐步探索、不斷發(fā)現(xiàn),品嘗到了數(shù)學(xué)學(xué)習(xí)的樂趣,教師的主導(dǎo)作用和學(xué)生的主體地位都得到了很好地體現(xiàn)。

總之,我們的教學(xué)工作是一項內(nèi)涵豐富的系統(tǒng)工程。教學(xué)中用問題引領(lǐng)學(xué)生,提升效率,不是一朝一夕就可以取得明顯成效的,它更是一個復(fù)雜的課題?!氨鶅鋈?,非一日之寒”,在教學(xué)中必須循序漸進,長期實踐,與時俱進,爭取做教學(xué)改革的有心人,只有這樣才能在教學(xué)研究工作中有所作為。因此,在實際教學(xué)中,我們應(yīng)時刻以學(xué)生為中心,充分給予學(xué)生成長的時間,鼓勵學(xué)生自主探究,采用適時激勵與點撥的方法使學(xué)生的思維活躍起來,讓課堂真正成為學(xué)生學(xué)習(xí)、發(fā)現(xiàn)的樂園。

函數(shù)的教案篇十一

(二)解析:本節(jié)課要學(xué)的內(nèi)容指的是會判定函數(shù)在某個區(qū)間上的單調(diào)性、會確定函數(shù)的單調(diào)區(qū)間、能證明函數(shù)的單調(diào)性,其關(guān)鍵是利用形式化的定義處理有關(guān)的單調(diào)性問題,理解它關(guān)鍵就是要學(xué)會轉(zhuǎn)換式子。學(xué)生已經(jīng)掌握了函數(shù)單調(diào)性的定義、代數(shù)式的變換、函數(shù)的概念等知識,本節(jié)課的內(nèi)容就是在此基礎(chǔ)上的應(yīng)用。教學(xué)的重點是應(yīng)用定義證明函數(shù)在某個區(qū)間上的單調(diào)性,解決重點的關(guān)鍵是嚴格按過程進行證明。

二、教學(xué)目標及解析。

(一)教學(xué)目標:

掌握用定義證明函數(shù)單調(diào)性的步驟,會求函數(shù)的單調(diào)區(qū)間,提高應(yīng)用知識解決問題的能力。

(二)解析:

會證明就是指會利用三步曲證明函數(shù)的單調(diào)性;會求函數(shù)的單調(diào)區(qū)間就是指會利用函數(shù)的圖象寫出單調(diào)增區(qū)間或減區(qū)間;應(yīng)用知識解決問題就是指能利用函數(shù)單調(diào)性的意義去求參變量的取值情況或轉(zhuǎn)化成熟悉的問題。

三、問題診斷分析。

在本節(jié)課的教學(xué)中,學(xué)生可能遇到的問題是如何才能準確確定的符號,產(chǎn)生這一問題的原因是學(xué)生對代數(shù)式的恒等變換不熟練。要解決這一問題,就是要根據(jù)學(xué)生的實際情況進行知識補習(xí),特別是因式分解、二次根式中的分母有理化的補習(xí)。

在本節(jié)課的教學(xué)中,準備使用(),因為使用(),有利于()。

函數(shù)的教案篇十二

我本節(jié)課說課的內(nèi)容是高中數(shù)學(xué)第一冊第二章第六節(jié)“指數(shù)函數(shù)”的第一課時——指數(shù)函數(shù)的定義,圖像及性質(zhì)。我將嘗試運用新課標的理念指導(dǎo)本節(jié)課的教學(xué)。新課標指出,學(xué)生是教學(xué)的主體,教師的教要應(yīng)本著從學(xué)生的認知規(guī)律出發(fā),以學(xué)生活動為主線,在原有知識的基礎(chǔ)上,建構(gòu)新的知識體系。我將以此為基礎(chǔ)從教材分析,教學(xué)目標分析,教法學(xué)法分析和教學(xué)過程分析這幾個方面加以說明。

一、教材分析。

1、教材的地位和作用:函數(shù)是高中數(shù)學(xué)學(xué)習(xí)的重點和難點,函數(shù)的貫穿于整個高中數(shù)學(xué)之中。本節(jié)課是學(xué)生在已掌握了函數(shù)的一般性質(zhì)和簡單的指數(shù)運算的基礎(chǔ)上,進一步研究指數(shù)函數(shù),以及指數(shù)函數(shù)的圖像與性質(zhì),同時也為今后研究對數(shù)函數(shù)以及等比數(shù)列的性質(zhì)打下堅實的基礎(chǔ)。因此,本節(jié)課的內(nèi)容十分重要,它對知識起到了承上啟下的作用。

2、教學(xué)的重點和難點:根據(jù)這一節(jié)課的內(nèi)容特點以及學(xué)生的實際情況,我將本節(jié)課教學(xué)重點定為指數(shù)函數(shù)的圖像、性質(zhì)及其運用,本節(jié)課的難點是指數(shù)函數(shù)圖像和性質(zhì)的發(fā)現(xiàn)過程,及指數(shù)函數(shù)圖像與底的關(guān)系。

二、教學(xué)目標分析。

基于對教材的理解和分析,我制定了以下的教學(xué)目標。

3、情感目標(可持續(xù)性目標):通過學(xué)習(xí),使學(xué)生學(xué)會認識事物的特殊性與一般性之間的關(guān)系,培養(yǎng)學(xué)生勇于提問,善于探索的思維品質(zhì)。

三、教法學(xué)法分析。

1、教學(xué)策略:首先從實際問題出發(fā),激發(fā)學(xué)生的學(xué)習(xí)興趣。第二步,學(xué)生歸納指數(shù)的圖像和性質(zhì)。第三步,典型例題分析,加深學(xué)生對指數(shù)函數(shù)的理解。

2、教學(xué):貫徹引導(dǎo)發(fā)現(xiàn)式教學(xué)原則,在教學(xué)中既注重知識的直觀素材和背景材料,又要激活相關(guān)知識和引導(dǎo)學(xué)生思考、探究、創(chuàng)設(shè)有趣的問題。

3、教法分析:根據(jù)教學(xué)內(nèi)容和學(xué)生的狀況,本節(jié)課我采用引導(dǎo)發(fā)現(xiàn)式的教學(xué)方法并充分利用多媒體輔助教學(xué)。

函數(shù)的教案篇十三

(二)能畫出簡單函數(shù)的圖象,會列表、描點、連線;。

(三)能從圖象上由自變量的值求出對應(yīng)的函數(shù)的近似值。

重點:認識函數(shù)圖象的意義,會對簡單的函數(shù)列表、描點、連線畫出函數(shù)圖象。

難點:對已恬圖象能讀圖、識圖,從圖象解釋函數(shù)變化關(guān)系。

1.什么叫函數(shù)?

2.什么叫平面直角坐標系?

3.在坐標平面內(nèi),什么叫點的橫坐標?什么叫點的.縱坐標?

4.如果點a的橫坐標為3,縱坐標為5,請用記號表示a(3,5).

5.請在坐標平面內(nèi)畫出a點。

6.如果已知一個點的坐標,可在坐標平面內(nèi)畫出幾個點?反過來,如果坐標平面內(nèi)的一個點確定,這個點的坐標有幾個?這樣的點和坐標的對應(yīng)關(guān)系,叫做什么對應(yīng)?(答:叫做坐標平面內(nèi)的點與有序?qū)崝?shù)對一一對應(yīng))。

我們在前幾節(jié)課已經(jīng)知道,函數(shù)關(guān)系可以用解析式表示,像y=2x+1就表示以x為自變量時,y是x的函數(shù)。

這個函數(shù)關(guān)系中,y與x的函數(shù)。

這個函數(shù)關(guān)系中,y與x的對應(yīng)關(guān)系,我們還可通知在坐標平面內(nèi)畫出圖象的方法來表示。

函數(shù)的教案篇十四

2.通過對抽象符號的認識與使用,使學(xué)生在符號表示方面的能力得以提高.。

難點:重點是在映射的基礎(chǔ)上理解的概念;

難點是對抽象符號的認識與使用.。

投影儀。

自學(xué)研究與啟發(fā)討論式.。

(要求學(xué)生盡量用自己的話描述初中的定義,并試舉出各類學(xué)過的例子)。

提問1.是嗎?

(由學(xué)生討論,發(fā)表各自的意見,有的認為它不是,理由是沒有兩個變量,也有的認為是,理由是可以可做.)。

現(xiàn)在請同學(xué)們打開書翻到第50頁,從這開始閱讀有關(guān)的內(nèi)容,再回答我的問題.(約2-3分鐘或開始提問)。

提問2.新的的定義是什么?能否用最簡單的語言來概括一下.。

(板書)2.2。

一、的概念。

問題3:映射與有何關(guān)系?(一定是映射嗎?映射一定是嗎?)。

引導(dǎo)學(xué)生發(fā)現(xiàn),是特殊的映射,特殊在集合a,b必是非空的數(shù)集.。

2.本質(zhì):是非空數(shù)集到非空數(shù)集的映射.(板書)。

然后讓學(xué)生試回答剛才關(guān)于是不是的問題,要求從映射的角度解釋.。

此時學(xué)生可以清楚的看到滿足映射觀點下的定義,故是一個,這樣解釋就很自然.。

教師繼續(xù)把問題引向深入,提出在映射的觀點下如何解釋是個?

從映射角度看可以是其中定義域是,值域是.。

3.的三要素及其作用(板書)。

例1以下關(guān)系式表示嗎?為什么?

(1);(2).。

解:(1)由有意義得,解得.由于定義域是空集,故它不能表示.。

(2)由有意義得,解得.定義域為,值域為.。

由以上兩題可以看出三要素的作用。

(1)判斷一個關(guān)系是否存在.(板書)。

例2下列各中,哪一個與是同一個.。

(1);(2)(3);(4).。

解:先認清,它是(定義域)到(值域)的映射,其中。

再看(1)定義域為且,是不同的;(2)定義域為,是不同的;

(4),法則是不同的;

而(3)定義域是,值域是,法則是乘2減1,與完全相同.。

(2)判斷兩個是否相同.(板書)。

4.對符號的理解(板書)。

例3已知試求(板書)。

分析:首先讓學(xué)生認清的含義,要求學(xué)生能從變量觀點和映射觀點解釋,再進行計算.。

含義1:當(dāng)自變量取3時,對應(yīng)的值即;

含義2:定義域中原象3的象,根據(jù)求象的方法知.而應(yīng)表示原象的象,即.。

計算之后,要求學(xué)生了解與的區(qū)別,是常量,而是變量,只是中一個特殊值.。

1.的定義。

2.對三要素的認識。

3.對符號的認識。

五、

2.2例1.例3.。

一.的概念。

1.定義。

2.本質(zhì)例2.小結(jié):

3.三要素的認識及作用。

4.對符號的理解。

探究活動。

答案:

函數(shù)的教案篇十五

學(xué)生能理解函數(shù)的概念,掌握常見的函數(shù)(sum,average,max,min等)。學(xué)生能夠根據(jù)所學(xué)函數(shù)知識判別計算得到的數(shù)據(jù)的正確性。

學(xué)生能夠使用函數(shù)(sum,average,max,min等)計算所給數(shù)據(jù)的和、平均值、最大最小值。學(xué)生通過自主探究學(xué)會新函數(shù)的使用。并且能夠根據(jù)實際工作生活中的需求選擇和正確使用函數(shù),并能夠?qū)τ嬎愕臄?shù)據(jù)結(jié)果合理利用。

學(xué)生自主學(xué)習(xí)意識得到提高,在任務(wù)的完成過程中體會到成功的喜悅,并在具體的任務(wù)中感受環(huán)境保護的重要性及艱巨性。

sum函數(shù)的插入和使用。

函數(shù)的格式、函數(shù)參數(shù)正確使用以及修改。

任務(wù)驅(qū)動,觀察分析,通過實踐掌握,發(fā)現(xiàn)問題,協(xié)作學(xué)習(xí)。

excel文件《2000年全國各省固體廢棄物情況》、統(tǒng)計表格一張。

1、展示投影片,創(chuàng)設(shè)數(shù)據(jù)處理環(huán)境。

2、以環(huán)境污染中的固體廢棄物數(shù)據(jù)為素材來進行教學(xué)。

3、展示《2000年全國各省固體廢棄物情況》工作簿中的《固體廢棄物數(shù)量狀況》工作表,要求根據(jù)已學(xué)知識計算各省各類廢棄物的總量。

函數(shù)名表示函數(shù)的計算關(guān)系。

=sum(起始單元格:結(jié)束單元格)。

4、問:求某一種廢棄物的全國總量用公式法和自動求和哪個方便?

注意參數(shù)的正確性。

1、簡單描述函數(shù):函數(shù)是一些預(yù)定義了的計算關(guān)系,可將參數(shù)按特定的順序或結(jié)構(gòu)進行計算。

在公式中計算關(guān)系是我們自己定義的,而函數(shù)給我們提供了大量的已定義好的計算關(guān)系,我們只需要根據(jù)不同的處理目的去選擇、提供參數(shù)去套用就可以了。

2、使用函數(shù)sum計算各廢棄物的全國總計。(強調(diào)計算范圍的正確性)。

3、通過介紹average函數(shù)學(xué)習(xí)函數(shù)的輸入。

函數(shù)的輸入與一般的公式?jīng)]有什么不同,用戶可以直接在“=”后鍵入函數(shù)及其參數(shù)。例如我們選定一個單元格后,直接鍵入“=average(d3:d13)”就可以在該單元格中創(chuàng)建一個統(tǒng)計函數(shù),統(tǒng)計出該表格中比去年同期增長%的平均數(shù)。

(參數(shù)的格式要嚴格;符號要用英文符號,以避免出錯。)。

有的同學(xué)開始瞪眼睛了,不大好用吧?

因為這種方法要求我們對函數(shù)的使用比較熟悉,如果我們對需要使用的函數(shù)名稱、參數(shù)格式等不是非常有把握,則建議使用“插入函數(shù)”對話框來輸入函數(shù)。

用相同任務(wù)演示操作過程。

4、引出max和min函數(shù)。

探索任務(wù):利用提示應(yīng)用max和min函數(shù)計算各廢棄物的最大和最小值。

5、引出countif函數(shù)。

探索任務(wù):利用countif函數(shù)按要求計算并體會函數(shù)的不同格式。

1、教師小結(jié)比較。

2、根據(jù)得到的數(shù)據(jù)引發(fā)出怎樣的思考。

四、???????。

1、廢棄物數(shù)量大危害大,各個省都在想各種辦法進行處理,把對環(huán)境的污染降到最低。

2、研究任務(wù):運用表格數(shù)據(jù),計算各省廢棄物處理率的最大,最小值,以及廢棄物處理率大于90%,小于70%的省份個數(shù),并對應(yīng)計算各省處理的廢棄物量和剩余的廢棄物量及全國總數(shù)。

1、分析存在問題,表揚練習(xí)完成比較好的同學(xué),強調(diào)鼓勵大家探究學(xué)習(xí)的精神。

2、把結(jié)果進行記錄,上繳或在課后進行分析比較,寫出一小論文。

1、讓學(xué)生體會到固體廢棄物數(shù)量的巨大。

2、處理真實數(shù)據(jù)引發(fā)學(xué)生興趣。

通過比較得到兩種方法的優(yōu)劣。

學(xué)生的計算結(jié)果在現(xiàn)實中的運用,真正體現(xiàn)信息技術(shù)課是收集,分析數(shù)據(jù),的工具。

通過類比學(xué)習(xí),提高學(xué)生的自學(xué)能力和分析問題能力。

實際數(shù)據(jù),引發(fā)思考。

學(xué)生應(yīng)用課堂所學(xué)知識。

學(xué)生帶著任務(wù)離開教室,課程之間整合,學(xué)生環(huán)境保護知識得到加強。

觀看投影。

學(xué)生用公式法和自動求和兩種方法計算各省廢棄物總量。

回答可用自動求和。

動手操作。

計算各類廢氣物的全國各省平均。

練習(xí)。

練習(xí)。

用自己計算所得數(shù)據(jù)對現(xiàn)實進行分析。

應(yīng)用所學(xué)知識。

練習(xí)并記錄數(shù)據(jù)。

函數(shù)的教案篇十六

即:一角的正弦大于另一個角的余弦。

2、若,則,。

3、的圖象的對稱中心為(),對稱軸方程為。

4、的圖象的對稱中心為(),對稱軸方程為。

5、及的圖象的對稱中心為()。

6、常用三角公式:。

有理公式:;。

降次公式:,;。

萬能公式:,,(其中)。

7、輔助角公式:,其中。輔助角的位置由坐標決定,即角的終邊過點。

8、時,。

9、。

其中為內(nèi)切圓半徑,為外接圓半徑。

特別地:直角中,設(shè)c為斜邊,則內(nèi)切圓半徑,外接圓半徑。

10、的圖象的圖象(時,向左平移個單位,時,向右平移個單位)。

11、解題時,條件中若有出現(xiàn),則可設(shè),。

則。

12、等腰三角形中,若且,則。

13、若等邊三角形的邊長為,則其中線長為,面積為。

14、;。

【本文地址:http://mlvmservice.com/zuowen/17281894.html】

全文閱讀已結(jié)束,如果需要下載本文請點擊

下載此文檔