八年級數(shù)學(xué)下勾股定理的證明二教案(精選18篇)

格式:DOC 上傳日期:2023-12-04 06:49:04
八年級數(shù)學(xué)下勾股定理的證明二教案(精選18篇)
時間:2023-12-04 06:49:04     小編:雨中梧

制定教案時,需要考慮學(xué)生的實際情況和學(xué)習(xí)特點,從而更好地實施教學(xué)。在編寫教案時,要注意材料的選擇,確保教學(xué)內(nèi)容的科學(xué)性和實用性。小編精心挑選了一些獨具特色的教案,希望能夠為教師們帶來一些靈感和啟示。

八年級數(shù)學(xué)下勾股定理的證明二教案篇一

1.知識與技能目標(biāo):會用勾股定理及直角三角形的判定條件解決實際問題。

2.過程與方法目標(biāo):經(jīng)歷勾股定理的應(yīng)用過程,熟練掌握其應(yīng)用方法,明確應(yīng)用的條件。

3.情感態(tài)度與價值觀目標(biāo):通過自主學(xué)習(xí)的發(fā)展體驗獲取數(shù)學(xué)知識的感受;通過有關(guān)勾股定理的歷史講解,對學(xué)生進(jìn)行德育教育。

一、知識點講解。

知識點1:(已知兩邊求第三邊)。

1.在直角三角形中,若兩直角邊的長分別為1cm,2cm,則斜邊長為_____________。

2.已知直角三角形的兩邊長為3、4,則另一條邊長是______________。

3.三角形abc中,ab=10,ac=17,bc邊上的高線ad=8,求bc的長?

知識點2:

利用方程求線段長。

(1)使得c,d兩村到e站的距離相等,e站建在離a站多少km處?

(2)de與ce的位置關(guān)系。

(3)使得c,d兩村到e站的距離最短,e站建在離a站多少km處?

利用方程解決翻折問題。

3、在矩形紙片abcd中,ad=4cm,ab=10cm,按圖所示方式折疊,使點b與點d重合,折痕為ef,求de的長。

5、折疊矩形abcd的一邊ad,折痕為ae,且使點d落在bc邊上的點f處,已知ab=8cm,bc=10cm,以b點為原點,bc為x軸,ba為y軸建立平面直角坐標(biāo)系。求點f和點e坐標(biāo)。

6、邊長為8和4的矩形oabc的兩邊分別在直角坐標(biāo)系的x軸和y軸上,若沿對角線ac折疊后,點b落在第四象限b1處,設(shè)b1c交x軸于點d,求(1)三角形adc的面積,(2)點b1的坐標(biāo),(3)ab1所在的直線解析式.

知識點3:判斷一個三角形是否為直角三角形間接給出三邊的長度或比例關(guān)系。

1.(1).若一個三角形的周長12cm,一邊長為3cm,其他兩邊之差為1cm,則這個三角形是___________。

(2).將直角三角形的三邊擴大相同的倍數(shù)后,得到的三角形是____________。

(3)在abc中,a:b:c=1:1:,那么abc的確切形狀是_____________。

二、課堂小結(jié)。

談一談你這節(jié)課都有哪些收獲?

三、課堂練習(xí)以上習(xí)題。

四、課后作業(yè)卷子。

本節(jié)課是人教版數(shù)學(xué)八年級下冊第十七章第一節(jié)第二課時的內(nèi)容,是學(xué)生在學(xué)習(xí)了三角形的有關(guān)知識,了解了直角三角形的概念,掌握了直角三角形的性質(zhì)和一個三角形是直角三角形的條件的基礎(chǔ)上學(xué)習(xí)勾股定理,加深對勾股定理的理解,提高學(xué)生對數(shù)形結(jié)合的應(yīng)用與理解。本節(jié)第一課時安排了對勾股定理的觀察、計算、猜想、證明及簡單應(yīng)用的過程;第二課時是通過例題分析與講解,讓學(xué)生感受勾股定理在實際生活中的應(yīng)用,通過從實際問題中抽象出直角三角形這一模型,強化轉(zhuǎn)化思想,培養(yǎng)學(xué)生解決問題的意識和應(yīng)用能力。

針對本班學(xué)生的特點,學(xué)生知識水平、學(xué)習(xí)能力的差距,本節(jié)課安排了如下幾個環(huán)節(jié):

一、復(fù)習(xí)引入。

對上節(jié)課勾股定理內(nèi)容進(jìn)行回顧,強調(diào)易錯點。由于學(xué)生的注意力集中時間較短,學(xué)生知識水平低,引入內(nèi)容簡短明了,花費時間短。

二、例題講解,鞏固練習(xí),總結(jié)數(shù)學(xué)思想方法。

活動一:用對媒體展示搬運工搬木板的問題,讓學(xué)生以小組交流合作,如何將木板運進(jìn)門內(nèi)?需要知道們的寬、高,還是其他的條件?學(xué)生展示交流結(jié)果,之后教師引導(dǎo)學(xué)生書寫板書。整個活動以學(xué)生為主體,教師及時的引導(dǎo)和強調(diào)。

活動二:解決例二梯子滑落的問題。學(xué)生自主討論解決問題,書寫過程,之后投影學(xué)生書寫過程,教師與學(xué)生一起合作修改解題過程。

活動三:學(xué)生討論總結(jié)如何將實際生活中的問題轉(zhuǎn)化為數(shù)學(xué)問題,然后利用勾股定理解決問題。利用勾股定理的前提是什么?如何作輔助線構(gòu)造這一前提條件?在數(shù)學(xué)活動中發(fā)展了學(xué)生的探究意識和合作交流的習(xí)慣;體會勾股定理的應(yīng)用價值,讓學(xué)生體會到數(shù)學(xué)來源于生活,又應(yīng)用到生活中去,在學(xué)習(xí)的過程中體會獲得成功的喜悅,提高了學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和信心。

二、鞏固練習(xí),熟練新知。

通過測量旗桿活動,發(fā)展學(xué)生的探究意識,培養(yǎng)學(xué)生動手操作的能力,增加學(xué)生應(yīng)用數(shù)學(xué)知識解決實際問題的經(jīng)驗和感受。

在教學(xué)設(shè)計的實施中,也存在著一些問題:

1.由于本班學(xué)生能力的差距,本想著通過學(xué)生幫帶活動,使學(xué)困生充分參與課堂,但在學(xué)生合作交流是由于學(xué)習(xí)能力強的學(xué)生,對問題的分析解決所用時間短,而在整個環(huán)節(jié)設(shè)計中轉(zhuǎn)接的快,未給學(xué)困生充分的時間,導(dǎo)致部分學(xué)生未能真正的參與到課堂中來。

2.課堂上質(zhì)疑追問要起到好處,不要增加學(xué)生展示的難度,影響展示進(jìn)程出現(xiàn)中斷或偏離主題的現(xiàn)象。

3.對學(xué)生課堂展示的評價方式應(yīng)體現(xiàn)生評生,師評生,及評價的針對性和及時性。

八年級數(shù)學(xué)下勾股定理的證明二教案篇二

教學(xué)目標(biāo):

〔知識與技能〕。

1.在生活實例中認(rèn)識軸對稱圖.

2.分析軸對稱圖形,理解軸對稱的概念.軸對稱圖形的概念。

〔過程與方法〕。

2、在靈活運用知識解決有關(guān)問題的過程中,體驗并掌握探索、歸納圖形性質(zhì)的推理方法,進(jìn)一步培說理和進(jìn)行簡單推理的能力。

〔情感、態(tài)度與價值觀〕。

辯證唯物主義觀點。

教學(xué)重點:.

理解軸對稱的概念。

教學(xué)難點。

能夠識別軸對稱圖形并找出它的對稱軸.

教具準(zhǔn)備:三角尺。

教學(xué)過程。

一.創(chuàng)設(shè)情境,引入新課。

1.舉實例說明對稱的重要性和生活充滿著對稱。

2.對稱給我們帶來多少美的感受!初步掌握對稱的奧秒,不僅可以幫助我們發(fā)現(xiàn)一些圖形的特征,還可以使我們感受到自然界的美與和諧.

3.軸對稱是對稱中重要的一種,讓我們一起走進(jìn)軸對稱世界,探索它的秘密吧!

二.導(dǎo)入新課。

1.觀察:幾幅圖片(出示圖片),觀察它們都有些什么共同特征.

強調(diào):對稱現(xiàn)象無處不在,從自然景觀到分子結(jié)構(gòu),從建筑物到藝術(shù)作品,?甚至日常生活用品,人們都可以找到對稱的例子.

練習(xí):從學(xué)生生活周圍的事物中來找一些具有對稱特征的例子.

3.如果一個圖形沿一直線折疊,直線兩旁的部分能夠互相重合,這個圖形就叫做軸對稱圖形,這條直線就是它的對稱軸.我們也說這個圖形關(guān)于這條直線(成軸)?對稱.

4.動手操作:取一張質(zhì)地較硬的紙,將紙對折,并用小刀在紙的中央隨意。

刻出一個圖案,將紙打開后鋪平,你得到兩個成軸對稱的圖案了嗎?

歸納小結(jié):由此我們進(jìn)一步了解了軸對稱圖形的特征:一個圖形沿一條直線折疊后,折痕兩側(cè)的圖形完全重合.

5.練習(xí):你能找出它們的對稱軸嗎?分小組討論.

思考:大家想一想,你發(fā)現(xiàn)了什么?

小結(jié)得出:.像這樣,?把一個圖形沿著某一條直線折疊,如果它能夠與另一個圖形重合,那么就說這兩個圖形關(guān)于這條直線對稱,?這條直線叫做對稱軸,折疊后重合的點是對應(yīng)點,叫做對稱點.

三.隨堂練習(xí)。

1、課本60練習(xí)1、2。

四.課時小結(jié)。

分了軸對稱圖形和兩個圖形成軸對稱.

五.課后作業(yè)。

習(xí)題13.1.1、2、6題.

六.教后記。

八年級數(shù)學(xué)下勾股定理的證明二教案篇三

教學(xué)目標(biāo):

1、知道一次函數(shù)與正比例函數(shù)的意義.

2、能寫出實際問題中正比例關(guān)系與一次函數(shù)關(guān)系的解析式.

3、滲透數(shù)學(xué)建模的思想,使學(xué)生體會到數(shù)學(xué)的抽象性和廣泛的應(yīng)用性.

4、激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,培養(yǎng)學(xué)生分析問題、解決問題的能力.

教學(xué)重點:對于一次函數(shù)與正比例函數(shù)概念的理解.

教學(xué)難點:根據(jù)具體條件求一次函數(shù)與正比例函數(shù)的解析式.

教學(xué)方法:結(jié)構(gòu)教學(xué)法、以學(xué)生“再創(chuàng)造”為主的教學(xué)方法。

教學(xué)過程:

1、復(fù)習(xí)舊課。

前面我們學(xué)習(xí)了函數(shù)的相關(guān)知識,(教師在黑板上畫出本章結(jié)構(gòu)并讓學(xué)生說出前三。

2、引入新課。

就象以前我們學(xué)習(xí)方程、一元一次方程;不等式、一元一次不等式的內(nèi)容時一樣,我們在學(xué)習(xí)了函數(shù)這個概念以后,要學(xué)習(xí)一些具體的函數(shù),今天我們要學(xué)習(xí)的是一次函數(shù).顧名思義,誰能根據(jù)一次函數(shù)這個名字,類比一元一次方程、一元一次不等式的概念能舉出一些一次函數(shù)的例子?(學(xué)生完全具備這種類比的能力,所以要快、不要耽誤太多時間叫幾個同學(xué)回答就可以了.教師將學(xué)生的正確的例子寫在黑板上)。

這些函數(shù)有什么共同特點呢?(注意根據(jù)學(xué)生情況適當(dāng)引導(dǎo),看能否歸納出一般結(jié)果.)不難看出函數(shù)都是用自變量的一次式表示的,可以寫成()的形式.一般地,如果(是常數(shù),)(括號內(nèi)用紅字強調(diào))那么y叫做x的一次函數(shù).特別地,當(dāng)b=0時,一次函數(shù)就成為(是常數(shù),)。

3、例題講解。

例1、某油管因地震破裂,導(dǎo)致每分鐘漏出原油30公升。

(1)如果x分鐘共漏出y公升,寫出y與x之間的函數(shù)關(guān)系式。

(2)破裂3.5小時后,共漏出原油多少公升。

分析:y與x成正比例。

解:(1)(2)(升)。

例2、小丸子的存折上已經(jīng)有500元存款了,從現(xiàn)在開始她每個月可以得到150元的零用錢,小丸子計劃每月將零用錢的60%存入銀行,用以購買她期盼已久的cd隨身聽(價值1680元)。

(1)列出小丸子的銀行存款(不計利息)y與月數(shù)x的函數(shù)關(guān)系式;。

(2)多長時間以后,小丸子的銀行存款才能買隨身聽?

分析:銀行存款數(shù)由兩部分構(gòu)成:原有的存款500元,后存入的零用錢。

例3、已知函數(shù)是正比例函數(shù),求的值。

分析:本題考察的是正比例函數(shù)的概念。

解:

4、小結(jié)。

由學(xué)生對本節(jié)課知識進(jìn)行總結(jié),教師板書即可.

5、布置作業(yè)。

書面作業(yè):1、書后習(xí)題2、自己寫出一個實際中的一次函數(shù)的例子并進(jìn)行討論。

八年級數(shù)學(xué)下勾股定理的證明二教案篇四

教學(xué)目標(biāo):

1、知識目標(biāo):

(1)掌握解分式方程的步驟。

(2)理解解分式方程時驗根的必要性。

2、能力目標(biāo):

會按照解分式方程的步驟解分式方程。

3、情感與價值觀:

(1)培養(yǎng)學(xué)生自覺反思求解過程和自覺檢驗的良好習(xí)慣,培養(yǎng)嚴(yán)謹(jǐn)?shù)闹螌W(xué)態(tài)度。

(2)運用“轉(zhuǎn)化”的思想,將分式方程轉(zhuǎn)化為整式方程,從而獲得成就感和學(xué)習(xí)數(shù)學(xué)的自信。

老師引導(dǎo)學(xué)生自主探索分式方程的解法,將分式方程轉(zhuǎn)化為整式方程,在解題中親身體驗“轉(zhuǎn)化”思想。弄清了“轉(zhuǎn)化”的方向,也就明白了解分式方程的步驟,解題思路自然清晰,能力隨之形成。

重點:

1、探索解分式方程的步驟,熟練掌握分式方程的解法。

2、體會解分式方程驗根的必要性。

難點:如何將分式方程轉(zhuǎn)化為整式方程;體會分式方程驗根的必要性。

學(xué)情與教材分析:我所任教的學(xué)生大多頭腦聰明,在老師適當(dāng)?shù)囊龑?dǎo)下,有一定的探求新知識的能力。但基礎(chǔ)不夠扎實,如計算容易出錯、考慮問題不夠嚴(yán)謹(jǐn)?shù)?。另外在學(xué)習(xí)本節(jié)課之前,已經(jīng)學(xué)習(xí)過《解一元一次方程》。對于《解一元一次方程》大部分同學(xué)已經(jīng)掌握,但由于是在七年級學(xué)習(xí),有一定的時間間隔,部分同學(xué)可能已經(jīng)遺忘,給上本節(jié)課留下少許的困難。但估計絕大部分同學(xué)稍加回憶,應(yīng)能接近以前的水平。本節(jié)課的內(nèi)容處在《分式》這章的后半部。《分式》這章內(nèi)容安排如下的:首先介紹分式及分式的基本性質(zhì),接著進(jìn)行分式的加、減、乘、除的運算,之后是根據(jù)實際問題列出分式方程(但未求解)。緊跟其后的是本節(jié)課內(nèi)容――解分式方程,最后一節(jié)是根據(jù)實際問題列出分式方程并求解。由此可見《解分式方程》涵蓋了本章前面的內(nèi)容,是本章知識的綜合與提高。學(xué)習(xí)好這部分內(nèi)容,不但掌握了初二階段有關(guān)分式方程的內(nèi)容,也為初三學(xué)習(xí)可化為一元二次的分式方程打下了良好的基礎(chǔ)。通過將分式方程轉(zhuǎn)化為整式方程(一元一次方程)滲透了一種重要的數(shù)學(xué)思想――轉(zhuǎn)化思想,即將原問題進(jìn)行變形,使之轉(zhuǎn)化為我們所熟悉的或已解決的或易于解決的問題。

八年級數(shù)學(xué)下勾股定理的證明二教案篇五

知識與技能:

1、了解勾股定理的文化背景,體驗勾股定理的探索過程,了解利用拼圖驗證勾股定理的方法。

2、了解勾股定理的內(nèi)容。

3、能利用已知兩邊求直角三角形另一邊的長。

過程與方法:

1、通過拼圖活動,體驗數(shù)學(xué)思維的嚴(yán)謹(jǐn)性,發(fā)展形象思維。

2、在探索活動中,學(xué)會與人合作,并能與他人交流思維的過程和探索的結(jié)果。

情感與態(tài)度:

1、通過對勾股定理歷史的了解,對比介紹我國古代和西方數(shù)學(xué)家關(guān)于勾股定理的研究,激發(fā)學(xué)生熱愛祖國悠久文化的情感,激勵學(xué)生奮發(fā)學(xué)習(xí)。

2、在探索勾股定理的過程中,體驗獲得結(jié)論的快樂,鍛煉克服困難的勇氣,培養(yǎng)合作意識和探索精神。

二教學(xué)重、難點。

重點:探索和證明勾股定理難點:用拼圖方法證明勾股定理。

三、學(xué)情分析。

學(xué)生對幾何圖形的觀察,幾何圖形的分析能力已初步形成。部分學(xué)生解題思維能力比較高,能夠正確歸納所學(xué)知識,通過學(xué)習(xí)小組討論交流,能夠形成解決問題的思路。

四、教學(xué)策略。

本節(jié)課采用探究發(fā)現(xiàn)式教學(xué),由淺入深,由特殊到一般地提出問題,鼓勵學(xué)生采用觀察分析、自主探索、合作交流的學(xué)習(xí)方法,讓學(xué)生經(jīng)歷數(shù)學(xué)知識的形成與應(yīng)用過程。

五、教學(xué)過程。

教學(xué)環(huán)節(jié)。

教學(xué)內(nèi)容。

活動和意圖。

創(chuàng)設(shè)情境導(dǎo)入新課。

以“航天員在太空中遇到外星人時,用什么語言進(jìn)行溝通”導(dǎo)入新課,讓孩子們盡情發(fā)揮他們的想象.而華羅庚建議可以用勾股定理的圖形進(jìn)行和外星人溝通,為什么呢?通過一段vcr說明原因。

[設(shè)計意圖]激發(fā)學(xué)生對勾股定理的興趣,從而較自然的引入課題。

新知探究。

畢達(dá)哥拉斯是古希臘著名的數(shù)學(xué)家。相傳在2500年以前,他在朋友家做客時,發(fā)現(xiàn)朋友家用地磚鋪成的地面反映了直角三角形的三邊的某種數(shù)量關(guān)系。

(1)同學(xué)們,請你也來觀察下圖中的地面,看看能發(fā)現(xiàn)些什么?

(2)你能找出圖18.1-1中正方形1、2、3面積之間的關(guān)系嗎?

通過講述故事來進(jìn)一步激發(fā)學(xué)生學(xué)習(xí)興趣,使學(xué)生在不知不覺中進(jìn)入學(xué)習(xí)的最佳狀態(tài)。

如圖,每個小方格代表1個單位面積,我們分別以a,b,c三邊為邊長作正方形。

回答以下內(nèi)容:

(1)想一想,怎樣利用小方格計算正方形a、b、c面積?

(2)怎樣求出正方形面積c?

(3)觀察所得的各組數(shù)據(jù),你有什么發(fā)現(xiàn)?

(4)將正方形a,b,c分別移開,你能發(fā)現(xiàn)直角三角形邊長a,b,c有何數(shù)量關(guān)系?

引導(dǎo)學(xué)生將邊不在格線上的圖形轉(zhuǎn)化為邊在格線上的圖形,以便于計算圖形面積.

問題是思維的起點”,通過層層設(shè)問,引導(dǎo)學(xué)生發(fā)現(xiàn)新知。

探究交流歸納。

拼圖驗證加深理解。

如圖,每個小方格代表1個單位面積,我們分別以a,b,c三邊為邊長作正方形。

回答以下內(nèi)容:

(1)想一想,怎樣利用小方格計算正方形p、q、r的面積?

(2)怎樣求出正方形面積r?

(3)觀察所得的各組數(shù)據(jù),你有什么發(fā)現(xiàn)?

(4)將正方形p,q,r分別移開,你能發(fā)現(xiàn)直角三角形邊長a,b,c有何數(shù)量關(guān)系?

由以上兩問題可得猜想:

直角三角形兩直角邊的平方和等于斜邊的平方。

而猜想要通過證明才能成為定理。

活動探究:

(1)讓學(xué)生利用學(xué)具進(jìn)行拼圖。

(2)多媒體課件展示拼圖過程及證明過程理解數(shù)學(xué)的嚴(yán)密性。

從特殊的等腰直角三角形過渡到一般的直角三角形。

滲透從特殊到一般的數(shù)學(xué)思想.為學(xué)生提供參與數(shù)學(xué)活動的時間和空間,發(fā)揮學(xué)生的主體作用;培養(yǎng)學(xué)生的類比遷移能力及探索問題的能力,使學(xué)生在相互欣賞、爭辯、互助中得到提高。

通過這些實際操作,學(xué)生進(jìn)行一步加深對數(shù)形結(jié)合的理解,拼圖也會產(chǎn)生感性認(rèn)識,也為論證勾股定理做好準(zhǔn)備。

利用分組討論,加強合作意識。

1、經(jīng)歷所拼圖形與多媒體展示圖形的聯(lián)系與區(qū)別。

2、加強數(shù)學(xué)嚴(yán)密教育,從而更好地理解代數(shù)與圖形相結(jié)合。

應(yīng)用新知解決問題。

在應(yīng)用新知這個環(huán)節(jié),我把以往的單純求解邊長之類的題目換成了幾個運用勾股定理來解決問題的古算題。

把生活中的實物抽象成幾何圖形,讓學(xué)生了解豐富變幻的圖形世界,培養(yǎng)了學(xué)生抽象思維能力,特別注重培養(yǎng)學(xué)生認(rèn)識事物,探索問題,解決實際的能力。

回顧小結(jié)整體感知。

在最后的小結(jié)中,不但對知識進(jìn)行小結(jié)更對方法要進(jìn)行小節(jié),還可向?qū)W生介紹了美麗的圖案畢達(dá)哥拉斯樹,讓學(xué)生切身感受到其實數(shù)學(xué)與生活是緊密聯(lián)系的,進(jìn)一步發(fā)現(xiàn)數(shù)學(xué)的另一種美。

學(xué)生通過對學(xué)習(xí)過程的小結(jié),領(lǐng)會其中的數(shù)學(xué)思想方法;通過梳理所學(xué)內(nèi)容,形成完整知識結(jié)構(gòu),培養(yǎng)歸納概括能力。。

布置作業(yè)鞏固加深。

必做題:

1.完成課本習(xí)題1,2,3題。

選做題:

針對學(xué)生認(rèn)知的差異設(shè)計了有層次的作業(yè)題,既使學(xué)生鞏固知識,形成技能,讓感興趣的學(xué)生課后探索,感受數(shù)學(xué)證明的靈活、優(yōu)美與精巧,感受勾股定理的豐富文化。

八年級數(shù)學(xué)下勾股定理的證明二教案篇六

如果三角形三邊長a,b,c滿足a2+b2=c2,那么這個三角形是直角三角形,其中c為斜邊。

說明:

(2)定理中a,b,c及a2+b2=c2只是一種表現(xiàn)形式,不可認(rèn)為是唯一的,如若三角形三邊長a,b,c滿足a2+b2=c,那么以a,b,c為三邊的三角形是直角三角形,但此時的斜邊是b。

(1)確定最大邊;

(2)算出最大邊的平方與另兩邊的平方和;

(3)比較最大邊的平方與別兩邊的平方和是否相等,若相等,則說明是直角三角形。

能夠構(gòu)成直角三角形的三邊長的三個正整數(shù)稱為勾股數(shù)。

由直角三角形三邊為邊長所構(gòu)成的三個正方形滿足“兩個較小面積和等于較大面積”。

解決圓柱側(cè)面兩點間的距離問題、航海問題,折疊問題、梯子下滑問題等,常直接間接運用勾股定理及其逆定理的應(yīng)用。

有了上文梳理的勾股定理的逆定理知識點整理,相信大家對考試充滿了信心,同時預(yù)祝大家考試取得好成績。

八年級數(shù)學(xué)下勾股定理的證明二教案篇七

一、本節(jié)課的成功之處:。

本節(jié)課以活動為主線,通過從估算到實驗活動結(jié)果的產(chǎn)生讓學(xué)生總結(jié)過程,最后回到解決生活中實際問題,思路清晰,脈絡(luò)明了。

例如:活動1問題:據(jù)說古埃及人用下圖的方法畫直角:把一根長蠅打上等距離的13個結(jié),然后以3個結(jié),4個結(jié)、5個結(jié)的長度為邊長,用木樁釘成一個三角形,其中一個角便是直角.

這個問題意味著,如果圍成的三角形的三邊分別為3、4、5.有下面的`關(guān)系“32+42=52”.那么圍成的三角形是直角三角形.

2、體現(xiàn)了“數(shù)學(xué)源于生活,寓于生活,用于生活”的教育思想;突出了“特征讓學(xué)生觀察,思路讓學(xué)生探索,方法讓學(xué)生思考意義讓學(xué)生概括,結(jié)論讓學(xué)生驗證,難點讓學(xué)生突破,以學(xué)生為主體”的教學(xué)思路。例如:命題2如果三角形的三邊長a,b,c滿足a2+b2=c2那么這個三角形是直角三角形.

如下圖,欲過基線mn上的一點c作它的垂線,可由三名工人操作:一人手拿布尺或測繩的0和12尺處,固定在c點;另一人拿4尺處,把尺拉直,在mn上定出a點,再由一人拿9尺處,把尺拉直,定出b點,于是連結(jié)bc,就是mn的垂線.

建筑工人用了3,4,5作出了一個直角,能不能用其他的整數(shù)組作出直角呢?

生:可以,例如7,24,25;8,15,17等.

3、在本節(jié)教學(xué)活動過程中,我經(jīng)常走下講臺,到學(xué)生中去,以學(xué)生身份和學(xué)生一起探討問題。用一切可能的方式,激勵回答問題的學(xué)生,激發(fā)學(xué)生的求知欲,使師生在和諧的教學(xué)環(huán)境中零距離的接觸。課堂上學(xué)生們的思維空前活躍,發(fā)言的人數(shù)不斷增多,學(xué)生能從多角度認(rèn)識問題,爭先恐后地交流不同的意見和方法,收到比較好的效果。這是本節(jié)課的特色。

二、本節(jié)課的不足之處及改進(jìn)方法:。

1、本節(jié)課我沒有利用多媒體輔助教學(xué),如學(xué)習(xí)目標(biāo)的發(fā)展、習(xí)題訓(xùn)練內(nèi)容的展示、學(xué)生活動的要求、作業(yè)布置等,這些內(nèi)容都是為教學(xué)服務(wù)的。如果用多媒體課件的展示,可以增大了教學(xué)密度,使學(xué)生的雙基訓(xùn)練得到了加強,使傳統(tǒng)的課堂走向了開放,使學(xué)生真正感受到學(xué)習(xí)方式在發(fā)生變化。在以后的教學(xué)中我應(yīng)加強。

八年級數(shù)學(xué)下勾股定理的證明二教案篇八

1.理解分式的基本性質(zhì).

2.會用分式的基本性質(zhì)將分式變形.

二、重點、難點。

1.重點:理解分式的基本性質(zhì).

2.難點:靈活應(yīng)用分式的基本性質(zhì)將分式變形.

3.認(rèn)知難點與突破方法。

教學(xué)難點是靈活應(yīng)用分式的基本性質(zhì)將分式變形.突破的方法是通過復(fù)習(xí)分?jǐn)?shù)的通分、約分總結(jié)出分?jǐn)?shù)的基本性質(zhì),再用類比的方法得出分式的基本性質(zhì).應(yīng)用分式的基本性質(zhì)導(dǎo)出通分、約分的概念,使學(xué)生在理解的基礎(chǔ)上靈活地將分式變形。

三、例、習(xí)題的意圖分析。

1.p7的例2是使學(xué)生觀察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后應(yīng)用分式的基本性質(zhì),相應(yīng)地把分子(或分母)乘以或除以了這個整式,填到括號里作為答案,使分式的值不變。

2.p9的例3、例4地目的是進(jìn)一步運用分式的基本性質(zhì)進(jìn)行約分、通分.值得注意的是:約分是要找準(zhǔn)分子和分母的公因式,最后的結(jié)果要是最簡分式;通分是要正確地確定各個分母的最簡公分母,一般的取系數(shù)的最小公倍數(shù),以及所有因式的次冪的積,作為最簡公分母。

教師要講清方法,還要及時地糾正學(xué)生做題時出現(xiàn)的錯誤,使學(xué)生在做提示加深對相應(yīng)概念及方法的理解。

3.p11習(xí)題16.1的第5題是:不改變分式的值,使下列分式的分子和分母都不含“-”號.這一類題教材里沒有例題,但它也是由分式的基本性質(zhì)得出分子、分母和分式本身的符號,改變其中任何兩個,分式的值不變。

“不改變分式的值,使分式的分子和分母都不含‘-’號”是分式的基本性質(zhì)的應(yīng)用之一,所以補充例5。

四、課堂引入。

1.請同學(xué)們考慮:與相等嗎?與相等嗎?為什么?

2.說出與之間變形的過程,與之間變形的過程,并說出變形依據(jù)?

3.提問分?jǐn)?shù)的基本性質(zhì),讓學(xué)生類比猜想出分式的基本性質(zhì).

五、例題講解。

p7例2.填空:

[分析]應(yīng)用分式的基本性質(zhì)把已知的分子、分母同乘以或除以同一個整式,使分式的值不變.

p11例3.約分:

[分析]約分是應(yīng)用分式的基本性質(zhì)把分式的分子、分母同除以同一個整式,使分式的值不變.所以要找準(zhǔn)分子和分母的公因式,約分的結(jié)果要是最簡分式.

p11例4.通分:

[分析]通分要想確定各分式的公分母,一般的取系數(shù)的最小公倍數(shù),以及所有因式的次冪的積,作為最簡公分母.

(補充)例5.不改變分式的值,使下列分式的分子和分母都不含“-”號.

[分析]每個分式的分子、分母和分式本身都有自己的符號,其中兩個符號同時改變,分式的值不變.

解:=,=,=,=,=。

六、隨堂練習(xí)。

1.填空:

(1)=(2)=。

(3)=(4)=。

2.約分:

3.通分:

(1)和(2)和。

(3)和(4)和。

4.不改變分式的值,使下列分式的分子和分母都不含“-”號.

七、課后練習(xí)。

1.判斷下列約分是否正確:

(1)=(2)=。

(3)=0。

2.通分:

(1)和(2)和。

3.不改變分式的值,使分子第一項系數(shù)為正,分式本身不帶“-”號.

八、答案:

六、1.(1)2x(2)4b(3)bn+n(4)x+y。

2.(1)(2)(3)(4)-2(x-y)2。

3.通分:

(1)=,=。

(2)=,=。

(3)==。

(4)==。

八年級數(shù)學(xué)下勾股定理的證明二教案篇九

在講解勾股定理的結(jié)論時,為了讓學(xué)生更好地理解和掌握勾股定理的探索過程,先讓學(xué)生自己進(jìn)行探索,然后同學(xué)進(jìn)行討論,最后上臺演示。這樣可以加深學(xué)生的參與,也讓師生間、生生間有了互動。然后老師再利用電腦演示直角三角形中勾股定理的探索過程。反復(fù)演示幾遍,讓學(xué)生自己感覺并最后體會到勾股定理的結(jié)論。通過動畫演示體會到解決問題的方法是多種多樣,使得這課的重難點輕易地突破,大大提高了教學(xué)效率,培養(yǎng)了學(xué)生的解決問題的能力和創(chuàng)新能力。學(xué)生在這一過程中各顯神通,都得到了解決問題的滿足感和自豪感。

在教學(xué)應(yīng)用勾股定理時,老是運用公式計算,學(xué)生感覺比較厭倦,為了吸引學(xué)生注意力,活躍課堂氣氛,拓寬學(xué)生思路,運用多媒體出示了一道“智慧爺爺”出的思考題:即折竹抵地問題。同學(xué)們一看,興趣來了。最后讓學(xué)生互相討論,就這樣讓學(xué)生在開放自由的情況下解決了該題,同時培養(yǎng)了學(xué)生的想像力。

最后介紹了勾股定理的歷史,并且推薦了一些網(wǎng)站,讓學(xué)生下課之后進(jìn)行查閱、了解。只是為了方便學(xué)生到更廣闊的知識海洋中去尋找知識寶藏,利用網(wǎng)絡(luò)檢索相關(guān)信息,充實、豐富、拓展課堂學(xué)習(xí)資源,提供各種學(xué)習(xí)方式,讓學(xué)生學(xué)會選擇、整理、重組、再用這些更廣泛的資源。這種對網(wǎng)絡(luò)資源的重新組織,使學(xué)生對知識的需求由窄到寬,有力的促進(jìn)了自主學(xué)習(xí)。這樣學(xué)生不僅能在課堂上學(xué)習(xí)到知識,還讓他們有了怎樣學(xué)習(xí)知識的方法。這就達(dá)到了新課標(biāo)新理念的預(yù)定目標(biāo)。

八年級數(shù)學(xué)下勾股定理的證明二教案篇十

正比例函數(shù)的概念。

2、內(nèi)容解析。

一次函數(shù)是最基本的初等函數(shù),是初中函數(shù)學(xué)習(xí)的重要內(nèi)容,正比例函數(shù)是特殊的一次函數(shù),也是初中學(xué)生接觸到的第一種函數(shù),要通過對正比例函數(shù)內(nèi)容的學(xué)習(xí),為后續(xù)類比學(xué)習(xí)一般一次函數(shù)打好基礎(chǔ),了解研究函數(shù)的基本套路和方法,積累研究一般一次函數(shù)乃至其他各種函數(shù)的基本經(jīng)驗。

對正比例函數(shù)概念的學(xué)習(xí),既要借助具體的函數(shù)進(jìn)一步加深對函數(shù)概念的理解,即實際問題的兩個變量中,當(dāng)一個變量變化時,另一個變量隨著它的變化而變化,而且對于這個變量的每一個確定的值,另一個變量都有唯一確定的值與之對應(yīng),這是理解正比例函數(shù)的核心;也要加強對正比例函數(shù)基本特征的認(rèn)識,即根據(jù)實際問題構(gòu)建的函數(shù)模型中,函數(shù)和自變量每一對對應(yīng)值的比值是一定的,等于比例系數(shù),反映在函數(shù)解析式上,這些函數(shù)都是常數(shù)與自變量的積的形式,這是正比例函數(shù)的基本特征。

本節(jié)課主要是通過對生活中大量實際問題的分析,寫出變量間的函數(shù)關(guān)系式,觀察比較概括出這些函數(shù)關(guān)系式具有的共同特征,根據(jù)共同特征抽象出正比例函數(shù)的基本模型,歸納得出正比例函數(shù)的概念,再用正比例函數(shù)的概念對具體函數(shù)進(jìn)行辨析,對實際事例進(jìn)行分析,根據(jù)已知條件寫出正比例函數(shù)的解析式。

基于以上分析,確定本節(jié)課的教學(xué)重點:正比例函數(shù)的概念。

1、目標(biāo)。

(1)經(jīng)歷正比例函數(shù)概念的形成過程,理解正比例函數(shù)的概念;

(2)能根據(jù)已知條件確定正比例函數(shù)的解析式,體會函數(shù)建模思想。

2、目標(biāo)解析。

達(dá)成目標(biāo)(1)的標(biāo)志是:通過對實際問題的分析,知道自變量和對應(yīng)函數(shù)成正比例的特征,能概括抽象出正比例函數(shù)的概念。

達(dá)成目標(biāo)(2)的標(biāo)志是:能根據(jù)實際問題中的已知條件確定變量間的正比例函數(shù)關(guān)系式,將實際問題抽象為函數(shù)模型,體會函數(shù)建模思想。

正比例函數(shù)是是初中學(xué)生接觸到的第一種初等函數(shù),由于函數(shù)概念比較抽象,學(xué)生對函數(shù)基本概念理解未必深刻,在對實際問題進(jìn)行分析過程中,需進(jìn)一步強化對函數(shù)概念的理解:即實際問題的兩個變量中,當(dāng)一個變量變化時,另一個變量隨著它的變化而變化,而且對于這個變量的`每一個確定的值,另一個變量都有唯一確定的值與之對應(yīng);對正比例函數(shù)概念的理解關(guān)鍵是對正比例函數(shù)基本特征的認(rèn)識,要通過大量實例分析,寫出變量間的函數(shù)關(guān)系式,觀察比較發(fā)現(xiàn)這些函數(shù)具有的共同特征,即函數(shù)與自變量的每一對對應(yīng)值的比值一定,都等于自變量前的常數(shù),這些函數(shù)都是常數(shù)與自變量的積的形式,再根據(jù)共同特征抽象出正比例函數(shù)的基本模型,歸納得出正比例函數(shù)的概念。對正比例函數(shù)基本特征的認(rèn)識和正比例函數(shù)概念的抽象歸納過程學(xué)生有一定難度。

因此本節(jié)課的教學(xué)難點是:對正比例函數(shù)基本特征的認(rèn)識和正比例函數(shù)概念的抽象歸納過程。

八年級數(shù)學(xué)下勾股定理的證明二教案篇十一

我對本節(jié)課的教學(xué)過程是這樣設(shè)計的:

1、欣賞圖片,激發(fā)興趣。

通過欣賞xxxx年在我國北京召開的國際數(shù)學(xué)家大會的會徽圖案,引出“趙爽弦圖”,讓學(xué)生了解我國古代輝煌的數(shù)學(xué)成就,引入課題。

接下來,讓學(xué)生欣賞傳說故事:相傳25前,畢達(dá)格拉斯在朋友家做客時,發(fā)現(xiàn)朋友家用磚鋪成的地面中反映了直角三角形三邊的某種數(shù)量關(guān)系。通過故事使學(xué)生明白:科學(xué)家的偉大成就多數(shù)都是在看似平淡無奇的現(xiàn)象中發(fā)現(xiàn)和研究出來的;生活中處處有數(shù)學(xué),我們應(yīng)該學(xué)會觀察、思考,將學(xué)習(xí)與生活緊密結(jié)合起來。

這樣,一方面激發(fā)學(xué)生的求知欲望,另一方面,也對學(xué)生進(jìn)行了學(xué)習(xí)方法指導(dǎo)和解決問題能力的培養(yǎng)。

2、分析探究,得出猜想。

通過對地板圖形中的等腰直角三角形到一般直角三角形中三邊關(guān)系的探究,讓同學(xué)們體驗由特殊到一般的探究過程,學(xué)習(xí)這種研究方法。

在這一過程中,學(xué)生充分利用學(xué)具去嘗試解決,力求讓學(xué)生自己探索,先在小組內(nèi)交流,然后在全班交流,盡量學(xué)習(xí)更多的方法。

3、拼圖證明,得出定理。

先了解趙爽的證明思路,然后讓學(xué)生利用學(xué)具自己剪拼,并利用圖形進(jìn)行證明。

由于難度比較大,組織學(xué)生開展小組合作學(xué)習(xí)。教師要巡回輔導(dǎo),給予學(xué)生必要的幫助。

4、反思?xì)w納,總結(jié)升華。

一是讓學(xué)生自己回顧總結(jié)本節(jié)的收獲。(當(dāng)然多數(shù)為具體的知識和方法)。二是教師要引導(dǎo)學(xué)生學(xué)習(xí)科學(xué)家敏銳的觀察力和勤于思考的作風(fēng),不斷提高自己的數(shù)學(xué)素養(yǎng),適時對大家進(jìn)行思想教育。

5、練習(xí)鞏固。

主要練習(xí)勾股定理的其它證明方法。

6、作業(yè)設(shè)計。

請你利用網(wǎng)絡(luò)資源,收集有關(guān)勾股定理的證明方法來進(jìn)行學(xué)習(xí)。寫出有關(guān)勾股定理知識的小論文。一個月過去了,我已忘記了這一項特殊的作業(yè),但部分學(xué)生卻寫出了出乎意料的小論文。

通過這節(jié)課的兩種不同的上法,以及學(xué)生的不同表現(xiàn)與收獲,讓我更深刻地認(rèn)識到:

(3)要相信學(xué)生的能力,為學(xué)生創(chuàng)造自我學(xué)習(xí)和創(chuàng)造的機會(如布置開放性的學(xué)習(xí)任務(wù):數(shù)學(xué)實踐活動、研究學(xué)習(xí)、寫小論文等)。

我相信:只要堅持不懈地這樣去做,不但能很好地實施新課改,實現(xiàn)教育的本來目標(biāo),而且也一定能讓學(xué)生“考出”好的成績;不過,這樣教師一定不會輕松。

八年級數(shù)學(xué)下勾股定理的證明二教案篇十二

1.經(jīng)歷分式方程的概念,能將實際問題中的等量關(guān)系用分式方程 表示,體會分式方程的模型作用.

2.經(jīng)歷實際問題-分式方程方程模型的過程,發(fā)展學(xué)生分析問題、解決問題的能力,滲透數(shù)學(xué)的轉(zhuǎn)化思想人體,培養(yǎng)學(xué)生的應(yīng)用意識。

3.在活動中培養(yǎng)學(xué)生樂于探究、合作學(xué)習(xí)的習(xí)慣,培養(yǎng)學(xué) 生努力尋找 解決問題的進(jìn)取心,體會數(shù)學(xué)的應(yīng)用價值.

將實際問題中的等量 關(guān)系用分式方程表示

找實際問題中的等量關(guān)系

有兩塊面積相同的小麥試驗田,第一塊使用原品種,第二 塊使用新品種,分別收獲小麥9000 kg和15000 kg。已知第一塊試驗田每公頃的產(chǎn)量比第二塊少3000 kg,分別求這兩塊試驗田每 公頃 的產(chǎn)量。你能找出這一問題中的所有等量關(guān)系嗎?(分組交流)

如果設(shè)第一塊試驗田 每公頃的產(chǎn)量為 kg,那么第二塊試驗田每公頃的產(chǎn)量是________kg。

根據(jù)題意,可得方程___________________

從甲地到乙地有兩條公路:一條是全長600 km的普通 公路,另一條是全長480 km的高速公路。某客 車在 高速公路上行駛的平均速度比在普通公路上快45 km/h,由高速 公路從甲地到乙地所需的時間 是由普通公路從甲地到乙地所需時間的一半。求該客車由高速公路從 甲地到乙地所需的時間。

這 一問題中有哪些等量關(guān)系?

如果設(shè)客車由高速公路從甲地到乙地 所需的時間為 h,那么它由普通公路從甲地到乙地所需的時間為_________h。

根據(jù)題意,可得方程_ _____________________。

學(xué)生分組探討、交流,列出方程.

上面所得到的方程有什么共同特點?

分母中含有未知數(shù)的方程叫做分式方程

分式方程與整式方程有什么區(qū)別?

(3)根據(jù)分式方程 編一道應(yīng)用題,然后同組交流,看誰編得好

本節(jié)課你學(xué)到了哪些知識?有什么感想?

八年級數(shù)學(xué)下勾股定理的證明二教案篇十三

1、了解方差的定義和計算公式。

2、理解方差概念產(chǎn)生和形成過程。

3、會用方差計算公式比較兩組數(shù)據(jù)波動大小。

重點:掌握方差產(chǎn)生的必要性和應(yīng)用方差公式解決實際問題。

難點:理解方差公式。

(一)知識詳解:

方差:設(shè)有n個數(shù)據(jù),各數(shù)據(jù)與它們的平均數(shù)的差的平方分別為。

用它們的平均數(shù)表示這組數(shù)據(jù)的方差,即。

給力小貼士:方差越小說明這組數(shù)據(jù)越穩(wěn)定,波動性越低。

(二)自主檢測小練習(xí):

1、已知一組數(shù)據(jù)為2.0、-1.3、-4,則這組數(shù)據(jù)的方差為。

2、甲、乙兩組數(shù)據(jù)如下:

甲組:1091181213107;

乙組:7891011121112。

分別計算出這兩組數(shù)據(jù)的極差和方差,并說明哪一組數(shù)據(jù)波動較小。

引例:問題:從甲、乙兩種農(nóng)作物中各抽取10株苗,分別測得它的苗高如下(單位:cm):

甲:9.10.10.13.7.13.10.8.11.8;

乙:8.13.12.11.10.12.7.7.10.10;

問:(1)哪種農(nóng)作物的苗長較高(可以計算它們的平均數(shù):=)?

(2)哪種農(nóng)作物的苗長較整齊?(可以計算它們的極差,你可以發(fā)現(xiàn))。

歸納:方差:設(shè)有n個數(shù)據(jù),各數(shù)據(jù)與它們的平均數(shù)的差的平方分別為。

用它們的平均數(shù)表示這組數(shù)據(jù)的方差,即用來表示。

(一)例題講解:

金志強1013161412。

提示:先求平均數(shù),然后使用公式計算方差。

(二)小試身手。

1、甲、乙兩名學(xué)生在相同條件下各射擊靶10次,命中的環(huán)數(shù)如下:

甲:7.8.6.8.6.5.9.10.7.4。

乙:9.5.7.8.7.6.8.6.7.7。

經(jīng)過計算,兩人射擊環(huán)數(shù)的平均數(shù)是,但s=,s=,則ss,所以確定去參加比賽。

1、求下列數(shù)據(jù)的眾數(shù):

(1)3.2.5.3.1.2.3(2)5.2.1.5.3.5.2.2。

方差公式:

提示:方差越小,說明這組數(shù)據(jù)越集中。波動性越小。

每課一首詩:求方差,有公式;先平均,再求差;求平方,再平均;所得數(shù),是方差。

1、小爽和小兵在10次百米跑步練習(xí)中的成績?nèi)缦卤硭荆?單位:秒)。

如果根據(jù)這些成績選拔一人參加比賽,你會選誰呢?

必做題:教材141頁練習(xí)1.2;選做題:練習(xí)冊對應(yīng)部分習(xí)題。

寫下你的收獲,交流你的經(jīng)驗,分享你的成果,你會感到無比的快樂!

八年級數(shù)學(xué)下勾股定理的證明二教案篇十四

本節(jié)內(nèi)容的重點是線段垂直平分線定理及其逆定理.定理反映了線段垂直平分線的性質(zhì),是證明兩條線段相等的依據(jù);逆定理反映了線段垂直平分線的判定,是證明某點在某條直線上及一條直線是已知線段的垂直平分線的依據(jù).

本節(jié)內(nèi)容的難點是定理及逆定理的關(guān)系.垂直平分線定理和其逆定理,題設(shè)與結(jié)論正好相反.學(xué)生在應(yīng)用它們的時候,容易混淆,幫助學(xué)生認(rèn)識定理及其逆定理的區(qū)別,這是本節(jié)的難點.

本節(jié)課教學(xué)模式主要采用“學(xué)生主體性學(xué)習(xí)”的教學(xué)模式.提出問題讓學(xué)生想,設(shè)計問題讓學(xué)生做,錯誤原因讓學(xué)生說,方法與規(guī)律讓學(xué)生歸納.教師的作用在于組織、點撥、引導(dǎo),促進(jìn)學(xué)生主動探索,積極思考,大膽想象,總結(jié)規(guī)律,充分發(fā)揮學(xué)生的主體作用,讓學(xué)生真正成為教學(xué)活動的主人.具體說明如下:

學(xué)生前面,學(xué)習(xí)過線段垂直平分線的概念,這樣由復(fù)習(xí)概念入手,順其自然提出問題:在垂直平分線上任取一點p,它到線段兩端的距離有何關(guān)系?學(xué)生會很容易得出“相等”.然后學(xué)生完成證明,找一名學(xué)生的證明過程,進(jìn)行投影總結(jié).最后,由學(xué)生將上述問題,用文字的形式進(jìn)行歸納,即得線段垂直平分線定理.這樣讓學(xué)生親自動手實踐,積極參與發(fā)現(xiàn),激發(fā)了學(xué)生的認(rèn)識沖突,使學(xué)生克服思維和探求的惰性,獲得鍛煉機會,對定理的產(chǎn)生過程,真正做到心領(lǐng)神會.

線段垂直平分線的定理及逆定理的證明都比較簡單,學(xué)生學(xué)習(xí)一般沒有什么困難,這一節(jié)的難點仍然的定理及逆定理的關(guān)系,為了很好的突破這一難點,教學(xué)時采用與角的平分線的性質(zhì)定理和逆定理對照,類比的方法進(jìn)行教學(xué),使學(xué)生進(jìn)一步認(rèn)識這兩個定理的區(qū)別和聯(lián)系.

八年級數(shù)學(xué)下勾股定理的證明二教案篇十五

教學(xué)目標(biāo):

1、知識目標(biāo):了解圖案最常見的構(gòu)圖方式:軸對稱、平移、旋轉(zhuǎn)……,理解簡單圖案設(shè)計的意圖。認(rèn)識和欣賞平移,旋轉(zhuǎn)在現(xiàn)實生活中的應(yīng)用,能夠靈活運用軸對稱、平移、旋轉(zhuǎn)的組合,設(shè)計出簡單的圖案。

2、能力目標(biāo):經(jīng)歷收集、欣賞、分析、操作和設(shè)計的過程,培養(yǎng)學(xué)生收集和整理信息的能力,分析和解決問題的能力,合作和交流的能力以及創(chuàng)新能力。

3、情感體驗點:經(jīng)歷對典型圖案設(shè)計意圖的分析,進(jìn)一步發(fā)展學(xué)生的空間觀念,增強審美意識,培養(yǎng)學(xué)生積極進(jìn)取的生活態(tài)度。

重點與難點:

重點:靈活運用軸對稱、平移、旋轉(zhuǎn)……等方法及它們的組合進(jìn)行的圖案設(shè)計。

難點:分析典型圖案的設(shè)計意圖。

疑點:在設(shè)計的圖案中清晰地表現(xiàn)自己的設(shè)計意圖。

教具學(xué)具準(zhǔn)備:

提前一周布置學(xué)生以小組為單位,通過各種渠道收集到的圖案、圖標(biāo)的剪貼、臨摹以及。多種常見的圖案及其形成過程的動畫演示。

教學(xué)過程設(shè)計:

1、情境導(dǎo)入:在優(yōu)美的音樂中,逐個展示生活中常見的典型圖案,并讓學(xué)生試著說一說每種圖案標(biāo)志的對象。(展示課本圖3—23)。

明確在欣賞了圖案后,簡單地復(fù)習(xí)旋轉(zhuǎn)的概念,為下面圖案的設(shè)計作好理論準(zhǔn)備。對教材給出的六個圖案通過觀察、分析進(jìn)行議論交流,讓學(xué)生初步了解圖案的設(shè)計中常常運用圖形變換的思想方法,為學(xué)生自己設(shè)計圖案指明方向。其中圖(1)、(2)、(3)、(4)、(5)、(6)都可以通過旋轉(zhuǎn)適合角度形成(可以讓學(xué)生自己說說每個旋轉(zhuǎn)的角度和旋轉(zhuǎn)的次數(shù)及旋轉(zhuǎn)中心的位置),另外圖(2)、(3)、(5)也可以通過軸對稱變換形成(可以讓學(xué)生指出對軸對稱及對稱軸的條數(shù)),而圖(2)可以通過平移形成。

2、課本。

1欣賞課本75頁圖3—24的圖案,并分析這個圖案形成過程。

評注:圖案是密鋪圖案的代表,旨在通過對典型圖案的分析欣賞,使學(xué)生逐步能夠進(jìn)行圖案設(shè)計,同時了解軸對稱、平移、旋轉(zhuǎn)變換是圖案制作的基本手段。例題解答的關(guān)鍵是確定“基本圖案”,然后再運用平移、旋轉(zhuǎn)關(guān)系加以說明,注意旋轉(zhuǎn)中心可以為圖形上某一特征的點。

評注:可以取其中的任何一個為基本圖案,然后通過變換得到。而且變化方式也可以是:左下角的圖案通過軸對稱變換得到左上圖和右下圖。

(二)課內(nèi)練習(xí)。

(1)以小組為單位,由每組指定一個同學(xué)展示該組搜集得到的圖案,并在全班交流。

(2)利用下面提供的基本圖形,用平移、旋轉(zhuǎn)、軸對稱、中心對稱等方法進(jìn)行圖案設(shè)計,并簡要說明自己的設(shè)計意圖。

(三)議一議。

生活中還有那些圖案用到了平移或旋轉(zhuǎn)?分析其中的一個,并與同伴進(jìn)行交流。

(四)課時小結(jié)。

本課時的重點是了解平移、旋轉(zhuǎn)和軸對稱變換是圖案設(shè)計的基本方法,并能運用這些變換設(shè)計出一些簡單的圖案。

通過今天的學(xué)習(xí),你對圖案的設(shè)計又增加了哪些新的認(rèn)識?(可以利用平移、旋轉(zhuǎn)、軸對稱等多種方法來設(shè)計,而且設(shè)計的圖案要能表達(dá)自己的創(chuàng)作意圖,再就是圖案的設(shè)計一定要新穎,獨特,這樣才能使人過目不忘,達(dá)到標(biāo)志的效果。)。

進(jìn)一步搜集身邊的各種標(biāo)志性圖案,嘗試著重新設(shè)計它,并結(jié)合實際背景分析它的設(shè)計意圖。

八年級數(shù)學(xué)下勾股定理的證明二教案篇十六

1、理解極差的定義,知道極差是用來反映數(shù)據(jù)波動范圍的一個量.

2、會求一組數(shù)據(jù)的極差.

1、重點:會求一組數(shù)據(jù)的極差.

2、難點:本節(jié)課內(nèi)容較容易接受,不存在難點、

從表中你能得到哪些信息?

比較兩段時間氣溫的高低,求平均氣溫是一種常用的方法、

這是不是說,兩個時段的氣溫情況沒有什么差異呢?

根據(jù)兩段時間的氣溫情況可繪成的折線圖、

觀察一下,它們有區(qū)別嗎?說說你觀察得到的結(jié)果、

本節(jié)課在教材中沒有相應(yīng)的例題,教材p152習(xí)題分析。

問題1可由極差計算公式直接得出,由于差值較大,結(jié)合本題背景可以說明該村貧富差距較大、問題2涉及前一個學(xué)期統(tǒng)計知識首先應(yīng)回憶復(fù)習(xí)已學(xué)知識、問題3答案并不唯一,合理即可。

八年級數(shù)學(xué)下勾股定理的證明二教案篇十七

調(diào)查中,所要考察對象的全體稱為總體,而組成總體的每一個考察對象稱為個體。

例如,某班10名女生的考試成績是總體,每一名女生的考試成績是個體。

從總體中抽取部分個體進(jìn)行調(diào)查,這種調(diào)查稱為抽樣調(diào)查,其中從總體中抽取的一部分個體叫做總體的一個樣本。

例如,要調(diào)查全縣農(nóng)村中學(xué)生學(xué)生平均每周每人的零花錢數(shù),由于人數(shù)較多(一般涉及幾萬人),我們從中抽取500名學(xué)生進(jìn)行調(diào)查,就是抽樣調(diào)查,這500名學(xué)生平均每周每人的零花錢數(shù),就是總體的一個樣本。

將一組數(shù)據(jù)按照由小到大(或由大到小)的順序排列,如果數(shù)據(jù)的個數(shù)是奇數(shù),則處于中間位置的數(shù)稱為這組數(shù)據(jù)的中位數(shù);如果數(shù)據(jù)的個數(shù)是偶數(shù),則中間兩個數(shù)據(jù)的平均數(shù)稱為這組數(shù)據(jù)的中位數(shù)。

一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)就是這組數(shù)據(jù)的眾數(shù)。

例如:求一組數(shù)據(jù)3,2,3,5,3,1的眾數(shù)。

解:這組數(shù)據(jù)中3出現(xiàn)3次,2,5,1均出現(xiàn)1次。所以3是這組數(shù)據(jù)的眾數(shù)。

又如:求一組數(shù)據(jù)2,3,5,2,3,6的眾數(shù)。

解:這組數(shù)據(jù)中2出現(xiàn)2次,3出現(xiàn)2次,5,6各出現(xiàn)1次。

所以這組數(shù)據(jù)的眾數(shù)是2和3。

【規(guī)律方法小結(jié)】。

(1)平均數(shù)、中位數(shù)、眾數(shù)都是描述一組數(shù)據(jù)集中趨勢的量。

(2)平均數(shù)反映一組數(shù)據(jù)的平均水平,與這組數(shù)據(jù)中的每個數(shù)據(jù)都有關(guān),是最為重要的量。

(3)中位數(shù)不受個別偏大或偏小數(shù)據(jù)的影響,當(dāng)一組數(shù)據(jù)中的個別數(shù)據(jù)變動較大時,一般用它來描述集中趨勢。

(4)眾數(shù)只與數(shù)據(jù)出現(xiàn)的頻數(shù)有關(guān),不受個別數(shù)據(jù)影響,有時是我們最為關(guān)心的統(tǒng)計數(shù)據(jù)。

探究交流。

1、一組數(shù)據(jù)的中位數(shù)一定是這組數(shù)據(jù)中的一個,這句話對嗎?為什么?

解析:不對,一組數(shù)據(jù)的中位數(shù)不一定是這組數(shù)據(jù)中的一個,當(dāng)這組數(shù)據(jù)有偶數(shù)個時,中位數(shù)由中間兩個數(shù)的平均數(shù)決定,若中間兩數(shù)相等,則這組數(shù)據(jù)的中位數(shù)在這組數(shù)據(jù)之中,反之,中位數(shù)不在這組數(shù)據(jù)之中。

總結(jié):

(1)中位數(shù)在一組數(shù)據(jù)中是唯一的,可能是這組數(shù)據(jù)中的一個,也可能不是這組數(shù)據(jù)中的數(shù)據(jù)。

(2)求中位數(shù)時,先將數(shù)據(jù)按由小到大的順序排列(或按由大到小的順序排列)。若這組數(shù)據(jù)是奇數(shù)個,則最中間的數(shù)據(jù)是中位數(shù);若這組數(shù)據(jù)是偶數(shù)個,則最中間的兩個數(shù)據(jù)的平均數(shù)是中位數(shù)。

(3)中位數(shù)的單位與數(shù)據(jù)的單位相同。

(4)中位數(shù)與數(shù)據(jù)排序有關(guān)。當(dāng)一組數(shù)據(jù)中的個別數(shù)據(jù)變動較大時,可用中位數(shù)來描述這組數(shù)據(jù)的集中趨勢。

課堂檢測。

基本概念題。

1、填空題。

(1)數(shù)據(jù)15,23,17,18,22的平均數(shù)是;

(4)為了考察某公園一年中每天進(jìn)園的人數(shù),在其中的30天里,對進(jìn)園的人數(shù)進(jìn)行了統(tǒng)計,這個問題中的總體是________,樣本是________,個體是________。

基礎(chǔ)知識應(yīng)用題。

2、某公交線路總站設(shè)在一居民小區(qū)附近,為了了解高峰時段從總站乘車出行的人數(shù),隨機抽查了10個班次的乘車人數(shù),結(jié)果如下:20,23,26,25,29,28,30,25,21,23。

(1)計算這10個班次乘車人數(shù)的平均數(shù);

(2)如果在高峰時段從總站共發(fā)車60個班次,根據(jù)前面的計算結(jié)果,估計在高峰時段從總站乘該路車出行的乘客共有多少。

八年級數(shù)學(xué)下勾股定理的證明二教案篇十八

1.了解算術(shù)平方根的概念,會用根號表示正數(shù)的算術(shù)平方根,并了解算術(shù)平方根的非負(fù)性。

2.了解開方與乘方互為逆運算,會用平方運算求某些非負(fù)數(shù)的算術(shù)平方根。

算術(shù)平方根的概念。

根據(jù)算術(shù)平方根的概念正確求出非負(fù)數(shù)的算術(shù)平方根。

這就要用到平方根的概念,也就是本章的主要學(xué)習(xí)內(nèi)容.這節(jié)課我們先學(xué)習(xí)有關(guān)算術(shù)平方根的概念.

1、提出問題:(書p68頁的問題)

你是怎樣算出畫框的邊長等于5dm的呢?(學(xué)生思考并交流解法)

這個問題相當(dāng)于在等式擴=25中求出正數(shù)x的值.

一般地,如果一個正數(shù)x的平方等于a,即=a,那么這個正數(shù)x叫做a的算術(shù)平方根.a的算術(shù)平方根記為,讀作根號a,a叫做被開方數(shù).規(guī)定:0的算術(shù)平方根是0.

也就是,在等式=a (x0)中,規(guī)定x = .

2、試一試:你能根據(jù)等式:=144說出144的算術(shù)平方根是多少嗎?并用等式表示出來.

3、想一想:下列式子表示什么意思?你能求出它們的值嗎?

建議:求值時,要按照算術(shù)平方根的意義,寫出應(yīng)該滿足的關(guān)系式,然后按照算術(shù)平方根的記法寫出對應(yīng)的值.例如表示25的算術(shù)平方根。

4、例1求下列各數(shù)的算術(shù)平方根:

(1)100;(2)1;(3) ;(4)0.0001

p69練習(xí)1、2

怎樣用兩個面積為1的小正方形拼成一個面積為2的大正方形?

方法1:課本中的方法,略;

方法2:

可還有其他方法,鼓勵學(xué)生探究。

問題:這個大正方形的邊長應(yīng)該是多少呢?

大正方形的邊長是,表示2的算術(shù)平方根,它到底是個多大的數(shù)?你能求出它的值嗎?

建議學(xué)生觀察圖形感受的大小.小正方形的對角線的長是多少呢?(用刻度尺測量它與大正方形的邊長的大小)它的近似值我們將在下節(jié)課探究.

1、這節(jié)課學(xué)習(xí)了什么呢?

2、算術(shù)平方根的具體意義是怎么樣的?

3、怎樣求一個正數(shù)的算術(shù)平方根

p75習(xí)題13.1活動第1、2、3題

【本文地址:http://mlvmservice.com/zuowen/17199703.html】

全文閱讀已結(jié)束,如果需要下載本文請點擊

下載此文檔