分解因式教案(實用18篇)

格式:DOC 上傳日期:2023-12-03 13:32:20
分解因式教案(實用18篇)
時間:2023-12-03 13:32:20     小編:MJ筆神

教案的編寫應(yīng)該注重學生的主體地位,激發(fā)學生的學習主動性。教案中的教學資源要充分利用,提高教學效果。以下是小編為大家整理的一些教案模板,供教師們參考和使用。

分解因式教案篇一

這節(jié)課學習的主要內(nèi)容是運用平方差公式進行因式分解,學習時如果直接就給同學們講把前面在整式的乘法中學習到的平方差公式反過來運用就形成了因式分解的平方差公式,然后就是反復(fù)的運用、反復(fù)的操練的話,學生學起來就會覺得沒有味道,對數(shù)學有一種厭煩感,所以我就想到了運用逆向思維的方法來學習這節(jié)課的內(nèi)容。

在新課引入的過程中,我首先讓學生回憶了前面在整式的乘法中遇到的乘法公式,比如平方差公式、完全平方公式。接著就讓學生利用平方差公式做三個整式乘法的運算。然后,我巧妙的將剛才用平方差公式計算得出的三個多項式作為因式分解的題目請學生嘗試一下。只見我的題目一出來,學生就爭先恐后地回答出來了。待學生回答完之后,我馬上追問“為什么”時,學生輕而易舉地講出是將原來的平方差公式反過來運用,馬上使學生形成了一種逆向的思維方式。之后,我就順利地和同學們一起分析了因式分解中的平方差公式——兩數(shù)的平方差等于這兩個數(shù)的和與這兩個數(shù)的差的積,討論了“怎樣的多項式能用平方差公式因式分解?”可以說,對新問題的引入,我是采取了由淺入深的方法,使學生對新知識不產(chǎn)生任何的畏懼感。接下來,通過例題的講解、練習的鞏固讓學生逐步掌握了運用平方差公式進行因式分解。

分解因式教案篇二

根據(jù)本節(jié)課的內(nèi)容特點,主要采用師生合作討論式課堂教學方法,以教師為主導(dǎo),學生為主體,動手實踐訓(xùn)練為主線,創(chuàng)新思維為核心,態(tài)度情感能力為目標,引導(dǎo)學生自主探索,動手實踐,合作交流。注重使學生經(jīng)辦觀察、操作、推理等探索過程。這種教學理念,反映了時代精神,有利于提高學生的數(shù)學素養(yǎng),能有效地激發(fā)學生的思維積極性,學生在學習過程中調(diào)動各種感官,進行觀察與抽象、操作與思考、自主與交流等,進而改進學生的學習方法。

分解因式教案篇三

會應(yīng)用平方差公式進行因式分解,發(fā)展學生推理能力。

2、過程與方法。

經(jīng)歷探索利用平方差公式進行因式分解的過程,發(fā)展學生的逆向思維,感受數(shù)學知識的完整性。

3、情感、態(tài)度與價值觀。

培養(yǎng)學生良好的互動交流的習慣,體會數(shù)學在實際問題中的應(yīng)用價值。

1、重點:利用平方差公式分解因式。

2、難點:領(lǐng)會因式分解的解題步驟和分解因式的徹底性。

3、關(guān)鍵:應(yīng)用逆向思維的方向,演繹出平方差公式,對公式的應(yīng)用首先要注意其特征,其次要做好式的變形,把問題轉(zhuǎn)化成能夠應(yīng)用公式的方面上來。

采用“問題解決”的教學方法,讓學生在問題的'牽引下,推進自己的思維。

一、觀察探討,體驗新知。

【問題牽引】。

請同學們計算下列各式。

(1)(a+5)(a—5);(2)(4m+3n)(4m—3n)。

【學生活動】動筆計算出上面的兩道題,并踴躍上臺板演。

(1)(a+5)(a—5)=a2—52=a2—25;

(2)(4m+3n)(4m—3n)=(4m)2—(3n)2=16m2—9n2。

【教師活動】引導(dǎo)學生完成下面的兩道題目,并運用數(shù)學“互逆”的思想,尋找因式分解的規(guī)律。

1、分解因式:a2—25;2、分解因式16m2—9n。

【學生活動】從逆向思維入手,很快得到下面答案:

(1)a2—25=a2—52=(a+5)(a—5)。

(2)16m2—9n2=(4m)2—(3n)2=(4m+3n)(4m—3n)。

【教師活動】引導(dǎo)學生完成a2—b2=(a+b)(a—b)的同時,導(dǎo)出課題:用平方差公式因式分解。

平方差公式:a2—b2=(a+b)(a—b)。

評析:平方差公式中的字母a、b,教學中還要強調(diào)一下,可以表示數(shù)、含字母的代數(shù)式(單項式、多項式)。

二、范例學習,應(yīng)用所學。

【例1】把下列各式分解因式:(投影顯示或板書)。

(1)x2—9y2;(2)16x4—y4;

(3)12a2x2—27b2y2;(4)(x+2y)2—(x—3y)2;

(5)m2(16x—y)+n2(y—16x)。

【思路點撥】在觀察中發(fā)現(xiàn)1~5題均滿足平方差公式的特征,可以使用平方差公式因式分解。

【教師活動】啟發(fā)學生從平方差公式的角度進行因式分解,請5位學生上講臺板演。

【學生活動】分四人小組,合作探究。

解:(1)x2—9y2=(x+3y)(x—3y);

(5)m2(16x—y)+n2(y—16x)。

=(16x—y)(m2—n2)=(16x—y)(m+n)(m—n)。

分解因式教案篇四

“整式的乘法”是整式的加減的后續(xù)學習從冪的運算到各種整式的乘法,整章教材都突出了學生的自主探索過程,依據(jù)原有的知識基礎(chǔ),或運用乘法的各種運算規(guī)律,或借助直觀而又形象的圖形面積,得到各種運算的基本法則、兩個主要的乘法公式及因式分解的基本方法學生自己對知識內(nèi)容的探索、認識與體驗,完全有利于學生形成合理的知識結(jié)構(gòu),提高數(shù)學思維能力.利用公式法進行因式分解時,注意把握多項式的特點,對比乘法公式乘積結(jié)果的形式,選擇正確的分解方法。

因式分解是一種常用的代數(shù)式的恒等變形,因式分解是多項式乘法公式的逆向變形,它是將一個多項式變形為多項式與多項式的乘積。

2、教學目標。

(1)會推導(dǎo)乘法公式。

(2)在應(yīng)用乘法公式進行計算的基礎(chǔ)上,感受乘法公式的作用和價值。

(3)會用提公因式法、公式法進行因式分解。

(4)了解因式分解的一般步驟。

(5)在因式分解中,經(jīng)歷觀察、探索和做出推斷的過程,提高分析問題和解決問題的能力。

3、重點、難點和關(guān)鍵。

重點:乘法公式的意義、分式的由來和正確運用;用提公因式法和公式法進行因式分解。

難點:正確運用乘法公式;正確分解因式。

關(guān)鍵:正確理解乘法公式和因式分解的意義。

3.讓學生掌握基本的數(shù)學事實與數(shù)學活動經(jīng)驗,減輕不必要的記憶負擔.。

2.1平方差公式1課時。

2.2完全平方公式2課時。

初中優(yōu)秀......

初中(通用13篇)作為一位不辭辛勞的人民教師,通常需要用到教案來輔助教學,教案有利于教學水平的提高,有助于教研活動的開展。來參考自己需要的教案吧!下面是小編為......

分解因式教案篇五

1.會求反比例函數(shù)的解析式;2.鞏固反比例函數(shù)圖象和性質(zhì),通過對圖象的分析,進一步探究反比例函數(shù)的增減性.

【過程與方法】。

經(jīng)歷觀察、分析、交流的過程,逐步提高運用知識的能力.

【情感態(tài)度】。

提高學生的觀察、分析能力和對圖形的感知水平.

【教學重點】。

會求反比例函數(shù)的解析式.

【教學難點】。

反比例函數(shù)圖象和性質(zhì)的運用.

教學過程。

一、情景導(dǎo)入,初步認知。

【教學說明】復(fù)習上節(jié)課的內(nèi)容,同時引入新課.

二、思考探究,獲取新知。

1.思考:已知反比例函數(shù)y=的圖象經(jīng)過點p(2,4)。

(1)求k的值,并寫出該函數(shù)的表達式;。

(2)判斷點a(-2,-4),b(3,5)是否在這個函數(shù)的圖象上;。

分析:

(1)題中已知圖象經(jīng)過點p(2,4),即表明把p點坐標代入解析式成立,這樣能求出k,解析式也就確定了.

(2)要判斷a、b是否在這條函數(shù)圖象上,就是把a、b的坐標代入函數(shù)解析式中,如能使解析式成立,則這個點就在函數(shù)圖象上.否則不在.

(3)根據(jù)k的正負性,利用反比例函數(shù)的性質(zhì)來判定函數(shù)圖象所在的象限、y隨x的值的變化情況.

【歸納結(jié)論】這種求解析式的方法叫做待定系數(shù)法求解析式.

2.下圖是反比例函數(shù)y=的圖象,根據(jù)圖象,回答下列問題:

(1)k的取值范圍是k0還是k0?說明理由;。

(2)如果點a(-3,y1),b(-2,y2)是該函數(shù)圖象上的兩點,試比較y1,y2的大小.分析:

(1)由圖象可知,反比例函數(shù)y=kx的圖象的兩支曲線分別位于第一、三象限內(nèi),在每個象限內(nèi),函數(shù)值y隨自變量x的增大而減小,因此,k0.

(2)因為點a(-3,y1),b(-2,y2)是該函數(shù)圖象上的兩點且-30,-20.所以點a、b都位于第三象限,又因為-3-2,由反比例函數(shù)的圖像的性質(zhì)可知:y1y2.

【教學說明】通過觀察圖象,使學生掌握利用函數(shù)圖象比較函數(shù)值大小的方法.

分解因式教案篇六

因式分解是初中數(shù)學中的一個重點內(nèi)容,也是一項重要的基本技能和基礎(chǔ)知識,更是一種數(shù)學的變形方法,在今后的學習中有著重要的作用。因此,除了單純的因式分解問題外,因式分解在解某些數(shù)學問題中有著廣泛的作用,因式分解在三角形中的應(yīng)用,因式分解可以用來證明代數(shù)問題,用于代數(shù)式的求值,用于求不定方程,用于解應(yīng)用題解決有關(guān)復(fù)雜數(shù)值的計算,本節(jié)課的例題因式分解在數(shù)學題中的簡單應(yīng)用。

分解因式教案篇七

3、選擇恰當?shù)姆椒ㄟM行因式分解。

4、應(yīng)用因式分解來解決一些實際問題。

5、體驗應(yīng)用知識解決問題的樂趣。

靈活運用因式分解解決問題。

靈活運用恰當?shù)囊蚴椒纸獾姆椒ǎ卣咕毩?、3。

一、創(chuàng)設(shè)情景:若a=101,b=99,求a2-b2的值。

利用因式分解往往能將一些復(fù)雜的運算簡單化,那么我們先來回顧一下什么是因式分解和怎樣來因式分解。

二、知識回顧。

1、因式分解定義:把一個多項式化成幾個整式積的形式,這種變形叫做把這個多項式分解因式。

判斷下列各式哪些是因式分解?(讓學生先思考,教師提問講解,讓學生明確因式分解的概念以及與乘法的關(guān)系)。

(7)。2πr+2πr=2π(r+r)因式分解。

2、。規(guī)律總結(jié)(教師講解):分解因式與整式乘法是互逆過程。

分解因式要注意以下幾點:(1)。分解的對象必須是多項式。

(2)。分解的結(jié)果一定是幾個整式的乘積的形式。(3)。要分解到不能分解為止。

4、強化訓(xùn)練。

教學引入。

師:教材在《四邊形》這一章《引言》里有這樣一句話:把一個長方形折疊就可以得到一個正方形。現(xiàn)在請同學們拿出一個長方形紙條,按動畫所示進行折疊處理。

動畫演示:

場景一:正方形折疊演示。

師:這就是我們得到的正方形。下面請同學們拿出三角板(刻度尺)和圓規(guī),我們來研究正方形的幾何性質(zhì)—邊、角以及對角線之間的關(guān)系。請大家測量各邊的長度、各角的大小、對角線的長度以及對角線交點到各頂點的長度。

[學生活動:各自測量。]。

鼓勵學生將測量結(jié)果與鄰近同學進行比較,找出共同點。

講授新課。

找一兩個學生表述其結(jié)論,表述是要注意糾正其語言的規(guī)范性。

動畫演示:

場景二:正方形的性質(zhì)。

師:這些性質(zhì)里那些是矩形的性質(zhì)?

[學生活動:尋找矩形性質(zhì)。]。

動畫演示:

場景三:矩形的性質(zhì)。

師:同樣在這些性質(zhì)里尋找屬于菱形的性質(zhì)。

[學生活動;尋找菱形性質(zhì)。]。

動畫演示:

場景四:菱形的性質(zhì)。

師:這說明正方形具有矩形和菱形的全部性質(zhì)。

及時提出問題,引導(dǎo)學生進行思考。

師:根據(jù)這些性質(zhì),我們能不能給正方形下一個定義?怎么樣給正方形下一個準確的定義?

[學生活動:積極思考,有同學做躍躍欲試狀。]。

師:請同學們回想矩形與菱形的定義,可以根據(jù)矩形與菱形的定義類似的給出正方形的定義。

學生應(yīng)能夠向出十種左右的定義方式,其余作相應(yīng)鼓勵,把以下三種板書:

“有一組鄰邊相等的矩形叫做正方形?!?/p>

“有一個角是直角的菱形叫做正方形?!?/p>

“有一個角是直角且有一組鄰邊相等的平行四邊形叫做正方形。”

師:根據(jù)定義,我們把平行四邊形、矩形、菱形和正方形它們之間的關(guān)系梳理一下。

試一試把下列各式因式分解:。

(1)。1-x2=(1+x)(1-x)(2)。4a2+4a+1=(2a+1)2。

(3)。4x2-8x=4x(x-2)(4)。2x2y-6xy2=2xy(x-3y)。

三、例題講解。

例1、分解因式。

(1)-x3y3+x2y+xy(2)6(x-2)+2x(2-x)。

(3)(4)y2+y+。

例2、分解因式。

4、-1-2a-a2=5、x2-6x+9-y26、x2-4y2+x+2y=。

例3、分解因式。

1、72-2(13x-7)22、8a2b2-2a4b-8b3。

三、知識應(yīng)用。

1、(4x2-9y2)÷(2x+3y)2、(a2b-ab2)÷(b-a)。

3、解方程:(1)x2=5x(2)(x-2)2=(2x+1)2。

四、拓展應(yīng)用。

2、20042+20xx被20xx整除嗎?

3、若n是整數(shù),證明(2n+1)2-(2n-1)2是8的倍數(shù)。

五、課堂小結(jié):今天你對因式分解又有哪些新的認識?

分解因式教案篇八

原式變形后,利用完全平方公式變形,計算即可得到結(jié)果.

此題考查了因式分解的應(yīng)用,熟練掌握平方差公式及完全平方公式是解本題的關(guān)鍵.

22.已知等式配方后,利用非負數(shù)的性質(zhì)求出a與b的值,即可確定出三角形周長.

此題考查了因式分解的應(yīng)用,熟練掌握完全平方公式是解本題的關(guān)鍵.

23.原式利用平方差公式分解得到結(jié)果,即可做出判斷.

此題考查了因式分解的應(yīng)用,熟練掌握平方差公式是解本題的關(guān)鍵.

24.本題考查了分式的化簡求值,解答此題的關(guān)鍵是把分式化到最簡,然后代值計算.先將分式的分母分解因式,再約分,然后將已知變形為代入原式即可求解.

分解因式教案篇九

“整式的乘法”是整式的加減的后續(xù)學習從冪的運算到各種整式的乘法,整章教材都突出了學生的自主探索過程,依據(jù)原有的知識基礎(chǔ),或運用乘法的各種運算規(guī)律,或借助直觀而又形象的圖形面積,得到各種運算的基本法則、兩個主要的乘法公式及因式分解的基本方法學生自己對知識內(nèi)容的探索、認識與體驗,完全有利于學生形成合理的知識結(jié)構(gòu),提高數(shù)學思維能力.利用公式法進行因式分解時,注意把握多項式的特點,對比乘法公式乘積結(jié)果的形式,選擇正確的分解方法。

因式分解是一種常用的代數(shù)式的恒等變形,因式分解是多項式乘法公式的逆向變形,它是將一個多項式變形為多項式與多項式的乘積。

2、教學目標。

(1)會推導(dǎo)乘法公式。

(2)在應(yīng)用乘法公式進行計算的基礎(chǔ)上,感受乘法公式的作用和價值。

(3)會用提公因式法、公式法進行因式分解。

(5)在因式分解中,經(jīng)歷觀察、探索和做出推斷的過程,提高分析問題和解決問題的能力。

3、重點、難點和關(guān)鍵。

重點:乘法公式的意義、分式的由來和正確運用;用提公因式法和公式法進行因式分解。

難點:正確運用乘法公式;正確分解因式。

關(guān)鍵:正確理解乘法公式和因式分解的意義。

3.讓學生掌握基本的數(shù)學事實與數(shù)學活動經(jīng)驗,減輕不必要的記憶負擔.。

2.1平方差公式1課時。

2.2完全平方公式2課時。

2.3用提公因式法進行因式分解1課時。

分解因式教案篇十

3、選擇恰當?shù)姆椒ㄟM行因式分解。

5、體驗應(yīng)用知識解決問題的樂趣。

靈活運用恰當?shù)囊蚴椒纸獾姆椒ǎ卣咕毩?、3。

一、創(chuàng)設(shè)情景:若a=101,b=99,求a2-b2的值。

利用因式分解往往能將一些復(fù)雜的運算簡單化,那么我們先來回顧一下什么是因式分解和怎樣來因式分解。

二、知識回顧。

1、因式分解定義:把一個多項式化成幾個整式積的形式,這種變形叫做把這個多項式分解因式.

判斷下列各式哪些是因式分解?(讓學生先思考,教師提問講解,讓學生明確因式分解的概念以及與乘法的關(guān)系)。

2、.規(guī)律總結(jié)(教師講解):分解因式與整式乘法是互逆過程.

分解因式要注意以下幾點:(1).分解的對象必須是多項式.

(2).分解的結(jié)果一定是幾個整式的乘積的形式.(3).要分解到不能分解為止.

4、強化訓(xùn)練。

教學引入。

師:教材在《四邊形》這一章《引言》里有這樣一句話:把一個長方形折疊就可以得到一個正方形?,F(xiàn)在請同學們拿出一個長方形紙條,按動畫所示進行折疊處理。

動畫演示:

場景一:正方形折疊演示。

師:這就是我們得到的正方形。下面請同學們拿出三角板(刻度尺)和圓規(guī),我們來研究正方形的幾何性質(zhì)—邊、角以及對角線之間的關(guān)系。請大家測量各邊的長度、各角的大小、對角線的長度以及對角線交點到各頂點的長度。

[學生活動:各自測量。]。

鼓勵學生將測量結(jié)果與鄰近同學進行比較,找出共同點。

講授新課。

找一兩個學生表述其結(jié)論,表述是要注意糾正其語言的規(guī)范性。

動畫演示:

場景二:正方形的性質(zhì)。

師:這些性質(zhì)里那些是矩形的性質(zhì)?

[學生活動:尋找矩形性質(zhì)。]。

動畫演示:

場景三:矩形的性質(zhì)。

師:同樣在這些性質(zhì)里尋找屬于菱形的性質(zhì)。

[學生活動;尋找菱形性質(zhì)。]。

動畫演示:

場景四:菱形的性質(zhì)。

師:這說明正方形具有矩形和菱形的全部性質(zhì)。

及時提出問題,引導(dǎo)學生進行思考。

師:根據(jù)這些性質(zhì),我們能不能給正方形下一個定義?怎么樣給正方形下一個準確的定義?

[學生活動:積極思考,有同學做躍躍欲試狀。]。

師:請同學們回想矩形與菱形的`定義,可以根據(jù)矩形與菱形的定義類似的給出正方形的定義。

學生應(yīng)能夠向出十種左右的定義方式,其余作相應(yīng)鼓勵,把以下三種板書:

“有一組鄰邊相等的矩形叫做正方形。”

“有一個角是直角的菱形叫做正方形?!?/p>

“有一個角是直角且有一組鄰邊相等的平行四邊形叫做正方形?!?/p>

師:根據(jù)定義,我們把平行四邊形、矩形、菱形和正方形它們之間的關(guān)系梳理一下。

(1).1-x2=(1+x)(1-x)(2).4a2+4a+1=(2a+1)2。

(3).4x2-8x=4x(x-2)(4).2x2y-6xy2=2xy(x-3y)。

三、例題講解。

例1、分解因式。

(1)-x3y3+x2y+xy(2)6(x-2)+2x(2-x)。

(3)(4)y2+y+。

例2、分解因式。

4、-1-2a-a2=5、x2-6x+9-y26、x2-4y2+x+2y=。

例3、分解因式。

1、72-2(13x-7)22、8a2b2-2a4b-8b3。

三、知識應(yīng)用。

1、(4x2-9y2)÷(2x+3y)2、(a2b-ab2)÷(b-a)。

3、解方程:(1)x2=5x(2)(x-2)2=(2x+1)2。

四、拓展應(yīng)用。

2、20042+20xx被20xx整除嗎?

3、若n是整數(shù),證明(2n+1)2-(2n-1)2是8的倍數(shù).

五、課堂小結(jié):今天你對因式分解又有哪些新的認識?

分解因式教案篇十一

知識點:

因式分解定義,提取公因式、應(yīng)用公式法、分組分解法、二次三項式的因式(十字相乘法、求根)、因式分解一般步驟。

教學目標:

理解因式分解的概念,掌握提取公因式法、公式法、分組分解法等因式分解方法,掌握利用二次方程求根公式分解二次二項式的方法,能把簡單多項式分解因式。

考查重難點與常見題型:

考查因式分解能力,在中考試題中,因式分解出現(xiàn)的頻率很高。重點考查的分式提取公因式、應(yīng)用公式法、分組分解法及它們的綜合運用。習題類型以填空題為多,也有選擇題和解答題。

教學過程:

多項式的因式分解,就是把一個多項式化為幾個整式的積。分解因式要進行到每一個因式都不能再分解為止。分解因式的常用方法有:

(1)提公因式法。

如多項式。

其中m叫做這個多項式各項的公因式,m既可以是一個單項式,也可以是一個多項式。

(2)運用公式法,即用寫出結(jié)果。

(3)十字相乘法。

(4)分組分解法:把各項適當分組,先使分解因式能分組進行,再使分解因式在各組之間進行。

分組時要用到添括號:括號前面是“+”號,括到括號里的各項都不變符號;括號前面是“-”號,括到括號里的各項都改變符號。

(5)求根公式法:如果有兩個根x1,x2,那么。

2、教學實例:學案示例。

3、課堂練習:學案作業(yè)。

4、課堂:

5、板書:

6、課堂作業(yè):學案作業(yè)。

7、教學反思:

分解因式教案篇十二

根據(jù)本節(jié)課的內(nèi)容特點,主要采用師生合作控討式課堂教學方法,以教師為主導(dǎo),學生為主體,動手實踐訓(xùn)練為主線,創(chuàng)新思維為核心,態(tài)度情感能力為目標,引導(dǎo)學生自主探索,動手實踐,合作交流。注重使學生經(jīng)辦觀察、操作、推理等探索過程。這種教學理念,反映了時代精神,有利于提高學生的數(shù)學素養(yǎng),能有效地激發(fā)學生的思維積極性,學生在學習過程中調(diào)動各種感官,進行觀察與抽象、操作與思考、自主與交流等,進而改進學生的學習方法。

分解因式教案篇十三

因式分解是代數(shù)式的一種重要恒等變形?!稊?shù)學課程標準》雖然降低了因式分解的特殊技巧的要求,也對因式分解常用的四種方法減少為兩種,且公式法的應(yīng)用中,也減少為兩個公式,但絲毫沒有否定因式分解的教育價值及其在代數(shù)運算中的重要作用。本章教材是在學生學習了整式運算的基礎(chǔ)上提出來的,事實上,它是整式乘法的逆向運用,與整式乘法運算有密切的聯(lián)系。分解因式的變形不僅體現(xiàn)了一種“化歸”的思想,而且也是解決后續(xù)—分式的化簡、解方程等—恒等變形的基礎(chǔ),為數(shù)學交流提供了有效的途徑。分解因式這一章在整個教材中起到了承上啟下的作用。本章的教育價值還體現(xiàn)在使學生接受對立統(tǒng)一的觀點,培養(yǎng)學生善于觀察、善于分析、正確預(yù)見、解決問題的能力。

通過探究平方差公式和運用平方差公式分解因式的活動中,讓學生發(fā)表自己的觀點,從交流中獲益,讓學生獲得成功的體驗,鍛煉克服困難的意志建立自信心。

1、在分解因式的過程中體會整式乘法與因式分解之間的聯(lián)系。

2、通過公式a-b=(a+b)(a-b)的逆向變形,進一步發(fā)展觀察、歸納、類比、等能力,發(fā)展有條理地思考及語言表達能力。

3、能運用提公因式法、公式法進行綜合運用。

4、通過活動4,能將高偶指數(shù)冪轉(zhuǎn)化為2次指數(shù)冪,培養(yǎng)學生的化歸思想。

靈活運用平方差公式進行分解因式。

平方差公式的推導(dǎo)及其運用,兩種因式分解方法(提公因式法、平方差公式)的綜合運用。

分解因式教案篇十四

1、會運用因式分解進行簡單的多項式除法。

二、教學重點與難點教學重點:

教學重點。

因式分解在多項式除法和解方程兩方面的應(yīng)用。

教學難點:

應(yīng)用因式分解解方程涉及較多的推理過程。

三、教學過程。

(一)引入新課。

(二)師生互動,講授新課。

一個小問題:這里的x能等于3/2嗎?為什么?

想一想:那么(4x—9)(3—2x)呢?練習:課本p162課內(nèi)練習。

合作學習。

等練習:課本p162課內(nèi)練習2。

(三)梳理知識,總結(jié)收獲因式分解的兩種應(yīng)用:

(四)布置課后作業(yè)。

作業(yè)本6、42、課本p163作業(yè)題(選做)。

分解因式教案篇十五

因式分解定義,提取公因式、應(yīng)用公式法、分組分解法、二次三項式的因式(十字相乘法、求根)、因式分解一般步驟。

理解因式分解的概念,掌握提取公因式法、公式法、分組分解法等因式分解方法,掌握利用二次方程求根公式分解二次二項式的方法,能把簡單多項式分解因式。

考查因式分解能力,在中考試題中,因式分解出現(xiàn)的頻率很高。重點考查的分式提取公因式、應(yīng)用公式法、分組分解法及它們的綜合運用。習題類型以填空題為多,也有選擇題和解答題。

因式分解知識點

多項式的因式分解,就是把一個多項式化為幾個整式的積。分解因式要進行到每一個因式都不能再分解為止。分解因式的常用方法有:

(1)提公因式法

如多項式

其中m叫做這個多項式各項的公因式, m既可以是一個單項式,也可以是一個多項式。

(2)運用公式法,即用

寫出結(jié)果。

(3)十字相乘法

(4)分組分解法:把各項適當分組,先使分解因式能分組進行,再使分解因式在各組之間進行。

分組時要用到添括號:括號前面是“+”號,括到括號里的各項都不變符號;括號前面是“-”號,括到括號里的各項都改變符號。

(5)求根公式法:如果有兩個根x1,x2,那么

2、教學實例:學案示例

3、課堂練習:學案作業(yè)

4、課堂:

5、板書:

6、課堂作業(yè):學案作業(yè)

7、教學反思:

分解因式教案篇十六

分解因式是數(shù)學學科中重要的一部分,它是代數(shù)運算中的基礎(chǔ)內(nèi)容之一。分解因式涉及到對多項式的因式進行拆分和分解,是解決代數(shù)方程、方程組等各種問題的基礎(chǔ)。近期在學習分解因式的過程中,我積累了一些心得體會,想通過這篇文章與大家分享,希望能對大家的學習有所幫助。

在開始學習分解因式之前,我們需要掌握一些基礎(chǔ)原則。首先,我們需要了解因式與被分解多項式之間的關(guān)系。也就是說,分解因式的目的是將多項式拆分成較為簡單的因子乘積,最終得到與原多項式等價的表達式。其次,我們需要學會分解因式的基本方法。對于一元多項式而言,我們可以使用因式分解公式,如平方差、立方差、二次方差、立方和等公式,以及分組、通分等方法來完成分解。對于多元多項式,我們可以進行公因式提取、配方法等操作來實現(xiàn)因式分解。

除了基礎(chǔ)原則外,掌握一些分解因式的技巧也是提高分解因式能力的關(guān)鍵。首先,我們可以利用因式的特征進行分解。例如,對于二次多項式,我們可以通過判斷其特征值來確定分解因式的形式。其次,我們可以嘗試進行因式分解與求根聯(lián)系起來。通過觀察多項式與其根之間的關(guān)系,我們可以推導(dǎo)出分解因式的表達式。此外,熟練掌握素因子分解法也是非常重要的。根據(jù)多項式的組成特點,我們可以將其分解成素因子的乘積,從而達到簡化多項式的目的。

第四段:解決實際問題的應(yīng)用。

學習分解因式不僅僅是為了解題,更是為了運用到實際問題的解決中。例如,在解決約數(shù)問題、最大公約數(shù)最小公倍數(shù)問題時,我們可以利用分解因式的知識來簡化計算。在解決二次方程、立方方程等代數(shù)方程時,分解因式也是化簡公式、求解根的基礎(chǔ)。在解決幾何問題、物理問題時,分解因式能夠幫助我們找到正確的答案。因此,掌握好分解因式的方法,能夠提高我們解決實際問題的效率。

第五段:總結(jié)。

分解因式是數(shù)學學科中的重要內(nèi)容,也是解決代數(shù)問題的基礎(chǔ)。通過學習和實踐,我深刻體會到了分解因式的重要性。作為一種基本的數(shù)學技能,分解因式不僅具有解決問題的能力,更能培養(yǎng)我們的邏輯思維能力和創(chuàng)造力。因此,在今后的學習中,我將繼續(xù)加強對分解因式的掌握,不斷提高解決實際問題的能力,為自己的數(shù)學學習打下堅實的基礎(chǔ)。

分解因式教案篇十七

尊敬的各位評委老師,大家好?。ň瞎┪沂墙裉斓?號考生,我說課的題目是《用因式分解法求解一元二次程》,下面開始我的說課。

為了處理好教與學的關(guān)系,突出數(shù)學課標的教學理念,在講授過程中我既要做到精講精練,又要放手引導(dǎo)學生參與嘗試和討論,展開思維活動。因此,本節(jié)課力爭促進學生學習方式的轉(zhuǎn)變,由被動聽講式學習轉(zhuǎn)變?yōu)榉e極主動地探索發(fā)現(xiàn)式學習。下面,我主要從教材分析、教學目標、學情分析、教法學法、教學過程和板書設(shè)計這六個方面展開我的說課。

教材是進行教學評判的依據(jù),是學生獲取知識的重要來源,所以,對教材的分析尤為重要?!队靡蚴椒纸夥ㄇ蠼庖辉畏匠獭愤x自北師大版九年級上冊第二章第四節(jié),本節(jié)課的主要內(nèi)容是了解因式分解法的解題步驟,會用因式分解法解一元二次方程,在此之前學生已經(jīng)學習了整式乘法以及因式分解,為本節(jié)課學習解一元二次方程做了鋪墊,也為以后學習二次函數(shù)奠定基礎(chǔ)。

為了與學生的認知基礎(chǔ)相適應(yīng),更好展現(xiàn)知識形成和發(fā)展的過程,我確定本節(jié)課的三維教學目標如下:

一、知識與技能目標:學生能夠了解因式分解法的解題步驟,會用因式分解法解一元二次方程,根據(jù)方程特征靈活選擇方程的解法。

二、過程與方法目標:學生逐漸學會在具體情景中從數(shù)學的角度發(fā)現(xiàn)問題和提出問題,提高綜合運用數(shù)學知識和方法解決實際問題的能力。

三、情感態(tài)度與價值觀目標:通過小組合作積極參與教學活動,學生可以樹立對數(shù)學的好奇心和求知欲,養(yǎng)成敢于質(zhì)疑、勇于創(chuàng)新、合作交流的學習習慣。

基于以上對教材和教學目標的分析,本節(jié)課的教學重點是了解因式分解法的解題步驟,會用因式分解法解一元二次方程,教學難點是理解因式分解法解一元二次方程的基本思想。

為了保證教學有針對性,教師不僅要對教材進行分析,更要對學生的情況有清晰明了的掌握,這樣才能做到因材施教。九年級學生以抽象邏輯思維為主,他們樂于參與課堂,更渴望得到教師的關(guān)注,有強烈的好勝心,因此我會有組織、有目的、有針對性的引導(dǎo)學生參與到學習活動中,幫助學生真正成為學習的主人。

數(shù)學是一門發(fā)展思維的重要學科,為了更好貫徹數(shù)學新課標的要求,我采用小組合作討論法,并輔之以問答和講授的教學方法。在指導(dǎo)學生學習方法和培養(yǎng)學習能力方面,我將引導(dǎo)學生采用自主學習和合作探究的學法。這種教學理念緊隨新課改理念也反映了時代精神。

以上所有的準備都是為了課堂的完美呈現(xiàn),結(jié)合學生的認知特點,我將設(shè)計如下教學過程:

導(dǎo)入。

精彩的導(dǎo)入可以激發(fā)學生的學習動機,培養(yǎng)學習興趣,從而達到事半功倍的效果,因此我將采用如下方式進行導(dǎo)入:同學們請看大屏幕,王莊村在測量土地時,發(fā)現(xiàn)了一塊正方形的土地和一塊矩形的土地,矩形土地的寬和正方形的邊長相等,矩形土地的長為80m,工作人員說:“正方形土地的面積是矩形面積的一半。”誰能幫助工作人員計算一下正方形土地的面積嗎?我看到同學們臉上露出了疑惑的表情,帶著這個問題進入我們今天的課堂《用因式分解法求解一元二次方程》。這樣通過生活實際問題引入,可以激發(fā)學生好奇探索、主動學習的欲望。

新授。

接下來進入新授環(huán)節(jié),此環(huán)節(jié)我設(shè)計如下活動:

我會先帶領(lǐng)同學們根據(jù)題意列式,同學們在之前學習的基礎(chǔ)之上,不難得出a=80a,但是對于解決這個問題略有難度,因此我會組織同學們采用小組討論的方式,給同學們5分鐘時間,鼓勵同學們采用多種方法就解決問題。討論過程中,我會走下講臺,參與同學們的討論。討論結(jié)束后,有的小組用公式法得到答案;有的小組用的是等式的性質(zhì),但是,考慮不全面,所以錯誤;還有小組是將方程轉(zhuǎn)化成兩個因式乘積的形式a(a-80)=0,結(jié)果正確。在此活動中引導(dǎo)學生共同交流,鍛煉合作探究能力和思維能力。

根據(jù)上述結(jié)論,我會拋出問題:該小組的做題思路是什么?他們的思路用到我們以前學的什么知識點?組織小組繼續(xù)合作討論并進行比較歸納,經(jīng)過激烈討論之后找小組代表總結(jié)可得:基本思路是:以b代替a-80,若ab=0,則a=0或b=0。當一元二次方程的一邊為0,而另一邊易于分解成兩個一次因式的乘積時,我們可以用因式分解的方法求解。因式分解法關(guān)鍵是熟練掌握因式分解的知識,在此過程充分體現(xiàn)了學生主體,教師主導(dǎo)的理念,有效突破重點,增強學習興趣。

為了學生能夠進一步掌握因式分解法,我會在多媒體上出示如下方程:5x=4x,并進行演示具體解題步驟,引導(dǎo)學生歸納總結(jié)出因式分解法的基本步驟為:一移-----方程的右邊等于0;二分-----方程的左邊因式分解;三化-----方程化為兩個一元一次方程;四解-----寫出方程兩個解。這與配方法類似,都是將一元二次方程轉(zhuǎn)化成兩個一元一次方程求解,這個環(huán)節(jié)可以進一步提高學生分析問題和歸納總結(jié)的能力。在對因式分解法了解之后,結(jié)合前幾種方法我會在黑板上出幾道題目,找學生上黑板練習,以便于學生能夠更好的理解和運用因式分解法。

鞏固練習是必不可少的環(huán)節(jié),為了鼓勵學生能夠?qū)⑺鶎W知識更好的應(yīng)用到實際生活中去,我會引導(dǎo)學生回顧課堂導(dǎo)入時的問題并進行解決,這樣設(shè)計既檢查了新知學習情況,也與實際聯(lián)系起來,幫助學生認識到數(shù)學就在自己身邊。

小結(jié)。

根據(jù)艾賓浩斯遺忘曲線規(guī)律可知,及時復(fù)習效果更好,在課堂即將結(jié)束時我將以提問的方式引導(dǎo)學生對本節(jié)課的重難點加以總結(jié),使知識系統(tǒng)化、概括化。

作業(yè)。

最后留出本節(jié)課的作業(yè):回想一下我們學習了哪些解一元二次方程的方法?每種方法的適用類型是什么?請以列表的方式進行對比,在這個數(shù)學活動中,學生是完全自由的學習個體。

板書是一堂課的精華部分,好的板書起到畫龍點睛的作用。以下是我的板書設(shè)計:我將在黑板正上方寫本節(jié)課的題目,主板書以思維導(dǎo)圖的方式呈現(xiàn),系統(tǒng)展示因式分解法求解一元二次方程的基本步驟:一移、二分、三化、四解。這樣的板書設(shè)計簡單明了、系統(tǒng)直觀,能夠幫助學生對本節(jié)課有一個更深刻的掌握。

以上是我全部的說課內(nèi)容,謝謝各位評委老師!

鐵樹老師網(wǎng)絡(luò)面試輔導(dǎo),喜馬拉雅app--主播--教師面試大雜燴。

圖文搜集自網(wǎng)絡(luò),如有侵權(quán)請聯(lián)系刪除。

分解因式教案篇十八

教學目標:

1、進一步鞏固因式分解的概念;2、鞏固因式分解常用的三種方法。

3、選擇恰當?shù)姆椒ㄟM行因式分解4、應(yīng)用因式分解來解決一些實際問題。

5、體驗應(yīng)用知識解決問題的樂趣。

教學重點:靈活運用因式分解解決問題。

教學難點:靈活運用恰當?shù)囊蚴椒纸獾姆椒?,拓展練?、3。

教學過程:

一、創(chuàng)設(shè)情景:若a=101,b=99,求a2-b2的值。

利用因式分解往往能將一些復(fù)雜的運算簡單化,那么我們先來回顧一下什么是因式分解和怎樣來因式分解。

二、知識回顧。

1、因式分解定義:把一個多項式化成幾個整式積的形式,這種變形叫做把這個多項式分解因式.

判斷下列各式哪些是因式分解?(讓學生先思考,教師提問講解,讓學生明確因式分解的概念以及與乘法的關(guān)系)。

2、.規(guī)律總結(jié)(教師講解):分解因式與整式乘法是互逆過程.

分解因式要注意以下幾點:(1).分解的對象必須是多項式.

(2).分解的結(jié)果一定是幾個整式的乘積的形式.(3).要分解到不能分解為止.

4、強化訓(xùn)練。

(3).4x2-8x=4x(x-2)(4).2x2y-6xy2=2xy(x-3y)。

三、例題講解。

例1、分解因式。

(1)-x3y3+x2y+xy(2)6(x-2)+2x(2-x)。

(3)(4)y2+y+例2、分解因式。

4、-1-2a-a2=5、x2-6x+9-y26、x2-4y2+x+2y=。

例3、分解因式。

1、72-2(13x-7)22、8a2b2-2a4b-8b3。

三、知識應(yīng)用。

1、(4x2-9y2)÷(2x+3y)2、(a2b-ab2)÷(b-a)。

3、解方程:(1)x2=5x(2)(x-2)2=(2x+1)2。

四、拓展應(yīng)用。

1.計算:7652×17-2352×17解:7652×17-2352×17=17(7652-2352)=17(765+235)(765-235)。

2、20042+20xx被20xx整除嗎?

3、若n是整數(shù),證明(2n+1)2-(2n-1)2是8的倍數(shù).

五、課堂小結(jié):今天你對因式分解又有哪些新的認識?

【本文地址:http://mlvmservice.com/zuowen/17142375.html】

全文閱讀已結(jié)束,如果需要下載本文請點擊

下載此文檔