高一數(shù)學(xué)教案等比數(shù)列(精選19篇)

格式:DOC 上傳日期:2023-12-03 07:25:11
高一數(shù)學(xué)教案等比數(shù)列(精選19篇)
時(shí)間:2023-12-03 07:25:11     小編:念青松

教案是教師根據(jù)課程標(biāo)準(zhǔn)和學(xué)科特點(diǎn),對課堂教學(xué)內(nèi)容進(jìn)行具體安排和整理的結(jié)果。在編寫教案時(shí),教師應(yīng)當(dāng)關(guān)注學(xué)生的學(xué)習(xí)困難和問題,并設(shè)法解決。下面是一些優(yōu)秀的教案模板,供大家參考和借鑒。

高一數(shù)學(xué)教案等比數(shù)列篇一

2、實(shí)際問題中的有關(guān)術(shù)語、名稱:

(1)仰角與俯角:均是指視線與水平線所成的角;

(2)方位角:是指從正北方向順時(shí)針轉(zhuǎn)到目標(biāo)方向線的夾角;

(3)方向角:常見的`如:正東方向、東南方向、北偏東、南偏西等;

3、用正弦余弦定理解實(shí)際問題的常見題型有:

測量距離、測量高度、測量角度、計(jì)算面積、航海問題、物理問題等;

2、實(shí)際問題中的有關(guān)術(shù)語、名稱:

(1)仰角與俯角:均是指視線與水平線所成的角;

(2)方位角:是指從正北方向順時(shí)針轉(zhuǎn)到目標(biāo)方向線的夾角;

(3)方向角:常見的如:正東方向、東南方向、北偏東、南偏西等;

3、用正弦余弦定理解實(shí)際問題的常見題型有:

測量距離、測量高度、測量角度、計(jì)算面積、航海問題、物理問題等;

一、知識歸納

2、實(shí)際問題中的有關(guān)術(shù)語、名稱:

(1)仰角與俯角:均是指視線與水平線所成的角;

(2)方位角:是指從正北方向順時(shí)針轉(zhuǎn)到目標(biāo)方向線的夾角;

(3)方向角:常見的如:正東方向、東南方向、北偏東、南偏西等;

3、用正弦余弦定理解實(shí)際問題的常見題型有:

測量距離、測量高度、測量角度、計(jì)算面積、航海問題、物理問題等;

二、例題討論

一)利用方向角構(gòu)造三角形

四)測量角度問題

例4、在一個(gè)特定時(shí)段內(nèi),以點(diǎn)e為中心的7海里以內(nèi)海域被設(shè)為警戒水域.點(diǎn)e正北55海里處有一個(gè)雷達(dá)觀測站a.某時(shí)刻測得一艘勻速直線行駛的船只位于點(diǎn)a北偏東。

高一數(shù)學(xué)教案等比數(shù)列篇二

對數(shù)函數(shù)(第二課時(shí))是20__人教版高一數(shù)學(xué)(上冊)第二章第八節(jié)第二課時(shí)的內(nèi)容,本小節(jié)涉及對數(shù)函數(shù)相關(guān)知識,分三個(gè)課時(shí),這里是第二課時(shí)復(fù)習(xí)鞏固對數(shù)函數(shù)圖像及性質(zhì),并用此解決三類對數(shù)比大小問題,是對已學(xué)內(nèi)容(指數(shù)函數(shù)、指數(shù)比大小、對數(shù)函數(shù))的延續(xù)和發(fā)展,同時(shí)也體現(xiàn)了數(shù)學(xué)的實(shí)用性,為后續(xù)學(xué)習(xí)起到奠定知識基礎(chǔ)、滲透方法的作用,因此本節(jié)內(nèi)容起到了一種承上啟下的作用。

二、教學(xué)目標(biāo)。

根據(jù)教學(xué)大綱的要求以及本節(jié)課的地位與作用,結(jié)合高一學(xué)生的認(rèn)知特點(diǎn)確定教學(xué)目標(biāo)如下:

學(xué)習(xí)目標(biāo):

1、復(fù)習(xí)鞏固對數(shù)函數(shù)的圖像及性質(zhì)。

2、運(yùn)用對數(shù)函數(shù)的性質(zhì)比較兩個(gè)數(shù)的大小。

能力目標(biāo):

1、培養(yǎng)學(xué)生運(yùn)用圖形解決問題的意識即數(shù)形結(jié)合能力。

2、學(xué)生運(yùn)用已學(xué)知識,已有經(jīng)驗(yàn)解決新問題的能力。

3、探索出方法,有條理闡述自己觀點(diǎn)的能力。

德育目標(biāo):

培養(yǎng)學(xué)生勤于思考、獨(dú)立思考、合作交流等良好的個(gè)性品質(zhì)。

三、教材的重點(diǎn)及難點(diǎn)。

教學(xué)中將在以下2個(gè)環(huán)節(jié)中突出教學(xué)重點(diǎn):

1、利用學(xué)生預(yù)習(xí)后的心得交流,資源共享,互補(bǔ)不足。

2、通過適當(dāng)?shù)木毩?xí),加強(qiáng)對解題方法的掌握及原理的理解。

教學(xué)中會(huì)在以下3個(gè)方面突破教學(xué)難點(diǎn):

1、教師調(diào)整角色,讓學(xué)生成為學(xué)習(xí)的主人,教師在其中起引導(dǎo)作用即可。

2、小組合作探索新問題時(shí),注重生生合作、師生互動(dòng),適時(shí)用語言鼓勵(lì)學(xué)生,增強(qiáng)學(xué)生參與討論的自信。

3、本節(jié)課采用多媒體輔助教學(xué),節(jié)省時(shí)間,加快課程進(jìn)度,增強(qiáng)了直觀形象性。

四、學(xué)生學(xué)情分析。

長處:高一學(xué)生經(jīng)過幾年的數(shù)學(xué)學(xué)習(xí),已具備一定的數(shù)學(xué)素養(yǎng),對于已學(xué)知識或用過的數(shù)學(xué)思想、方法有一定的應(yīng)用能力及應(yīng)用意識,對于本節(jié)課而言,從知識上說,對數(shù)函數(shù)的圖像和性質(zhì)剛剛學(xué)過,本節(jié)課是知識的應(yīng)用,從數(shù)學(xué)能力上說,指數(shù)比大小問題的解題思想和方法在這可借鑒,另外數(shù)形結(jié)合能力、小結(jié)概括能力、特殊到一般歸納能力已具備一點(diǎn)。

學(xué)生可能遇到的困難:本節(jié)課從教學(xué)內(nèi)容上來看,第三類對數(shù)比大小是課本以外補(bǔ)充的內(nèi)容,沒有預(yù)習(xí)心得,讓學(xué)生在課堂中快速通過合作探究來完成解題思路的構(gòu)建,有一定的挑戰(zhàn)性,從學(xué)生能力上來看,探索出方法,有條理闡述自己觀點(diǎn)的能力還需加強(qiáng)鍛煉,知識之間的聯(lián)系認(rèn)識上還顯不足。

五、教法特點(diǎn)。

新課程強(qiáng)調(diào)教師要調(diào)整自己的角色,改變傳統(tǒng)的教育方式,在教育方式上,以學(xué)生為中心,讓學(xué)生成為學(xué)習(xí)的主人,教師在其中起引導(dǎo)作用即可?;诖耍竟?jié)課遵循此原則重點(diǎn)采用問題探究和啟發(fā)引導(dǎo)式的教學(xué)方法。從預(yù)習(xí)交流心得出發(fā),到探索新問題,再到題后的回顧總結(jié),一切以學(xué)生為中心,處處體現(xiàn)學(xué)生的主體地位,讓學(xué)生多說、多分析、多思考、多總結(jié),引導(dǎo)學(xué)生運(yùn)用自己的語言闡述觀點(diǎn),加強(qiáng)理解,在生生合作,師生互動(dòng)中解決問題,為提高學(xué)生分析問題、解決問題能力打下基礎(chǔ)。本節(jié)課采用多媒體輔助教學(xué),節(jié)省時(shí)間,加快課程進(jìn)度,增強(qiáng)了直觀形象性。

六、教學(xué)過程分析。

1、課件展示本節(jié)課學(xué)習(xí)目標(biāo)。

設(shè)計(jì)意圖:明確任務(wù),激發(fā)興趣。

2、溫故知新(已填表形式復(fù)習(xí)對數(shù)函數(shù)的圖像和性質(zhì))。

設(shè)計(jì)意圖:復(fù)習(xí)已學(xué)知識和方法,為學(xué)生形成知識間的聯(lián)系和框架建立平臺,并為下一步的應(yīng)用打下基礎(chǔ)。

3、預(yù)習(xí)后心得交流。

1)同底對數(shù)比大小。

2)既不同底數(shù),也不同真數(shù)的對數(shù)比大小。

設(shè)計(jì)意圖:通過學(xué)生的預(yù)習(xí),自己總結(jié)方法及此方法適用的題型,有條理的闡述自己的學(xué)習(xí)心得,老師只需起引導(dǎo)作用,引導(dǎo)學(xué)生從題目表面上升到題目的實(shí)質(zhì),從而找到解決問題的有效方法。

4、合作探究——同真異底型的對數(shù)比大小。

以例3為例,學(xué)生分組合作探究解題方法,預(yù)計(jì)兩種:一是利用換底公式將此類型轉(zhuǎn)化為同底異真型,利用之前總結(jié)的方法解決此問題。二是利用具體對數(shù)的大小關(guān)系探究出不同底對數(shù)函數(shù)在同一直角坐標(biāo)系中的圖像,以此來解決此類型比大小問題。

設(shè)計(jì)意圖:這一部分是本節(jié)課的難點(diǎn),探究中充分發(fā)揮學(xué)生的主動(dòng)性,培養(yǎng)主動(dòng)學(xué)習(xí)的意識,同時(shí)也鍛煉學(xué)生各方面能力的很好機(jī)會(huì),為以后的探究學(xué)習(xí)積累經(jīng)驗(yàn)和方法,充分體現(xiàn)“授之以魚,不如授之以漁”的教學(xué)理念。另外數(shù)學(xué)問題的解決僅僅只是一半,更重要的是解題之后的回顧,即反思,如果沒有了反思,他們就錯(cuò)過了解題的一次重要而有效益的方面。因此,本題解決后,讓學(xué)生反思明白,要想利用性質(zhì)解決問題,關(guān)鍵要做到“腦中有圖”,以“形”促“數(shù)”。

5、小結(jié)。

6、思考題。

以20__高考題為例,讓學(xué)生學(xué)以致用,增強(qiáng)數(shù)學(xué)學(xué)習(xí)興趣。

7、作業(yè)。

包括兩個(gè)方面:

1、書寫作業(yè)。

2、下節(jié)課前的預(yù)習(xí)作業(yè)。

通過本節(jié)課的教學(xué)實(shí)例來看,這種通過課本內(nèi)容預(yù)習(xí),而后課堂交流學(xué)習(xí)成果的方法效果不錯(cuò),既能很好的完成教學(xué)任務(wù),又能充分發(fā)揮學(xué)生學(xué)習(xí)的主動(dòng)性。在自主探究時(shí),學(xué)生分組討論過程中,我參與小組討論,對有能力的小組,在探究出一種方法后,可鼓勵(lì)完成更多的方法探究,對于能力較弱的小組,可給予適當(dāng)?shù)奶崾?,使學(xué)生都能動(dòng)起來,課堂都有所收獲,增強(qiáng)學(xué)生自信。另外,對于學(xué)生的總結(jié)回答,可能會(huì)比較慢,我一定會(huì)耐心聽,及時(shí)鼓勵(lì),給予學(xué)生微笑和語言的鼓勵(lì),效果很好。在小結(jié)環(huán)節(jié)中,對于高一學(xué)生自己小結(jié)的方法,是我一直的教學(xué)嘗試,由于只訓(xùn)練了半學(xué)期,學(xué)生只能達(dá)到小結(jié)知識的程度,在以后的訓(xùn)練中還會(huì)加入數(shù)學(xué)思想、數(shù)學(xué)方法的小結(jié)內(nèi)容,使這些數(shù)學(xué)名詞讓學(xué)生不再覺得抽象,而是變成具體的,可操作的、具體的解題工具。

高一數(shù)學(xué)教案等比數(shù)列篇三

1.知識與技能:掌握畫三視圖的基本技能,豐富學(xué)生的空間想象力。

2.過程與方法:通過學(xué)生自己的親身實(shí)踐,動(dòng)手作圖,體會(huì)三視圖的作用。

3.情感態(tài)度與價(jià)值觀:提高學(xué)生空間想象力,體會(huì)三視圖的作用。

二、教學(xué)重點(diǎn):畫出簡單幾何體、簡單組合體的三視圖;

難點(diǎn):識別三視圖所表示的空間幾何體。

三、學(xué)法指導(dǎo):觀察、動(dòng)手實(shí)踐、討論、類比。

四、教學(xué)過程。

(一)創(chuàng)設(shè)情景,揭開課題。

展示廬山的風(fēng)景圖——“橫看成嶺側(cè)看成峰,遠(yuǎn)近高低各不同”,這說明從不同的角度看同一物體視覺的效果可能不同,要比較真實(shí)反映出物體,我們可從多角度觀看物體。

(二)講授新課。

1、中心投影與平行投影:

中心投影:光由一點(diǎn)向外散射形成的投影;

平行投影:在一束平行光線照射下形成的投影。

正投影:在平行投影中,投影線正對著投影面。

2、三視圖:

正視圖:光線從幾何體的前面向后面正投影,得到的投影圖;

側(cè)視圖:光線從幾何體的左面向右面正投影,得到的投影圖;

俯視圖:光線從幾何體的上面向下面正投影,得到的投影圖。

三視圖:幾何體的正視圖、側(cè)視圖和俯視圖統(tǒng)稱為幾何體的三視圖。

三視圖的畫法規(guī)則:長對正,高平齊,寬相等。

長對正:正視圖與俯視圖的長相等,且相互對正;

高平齊:正視圖與側(cè)視圖的高度相等,且相互對齊;

寬相等:俯視圖與側(cè)視圖的寬度相等。

3、畫長方體的三視圖:

正視圖、側(cè)視圖和俯視圖分別是從幾何體的正前方、正左方和正上方觀察到有幾何體的正投影圖,它們都是平面圖形。

長方體的三視圖都是長方形,正視圖和側(cè)視圖、側(cè)視圖和俯視圖、俯視圖和正視圖都各有一條邊長相等。

4、畫圓柱、圓錐的三視圖:

5、探究:畫出底面是正方形,側(cè)面是全等的三角形的棱錐的三視圖。

(三)鞏固練習(xí)。

課本p15練習(xí)1、2;p20習(xí)題1.2[a組]2。

(四)歸納整理。

請學(xué)生回顧發(fā)表如何作好空間幾何體的三視圖。

(五)布置作業(yè)。

課本p20習(xí)題1.2[a組]1。

高一數(shù)學(xué)教案等比數(shù)列篇四

將一張很大的薄紙對折,對折30次后(如果可能的話)有多厚?不妨假設(shè)這張紙的厚度為0.01毫米。

30次后,厚度為,這個(gè)厚度超過了世界最高的山峰——珠穆朗瑪峰的高度。如果紙?jiān)俦∫恍?,比如紙?.001毫米,對折34次就超過珠穆朗瑪峰的高度了。還記得國王的承諾嗎?第31個(gè)格子中的米已經(jīng)是1073741824粒了,后邊的格子中的米就更多了,最后一個(gè)格子中的米應(yīng)是粒,用計(jì)算器算一下吧(用對數(shù)算也行)。

高一數(shù)學(xué)教案等比數(shù)列篇五

1、掌握等比數(shù)列前項(xiàng)和公式,并能運(yùn)用公式解決簡單的問題。

(1)理解公式的推導(dǎo)過程,體會(huì)轉(zhuǎn)化的思想;

2、通過公式的靈活運(yùn)用,進(jìn)一步滲透方程的思想、分類討論的思想、等價(jià)轉(zhuǎn)化的思想。

3、通過公式推導(dǎo)的教學(xué),對學(xué)生進(jìn)行思維的嚴(yán)謹(jǐn)性的訓(xùn)練,培養(yǎng)他們實(shí)事求是的科學(xué)態(tài)度。

(1)知識結(jié)構(gòu)。

先用錯(cuò)位相減法推出等比數(shù)列前項(xiàng)和公式,而后運(yùn)用公式解決一些問題,并將通項(xiàng)公式與前項(xiàng)和公式結(jié)合解決問題,還要用錯(cuò)位相減法求一些數(shù)列的前項(xiàng)和。

(2)重點(diǎn)、難點(diǎn)分析。

是等比數(shù)列前項(xiàng)和公式的推導(dǎo)與應(yīng)用。公式的推導(dǎo)中蘊(yùn)含了豐富的數(shù)學(xué)思想、方法(如分類討論思想,錯(cuò)位相減法等),這些思想方法在其他數(shù)列求和問題中多有涉及,所以對等比數(shù)列前項(xiàng)和公式的要求,不單是要記住公式,更重要的是掌握推導(dǎo)公式的方法。等比數(shù)列前項(xiàng)和公式是分情況討論的,在運(yùn)用中要特別注意和兩種情況。

(1)本節(jié)內(nèi)容分為兩課時(shí),一節(jié)為等比數(shù)列前項(xiàng)和公式的推導(dǎo)與應(yīng)用,一節(jié)為通項(xiàng)公式與前項(xiàng)和公式的綜合運(yùn)用,另外應(yīng)補(bǔ)充一節(jié)數(shù)列求和問題。

(2)等比數(shù)列前項(xiàng)和公式的推導(dǎo)是重點(diǎn)內(nèi)容,引導(dǎo)學(xué)生觀察實(shí)例,發(fā)現(xiàn)規(guī)律,歸納總結(jié),證明結(jié)論。

(3)等比數(shù)列前項(xiàng)和公式的推導(dǎo)的其他方法可以給出,提高學(xué)生學(xué)習(xí)的興趣。

(4)編擬例題時(shí)要全面,不要忽略的情況。

(5)通項(xiàng)公式與前項(xiàng)和公式的綜合運(yùn)用涉及五個(gè)量,已知其中三個(gè)量可求另兩個(gè)量,但解指數(shù)方程難度大。

高一數(shù)學(xué)教案等比數(shù)列篇六

教學(xué)重點(diǎn):理解等比數(shù)列的概念,認(rèn)識等比數(shù)列是反映自然規(guī)律的重要數(shù)列模型之一,探索并掌握等比數(shù)列的通項(xiàng)公式。

教學(xué)難點(diǎn):遇到具體問題時(shí),抽象出數(shù)列的模型和數(shù)列的等比關(guān)系,并能用有關(guān)知識解決相應(yīng)問題。

教學(xué)過程:

1.等差數(shù)列的通項(xiàng)公式。

2.等差數(shù)列的前n項(xiàng)和公式。

引入:1“一尺之棰,日取其半,萬世不竭?!?/p>

2細(xì)胞分裂模型。

3計(jì)算機(jī)病毒的傳播。

由學(xué)生通過類比,歸納,猜想,發(fā)現(xiàn)等比數(shù)列的特點(diǎn)。

進(jìn)而讓學(xué)生通過用遞推公式描述等比數(shù)列。

讓學(xué)生回憶用不完全歸納法得到等差數(shù)列的通項(xiàng)公式的過程然后類比等比數(shù)列的通項(xiàng)公式。

注意:1公比q是任意一個(gè)常數(shù),不僅可以是正數(shù)也可以是負(fù)數(shù)。

2當(dāng)首項(xiàng)等于0時(shí),數(shù)列都是0。當(dāng)公比為0時(shí),數(shù)列也都是0。

所以首項(xiàng)和公比都不可以是0。

3當(dāng)公比q=1時(shí),數(shù)列是怎么樣的,當(dāng)公比q大于1,公比q小于1時(shí)數(shù)列是怎么樣的?

4以及等比數(shù)列和指數(shù)函數(shù)的關(guān)系。

5是后一項(xiàng)比前一項(xiàng)。

列:1,2,(略)。

小結(jié):等比數(shù)列的通項(xiàng)公式。

1.教材p59練習(xí)1,2,3,題。

2.作業(yè):p60習(xí)題1,4。

第二課時(shí)5.2.4等比數(shù)列(二)。

提問:等差數(shù)列的通項(xiàng)公式。

等比數(shù)列的通項(xiàng)公式。

1.討論:如果是等差列的三項(xiàng)滿足。

由學(xué)生給出如果是等比數(shù)列滿足。

2練習(xí):如果等比數(shù)列=4,=16,=?(學(xué)生口答)。

如果等比數(shù)列=4,=16,=?(學(xué)生口答)。

3等比中項(xiàng):如果等比數(shù)列。那么,

則叫做等比數(shù)列的等比中項(xiàng)(教師給出)。

4思考:是否成立呢?成立嗎?

成立嗎?

又學(xué)生找到其間的規(guī)律,并對比記憶如果等差列,

5思考:如果是兩個(gè)等比數(shù)列,那么是等比數(shù)列嗎?

如果是為什么?是等比數(shù)列嗎?引導(dǎo)學(xué)生證明。

6思考:在等比數(shù)列里,如果成立嗎?

如果是為什么?由學(xué)生給出證明過程。

列3:一個(gè)等比數(shù)列的第3項(xiàng)和第4項(xiàng)分別是12和18,求它的第1項(xiàng)和第2項(xiàng)。

解(略)。

列4:略:

練習(xí):1在等比數(shù)列,已知那么。

2p61a組8。

高一數(shù)學(xué)教案等比數(shù)列篇七

在具體的問題情境中,發(fā)現(xiàn)數(shù)列的`等比關(guān)系,能用有關(guān)知識解決相應(yīng)問題。

等比數(shù)列的前n項(xiàng)和的公式及應(yīng)用。

等比數(shù)列的前n項(xiàng)和公式的推導(dǎo)過程。

一、復(fù)習(xí)準(zhǔn)備:

提問:等比數(shù)列的通項(xiàng)公式;

等比數(shù)列的性質(zhì);

等差數(shù)列的前n項(xiàng)和公式;

二、講授新課:

1、教學(xué):

思考:一個(gè)細(xì)胞每分鐘就變成兩個(gè),那么經(jīng)過一個(gè)小時(shí),它會(huì)分裂成多少個(gè)細(xì)胞呢?

分析:公比,因?yàn)椋粋€(gè)小時(shí)有60分鐘。

思考:那么經(jīng)過一個(gè)小時(shí),一共有多少個(gè)細(xì)胞呢?

又因?yàn)椤?/p>

所以,則=1152921504。

則一個(gè)小時(shí)一共有1152921504個(gè)細(xì)胞。

2、練習(xí):

列1(解略)。

列2(解略)。

在等比數(shù)列中:已知求已知求。

在等比數(shù)列中,xx,則xx。

三、小結(jié):等比數(shù)列的前n項(xiàng)和公式。

四、作業(yè):p66,1題。

高一數(shù)學(xué)教案等比數(shù)列篇八

(2)求數(shù)列的前10項(xiàng)的和。例7已知數(shù)列滿足,,.

(1)求證:數(shù)列是等比數(shù)列;

(2)求的表達(dá)式和的表達(dá)式。

作業(yè):

1.已知同號,則是成等比數(shù)列的。

(a)充分而不必要條件(b)必要而不充分條件。

(c)充要條件(d)既不充分而也不必要條件。

2.如果和是兩個(gè)等差數(shù)列,其中,那么等于。

(a)(b)(c)3(d)。

3.若某等比數(shù)列中,前7項(xiàng)和為48,前14項(xiàng)和為60,則前21項(xiàng)和為。

(a)180(b)108(c)75(d)63。

4.已知數(shù)列,對所有,其前項(xiàng)的積為,求的值,

5.已知為等差數(shù)列,前10項(xiàng)的和為,前100項(xiàng)的和為,求前110項(xiàng)的和。

6.等差數(shù)列中,,,依次抽出這個(gè)數(shù)列的第項(xiàng),組成數(shù)列,求數(shù)列的通項(xiàng)公式和前項(xiàng)和公式。

7.&nbs…p;已知數(shù)列,,

(1)求通項(xiàng)公式;

(2)若,求數(shù)列的最小項(xiàng)的值;

(3)數(shù)列的前項(xiàng)和為,求數(shù)列前項(xiàng)的和.

8.三數(shù)成等比數(shù)列,若第二個(gè)數(shù)加4就成等差數(shù)列,再把這個(gè)等差數(shù)列的第三個(gè)數(shù)加上32又成等比數(shù)列,求這三個(gè)數(shù)。

高一數(shù)學(xué)教案等比數(shù)列篇九

各位評委、各位專家,大家好!今天,我說課的內(nèi)容是人民教育出版社全日制普通高級中學(xué)教科書(必修)《數(shù)學(xué)》第一章第五節(jié)“一元二次不等式解法”。

下面從教材分析、教學(xué)目標(biāo)分析、教學(xué)重難點(diǎn)分析、教法與學(xué)法、課堂設(shè)計(jì)、效果評價(jià)六方面進(jìn)行說課。

一、教材分析。

(一)教材的地位和作用。

“一元二次不等式解法”既是初中一元一次不等式解法在知識上的延伸和發(fā)展,又是本章集合知識的運(yùn)用與鞏固,也為下一章函數(shù)的定義域和值域教學(xué)作鋪墊,起著鏈條的作用。同時(shí),這部分內(nèi)容較好地反映了方程、不等式、函數(shù)知識的內(nèi)在聯(lián)系和相互轉(zhuǎn)化,蘊(yùn)含著歸納、轉(zhuǎn)化、數(shù)形結(jié)合等豐富的數(shù)學(xué)思想方法,能較好地培養(yǎng)學(xué)生的觀察能力、概括能力、探究能力及創(chuàng)新意識。

(二)教學(xué)內(nèi)容。

本節(jié)內(nèi)容分2課時(shí)學(xué)習(xí)。本課時(shí)通過二次函數(shù)的圖象探索一元二次不等式的解集。通過復(fù)習(xí)“三個(gè)一次”的關(guān)系,即一次函數(shù)與一元一次方程、一元一次不等式的關(guān)系;以舊帶新尋找“三個(gè)二次”的關(guān)系,即二次函數(shù)與一元二次方程、一元二次不等式的關(guān)系;采用“畫、看、說、用”的思維模式,得出一元二次不等式的解集,品味數(shù)學(xué)中的和諧美,體驗(yàn)成功的樂趣。

二、教學(xué)目標(biāo)分析。

根據(jù)教學(xué)大綱的要求、本節(jié)教材的特點(diǎn)和高一學(xué)生的認(rèn)知規(guī)律,本節(jié)課的教學(xué)目標(biāo)確定為:

知識目標(biāo)——理解“三個(gè)二次”的關(guān)系;掌握看圖象找解集的方法,熟悉一元二次不等式的解法。

能力目標(biāo)——通過看圖象找解集,培養(yǎng)學(xué)生“從形到數(shù)”的轉(zhuǎn)化能力,“從具體到抽象”、“從特殊到一般”的歸納概括能力。

情感目標(biāo)——?jiǎng)?chuàng)設(shè)問題情景,激發(fā)學(xué)生觀察、分析、探求的學(xué)習(xí)激情、強(qiáng)化學(xué)生參與意識及主體作用。

三、重難點(diǎn)分析。

一元二次不等式是高中數(shù)學(xué)中最基本的不等式之一,是解決許多數(shù)學(xué)問題的重要工具。本節(jié)課的重點(diǎn)確定為:一元二次不等式的解法。

要把握這個(gè)重點(diǎn)。關(guān)鍵在于理解并掌握利用二次函數(shù)的圖象確定一元二次不等式解集的方法——圖象法,其本質(zhì)就是要能利用數(shù)形結(jié)合的思想方法認(rèn)識方程的解,不等式的解集與函數(shù)圖象上對應(yīng)點(diǎn)的橫坐標(biāo)的內(nèi)在聯(lián)系。由于初中沒有專門研究過這類問題,高一學(xué)生比較陌生,要真正掌握有一定的難度。因此,本節(jié)課的難點(diǎn)確定為:“三個(gè)二次”的關(guān)系。要突破這個(gè)難點(diǎn),讓學(xué)生歸納“三個(gè)一次”的關(guān)系作鋪墊。

四、教法與學(xué)法分析。

教學(xué)矛盾的主要方面是學(xué)生的學(xué)。學(xué)是中心,會(huì)學(xué)是目的。因此在教學(xué)中要不斷指導(dǎo)學(xué)生學(xué)會(huì)學(xué)習(xí)。本節(jié)課主要是教給學(xué)生“動(dòng)手畫、動(dòng)眼看、動(dòng)腦想、動(dòng)口說、善提煉、勤鉆研”的研討式學(xué)習(xí)方法,這樣做增加了學(xué)生自主參與,合作交流的機(jī)會(huì),教給了學(xué)生獲取知識的途徑、思考問題的方法,使學(xué)生真正成了教學(xué)的主體;只有這樣做,才能使學(xué)生“學(xué)”有新“思”,“思”有新“得”,“練”有新“獲”,學(xué)生也才會(huì)逐步感受到數(shù)學(xué)的美,會(huì)產(chǎn)生一種成功感,從而提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣;也只有這樣做,課堂教學(xué)才富有時(shí)代特色,才能適應(yīng)素質(zhì)教育下培養(yǎng)“創(chuàng)新型”人才的需要。

(二)教法分析。

本節(jié)課設(shè)計(jì)的指導(dǎo)思想是:現(xiàn)代認(rèn)知心理學(xué)——建構(gòu)主義學(xué)習(xí)理論。

建構(gòu)主義學(xué)習(xí)理論認(rèn)為:應(yīng)把學(xué)習(xí)看成是學(xué)生主動(dòng)的建構(gòu)活動(dòng),學(xué)生應(yīng)與一定的知識背景即情景相聯(lián)系,在實(shí)際情景下進(jìn)行學(xué)習(xí),可以使學(xué)生利用已有知識與經(jīng)驗(yàn)同化和索引出當(dāng)前要學(xué)習(xí)的新知識,這樣獲取的知識,不但便于保持,而且易于遷移到陌生的問題情景中。

本節(jié)課采用“誘思引探教學(xué)法”。把問題作為出發(fā)點(diǎn),指導(dǎo)學(xué)生“畫、看、說、用”。較好地探求一元二次不等式的解法。

高一數(shù)學(xué)教案等比數(shù)列篇十

解決集合元素的問題時(shí),我們一定要注意集合中的元素要滿足互異性,以免產(chǎn)生增根。

3、注意特殊集合——空集。

空集是不含任何元素的集合。我們規(guī)定空集是任何集合的子集,是任何非空集合的真子集。因而,在涉及集合之間關(guān)系的問題時(shí)要特別注意空集。

4、利用特殊工具——韋恩圖和數(shù)軸。

集合的表示方法可分為列舉法、描述法、圖示法。列舉法一般表示有限集,描述法一般表示無限集,用于書寫最終結(jié)果。在運(yùn)算過程中,一般用數(shù)軸表示連續(xù)型元素的集合,用韋恩圖表示離散型元素的集合。圖形語言可以幫我們快捷而直觀的找出答案,提高解題速度。

高一數(shù)學(xué)教案等比數(shù)列篇十一

所謂三維目標(biāo)是是指:“知識與技能”,“過程和方法”、“情感、態(tài)度、價(jià)值觀”。

知識與技能:既是課堂教學(xué)的出發(fā)點(diǎn),又是課堂教學(xué)的歸宿。我們在教學(xué)過程中,需要學(xué)生掌握什么,哪些些問題需要重點(diǎn)掌握,哪些只需簡單理解;技能是會(huì)與不會(huì)的問題。屬顯性范疇,具有可測性,大都采用定量分析與評價(jià)、知識與技能是傳統(tǒng)教學(xué)合理的內(nèi)核,是我國傳統(tǒng)教育教學(xué)的優(yōu)勢,應(yīng)該從傳統(tǒng)教學(xué)中繼承與發(fā)揚(yáng)。新課改不是不要雙基,而是不要過度的強(qiáng)調(diào)雙基,而舍棄弱化其它有價(jià)值的東西,導(dǎo)致非全面、不和藹的發(fā)展。

過程與方法:既是課堂教學(xué)的目標(biāo)之一,又是課堂教學(xué)的操作系統(tǒng)。“過程和方法”維度的目標(biāo)立足于讓學(xué)生會(huì)學(xué),新課程倡導(dǎo)對學(xué)與教的過程的體驗(yàn)、方法的選擇,是在知識與能力目標(biāo)基礎(chǔ)上對教學(xué)目標(biāo)的進(jìn)一步開發(fā)。過程與方法是一個(gè)體驗(yàn)的過程、發(fā)現(xiàn)的過程,不但可以讓學(xué)生體驗(yàn)到科學(xué)發(fā)展的過程,我們更多地要讓學(xué)生掌握過程,不一定要統(tǒng)一的結(jié)果。

情感、態(tài)度與價(jià)值觀:既是課堂教學(xué)的目標(biāo)之一,又是課堂教學(xué)的動(dòng)力系統(tǒng)?!扒楦?、態(tài)度和價(jià)值觀”,目標(biāo)立足于讓學(xué)生樂學(xué),新課程倡導(dǎo)對學(xué)與教的情感體驗(yàn)、態(tài)度形成、價(jià)值觀的體現(xiàn),是在知識與能力、過程與方法目標(biāo)基礎(chǔ)上對教學(xué)目標(biāo)深層次的開拓,只有學(xué)生充分的認(rèn)識到他們肩負(fù)的責(zé)任,就能夠激發(fā)起他們的學(xué)習(xí)熱情,他們才會(huì)有濃厚的學(xué)習(xí)興趣,才能學(xué)有所成,將來回報(bào)社會(huì)。

三維目標(biāo)不是三個(gè)目標(biāo),也不是三種目標(biāo),是一個(gè)問題的三個(gè)方面。三維目標(biāo)是三位一體不可分割的,他們是相輔相成的,相互促進(jìn)的。

高一數(shù)學(xué)教案等比數(shù)列篇十二

1.了解函數(shù)的單調(diào)性和奇偶性的概念,掌握有關(guān)證明和判斷的基本方法.

(1)了解并區(qū)分增函數(shù),減函數(shù),單調(diào)性,單調(diào)區(qū)間,奇函數(shù),偶函數(shù)等概念.

(2)能從數(shù)和形兩個(gè)角度認(rèn)識單調(diào)性和奇偶性.

(3)能借助圖象判斷一些函數(shù)的單調(diào)性,能利用定義證明某些函數(shù)的單調(diào)性;能用定義判斷某些函數(shù)的奇偶性,并能利用奇偶性簡化一些函數(shù)圖象的繪制過程.

2.通過函數(shù)單調(diào)性的證明,提高學(xué)生在代數(shù)方面的推理論證能力;通過函數(shù)奇偶性概念的形成過程,培養(yǎng)學(xué)生的觀察,歸納,抽象的能力,同時(shí)滲透數(shù)形結(jié)合,從特殊到一般的數(shù)學(xué)思想.

3.通過對函數(shù)單調(diào)性和奇偶性的理論研究,增學(xué)生對數(shù)學(xué)美的體驗(yàn),培養(yǎng)樂于求索的精神,形成科學(xué),嚴(yán)謹(jǐn)?shù)难芯繎B(tài)度.

(1)函數(shù)單調(diào)性的概念。包括增函數(shù)、減函數(shù)的定義,單調(diào)區(qū)間的概念函數(shù)的單調(diào)性的判定方法,函數(shù)單調(diào)性與函數(shù)圖像的關(guān)系.

(2)函數(shù)奇偶性的概念。包括奇函數(shù)、偶函數(shù)的定義,函數(shù)奇偶性的判定方法,奇函數(shù)、偶函數(shù)的圖像.

(1)本節(jié)教學(xué)的重點(diǎn)是函數(shù)的單調(diào)性,奇偶性概念的形成與認(rèn)識.教學(xué)的難點(diǎn)是領(lǐng)悟函數(shù)單調(diào)性, 奇偶性的本質(zhì),掌握單調(diào)性的證明.

(2)函數(shù)的單調(diào)性這一性質(zhì)學(xué)生在初中所學(xué)函數(shù)中曾經(jīng)了解過,但只是從圖象上直觀觀察圖象的上升與下降,而現(xiàn)在要求把它上升到理論的高度,用準(zhǔn)確的數(shù)學(xué)語言去刻畫它.這種由形到數(shù)的翻譯,從直觀到抽象的轉(zhuǎn)變對高一的學(xué)生來說是比較困難的,因此要在概念的形成上重點(diǎn)下功夫.單調(diào)性的證明是學(xué)生在函數(shù)內(nèi)容中首次接觸到的代數(shù)論證內(nèi)容,學(xué)生在代數(shù)論證推理方面的能力是比較弱的,許多學(xué)生甚至還搞不清什么是代數(shù)證明,也沒有意識到它的重要性,所以單調(diào)性的證明自然就是教學(xué)中的難點(diǎn).

(1)函數(shù)單調(diào)性概念引入時(shí),可以先從學(xué)生熟悉的一次函數(shù),,二次函數(shù).反比例函數(shù)圖象出發(fā),回憶圖象的增減性,從這點(diǎn)感性認(rèn)識出發(fā),通過問題逐步向抽象的定義靠攏.如可以設(shè)計(jì)這樣的問題:圖象怎么就升上去了?可以從點(diǎn)的坐標(biāo)的角度,也可以從自變量與函數(shù)值的關(guān)系的角度來解釋,引導(dǎo)學(xué)生發(fā)現(xiàn)自變量與函數(shù)值的的變化規(guī)律,再把這種規(guī)律用數(shù)學(xué)語言表示出來.在這個(gè)過程中對一些關(guān)鍵的詞語(某個(gè)區(qū)間,任意,都有)的理解與必要性的認(rèn)識就可以融入其中,將概念的形成與認(rèn)識結(jié)合起來.

(2)函數(shù)單調(diào)性證明的步驟是嚴(yán)格規(guī)定的,要讓學(xué)生按照步驟去做,就必須讓他們明確每一步的必要性,每一步的目的,特別是在第三步變形時(shí),讓學(xué)生明確變換的目標(biāo),到什么程度就可以斷號,在例題的選擇上應(yīng)有不同的變換目標(biāo)為選題的標(biāo)準(zhǔn),以便幫助學(xué)生總結(jié)規(guī)律.

函數(shù)的奇偶性概念引入時(shí),可設(shè)計(jì)一個(gè)課件,以的圖象為例,讓自變量互為相反數(shù),觀察對應(yīng)的函數(shù)值的變化規(guī)律,先從具體數(shù)值開始,逐漸讓在數(shù)軸上動(dòng)起來,觀察任意性,再讓學(xué)生把看到的用數(shù)學(xué)表達(dá)式寫出來.經(jīng)歷了這樣的過程,再得到等式時(shí),就比較容易體會(huì)它代表的是無數(shù)多個(gè)等式,是個(gè)恒等式.關(guān)于定義域關(guān)于原點(diǎn)對稱的問題,也可借助課件將函數(shù)圖象進(jìn)行多次改動(dòng),幫助學(xué)生發(fā)現(xiàn)定義域的對稱性,同時(shí)還可以借助圖象說明定義域關(guān)于原點(diǎn)對稱只是函數(shù)具備奇偶性的必要條件而不是充分條件.

高一數(shù)學(xué)教案等比數(shù)列篇十三

把實(shí)物圓柱放在講臺上讓學(xué)生畫。

2.學(xué)生畫完后展示自己的結(jié)果并與同學(xué)交流,比較誰畫的效果更好,思考怎樣才能畫好物體的直觀圖呢?這是我們這節(jié)主要學(xué)習(xí)的內(nèi)容。

(二)研探新知。

1.例1,用斜二測畫法畫水平放置的正六邊形的直觀圖,由學(xué)生閱讀理解,并思考斜二測畫法的關(guān)鍵步驟,學(xué)生發(fā)表自己的見解,教師及時(shí)給予點(diǎn)評。

畫水平放置的多邊形的直觀圖的關(guān)鍵是確定多邊形頂點(diǎn)的位置,因?yàn)槎噙呅雾旤c(diǎn)的位置一旦確定,依次連結(jié)這些頂點(diǎn)就可畫出多邊形來,因此平面多邊形水平放置時(shí),直觀圖的畫法可以歸結(jié)為確定點(diǎn)的位置的畫法。強(qiáng)調(diào)斜二測畫法的步驟。

練習(xí)反饋。

根據(jù)斜二測畫法,畫出水平放置的正五邊形的直觀圖,讓學(xué)生獨(dú)立完成后,教師檢查。

2.例2,用斜二測畫法畫水平放置的圓的直觀圖。

教師引導(dǎo)學(xué)生與例1進(jìn)行比較,與畫水平放置的多邊形的直觀圖一樣,畫水平放置的圓的直觀圖,也是要先畫出一些有代表性的點(diǎn),由于不能像多邊那樣直接以頂點(diǎn)為代表點(diǎn),因此需要自己構(gòu)造出一些點(diǎn)。

教師組織學(xué)生思考、討論和交流,如何構(gòu)造出需要的一些點(diǎn),與學(xué)生共同完成例2并詳細(xì)板書畫法。

3.探求空間幾何體的直觀圖的畫法。

(1)例3,用斜二測畫法畫長、寬、高分別是4cm、3cm、2cm的長方體abcd-a’b’c’d’的直觀圖。

教師引導(dǎo)學(xué)生完成,要注意對每一步驟提出嚴(yán)格要求,讓學(xué)生按部就班地畫好每一步,不能敷衍了事。

(2)投影出示幾何體的三視圖。

請說出三視圖表示的幾何體?并用斜二測畫法畫出它的直觀圖。教師組織學(xué)生思考,討論和交流完成,教師巡視幫不懂的同學(xué)解疑,引導(dǎo)學(xué)生正確把握圖形尺寸大小之間的關(guān)系。

4.平行投影與中心投影。

投影出示課本p23圖,讓學(xué)生觀察比較概括在平行投影下畫空間圖形與在中心投影下畫空間圖形的各自特點(diǎn)。

5.鞏固練習(xí),課本p25練習(xí)1,2,3。

三、歸納整理。

學(xué)生回顧斜二測畫法的關(guān)鍵與步驟。

四、作業(yè)。

1.書畫作業(yè),課本p25習(xí)題1—3a組和b組。

高一數(shù)學(xué)教案等比數(shù)列篇十四

3.能利用上述知識進(jìn)行相關(guān)的論證、計(jì)算、作雙曲線的草圖以及解決簡單的實(shí)際問題。

一、預(yù)習(xí)檢查。

1、焦點(diǎn)在x軸上,虛軸長為12,離心率為的雙曲線的標(biāo)準(zhǔn)方程為.

2、頂點(diǎn)間的距離為6,漸近線方程為的雙曲線的標(biāo)準(zhǔn)方程為.

3、雙曲線的漸進(jìn)線方程為.

4、設(shè)分別是雙曲線的半焦距和離心率,則雙曲線的一個(gè)頂點(diǎn)到它的一條漸近線的距離是.

二、問題探究。

探究1、類比橢圓的幾何性質(zhì)寫出雙曲線的幾何性質(zhì),畫出草圖并,說出它們的不同.

探究2、雙曲線與其漸近線具有怎樣的關(guān)系.

練習(xí):已知雙曲線經(jīng)過,且與另一雙曲線,有共同的漸近線,則此雙曲線的標(biāo)準(zhǔn)方程是.

例1根據(jù)以下條件,分別求出雙曲線的標(biāo)準(zhǔn)方程.

(1)過點(diǎn),離心率.

(2)、是雙曲線的左、右焦點(diǎn),是雙曲線上一點(diǎn),且,,離心率為.

例2已知雙曲線,直線過點(diǎn),左焦點(diǎn)到直線的距離等于該雙曲線的虛軸長的,求雙曲線的離心率.

例3(理)求離心率為,且過點(diǎn)的雙曲線標(biāo)準(zhǔn)方程.

三、思維訓(xùn)練。

1、已知雙曲線方程為,經(jīng)過它的右焦點(diǎn),作一條直線,使直線與雙曲線恰好有一個(gè)交點(diǎn),則設(shè)直線的斜率是.

2、橢圓的離心率為,則雙曲線的離心率為.

3、雙曲線的漸進(jìn)線方程是,則雙曲線的離心率等于=.

4、(理)設(shè)是雙曲線上一點(diǎn),雙曲線的一條漸近線方程為、分別是雙曲線的左、右焦點(diǎn),若,則.

四、知識鞏固。

1、已知雙曲線方程為,過一點(diǎn)(0,1),作一直線,使與雙曲線無交點(diǎn),則直線的斜率的集合是.

2、設(shè)雙曲線的一條準(zhǔn)線與兩條漸近線交于兩點(diǎn),相應(yīng)的焦點(diǎn)為,若以為直徑的圓恰好過點(diǎn),則離心率為.

3、已知雙曲線的左,右焦點(diǎn)分別為,點(diǎn)在雙曲線的右支上,且,則雙曲線的離心率的值為.

4、設(shè)雙曲線的半焦距為,直線過、兩點(diǎn),且原點(diǎn)到直線的距離為,求雙曲線的離心率.

5、(理)雙曲線的焦距為,直線過點(diǎn)和,且點(diǎn)(1,0)到直線的距離與點(diǎn)(-1,0)到直線的距離之和.求雙曲線的離心率的取值范圍.

高一數(shù)學(xué)教案等比數(shù)列篇十五

本節(jié)的重點(diǎn)是二次根式的化簡.本章自始至終圍繞著二次根式的化簡與計(jì)算進(jìn)行,而二次根式的化簡不但涉及到前面學(xué)習(xí)過的算術(shù)平方根、二次根式等概念與二次根式的運(yùn)算性質(zhì),還要牽涉到絕對值以及各種非負(fù)數(shù)、因式分解等知識,在應(yīng)用中常常需要對字母進(jìn)行分類討論.

本節(jié)的難點(diǎn)是正確理解與應(yīng)用公式.這個(gè)公式的表達(dá)形式對學(xué)生來說,比較生疏,而實(shí)際運(yùn)用時(shí),則要牽涉到對字母取值范圍的討論,學(xué)生往往容易出現(xiàn)錯(cuò)誤.

教法建議

1.性質(zhì)的引入方法很多,以下2種比較常用:

(1)設(shè)計(jì)問題引導(dǎo)啟發(fā):由設(shè)計(jì)的問題

1)、、各等于什么?

2)、、各等于什么?

啟發(fā)、引導(dǎo)學(xué)生猜想出

(2)從算術(shù)平方根的意義引入.

2.性質(zhì)的鞏固有兩個(gè)方面需要注意:

(1)注意與性質(zhì)進(jìn)行對比,可出幾道類型不同的題進(jìn)行比較;

(2)學(xué)生初次接觸這種形式的表示方式,在教學(xué)時(shí)要注意細(xì)分層次加以鞏固,如單個(gè)數(shù)字,單個(gè)字母,單項(xiàng)式,可進(jìn)行因式分解的多項(xiàng)式,等等.

(第1課時(shí))

1.掌握二次根式的性質(zhì)

2.能夠利用二次根式的性質(zhì)化簡二次根式

3.通過本節(jié)的學(xué)習(xí)滲透分類討論的數(shù)學(xué)思想和方法

對比、歸納、總結(jié)

1.重點(diǎn):理解并掌握二次根式的性質(zhì)

2.難點(diǎn):理解式子中的可以取任意實(shí)數(shù),并能根據(jù)字母的取值范圍正確地化簡有關(guān)的二次根式.

1課時(shí)

五、教b具學(xué)具準(zhǔn)備

投影儀、膠片、多媒體

復(fù)習(xí)對比,歸納整理,應(yīng)用提高,以學(xué)生活動(dòng)為主

一、導(dǎo)入新課

我們知道,式子()表示非負(fù)數(shù)的算術(shù)平方根.

問:式子的意義是什么?被開方數(shù)中的表示的是什么數(shù)?

答:式子表示非負(fù)數(shù)的算術(shù)平方根,即,且,從而可以取任意實(shí)數(shù).

二、新課

計(jì)算下列各題,并回答以下問題:

(1);(2);(3);

1.各小題中被開方數(shù)的冪的底數(shù)都是什么數(shù)?

2.各小題的結(jié)果和相應(yīng)的被開方數(shù)的冪的底數(shù)有什么關(guān)系?

3.用字母表示被開方數(shù)的冪的底數(shù),將有怎樣的結(jié)論?并用語言敘述你的結(jié)論.

高一數(shù)學(xué)教案等比數(shù)列篇十六

(1)通過實(shí)物操作,增強(qiáng)學(xué)生的直觀感知。

(2)能根據(jù)幾何結(jié)構(gòu)特征對空間物體進(jìn)行分類。

(3)會(huì)用語言概述棱柱、棱錐、圓柱、圓錐、棱臺、圓臺、球的結(jié)構(gòu)特征。

(4)會(huì)表示有關(guān)于幾何體以及柱、錐、臺的分類。

(1)讓學(xué)生通過直觀感受空間物體,從實(shí)物中概括出柱、錐、臺、球的幾何結(jié)構(gòu)特征。

(2)讓學(xué)生觀察、討論、歸納、概括所學(xué)的知識。

(1)使學(xué)生感受空間幾何體存在于現(xiàn)實(shí)生活周圍,增強(qiáng)學(xué)生學(xué)習(xí)的積極性,同時(shí)提高學(xué)生的觀察能力。

(2)培養(yǎng)學(xué)生的空間想象能力和抽象括能力。

重點(diǎn):讓學(xué)生感受大量空間實(shí)物及模型、概括出柱、錐、臺、球的結(jié)構(gòu)特征。難點(diǎn):柱、錐、臺、球的結(jié)構(gòu)特征的概括。

(1)學(xué)法:觀察、思考、交流、討論、概括。

(2)實(shí)物模型、投影儀四、教學(xué)思路。

1、教師提出問題:在我們生活周圍中有不少有特色的建筑物,你能舉出一些例子嗎?這些建筑的幾何結(jié)構(gòu)特征如何?引導(dǎo)學(xué)生回憶,舉例和相互交流。教師對學(xué)生的活動(dòng)及時(shí)給予評價(jià)。

2、所舉的建筑物基本上都是由這些幾何體組合而成的,(展示具有柱、錐、臺、球結(jié)構(gòu)特征的空間物體),你能通過觀察。根據(jù)某種標(biāo)準(zhǔn)對這些空間物體進(jìn)行分類嗎?這是我們所要學(xué)習(xí)的內(nèi)容。

1、引導(dǎo)學(xué)生觀察物體、思考、交流、討論,對物體進(jìn)行分類,分辯棱柱、圓柱、棱錐。

3、組織學(xué)生分組討論,每小組選出一名同學(xué)發(fā)表本組討論結(jié)果。在此基礎(chǔ)上得出棱柱的主要結(jié)構(gòu)特征。

(1)有兩個(gè)面互相平行;

(2)其余各面都是平行四邊形;

(3)每相鄰兩上四邊形的公共邊互相平行。概括出棱柱的概念。

4、教師與學(xué)生結(jié)合圖形共同得出棱柱相關(guān)概念以及棱柱的表示。

5、提出問題:各種這樣的棱柱,主要有什么不同?可不可以根據(jù)不同對棱柱分類?

6、以類似的方法,讓學(xué)生思考、討論、概括出棱錐、棱臺的結(jié)構(gòu)特征,并得出相關(guān)的概念,分類以及表示。

7、讓學(xué)生觀察圓柱,并實(shí)物模型演示,如何得到圓柱,從而概括出圓標(biāo)的概念以及相關(guān)的概念及圓柱的表示。

8、引導(dǎo)學(xué)生以類似的方法思考圓錐、圓臺、球的結(jié)構(gòu)特征,以及相關(guān)概念和表示,借助實(shí)物模型演示引導(dǎo)學(xué)生思考、討論、概括。

9、教師指出圓柱和棱柱統(tǒng)稱為柱體,棱臺與圓臺統(tǒng)稱為臺體,圓錐與棱錐統(tǒng)稱為錐體。

1、有兩個(gè)面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱(舉反例說明,如圖)。

2、棱柱的何兩個(gè)平面都可以作為棱柱的底面嗎?

3、課本p8,習(xí)題1.1a組第1題。

5、棱臺與棱柱、棱錐有什么關(guān)系?圓臺與圓柱、圓錐呢?

由學(xué)生整理學(xué)習(xí)了哪些內(nèi)容六、布置作業(yè)。

課本p8練習(xí)題1.1b組第1題。

課外練習(xí)課本p8習(xí)題1.1b組第2題。

高一數(shù)學(xué)教案等比數(shù)列篇十七

[教學(xué)重點(diǎn)、難點(diǎn)]:會(huì)正確應(yīng)用其概念和性質(zhì)做題 [教 具]:多媒體、實(shí)物投影儀

[教學(xué)方法]:講練結(jié)合法

[授課類型]:復(fù)習(xí)課

[課時(shí)安排]:1課時(shí)

[教學(xué)過程]:集合部分匯總

本單元主要介紹了以下三個(gè)問題:

1,集合的含義與特征

2,集合的表示與轉(zhuǎn)化

3,集合的基本運(yùn)算

一,集合的含義與表示(含分類)

1,具有共同特征的對象的全體,稱一個(gè)集合

2,集合按元素的個(gè)數(shù)分為:有限集和無窮集兩類

高一數(shù)學(xué)教案等比數(shù)列篇十八

使學(xué)生在九年義務(wù)教育數(shù)學(xué)課程的基礎(chǔ)上,進(jìn)一步提高作為未來公民所必要的數(shù)學(xué)素養(yǎng),以滿足個(gè)人發(fā)展與社會(huì)進(jìn)步的需要。具體目標(biāo)如下。

1.獲得必要的數(shù)學(xué)基礎(chǔ)知識和基本技能,理解基本的數(shù)學(xué)概念、數(shù)學(xué)結(jié)論的本質(zhì),了解概念、結(jié)論等產(chǎn)生的背景、應(yīng)用,體會(huì)其中所蘊(yùn)涵的數(shù)學(xué)思想和方法,以及它們在后續(xù)學(xué)習(xí)中的作用。通過不同形式的自主學(xué)習(xí)、探究活動(dòng),體驗(yàn)數(shù)學(xué)發(fā)現(xiàn)和創(chuàng)造的歷程。

2.提高空間想像、抽象概括、推理論證、運(yùn)算求解、數(shù)據(jù)處理等基本能力。

3.提高數(shù)學(xué)地提出、分析和解決問題(包括簡單的實(shí)際問題)的能力,數(shù)學(xué)表達(dá)和交流的能力,發(fā)展獨(dú)立獲取數(shù)學(xué)知識的能力。

4.發(fā)展數(shù)學(xué)應(yīng)用意識和創(chuàng)新意識,力求對現(xiàn)實(shí)世界中蘊(yùn)涵的一些數(shù)學(xué)模式進(jìn)行思考和作出判斷。

5.提高學(xué)習(xí)數(shù)學(xué)的興趣,樹立學(xué)好數(shù)學(xué)的信心,形成鍥而不舍的鉆研精神和科學(xué)態(tài)度。 6.具有一定的數(shù)學(xué)視野,逐步認(rèn)識數(shù)學(xué)的科學(xué)價(jià)值、應(yīng)用價(jià)值和文化價(jià)值,形成批判性的思維習(xí)慣,崇尚數(shù)學(xué)的理性精神,體會(huì)數(shù)學(xué)的美學(xué)意義,從而進(jìn)一步樹立辯證唯物主義和歷史唯物主義世界觀。

我們所使用的教材是人教版《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書數(shù)學(xué)(a版)》,它在堅(jiān)持我國數(shù)學(xué)教育優(yōu)良傳統(tǒng)的前提下,認(rèn)真處理繼承,借簽,發(fā)展,創(chuàng)新之間的關(guān)系,體現(xiàn)基礎(chǔ)性,時(shí)代性,典型性和可接受性等到,具有如下特點(diǎn):

1.親和力:以生動(dòng)活潑的呈現(xiàn)方式,激發(fā)興趣和美感,引發(fā)學(xué)習(xí)激情。

2.問題性:以恰時(shí)恰點(diǎn)的問題引導(dǎo)數(shù)學(xué)活動(dòng),培養(yǎng)問題意識,孕育創(chuàng)新精神。

3.科學(xué)性與思想性:通過不同數(shù)學(xué)內(nèi)容的聯(lián)系與啟發(fā),強(qiáng)調(diào)類比,推廣,特殊化,化歸等思想方法的運(yùn)用,學(xué)習(xí)數(shù)學(xué)地思考問題的方式,提高數(shù)學(xué)思維能力,培育理性精神。

4.時(shí)代性與應(yīng)用性:以具有時(shí)代性和現(xiàn)實(shí)感的素材創(chuàng)設(shè)情境,加強(qiáng)數(shù)學(xué)活動(dòng),發(fā)展應(yīng)用意識。

1. 選取與內(nèi)容密切相關(guān)的,典型的,豐富的和學(xué)生熟悉的素材,用生動(dòng)活潑的語言,創(chuàng)設(shè)能夠體現(xiàn)數(shù)學(xué)的概念和結(jié)論,數(shù)學(xué)的思想和方法,以及數(shù)學(xué)應(yīng)用的學(xué)習(xí)情境,使學(xué)生產(chǎn)生對數(shù)學(xué)的親切感,引發(fā)學(xué)生看個(gè)究竟的沖動(dòng),以達(dá)到培養(yǎng)其興趣的目的。

2. 通過觀察,思考,探究等欄目,引發(fā)學(xué)生的思考和探索活動(dòng),切實(shí)改進(jìn)學(xué)生的學(xué)習(xí)方式。

3. 在教學(xué)中強(qiáng)調(diào)類比,推廣,特殊化,化歸等數(shù)學(xué)思想方法,盡可能養(yǎng)成其邏輯思維的習(xí)慣。

兩個(gè)班一個(gè)普高一個(gè)職高,學(xué)習(xí)情況良好,但學(xué)生自覺性差,自我控制能力弱,因此在教學(xué)中需時(shí)時(shí)提醒學(xué)生,培養(yǎng)其自覺性。班級存在的最大問題是計(jì)算能力太差,學(xué)生不喜歡去算題,嫌麻煩,只注重思路,因此在以后的教學(xué)中,重點(diǎn)在于培養(yǎng)學(xué)生的計(jì)算能力,同時(shí)要進(jìn)一步提高其思維能力。同時(shí),由于初中課改的原因,高中教材與初中教材銜接力度不夠,需在新授時(shí)適機(jī)補(bǔ)充一些內(nèi)容。因此時(shí)間上可能仍然吃緊。同時(shí),其底子薄弱,因此在教學(xué)時(shí)只能注重基礎(chǔ)再基礎(chǔ),爭取每一堂課落實(shí)一個(gè)知識點(diǎn),掌握一個(gè)知識點(diǎn)。

1、激發(fā)學(xué)生的學(xué)習(xí)興趣。由數(shù)學(xué)活動(dòng)、故事、吸引人的課、合理的要求、師生談話等途徑樹立學(xué)生的學(xué)習(xí)信心,提高學(xué)習(xí)興趣,在主觀作用下上升和進(jìn)步。

2、注意從實(shí)例出發(fā),從感性提高到理性;注意運(yùn)用對比的方法,反復(fù)比較相近的概念;注意結(jié)合直觀圖形,說明抽象的知識;注意從已有的`知識出發(fā),啟發(fā)學(xué)生思考。

3、加強(qiáng)培養(yǎng)學(xué)生的邏輯思維能力就解決實(shí)際問題的能力,以及培養(yǎng)提高學(xué)生的自學(xué)能力,養(yǎng)成善于分析問題的習(xí)慣,進(jìn)行辨證唯物主義教育。

4、抓住公式的推導(dǎo)和內(nèi)在聯(lián)系;加強(qiáng)復(fù)習(xí)檢查工作;抓住典型例題的分析,講清解題的關(guān)鍵和基本方法,注重提高學(xué)生分析問題的能力。

5、自始至終貫徹教學(xué)四環(huán)節(jié),針對不同的教材內(nèi)容選擇不同教法。

6、重視數(shù)學(xué)應(yīng)用意識及應(yīng)用能力的培養(yǎng)。

俗話說的好,好的教學(xué)計(jì)劃是教學(xué)成功的一半,作為一名優(yōu)異的教師,做好一定的教學(xué)計(jì)劃很有必要。

總結(jié):制定教學(xué)計(jì)劃的主要目的是為了全面了解學(xué)生的數(shù)學(xué)學(xué)習(xí)歷程,激勵(lì)學(xué)生的學(xué)習(xí)和改進(jìn)教師的教學(xué)。希望上面的,能受到大家的歡迎!

高一數(shù)學(xué)教案等比數(shù)列篇十九

2、掌握標(biāo)準(zhǔn)方程中的幾何意義。

3、能利用上述知識進(jìn)行相關(guān)的論證、計(jì)算、作雙曲線的草圖以及解決簡單的實(shí)際問題。

1、焦點(diǎn)在x軸上,虛軸長為12,離心率為的雙曲線的標(biāo)準(zhǔn)方程為、

2、頂點(diǎn)間的距離為6,漸近線方程為的雙曲線的標(biāo)準(zhǔn)方程為、

3、雙曲線的漸進(jìn)線方程為、

4、設(shè)分別是雙曲線的半焦距和離心率,則雙曲線的一個(gè)頂點(diǎn)到它的一條漸近線的距離是、

探究1、類比橢圓的幾何性質(zhì)寫出雙曲線的幾何性質(zhì),畫出草圖并,說出它們的不同、

探究2、雙曲線與其漸近線具有怎樣的關(guān)系、

練習(xí):已知雙曲線經(jīng)過,且與另一雙曲線,有共同的漸近線,則此雙曲線的標(biāo)準(zhǔn)方程是、

例1根據(jù)以下條件,分別求出雙曲線的標(biāo)準(zhǔn)方程、

(1)過點(diǎn),離心率、

(2)、是雙曲線的左、右焦點(diǎn),是雙曲線上一點(diǎn),且,,離心率為、

例3(理)求離心率為,且過點(diǎn)的雙曲線標(biāo)準(zhǔn)方程、

2、橢圓的離心率為,則雙曲線的離心率為、

3、雙曲線的漸進(jìn)線方程是,則雙曲線的離心率等于=、

4、設(shè)雙曲線的半焦距為,直線過、兩點(diǎn),且原點(diǎn)到直線的距離為,求雙曲線的離心率、

將本文的word文檔下載到電腦,方便收藏和打印。

【本文地址:http://mlvmservice.com/zuowen/17055697.html】

全文閱讀已結(jié)束,如果需要下載本文請點(diǎn)擊

下載此文檔