教案的編寫需要注重教學手段和教學策略的選擇。編寫教案前,教師需要充分了解教學要求和教材內容。教案的優(yōu)劣直接影響教學質量,所以我們要重視教案的編寫。
小學因數(shù)和倍數(shù)的教案篇一
1.學生通過回憶和整理,進一步明確因數(shù)和倍數(shù)的相關知識,加深認識相關概念之間的聯(lián)系與區(qū)別,能求兩個數(shù)的公因數(shù)和公倍數(shù),并能運用這些知識解決相關實際問題。
2.學生在應用相關知識進行判斷和推理的過程中,能說明思考過程,進一步培養(yǎng)歸納概括和演繹推理等思維能力,進一步增強分析問題和解決問題的能力。
3.學生進一步體會數(shù)學知識之間的內在聯(lián)系,感受數(shù)學思考的嚴謹性和數(shù)學結論的確定性,激發(fā)學習數(shù)學的興趣和學好數(shù)學的自信心。
掌握倍數(shù)和因數(shù)等相關概念,以及應用概念判斷、推理。
理解相關概念的聯(lián)系和區(qū)別。
一、揭示課題。
1.回顧知識。
提問:上節(jié)課,我們已經(jīng)復習了整數(shù)和小數(shù)的有關知識。
結合學生交流,板書。
2.揭示課題。
引入:這節(jié)課,我們復習因數(shù)和倍數(shù)的相關知識。
通過復習,能進一步了解關于因數(shù)和倍數(shù)的知識,理解它們之間的聯(lián)系和區(qū)別,并能應用這些知識。
二、基本練習。
1.知識梳理。
提高:回想一下,在學習因數(shù)和倍數(shù)時,我們還學習了哪些相關的知識?
學生回顧,交流,教師適當引導回顧。
根據(jù)學生回答,板書整理。
2.做練習與實踐第10題。
學生獨立完成,指名板演。
集體交流,讓學生說說找一個數(shù)的因數(shù)和倍數(shù)的方法。
3.做練習與實踐第11題。
出示題目,學生直接口答。
提問:怎樣判斷一個數(shù)是不是2的倍數(shù)?判斷是3和5的倍數(shù)呢?
追問:這里哪些是偶數(shù),哪些是奇數(shù)?說說你是怎樣想的。
4.做練習與實踐第12題。
學生先獨立寫出質數(shù)和合數(shù),再指名口答。
追問:最小質數(shù)是幾?最小的合數(shù)呢?
小學因數(shù)和倍數(shù)的教案篇二
1、嘗試用“列表”“畫示意圖”等解決問題的策略發(fā)現(xiàn)規(guī)律,運用數(shù)的奇偶性解決生活中的一些簡單問題。
2、經(jīng)歷探索加法中數(shù)的奇偶性變化的過程,在活動中發(fā)現(xiàn)加法中數(shù)的奇偶性變化規(guī)律,在活動中體驗研究的方法,提高推理能力。
1、嘗試用“列表”“畫示意圖”等解決問題的策略發(fā)現(xiàn)規(guī)律,運用數(shù)的奇偶性解決生活中的一些簡單問題。
2、經(jīng)歷探索加法中數(shù)的奇偶性變化的過程,在活動中發(fā)現(xiàn)加法中數(shù)的奇偶性變化規(guī)律,在活動中體驗研究的方法,提高推理能力。
活動1:利用數(shù)的奇偶性解決一些簡單的實際問題。
讓學生嘗試解決問題,尋找解決問題的策略,利用解決問題的策略發(fā)現(xiàn)規(guī)律,教師適當進行“列表”“畫示意圖”等解決問題策略的指導。
試一試:
本題是讓學生應用上述活動中解決問題的策略嘗試自己解決問題,最后的結果是:翻動10次,杯口朝上;翻動19次,杯口朝下。解決問題后,讓學生以“硬幣”為題材,自己提出問題、解決問題,還可以開展游戲活動。
活動2:探索奇數(shù)、偶數(shù)相加的規(guī)律。
[板書設計]。
例子:結論:
12+34=48偶數(shù)+偶數(shù)=偶數(shù)。
11+37=48奇數(shù)+奇數(shù)=偶數(shù)。
12+11=23奇數(shù)+偶數(shù)=奇數(shù)。
小學因數(shù)和倍數(shù)的教案篇三
《因數(shù)和倍數(shù)》是一節(jié)數(shù)學概念課,通過這個乘法算式直接給出因數(shù)和倍數(shù)的概念。這部分內容學生初次接觸,對于學生來說是比較難掌握的內容。
數(shù)學課程標準“以人為本”的理念決定著數(shù)學教學目標的指向:適應并促進學生的發(fā)展。根據(jù)本節(jié)課知識的特點和學生的認知規(guī)律,我采用了角色轉換、數(shù)形結合、合作學習等發(fā)展性教學手段進行教學,在教學中我注重體現(xiàn)以學生為主體的新理念,努力為學生的探究發(fā)現(xiàn)提供足夠的空間。在課堂中,我主要圍繞以下幾方面來進行教學:
(1)捕捉生活與數(shù)學之間的聯(lián)系,幫助學生理解因數(shù)倍數(shù)相互依存的關系。
因數(shù)和倍數(shù)是揭示兩個整數(shù)之間的一種相互依存關系,在課前談話中我利用一個腦筋急轉彎,滲透相互依存的關系。?通過生活中人與人之間的關系,遷移到數(shù)學中的數(shù)和數(shù)之間的關系,這樣設計自然又貼切,既讓學生感受到了數(shù)學與生活的聯(lián)系,初步學會從數(shù)學的角度去觀察事物、思考問題,激發(fā)了對數(shù)學的興趣,又潛移默化地幫助學生理解了因數(shù)倍數(shù)之間的相互依存關系。在教學中,也達到了預期的效果,學生對因數(shù)和倍數(shù)相互依存的關系理解的比較深刻。
(2)角色轉換,讓學生親身體驗數(shù)和數(shù)之間的聯(lián)系。
因數(shù)和倍數(shù)這節(jié)課研究的是數(shù)和數(shù)之間的關系,知識內容比較抽象。因而,我采用了“擬人化”的教學手段,每人一張數(shù)字卡片,學生和老師都變成了數(shù)學王國里的一名成員。當學生想回答問題時都會高高地舉起自己的號碼,整節(jié)課學生都沉浸在自己的角色體驗中,學生都把自己當成了一個數(shù)。通過對自己一個數(shù)的認識,舉一反三,從而理解了數(shù)與數(shù)之間的因數(shù)和倍數(shù)關系,既充分激發(fā)了學生的學習興趣,又十分有效地突破了教學難點。
(3)數(shù)形結合,讓學生帶著已有知識走進數(shù)學課堂。
“數(shù)形結合”是一種重要的數(shù)學思想。對教師來說則是一種教學策略,是一種發(fā)展性課堂教學手段;對學生來說又是一種學習方法。如果長期滲透,運用恰當,則使學生形成良好的數(shù)學意識和思想,長期穩(wěn)固地作用于學生的數(shù)學學習生涯中。開課教師引導學生進行空間想象。
(4)重組教材,根據(jù)學生的實際情況,多種形式探究找因數(shù)倍數(shù)的方法。
教材上,探究因數(shù)這部分的例題比較少,只有一個:找18的因數(shù)。根據(jù)學生的實際情況,我進行了重組教材,先讓學生根據(jù)乘法算式“一對對”地找出15的因數(shù),在此基礎上再讓學生探究18的因數(shù)。通過“質疑”:有什么辦法能保證既找全又不遺漏呢?讓學生思考并發(fā)現(xiàn):按照一定的順序一對對的找因數(shù),能既找全又不遺漏。進而又借助體態(tài)語言——打手勢,讓學生說出20和24的因數(shù),達到了鞏固練習的目的。這樣設計由易到難,由淺入深,符合了學生的認知規(guī)律。而在探究倍數(shù)時,我則大膽的放手,讓學生自主探索找一個數(shù)倍數(shù)的方法,給學生提供了廣闊的思維空間。這樣通過多種形式的教學,既激發(fā)了學生的學習興趣,又極大地提高了課堂教學的實效性。
(5)趣味活動,擴大學生思維的空間,培養(yǎng)學生發(fā)散思維的能力。
只有讓學生親身感受到數(shù)學知識內在的智取因素,數(shù)學學習的無窮魅力才能深深地打動學生。這節(jié)課的練習設計緊緊把握概念的內涵與外延,設計有效練習,拓展知識空間。譬如:讓學生用所學知識介紹自己,通過數(shù)字卡片找自己的因數(shù)和倍數(shù)朋友等等。學生拿著自己的數(shù)字卡片上臺找自己的朋友,讓臺下學生判斷自己的學號是不是這個數(shù)的因數(shù)或倍數(shù),如果臺下學生的學號是這個數(shù)的因數(shù)或倍數(shù)就站到前面。由于答案不唯一,學生思考問題的空間很大,這樣既培養(yǎng)了學生的發(fā)散思維能力,又使學生享受到了數(shù)學思維的快樂。但由于我缺乏時間觀念,這部分時間太倉促,沒有展開練習,學生沒有盡興,也沒有達到充分地練習效果。
因數(shù)和倍數(shù)教學反思。
《倍數(shù)和因數(shù)》這一內容與原來教材比有了很大的不同,老教材中是先建立整除的概念,再在此基礎上認識因數(shù)倍數(shù),而現(xiàn)在是在未認識整除的情況下直接認識倍數(shù)和因數(shù)的。數(shù)學中的“起始概念”一般比較難教,這部分內容學生初次接觸,對于學生來說是比較難掌握的內容。首先是名稱比較抽象,在現(xiàn)實生活中又不經(jīng)常接觸,對這樣的概念教學,要想讓學生真正理解、掌握、判斷,需要一個長期的消化理解的過程。
這節(jié)課我在教學中充分體現(xiàn)以學生為主體,為學生的探究發(fā)現(xiàn)提供足夠的時空和適當?shù)闹笇В瑫r,也為提高課堂教學的有效性,我在本課的教學中體現(xiàn)了自主化、活動化、合作化和情意化,具體做到了以下幾點:
(一)?操作實踐,舉例內化,認識倍數(shù)和因數(shù)。
(二)自主探究,意義建構,找倍數(shù)和因數(shù)。
整個教學過程中力求體現(xiàn)學生是學習的主體,教師只是教學活動的組織者、指導者、參與者。整節(jié)課中,教師始終為學生創(chuàng)造寬松的學習氛圍,讓學生自主探索,學習理解倍數(shù)和因數(shù)的意義,探索并掌握找一個數(shù)的倍數(shù)和因數(shù)的方法,引導學生在充分的動口、動手、動腦中自主獲取知識。
新課程提出了合作學習的學習方式,教學中的多次合作不僅能讓學生在合作中發(fā)表意見,參與討論,獲得知識,發(fā)現(xiàn)特征,而且還很好地培養(yǎng)了學生的合作學習能力,初步形成合作與競爭的意識。
(三)變式拓展,實踐應用---—促進智能內化。
練習的設計不僅緊緊圍繞教學重點,而且注意到了練習的層次性,趣味性。在游戲中,師生互動,激活了學生的情感,學生的思維不斷活躍起來,學生不僅參與率高,而且還較好地鞏固了新知。課上,我能注重自始至終關注學生學習興趣、學習熱情、學習自信等情感因素的培養(yǎng),并及時讓學生感受到學習成功的喜悅,享受數(shù)學,感悟文化魅力。
由于這節(jié)是概念課,因此有不少東西是由老師告知的,但并不意味著學生完全被動地接受。教學之前我知道這節(jié)課時間會很緊,所以在備課的時候,我認真鉆研了教材,仔細分析了教案,看哪些地方時間安排的可以少一些,所以我在第一部分認識因數(shù)和倍數(shù)這一環(huán)節(jié)里縮短出示時間,直接出示,,實際效果我認為是比較理想的。課上還應該及時運用多媒體將學生找的因數(shù)呈現(xiàn)出來,引導學生歸納總結自己的發(fā)現(xiàn):最小的因數(shù)是1,最大的因數(shù)是它本身。教師應該及時跟上個性化的語言評價,激活學生的情感,將學生的思維不斷活躍起來。
小學因數(shù)和倍數(shù)的教案篇四
1、使學生結合乘、除法運算初步認識倍數(shù)和因數(shù)的含義,探索求一個數(shù)的倍數(shù)和因數(shù)的方法。
2、使學生在探索的過程中,進一步體會數(shù)學知識之間的內在聯(lián)系,提高數(shù)學思考的水平。
3、增強學生學習數(shù)學的興趣,感受到成功的快樂。
理解倍數(shù)和因數(shù)的含義,探索并掌握找一個數(shù)的倍數(shù)和因數(shù)的方法。
理解倍數(shù)和因數(shù)的含義及倍數(shù)和因數(shù)的相互依存關系。
學生:每人準備12個同樣大小的正方形。教師:課件。
一、認識倍數(shù)和因數(shù)。
1、提出活動要求:每一桌的同學合作,用12個同樣大小的正方形拼成一個長方形,想想有幾種不同的擺法,并用乘法算式把不同的擺法表示出來。看看哪桌的同學最快完成。
2分組操作活動,師巡視指導。
3、指名匯報,出示課件,全班交流。匯報時是引導學生根據(jù)“每排擺幾個”“擺了幾排”這兩個問題說出三種不同的乘法算式。師提示:每排擺5個,能擺幾排,明確只有這三種擺法。
4、教學“倍數(shù)”和“因數(shù)”的概念。
(1)結合4×3=12,說明12是4的倍數(shù),12也是3的倍數(shù),4和3都是12的因數(shù)。并板書。
(2)齊讀這三句話,板書課題:倍數(shù)和因數(shù)。
(3)指名看式子說。
(4)請學生根據(jù)6×2=12和12×1=12兩道算式,照樣子說。
一說哪個數(shù)是哪個數(shù)的倍數(shù)?哪個數(shù)是哪個數(shù)的因數(shù)?
追問:如果說12是倍數(shù),3是因數(shù),可以嗎?為什么?
明確:倍數(shù)和因數(shù)都是指兩個數(shù)之間的關系,是相互依存的。
教師指出閱讀底注明確:為了方便,我們在研究倍數(shù)和因數(shù)時,所說的數(shù)一般指不是0的自然數(shù)。不是0的自然數(shù),0要考慮嗎?那從什么數(shù)開始。如1、2、3、4、5、6、7、8、9……在小數(shù)和分數(shù)等其他數(shù)中就也沒有倍數(shù)和因數(shù)的說法了。(可根據(jù)具體的算式說明,如0×3=0,1.5×2=3。)。
(5)練習:“想想做做”第1題。每位同學都各選一個乘法算式同桌之間互相說一說,
三、探索找倍數(shù)和因數(shù)的方法。
1、探索找一個數(shù)的倍數(shù)的方法。
(1)提出問題:什么樣的數(shù)會是3的倍數(shù)呢?明確:3的倍數(shù)是3與一個數(shù)相乘的積。你能找到多少個3的倍數(shù)?先讓學生獨立思考,再組織交流。
(2)啟發(fā):誰能按從小到大的順序有條理的說出3的倍數(shù)?根據(jù)什么樣的乘法算式?明確:可以按從小到大的順序,依次用1、2、3、4……與3相乘,每次乘得的積都是3的倍數(shù)。同時板書:
3×1=(3)3×2=(6)……。
追問:能把3的倍數(shù)全部說完嗎?應該怎樣表示3的倍數(shù)有哪些呢?
根據(jù)學生的回答課件演示:3的倍數(shù)有3、6、9、12、15……。
(3)完成后面的試一試。提醒學生注意有序的思考,并規(guī)范的表示出結果。
(4)一個數(shù)的倍數(shù)的特點。
提問:觀察上面的幾個例子,你發(fā)現(xiàn)一個數(shù)的倍數(shù)有什么特點?根據(jù)學生的交流歸納:一個數(shù)的倍數(shù)中,最小的是它的本身,沒有最大的倍數(shù),一個數(shù)的倍數(shù)的個數(shù)是無限的。
提問:現(xiàn)在你能很快說出6的最小倍數(shù)是多少嗎?10呢?
2、探索找一個數(shù)的因數(shù)的方法。
(1)提出問題:什么樣的數(shù)是36的因數(shù)?
學生舉例說明。明確:如果有兩個數(shù)相乘的積是36,那么這兩個數(shù)都是36的因數(shù)。
板書()×()=36。
學生試著在練習本上列式找出。
(3)學生匯報交流,根據(jù)學生的回答課件演示。
請同學們看書71頁,完成書上的填空。
(5)完成“試一試”。提醒學生有序的思考,做到不重復,不遺漏。
學生匯報,說說你是怎樣找的。
(6)觀察發(fā)現(xiàn)。
提問:觀察上面的例子,你發(fā)現(xiàn)一個數(shù)的因數(shù)有什么特點?
小結:一個數(shù)因數(shù)的個數(shù)是有限的,一個數(shù)的因數(shù)中,最小的是1,最大的是它本身。
提問:現(xiàn)在你能很快說出18的最小因數(shù)和最大因數(shù)是多少嗎?25呢?
四、鞏固練習。
1、“想想做做”第2題。
2、“想想做做”第3題。
五、全課總結。
這節(jié)課你學會了什么?
小學因數(shù)和倍數(shù)的教案篇五
1.我能理解什么是質數(shù)和合數(shù),掌握了判斷質數(shù)、合數(shù)的方法。
2.我知道100以內的質數(shù),記住了20以內的質數(shù)。
3.我能在自主探究中獨立思考,合作探究時暢所欲言。
能理解質數(shù)、合數(shù)的意義,正確判斷一個數(shù)是質數(shù)還是合數(shù)。
用恰當?shù)姆椒ㄕ页?00以內的質數(shù);會給自然數(shù)分類。
一、導入新課。
二、檢查獨學。
1.互動分享收獲。
2.質疑探討。
3.試試身手:第23頁做一做。
三、合作探究。
1.小組合作,利用課本24頁的表格,用恰當?shù)姆椒ㄕ页?00以內的質數(shù),做一個質數(shù)表。
2.展示、交流:你們是怎樣找出100以內質數(shù)的?
3.小組討論:
(1)有沒有最大的質數(shù)或合數(shù)?
(2)根據(jù)因數(shù)的個數(shù),可把非零自然數(shù)分成哪幾類?
4.我能很快熟記20以內的質數(shù)。
5.獨立思考:
(1)是不是所有的`質數(shù)都是奇數(shù)?
(2)是不是所有的奇數(shù)都是質數(shù)?
(3)是不是所有的合數(shù)都是偶數(shù)?
(4)是不是所有的偶數(shù)都是合數(shù)?
6.組內交流。
小學因數(shù)和倍數(shù)的教案篇六
4、培養(yǎng)學生的觀察能力。
掌握找一個數(shù)的因數(shù)和倍數(shù)的方法。
能熟練地找一個數(shù)的因數(shù)和倍數(shù)。
一、引入新課。
1、出示主題圖,讓學生各列一道乘法算式。
2、師:看你能不能讀懂下面的算式?
出示:因為26=12。
所以2是12的因數(shù),6也是12的因數(shù);
12是2的倍數(shù),12也是6的倍數(shù)。
3、師:你能不能用同樣的方法說說另一道算式?
(指名生說一說)。
師:你有沒有明白因數(shù)和倍數(shù)的關系了?
那你還能找出12的其他因數(shù)嗎?
4、你能不能寫一個算式來考考同桌?學生寫算式。
師:誰來出一個算式考考全班同學?
5、師:今天我們就來學習因數(shù)和倍數(shù)。(出示課題:因數(shù)倍數(shù))。
齊讀p12的注意。
二、新授。
(一)找因數(shù)。
1、出示例1:18的因數(shù)有哪幾個?
學生嘗試完成:匯報。
(18的因數(shù)有:1,2,3,6,9,18)。
師:說說看你是怎么找的?(生:用整除的方法,181=18,182=9,183=6,184=;用乘法一對一對找,如118=18,29=18)。
師:18的因數(shù)中,最小的是幾?最大的是幾?我們在寫的時候一般都是從小到大排列的。
2、用這樣的方法,請你再找一找36的因數(shù)有那些?
匯報36的因數(shù)有:1,2,3,4,6,9,12,18,36。
師:你是怎么找的?
舉錯例(1,2,3,4,6,6,9,12,18,36)。
師:這樣寫可以嗎?為什么?(不可以,因為重復的因數(shù)只要寫一個就可以了,所以不需要寫兩個6)。
仔細看看,36的因數(shù)中,最小的是幾,最大的是幾?
看來,任何一個數(shù)的因數(shù),最小的一定是(),而最大的一定是()。
小學因數(shù)和倍數(shù)的教案篇七
尊敬的各位領導、老師大家上午好:我們團隊所執(zhí)教的是《因數(shù)和倍數(shù)》。
一、說教材:
《因數(shù)和倍數(shù)》是小學人教版課程標準實驗教材五年級下冊第二單元的內容,也是小學階段“數(shù)與代數(shù)”部分最重要的知識之一?!兑驍?shù)和倍數(shù)》的學習,是在初步認識自然數(shù)的基礎上,探究其性質。其中涉及到的內容屬于初等數(shù)論的基本內容,相當抽象。在這一內容的編排上與以往教材不同,沒有數(shù)學化的語言給“整除”下定義,而是在本課時通過乘法算式借助整除的模式na=b直接給出因數(shù)與位數(shù)的概念。這節(jié)課是因數(shù)與倍數(shù)的概念的引入,為本單元最后的內容,以及第四單元的最大公因數(shù),最小公倍數(shù)提供了必須且重要的鋪墊。
根據(jù)教材所處的地位和前后關系,確定了以下目標:
知識技能目標:
掌握因數(shù)倍數(shù)的概念,理解因數(shù)與倍數(shù)的意義,掌握找一個數(shù)因數(shù)與倍數(shù)的方法。
情感,價值目標:培養(yǎng)學生合作、觀察、分析和抽象概括能力,體會教學內容的奇妙、有趣,產生對數(shù)學的好奇心和求知欲。
教學重點和難點:理解倍數(shù)和因數(shù)的意義,掌握找出一個數(shù)因數(shù)和倍數(shù)的方法。
二、學情分析:
學生在平時學習中缺少主動性,一部分學生怕困難,缺乏獨立思考的習慣,同時考慮問題也不夠全面。在本堂課的教學中,主要調動學生學習的積極性,提高學生課堂學習的參與性,體驗成功的樂趣,通過學生的親自探索和合作交流,來達到學習知識,掌握所學知識的目的。同時感受數(shù)學中的奧妙。
三、教法與學法指導。
當今社會,人類的語言離不開素質教育,而實施素質教育必須“以學生為本”課堂教學要圍繞培養(yǎng)學生的探索精神、創(chuàng)新精神出發(fā),為全面提高學生的綜合素質打下一定的基礎。本節(jié)課根據(jù)學生的認知能力與心理特征來進行教學策略和方法的設計。
1、遵循學生主體,老師主導,自主探究,合作交流為主線的理念,利用學生對乘法的運算理解概念。
2、小組合作討論法。以學生討論,交流,互相評價,促成學生對找一個數(shù)的因數(shù)和倍數(shù)的方法進行優(yōu)化處理,提升。鞏固學生方法表達的完整性,有效性,避免學生只掌握方法的理解,而不能全面的正確的表達。
四,教學過程。
1、揭示主題。
老師直接揭示主題,大膽創(chuàng)新,打破了傳統(tǒng)的為了導入而導入的教學模式。為學生的自主合作學習提供了開放的空間。
2、合作交流,理解因數(shù),倍數(shù)的概念及其意義。
教師出示前置性作業(yè),小組內交流,匯報學習成果,教師適時點撥,真正把課堂還給學生,也充分體現(xiàn)了教師的主導作用和學生的主體地位。使學生在交流中培養(yǎng)了合作學習的意識,對因數(shù)和倍數(shù)的概念有了初步的認識,對它們之間的聯(lián)系也有了更好的理解。
一個數(shù)的因數(shù)和倍數(shù)是本節(jié)課中技能目標中很重要的一部分。使學生在已有的經(jīng)驗基礎上,獨立的列舉一個數(shù)的因數(shù),在小組合作交流中得出。找一個數(shù)的因數(shù)和倍數(shù)的方法。真正地把主動權交給學生,教師通過引導,使學生加深理解,化解難點。
4、引導學生分析,比較歸納尋找共性,找出不同,得出一個數(shù)的因數(shù),使學生學會有序思考,從而形成基本技能與方法,做到即關注了過程,又關注了結果。教師的教學水到渠成,學生的學習則是山重水復疑無路,柳暗花明又一村。
5、引導學生置疑,集體交流,化解疑問。
便于學生對本課所學知識更好的消化理解。
三、練習。
練習題設計形式多樣,有梯度。既注重基礎,又有所提高,從而真正實現(xiàn)了課堂教學的有效性。
小學因數(shù)和倍數(shù)的教案篇八
1、嘗試用“列表”“畫示意圖”等解決問題的策略發(fā)現(xiàn)規(guī)律,運用數(shù)的奇偶性解決生活中的一些簡單問題。
2、經(jīng)歷探索加法中數(shù)的奇偶性變化的過程,在活動中發(fā)現(xiàn)加法中數(shù)的奇偶性變化規(guī)律,在活動中體驗研究的.方法,提高推理能力。
1、嘗試用“列表”“畫示意圖”等解決問題的策略發(fā)現(xiàn)規(guī)律,運用數(shù)的奇偶性解決生活中的一些簡單問題。
2、經(jīng)歷探索加法中數(shù)的奇偶性變化的過程,在活動中發(fā)現(xiàn)加法中數(shù)的奇偶性變化規(guī)律,在活動中體驗研究的方法,提高推理能力。
活動1:利用數(shù)的奇偶性解決一些簡單的實際問題。
讓學生嘗試解決問題,尋找解決問題的策略,利用解決問題的策略發(fā)現(xiàn)規(guī)律,教師適當進行“列表”“畫示意圖”等解決問題策略的指導。
本題是讓學生應用上述活動中解決問題的策略嘗試自己解決問題,最后的結果是:翻動10次,杯口朝上;翻動19次,杯口朝下。解決問題后,讓學生以“硬幣”為題材,自己提出問題、解決問題,還可以開展游戲活動。
活動2:探索奇數(shù)、偶數(shù)相加的規(guī)律。
[板書設計]。
數(shù)的奇偶性。
12+34=48偶數(shù)+偶數(shù)=偶數(shù)。
11+37=48奇數(shù)+奇數(shù)=偶數(shù)。
12+11=23奇數(shù)+偶數(shù)=奇數(shù)。
小學因數(shù)和倍數(shù)的教案篇九
(非零自然數(shù)中)。
1×36=3636÷1=3636÷36=1。
2×18=3636÷2=1836÷18=2。
3×12=3636÷3=1236÷12=3。
4×9=3636÷4=936÷9=4。
6×6=3636÷6=6。
36的因數(shù)有:1、2、3、4、6、9、12、18、36.
小學因數(shù)和倍數(shù)的教案篇十
1、通過“活動建構”,使學生領會因數(shù)和倍數(shù)的意義;通過獨立思考、交流談論,初步掌握求一個數(shù)所有因數(shù)的方法。
2、在解決問題的過程中,培養(yǎng)學生思維的有序性、條理性,增強學生的探究意識和求索精神。
3、通過教學,讓學生從中感受到數(shù)學思考的魅力,體驗到數(shù)學學習的樂趣。
小學因數(shù)和倍數(shù)的教案篇十一
知識與技能、過程與方法:
1、從操作活動中理解因數(shù)和倍數(shù)的意義,會判斷一個數(shù)是不是另一個數(shù)的因數(shù)或倍數(shù)。
2、培養(yǎng)學生抽象、概括的能力,滲透事物之間相互聯(lián)系、相互依存的觀點。
3、培養(yǎng)學生的合作意識、探索意識,以及熱愛數(shù)學學習的情感。
1、因數(shù)與倍數(shù)意義以及它們的相互依存關系。
2、尋找一個數(shù)的因數(shù)或倍數(shù)的方法。
教學準備:課件。
教學流程:
流程1:導入新課。
流程2:認識倍數(shù)和因數(shù)。
流程3:探索求一個數(shù)的因數(shù)的方法。
流程4:完成試一試,總結一個數(shù)因數(shù)的特點。
流程5:探索求一個數(shù)的倍數(shù)的方法。
流程6:完成試一試,總結一個數(shù)倍數(shù)的特點。
流程7:完成智慧樂園。
流程8:完成質疑樂園。
流程9:數(shù)學游戲。
流程11:課堂小結。
流程10:組織學生退場。
第一段:導入新課。
流程1:導入新課。
師:課前我們先來做個腦筋急轉彎,看看誰最聰明?
(學生發(fā)表自己的看法)。
今天,我們就把這三個人請到我教室里來好嗎?(課件出示圖片)你能不能以大李為中心,來介紹一下小老和老李。(學生說一說)。
師:我們能不能單獨地來說,大李是爸爸?(不能)為什么?
引出相互依存(板書)。
第二段:認識倍數(shù)和因數(shù)。
流程2:認識倍數(shù)和因數(shù)。
1、用課前準備的12張同樣大的正方形紙片拼成一個長方形。前后四人一組。
要求:
(1)、看一共能擺出幾種完全不同的長方形。
(2)、想一想怎樣用乘法算式表示你的擺法。
(3)、為了便于展示,請在你的課本反面來擺。
(學生動手操作、匯報)。
師:請你用乘法算式表示你的擺法?
生:1×12=122×6=123×4=12。
師:為了避免重復,我們可經(jīng)只選擇其中一個算式。我們以前學過,在乘法算式里,乘號前面和后面的數(shù)都叫什么?(因數(shù))等號后面的數(shù)叫什么?(積)這里的因數(shù)和積是乘法算式各部分的名稱。其實,因數(shù)和積之間就存在我們課前提到的相互依存關系。以3×4=12為例,數(shù)學上說12是4的倍數(shù),12也是3的倍數(shù),4和3都是12的因數(shù)。這里因數(shù)和倍數(shù)就具有相互依存的關系。不能孤立地說3是因數(shù),也不能孤立地說12的倍數(shù),這就是今天這節(jié)課我們研究:倍數(shù)和因數(shù)。
師:那根據(jù)另外兩個乘法算式,同學們會說哪個數(shù)是哪個數(shù)的倍數(shù),哪個數(shù)是哪個數(shù)的因數(shù)嗎?請同桌相互說一說(學生活動)。
老師這是里有兩道算式,你會說嗎?
8×9=7218÷3=6。
(請學生來說一說)。
師:同學們,倍數(shù)、因數(shù)指的是兩個自然數(shù)之間的一種關系,所以我們一定要說清楚誰是誰的倍數(shù),誰是誰的因數(shù),,老師還要補充說一點,為了方便,我們在研究時,所說的數(shù)一般指不是0的自然數(shù)。
第三段:探索求倍數(shù)和因數(shù)的方法。
流程3:探索求一個數(shù)的因數(shù)的方法。
師:同學們怎樣找一個數(shù)的因數(shù)呢?同學們愿意獨立思考,嘗試解決嗎?面對新問題,看看誰能挑戰(zhàn)成功。
師:你能找出36所有的因數(shù)嗎?請同學們試著在練習本上寫一寫。
(學生活動)學生匯報。
師:從1開始,想哪兩個數(shù)相乘得36,我們就可以成對地寫出36的因數(shù),一直找到兩個乘數(shù)最接近為止。解決這個問題首先要考慮什么樣的數(shù)是36的.因數(shù)。如果有兩個數(shù)相乘的積是36,那么這兩個數(shù)都是36的因數(shù)。例如,1×36=36,那么1和36都是36的因數(shù)。
師:看看老師的填法和你一樣嗎?
師:求一個數(shù)的因數(shù),可以想乘法算式,也可以想除法算式,但都要有序思考,做到不重復、不遺漏。
流程4:完成試一試,總結一個數(shù)的因數(shù)的特點。
師:下面請同學們用你喜歡或熟悉的方法寫出你自己所喜歡的數(shù)字的因數(shù)。(學生活動)相機尋找學生板書。
師:通過觀察上面同學所寫的數(shù)的因數(shù),你發(fā)現(xiàn)了什么?學生說一說(完成表格)。
師小結:一個數(shù)最小的因數(shù)是1,最大的因數(shù)是它本身;一個數(shù)因數(shù)的個數(shù)是有限的。
寫出你的學號的所有因數(shù)。
流程5:探索求一個數(shù)的倍數(shù)的方法。
師:同學們先想一想,什么樣的數(shù)是3的倍數(shù)?怎樣才能準確地寫出3的倍數(shù)?把你的想法和小組里的同學交流一下。(學生活動)。
師:同學們一定能想到,3的倍數(shù)就是3和除0以外的一個自然數(shù)相乘的積。例如3×1=(3),3×2=(6),3×3=(9),括號里的數(shù)都是3的倍數(shù)。這樣我們按從小到大的順序,用乘法就可以有條理地說出3的倍數(shù)了,它們是:3、6、9、12、15、18。能把3的倍數(shù)全部說完嗎?說不完,那應該怎樣表示問題的答案呢?因為3的倍數(shù)的個數(shù)是無限的,所以寫的時候要借助省略號來完整地表示出結果。
流程6:完成試一試,總結一個數(shù)的倍數(shù)的特點。
師:下面就請同學們用這種方法分別寫出2的倍數(shù)和5的倍數(shù)。注意要有順序地思考,并且規(guī)范地表示出結果。(學生活動)。
師:老師和同學們核對一下答案,如果出錯了,一定要分析原因,再訂正。(核對答案)。
師:現(xiàn)在我們已經(jīng)找到了求一個數(shù)的倍數(shù)的方法,并用這樣的方法分別求出3、2、5的倍數(shù),請同學們觀察上面的例子,你們能發(fā)現(xiàn)一個數(shù)的倍數(shù)有什么特點嗎?大膽地說出你們的想法。(學生活動)。
師小結:仔細觀察,同學們會發(fā)現(xiàn):一個數(shù)最小的倍數(shù)是它本身,沒有最大的倍數(shù);一個數(shù)倍數(shù)的個數(shù)是無限的。
第四段:深化認識,鞏固方法。
流程7:完成智慧樂園。
師:請看想想做做第3題。先填表,再討論回答下面的問題:表中每欄的每排人數(shù)各是怎樣算出來的?排數(shù)和每排人數(shù)都是24的什么數(shù)?在填表的過程中你還受到了什么啟發(fā)?(學生活動)。
師:24÷3=8,÷4=6,÷6=4,÷8=3,÷12=2,÷24=1,表中排數(shù)和每排人數(shù)都是24的因數(shù)。在填表的過程中我們會發(fā)現(xiàn)一對一對地找一個數(shù)的因數(shù)比較方便。
流程8:完成質疑樂園。
先判斷對錯,再說一說自己的判斷理由。
第五段:數(shù)學游戲。
流程9:數(shù)學游戲。
師:請同學們拿出寫有自己學號的卡片,我們一起來做個游戲??匆豢?,想一想,你卡片上的數(shù)是否符合下面的條件,符合的請舉起卡片,揮一揮。(課件出示)我是5,我找我的倍數(shù);(學生活動)我是24,我找我的因數(shù);(學生活動)我是1,我找我的倍數(shù);(學生活動)我是30,我找我的因數(shù)。(學生活動)。
第六段:全課總結。
流程10:課堂總結。
師:同學們,這節(jié)課我們認識了倍數(shù)和因數(shù),探索了找一個數(shù)的倍數(shù)和因數(shù)的方法,根據(jù)乘法算式,用這一個數(shù)分別乘1、乘2、乘3……可以有順序地找到它的倍數(shù)。一個數(shù)倍數(shù)的個數(shù)是無限的,最小的倍數(shù)是它本身,沒有最大的倍數(shù)。找一個數(shù)的因數(shù)可以想乘法算式,把一個數(shù)寫成兩個數(shù)相乘的積,乘數(shù)就是這個數(shù)的因數(shù);也可以想除法算式,用一個數(shù)依次去除以1、2、3……,能得到整數(shù)商的,除數(shù)和商就是它的因數(shù)。寫因數(shù)時根據(jù)算式有順序的一對一對地寫比較方便,不容易遺漏或重復。一個數(shù)的因數(shù)的個數(shù)是有限的,最小的因數(shù)是1,最大的因數(shù)是它本身。
流程11:組織下課。
組織學生分批退場。
小學因數(shù)和倍數(shù)的教案篇十二
4、培養(yǎng)學生的觀察能力。
1、出示主題圖,讓學生各列一道乘法算式。
2、師:看你能不能讀懂下面的算式?
出示:因為2×6=12。
所以2是12的因數(shù),6也是12的因數(shù);
12是2的倍數(shù),12也是6的倍數(shù)。
3、師:你能不能用同樣的方法說說另一道算式?
(指名生說一說)。
師:你有沒有明白因數(shù)和倍數(shù)的關系了?
那你還能找出12的其他因數(shù)嗎?
4、你能不能寫一個算式來考考同桌?學生寫算式。
師:誰來出一個算式考考全班同學?
5、師:今天我們就來學習因數(shù)和倍數(shù)。(出示課題:因數(shù)倍數(shù))。
齊讀p12的注意。
(一)找因數(shù):
1、出示例1:18的因數(shù)有哪幾個?
學生嘗試完成:匯報。
(18的因數(shù)有:1,2,3,6,9,18)。
師:說說看你是怎么找的?(生:用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=…;用乘法一對一對找,如1×18=18,2×9=18…)。
師:18的因數(shù)中,最小的是幾?最大的是幾?我們在寫的時候一般都是從小到大排列的。
2、用這樣的方法,請你再找一找36的因數(shù)有那些?
匯報36的因數(shù)有:1,2,3,4,6,9,12,18,36。
師:你是怎么找的?
舉錯例(1,2,3,4,6,6,9,12,18,36)。
師:這樣寫可以嗎?為什么?(不可以,因為重復的因數(shù)只要寫一個就可以了,所以不需要寫兩個6)。
仔細看看,36的因數(shù)中,最小的'是幾,最大的是幾?
看來,任何一個數(shù)的因數(shù),最小的一定是(),而最大的一定是()。
3、你還想找哪個數(shù)的因數(shù)?(18、5、42……)請你選擇其中的一個在自練本上寫一寫,然后匯報。
4、其實寫一個數(shù)的因數(shù)除了這樣寫以外,還可以用集合表示:如。
18的因數(shù)。
小結:我們找了這么多數(shù)的因數(shù),你覺得怎樣找才不容易漏掉?
從最小的自然數(shù)1找起,也就是從最小的因數(shù)找起,一直找到它的本身,找的過程中一對一對找,寫的時候從小到大寫。
(二)找倍數(shù):
1、我們一起找到了18的因數(shù),那2的倍數(shù)你能找出來嗎?
匯報:2、4、6、8、10、16、……。
師:為什么找不完?
你是怎么找到這些倍數(shù)的?(生:只要用2去乘1、乘2、乘3、乘4、…)。
那么2的倍數(shù)最小是幾?最大的你能找到嗎?
2、讓學生完成做一做1、2小題:找3和5的倍數(shù)。
匯報3的倍數(shù)有:3,6,9,12。
師:這樣寫可以嗎?為什么?應該怎么改呢?
改寫成:3的倍數(shù)有:3,6,9,12,……。
你是怎么找的?(用3分別乘以1,2,3,……倍)。
5的倍數(shù)有:5,10,15,20,……。
師:表示一個數(shù)的倍數(shù)情況,除了用這種文字敘述的方法外,還可以用集合來表示。
2的倍數(shù)3的倍數(shù)5的倍數(shù)。
師:我們知道一個數(shù)的因數(shù)的個數(shù)是有限的,那么一個數(shù)的倍數(shù)個數(shù)是怎么樣的呢?
(一個數(shù)的倍數(shù)的個數(shù)是無限的,最小的倍數(shù)是它本身,沒有最大的倍數(shù))。
我們一起來回憶一下,這節(jié)課我們重點研究了一個什么問題?你有什么收獲呢?
完成練習二1~4題。
小學因數(shù)和倍數(shù)的教案篇十三
課本第15頁,練習二第一題前半題15的因數(shù)有哪些?,第二題,第4題前半題填在書上。
設計意圖:本節(jié)課主要的學習目標一是使生明白因數(shù)和倍數(shù)的意義,二是讓生掌握求一個數(shù)因數(shù)的方法,作業(yè)中鞏固了學生今天的數(shù)學技能。
小學因數(shù)和倍數(shù)的教案篇十四
7--16頁的學習內容。
1.進一步學習求一個數(shù)的所有因數(shù)和倍數(shù);掌握一般方法,學會用常見的幾種形式表達。
2.經(jīng)過多次的求解經(jīng)歷過程,在事實面前讓學生進一步明確因數(shù)是可數(shù)的,自然得出因數(shù)的個數(shù)是有限的,其中最大的因數(shù)自己;而倍數(shù)是無法寫完全,也就是說倍數(shù)的個數(shù)是無限的,其中最小的倍數(shù)也是自己。
掌握求一個數(shù)的因數(shù)和倍數(shù)的常用方法及常用的幾種書寫表達形式。
完整地求出一個數(shù)的因數(shù)和倍數(shù)。
實物投影。
口答:
根據(jù)下面算式,說說哪個數(shù)是哪個數(shù)的倍數(shù),哪個數(shù)是哪個數(shù)的因數(shù)?
4×9=3625×40=100032×7=224。
解答題:
18的因數(shù)有哪些?10是哪些數(shù)的倍數(shù)?
典型例題:
1.教學:
(1)你還能找出18的因數(shù)碼?并說出你的找法(要板書)。
(2)小比賽??凑l既快又能完整地把30和36所有因數(shù)找出來(基礎練習)?
(3)分享冠軍經(jīng)驗(介紹方法)。
(4)我們再來一次尋找32和48的所有因數(shù)的比賽(基礎練習)?
(5)請你試著把18所有找出的因數(shù)表述出來。(如果學生能用常見的兩種表達最好;如果不能需要教師的引導)。
第一種習慣書面表達形式。18的'因數(shù)有(有可能是亂的):
第二種集合圖的書面表達形式。18的因數(shù)。
(6)通過眼看,自我感覺調整這些因數(shù)最好按序排列。
第一種習慣書面表達形式。18的因數(shù)有(按大小順序):
第二種集合圖的書面表達形式。18的因數(shù)。
(7)做基礎練習第2題。
小結:
1.尋找的方法。
2.能否找全?
3.教學。
(1)讓學生自己嘗試找。
(2)有沒有發(fā)什么問題?如何解決?
(3)如何表達?
(4)找出3和5的倍數(shù)。
小結:
1.尋找的方法。
2.能否找全?
基礎練習:
1.用盡快的速度找出30、36、32和48的所有因數(shù)?
2.填空。30的因數(shù)有:36的因數(shù)有:
3.5的倍數(shù)有:3的倍數(shù)。
提高練習:
1.分別寫出17的因數(shù)和倍數(shù),再寫出28。
拓展練習:數(shù)學小知識:了解完全數(shù)。
有的學生認為某個數(shù)的最小倍數(shù)是0倍,因此最小倍數(shù)是0。要向學生強調,小學階段學倍數(shù)不涉及到0,因此,某個數(shù)的最小倍數(shù)應該是它的1倍。
小學因數(shù)和倍數(shù)的教案篇十五
一個數(shù)因數(shù)的求法和一個數(shù)倍數(shù)的求法(教材第6頁例2、例3,教材第7~8頁練習二第2~8題)。
1.通過學習使學生掌握找一個數(shù)的因數(shù),倍數(shù)的方法;
2.學生能了解一個數(shù)的因數(shù)是有限的,倍數(shù)是無限的;
3.能熟練地找一個數(shù)的因數(shù)和倍數(shù);
4.在解決問題的過程中,培養(yǎng)學生思維的有序性、條理性,增強學生的探究意識和求索精神。
掌握找一個數(shù)的因數(shù)和倍數(shù)的方法,能熟練地找一個數(shù)的因數(shù)和倍數(shù)。
說出下列各式中誰是誰的因數(shù)?誰是誰的倍數(shù)?20÷4=56×3=18。
在上面的算式中,6和3都是18的因數(shù),你知道還有哪些數(shù)是18的因數(shù)嗎?18是3的倍數(shù),你知道還有哪些數(shù)是3的倍數(shù)嗎?這節(jié)課我們就來學習如何找一個數(shù)的因數(shù)和倍數(shù)。
(一)找因數(shù):
1.出示例1:18的因數(shù)有哪幾個?
一個數(shù)的因數(shù)還不止一個,我們一起找找18的因數(shù)有哪些?
學生嘗試完成后匯報。
(18的因數(shù)有:1,2,3,6,9,18)教師:說說看你是怎么找的?(生:用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=…;用乘法一對一對找,如1×18=18,2×9=18…)。
教師:18的因數(shù)中,最小的是幾?最大的是幾?我們在寫的時候一般都是從小到大排列的。
2.用這樣的方法,請你再找一找36的因數(shù)有哪些?
舉錯例(1,2,3,4,6,6,9,12,18,36)。
教師:這樣寫可以嗎?為什么?(不可以,因為重復的因數(shù)只要寫一個就可以了,所以不需要寫兩個6)。
仔細看看,36的因數(shù)中,最小的是幾,最大的是幾?
教師板書:一個數(shù)的最小因數(shù)是1,最大因數(shù)是它本身。
3.你還想找哪個數(shù)的因數(shù)?(18、42……)請你選擇其中的一個在自練本上寫一寫,然后匯報。
從最小的自然數(shù)1找起,也就是從最小的因數(shù)找起,一直找到它的本身,找的過程中一對一對找,寫的時候從小到大寫。
(二)找倍數(shù):
教師:這樣寫可以嗎?為什么?應該怎么改呢?
教師:表示一個數(shù)的倍數(shù)情況,除了用這種文字敘述的方法外,還可以用集合來表示2的倍數(shù),3的`倍數(shù),5的倍數(shù)。
教師:我們知道一個數(shù)的因數(shù)的個數(shù)是有限的,那么一個數(shù)的倍數(shù)個數(shù)是怎么樣的呢?
(一個數(shù)的倍數(shù)的個數(shù)是無限的,最小的倍數(shù)是它本身,沒有最大的倍數(shù))。
1.完成課本第7頁練習二第2~5題。
2.完成教材第8頁練習二第6~8題。
我們一起來回憶一下,這節(jié)課我們重點研究了一個什么問題?你有什么收獲呢?
一個數(shù)的因數(shù)的個數(shù)是有限的,最小的是1,最大的是它本身。一個數(shù)的倍數(shù)的個數(shù)是無限的,最小的倍數(shù)是它本身,沒有最大的倍數(shù)。
本節(jié)課是在學生認識因數(shù)和倍數(shù)的基礎上進行教學的,在找一個數(shù)的因數(shù)時,如何做到既不重復又不遺漏,對于剛剛對因數(shù)和倍數(shù)有感性認識的學生來說有一定的困難,教學時充分發(fā)揮小組學習的優(yōu)勢,在小組交流的過程中,學生對自己的方法進行反思,吸取同伴的好方法,很好的體現(xiàn)了自主探索和合作交流的教學理念。
小學因數(shù)和倍數(shù)的教案篇十六
1、精簡概念,減輕學生記憶負擔。
三方面的調整:
a。不再出現(xiàn)“整除”概念,直接從乘法算式引出因數(shù)和倍數(shù)的概念。
b。不再正式教學“分解質因數(shù)”,只作為閱讀性材料進行介紹。
c。公因數(shù)、公因數(shù)、公倍數(shù)、最小公倍數(shù)移至“分數(shù)的意義和性質”單元,作為約分和通分的知識基礎,更突出其應用性。
2、注意體現(xiàn)數(shù)學的抽象性。
數(shù)論知識本身具有抽象性。學生到了高年級也應注意培養(yǎng)其抽象思維。
小學因數(shù)和倍數(shù)的教案篇十七
一、引入新課。
1、出示主題圖,讓學生各列一道乘法算式。
2、師:看你能不能讀懂下面的算式?
出示:因為2×6=12。
所以2是12的因數(shù),6也是12的因數(shù);
12是2的倍數(shù),12也是6的倍數(shù)。
3、師:你能不能用同樣的方法說說另一道算式?
(指名生說一說)。
師:你有沒有明白因數(shù)和倍數(shù)的關系了?
那你還能找出12的其他因數(shù)嗎?
4、你能不能寫一個算式來考考同桌?學生寫算式。
師:誰來出一個算式考考全班同學?
5、師:今天我們就來學習因數(shù)和倍數(shù)。(出示課題:因數(shù)倍數(shù))。
齊讀p12的注意。
二、新授:
(一)找因數(shù):
1、出示例1:18的因數(shù)有哪幾個?
學生嘗試完成:匯報。
(18的因數(shù)有:1,2,3,6,9,18)。
師:說說看你是怎么找的?(生:用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=…;用乘法一對一對找,如1×18=18,2×9=18…)。
師:18的因數(shù)中,最小的是幾?最大的是幾?我們在寫的時候一般都是從小到大排列的。
2、用這樣的方法,請你再找一找36的因數(shù)有那些?
匯報36的因數(shù)有:1,2,3,4,6,9,12,18,36。
師:你是怎么找的?
舉錯例(1,2,3,4,6,6,9,12,18,36)。
師:這樣寫可以嗎?為什么?(不可以,因為重復的因數(shù)只要寫一個就可以了,所以不需要寫兩個6)。
仔細看看,36的因數(shù)中,最小的是幾,最大的是幾?
看來,任何一個數(shù)的因數(shù),最小的一定是(),而最大的一定是()。
3、你還想找哪個數(shù)的因數(shù)?(18、5、42……)請你選擇其中的一個在自練本上寫一寫,然后匯報。
4、其實寫一個數(shù)的因數(shù)除了這樣寫以外,還可以用集合表示:如。
18的因數(shù)。
小結:我們找了這么多數(shù)的因數(shù),你覺得怎樣找才不容易漏掉?
從最小的自然數(shù)1找起,也就是從最小的因數(shù)找起,一直找到它的本身,找的過程中一對一對找,寫的時候從小到大寫。
(二)找倍數(shù):
1、我們一起找到了18的因數(shù),那2的倍數(shù)你能找出來嗎?
匯報:2、4、6、8、10、16、……。
師:為什么找不完?
你是怎么找到這些倍數(shù)的?(生:只要用2去乘1、乘2、乘3、乘4、…)。
那么2的倍數(shù)最小是幾?最大的你能找到嗎?
2、讓學生完成做一做1、2小題:找3和5的倍數(shù)。
匯報3的倍數(shù)有:3,6,9,12。
師:這樣寫可以嗎?為什么?應該怎么改呢?
改寫成:3的倍數(shù)有:3,6,9,12,……。
你是怎么找的?(用3分別乘以1,2,3,……倍)。
5的倍數(shù)有:5,10,15,20,……。
師:表示一個數(shù)的倍數(shù)情況,除了用這種文字敘述的方法外,還可以用集合來表示。
2的倍數(shù)3的倍數(shù)5的倍數(shù)。
師:我們知道一個數(shù)的因數(shù)的個數(shù)是有限的,那么一個數(shù)的倍數(shù)個數(shù)是怎么樣的呢?
(一個數(shù)的倍數(shù)的個數(shù)是無限的,最小的倍數(shù)是它本身,沒有最大的倍數(shù))。
三、課堂小結:
我們一起來回憶一下,這節(jié)課我們重點研究了一個什么問題?你有什么收獲呢?
四、獨立作業(yè):
完成練習二1~4題。
【本文地址:http://mlvmservice.com/zuowen/16859351.html】