最新小學因數(shù)和倍數(shù)的教案(實用19篇)

格式:DOC 上傳日期:2023-12-01 06:24:06
最新小學因數(shù)和倍數(shù)的教案(實用19篇)
時間:2023-12-01 06:24:06     小編:FS文字使者

教案的編寫需要細致入微,注重細節(jié)的把控。教案的編寫要注意學習目標的明確性和可操作性。以下是小編為大家收集的教案范文,僅供參考。大家可以結(jié)合自己的實際情況進行適當?shù)男薷暮驼{(diào)整,以便更好地進行教學活動。

小學因數(shù)和倍數(shù)的教案篇一

尊敬的各位領(lǐng)導、老師大家上午好:我們團隊所執(zhí)教的是《因數(shù)和倍數(shù)》。

一、說教材:

《因數(shù)和倍數(shù)》是小學人教版課程標準實驗教材五年級下冊第二單元的內(nèi)容,也是小學階段“數(shù)與代數(shù)”部分最重要的知識之一?!兑驍?shù)和倍數(shù)》的學習,是在初步認識自然數(shù)的基礎(chǔ)上,探究其性質(zhì)。其中涉及到的內(nèi)容屬于初等數(shù)論的基本內(nèi)容,相當抽象。在這一內(nèi)容的編排上與以往教材不同,沒有數(shù)學化的語言給“整除”下定義,而是在本課時通過乘法算式借助整除的模式na=b直接給出因數(shù)與位數(shù)的概念。這節(jié)課是因數(shù)與倍數(shù)的概念的引入,為本單元最后的內(nèi)容,以及第四單元的最大公因數(shù),最小公倍數(shù)提供了必須且重要的鋪墊。

根據(jù)教材所處的地位和前后關(guān)系,確定了以下目標:

知識技能目標:

掌握因數(shù)倍數(shù)的概念,理解因數(shù)與倍數(shù)的意義,掌握找一個數(shù)因數(shù)與倍數(shù)的方法。

情感,價值目標:培養(yǎng)學生合作、觀察、分析和抽象概括能力,體會教學內(nèi)容的奇妙、有趣,產(chǎn)生對數(shù)學的好奇心和求知欲。

教學重點和難點:理解倍數(shù)和因數(shù)的意義,掌握找出一個數(shù)因數(shù)和倍數(shù)的方法。

二、學情分析:

學生在平時學習中缺少主動性,一部分學生怕困難,缺乏獨立思考的習慣,同時考慮問題也不夠全面。在本堂課的教學中,主要調(diào)動學生學習的積極性,提高學生課堂學習的參與性,體驗成功的樂趣,通過學生的親自探索和合作交流,來達到學習知識,掌握所學知識的目的。同時感受數(shù)學中的奧妙。

三、教法與學法指導。

當今社會,人類的語言離不開素質(zhì)教育,而實施素質(zhì)教育必須“以學生為本”課堂教學要圍繞培養(yǎng)學生的探索精神、創(chuàng)新精神出發(fā),為全面提高學生的綜合素質(zhì)打下一定的基礎(chǔ)。本節(jié)課根據(jù)學生的認知能力與心理特征來進行教學策略和方法的設(shè)計。

1、遵循學生主體,老師主導,自主探究,合作交流為主線的理念,利用學生對乘法的運算理解概念。

2、小組合作討論法。以學生討論,交流,互相評價,促成學生對找一個數(shù)的因數(shù)和倍數(shù)的方法進行優(yōu)化處理,提升。鞏固學生方法表達的完整性,有效性,避免學生只掌握方法的理解,而不能全面的正確的表達。

四,教學過程。

1、揭示主題。

老師直接揭示主題,大膽創(chuàng)新,打破了傳統(tǒng)的為了導入而導入的教學模式。為學生的自主合作學習提供了開放的空間。

2、合作交流,理解因數(shù),倍數(shù)的概念及其意義。

教師出示前置性作業(yè),小組內(nèi)交流,匯報學習成果,教師適時點撥,真正把課堂還給學生,也充分體現(xiàn)了教師的主導作用和學生的主體地位。使學生在交流中培養(yǎng)了合作學習的意識,對因數(shù)和倍數(shù)的概念有了初步的認識,對它們之間的聯(lián)系也有了更好的理解。

一個數(shù)的因數(shù)和倍數(shù)是本節(jié)課中技能目標中很重要的一部分。使學生在已有的經(jīng)驗基礎(chǔ)上,獨立的列舉一個數(shù)的因數(shù),在小組合作交流中得出。找一個數(shù)的因數(shù)和倍數(shù)的方法。真正地把主動權(quán)交給學生,教師通過引導,使學生加深理解,化解難點。

4、引導學生分析,比較歸納尋找共性,找出不同,得出一個數(shù)的因數(shù),使學生學會有序思考,從而形成基本技能與方法,做到即關(guān)注了過程,又關(guān)注了結(jié)果。教師的教學水到渠成,學生的學習則是山重水復(fù)疑無路,柳暗花明又一村。

5、引導學生置疑,集體交流,化解疑問。

便于學生對本課所學知識更好的消化理解。

三、練習。

練習題設(shè)計形式多樣,有梯度。既注重基礎(chǔ),又有所提高,從而真正實現(xiàn)了課堂教學的有效性。

小學因數(shù)和倍數(shù)的教案篇二

1.我能理解什么是質(zhì)數(shù)和合數(shù),掌握了判斷質(zhì)數(shù)、合數(shù)的方法。

2.我知道100以內(nèi)的質(zhì)數(shù),記住了20以內(nèi)的質(zhì)數(shù)。

3.我能在自主探究中獨立思考,合作探究時暢所欲言。

能理解質(zhì)數(shù)、合數(shù)的意義,正確判斷一個數(shù)是質(zhì)數(shù)還是合數(shù)。

用恰當?shù)姆椒ㄕ页?00以內(nèi)的質(zhì)數(shù);會給自然數(shù)分類。

一、導入新課。

二、檢查獨學。

1.互動分享收獲。

2.質(zhì)疑探討。

3.試試身手:第23頁做一做。

三、合作探究。

1.小組合作,利用課本24頁的表格,用恰當?shù)姆椒ㄕ页?00以內(nèi)的質(zhì)數(shù),做一個質(zhì)數(shù)表。

2.展示、交流:你們是怎樣找出100以內(nèi)質(zhì)數(shù)的?

3.小組討論:

(1)有沒有最大的質(zhì)數(shù)或合數(shù)?

(2)根據(jù)因數(shù)的個數(shù),可把非零自然數(shù)分成哪幾類?

4.我能很快熟記20以內(nèi)的質(zhì)數(shù)。

5.獨立思考:

(1)是不是所有的`質(zhì)數(shù)都是奇數(shù)?

(2)是不是所有的奇數(shù)都是質(zhì)數(shù)?

(3)是不是所有的合數(shù)都是偶數(shù)?

(4)是不是所有的偶數(shù)都是合數(shù)?

6.組內(nèi)交流。

小學因數(shù)和倍數(shù)的教案篇三

1、嘗試用“列表”“畫示意圖”等解決問題的策略發(fā)現(xiàn)規(guī)律,運用數(shù)的奇偶性解決生活中的一些簡單問題。

2、經(jīng)歷探索加法中數(shù)的奇偶性變化的過程,在活動中發(fā)現(xiàn)加法中數(shù)的奇偶性變化規(guī)律,在活動中體驗研究的方法,提高推理能力。

1、嘗試用“列表”“畫示意圖”等解決問題的策略發(fā)現(xiàn)規(guī)律,運用數(shù)的奇偶性解決生活中的一些簡單問題。

2、經(jīng)歷探索加法中數(shù)的奇偶性變化的過程,在活動中發(fā)現(xiàn)加法中數(shù)的奇偶性變化規(guī)律,在活動中體驗研究的方法,提高推理能力。

活動1:利用數(shù)的奇偶性解決一些簡單的實際問題。

讓學生嘗試解決問題,尋找解決問題的策略,利用解決問題的策略發(fā)現(xiàn)規(guī)律,教師適當進行“列表”“畫示意圖”等解決問題策略的指導。

試一試:

本題是讓學生應(yīng)用上述活動中解決問題的策略嘗試自己解決問題,最后的結(jié)果是:翻動10次,杯口朝上;翻動19次,杯口朝下。解決問題后,讓學生以“硬幣”為題材,自己提出問題、解決問題,還可以開展游戲活動。

活動2:探索奇數(shù)、偶數(shù)相加的規(guī)律。

[板書設(shè)計]。

例子:結(jié)論:

12+34=48偶數(shù)+偶數(shù)=偶數(shù)。

11+37=48奇數(shù)+奇數(shù)=偶數(shù)。

12+11=23奇數(shù)+偶數(shù)=奇數(shù)。

小學因數(shù)和倍數(shù)的教案篇四

1.學生通過回憶和整理,進一步明確因數(shù)和倍數(shù)的相關(guān)知識,加深認識相關(guān)概念之間的聯(lián)系與區(qū)別,能求兩個數(shù)的公因數(shù)和公倍數(shù),并能運用這些知識解決相關(guān)實際問題。

2.學生在應(yīng)用相關(guān)知識進行判斷和推理的過程中,能說明思考過程,進一步培養(yǎng)歸納概括和演繹推理等思維能力,進一步增強分析問題和解決問題的能力。

3.學生進一步體會數(shù)學知識之間的內(nèi)在聯(lián)系,感受數(shù)學思考的嚴謹性和數(shù)學結(jié)論的確定性,激發(fā)學習數(shù)學的興趣和學好數(shù)學的自信心。

掌握倍數(shù)和因數(shù)等相關(guān)概念,以及應(yīng)用概念判斷、推理。

理解相關(guān)概念的聯(lián)系和區(qū)別。

一、揭示課題。

1.回顧知識。

提問:上節(jié)課,我們已經(jīng)復(fù)習了整數(shù)和小數(shù)的有關(guān)知識。

結(jié)合學生交流,板書。

2.揭示課題。

引入:這節(jié)課,我們復(fù)習因數(shù)和倍數(shù)的相關(guān)知識。

通過復(fù)習,能進一步了解關(guān)于因數(shù)和倍數(shù)的知識,理解它們之間的聯(lián)系和區(qū)別,并能應(yīng)用這些知識。

二、基本練習。

1.知識梳理。

提高:回想一下,在學習因數(shù)和倍數(shù)時,我們還學習了哪些相關(guān)的知識?

學生回顧,交流,教師適當引導回顧。

根據(jù)學生回答,板書整理。

2.做練習與實踐第10題。

學生獨立完成,指名板演。

集體交流,讓學生說說找一個數(shù)的因數(shù)和倍數(shù)的方法。

3.做練習與實踐第11題。

出示題目,學生直接口答。

提問:怎樣判斷一個數(shù)是不是2的倍數(shù)?判斷是3和5的倍數(shù)呢?

追問:這里哪些是偶數(shù),哪些是奇數(shù)?說說你是怎樣想的。

4.做練習與實踐第12題。

學生先獨立寫出質(zhì)數(shù)和合數(shù),再指名口答。

追問:最小質(zhì)數(shù)是幾?最小的合數(shù)呢?

小學因數(shù)和倍數(shù)的教案篇五

教學內(nèi)容:

教材分析:

本節(jié)教學是在學生學習掌握了因數(shù)和倍數(shù)兩個概念的基礎(chǔ)上,在教師的引導下,讓學生運用乘法算式及除法中的整除自主嘗試、探究“求一個數(shù)的因數(shù)”的方法。同時,通過多種形式的訓練,使學生能熟練找全一個數(shù)的因數(shù)。另外,通過引導學生用集合的形式表示一個數(shù)的因數(shù),一方面給學生滲透集合思想,更重要的是為后面教學求兩個數(shù)的公因數(shù)做準備。

教學目標:

2、逐步培養(yǎng)學生從個別到全體、從具體到一般的抽象歸納的思想方法。

教學重點:

探究求一個數(shù)的因數(shù)的方法及規(guī)律特點。

教學難點:

用求一個數(shù)的因數(shù)的方法熟練找全一個數(shù)的因數(shù)。

教具準備:

投影儀、小黑板、卡片。

教學課時:一課時。

教學設(shè)想:

運用嘗試教學法,從學生已有的知識經(jīng)驗出發(fā),通過教師引導、學生自學例1,自主嘗試、探究求一個數(shù)的因數(shù)的方法方法,并能運用所獲得的方法、經(jīng)驗找全一個數(shù)的因數(shù)。

教學過程:

一、復(fù)習舊知。

師:同學們,前面學習了因數(shù)和倍數(shù)的概念,老師很想考考你們學得怎么樣,可以嗎?

生:(預(yù)設(shè))可以!

師:出示小黑板。

1、利用因數(shù)和倍數(shù)的相互依存關(guān)系說一說下面各組數(shù)的相互關(guān)系。

21和72×7=1430÷6=5。

2、判斷。

(1)12是倍數(shù),2是因數(shù)。()。

(2)1是14的因數(shù),14是1的倍數(shù)。()。

(3)因為6×0.5=3,所以,6和0.5是3的因數(shù),3是6和0.5的倍數(shù)。()。

教師根據(jù)學生完成練習的情況對學生進行恰當?shù)谋頁P激勵,同時進入新課教學:……。

二、新課教學。

過程一:嘗試訓練。

(一)出示問題。

師:同學們,老師有一個新問題,想請大家?guī)椭鉀Q,行嗎?

生:行?。A(yù)設(shè))。

嘗試題:14的因數(shù)有哪幾個?

(二)學生解決問題,教師巡視并根據(jù)實際適時輔導學困生。

(三)信息反饋。

板書:

1×14。

14 2×7。

14÷2。

14的因數(shù)有:1,2,7,14。

過程二:自學課本(p13例1)。

(一)學生自學例1。

教師提出自學要求(投影):

1、18有哪些因數(shù)?

2、文中的小朋友是怎樣找出18的因數(shù)的?他們找完了嗎?如果沒有,請幫助他們完成。

3、你還有別的找法嗎?請試一試,并用自己喜歡的方式寫出18所有的因數(shù)。

(二)信息反饋。

1、反饋自學要求情況;

板書:

1×18。

182×9。

3×6。

18的因數(shù)有1,2,3,6,9,18。

還可以這樣表示:18的因數(shù)。

2、知識對比,探索發(fā)現(xiàn)規(guī)律。

(1)師:同學們,根據(jù)求14和18的因數(shù)時獲得的體驗,再思考下面問題:

投影出示問題:

思考一:你用什么方法找出?

(2)學生思考,教師適時引導。

(3)同桌交流思考結(jié)果。

(4)師生互動??偨Y(jié)方法、點出課題。

求一個數(shù)的因數(shù)的方法:用乘法計算或除法計算(整除)。

過程三:嘗試練習。

(一)用小黑板出示練習題。

1、找出30的因數(shù)有哪些?36的因數(shù)有哪些?

(二)信息反饋:師生互動總結(jié)特點。

板書:

一個數(shù)的因數(shù)的個數(shù)是有限的。它的最小因數(shù)是1,的因數(shù)是它本身。

三、課堂作業(yè)。

練習二第2題和第4題前半部分。

四、課堂延伸。

猜一猜:(卡片)只有一個因數(shù)的數(shù)是誰?

五、課堂小結(jié)。

師:今天你學會了求一個數(shù)的因數(shù)的方法嗎?你知道一個數(shù)的因數(shù)特點嗎?

生:……。

板書設(shè)計:

求一個數(shù)的因數(shù)的方法。

1×14。

142×7 方法:用乘法計算或除法計算(整除)。

14÷2。

14的因數(shù)有:1,2,7,14。

1×18。

182×9。

3×6。

18的因數(shù)有:1,2,3,6,9,18特點:一個數(shù)的因數(shù)的個數(shù)是有限的。

還可以表示為:

它的最小因數(shù)是1,的因數(shù)是它本身。

小學因數(shù)和倍數(shù)的教案篇六

1、使學生結(jié)合乘、除法運算初步認識倍數(shù)和因數(shù)的含義,探索求一個數(shù)的倍數(shù)和因數(shù)的方法。

2、使學生在探索的過程中,進一步體會數(shù)學知識之間的內(nèi)在聯(lián)系,提高數(shù)學思考的水平。

3、增強學生學習數(shù)學的興趣,感受到成功的快樂。

理解倍數(shù)和因數(shù)的含義,探索并掌握找一個數(shù)的倍數(shù)和因數(shù)的方法。

理解倍數(shù)和因數(shù)的含義及倍數(shù)和因數(shù)的相互依存關(guān)系。

學生:每人準備12個同樣大小的正方形。教師:課件。

一、認識倍數(shù)和因數(shù)。

1、提出活動要求:每一桌的同學合作,用12個同樣大小的正方形拼成一個長方形,想想有幾種不同的擺法,并用乘法算式把不同的擺法表示出來??纯茨淖赖耐瑢W最快完成。

2分組操作活動,師巡視指導。

3、指名匯報,出示課件,全班交流。匯報時是引導學生根據(jù)“每排擺幾個”“擺了幾排”這兩個問題說出三種不同的乘法算式。師提示:每排擺5個,能擺幾排,明確只有這三種擺法。

4、教學“倍數(shù)”和“因數(shù)”的概念。

(1)結(jié)合4×3=12,說明12是4的倍數(shù),12也是3的倍數(shù),4和3都是12的因數(shù)。并板書。

(2)齊讀這三句話,板書課題:倍數(shù)和因數(shù)。

(3)指名看式子說。

(4)請學生根據(jù)6×2=12和12×1=12兩道算式,照樣子說。

一說哪個數(shù)是哪個數(shù)的倍數(shù)?哪個數(shù)是哪個數(shù)的因數(shù)?

追問:如果說12是倍數(shù),3是因數(shù),可以嗎?為什么?

明確:倍數(shù)和因數(shù)都是指兩個數(shù)之間的關(guān)系,是相互依存的。

教師指出閱讀底注明確:為了方便,我們在研究倍數(shù)和因數(shù)時,所說的數(shù)一般指不是0的自然數(shù)。不是0的自然數(shù),0要考慮嗎?那從什么數(shù)開始。如1、2、3、4、5、6、7、8、9……在小數(shù)和分數(shù)等其他數(shù)中就也沒有倍數(shù)和因數(shù)的說法了。(可根據(jù)具體的算式說明,如0×3=0,1.5×2=3。)。

(5)練習:“想想做做”第1題。每位同學都各選一個乘法算式同桌之間互相說一說,

三、探索找倍數(shù)和因數(shù)的方法。

1、探索找一個數(shù)的倍數(shù)的方法。

(1)提出問題:什么樣的數(shù)會是3的倍數(shù)呢?明確:3的倍數(shù)是3與一個數(shù)相乘的積。你能找到多少個3的倍數(shù)?先讓學生獨立思考,再組織交流。

(2)啟發(fā):誰能按從小到大的順序有條理的說出3的倍數(shù)?根據(jù)什么樣的乘法算式?明確:可以按從小到大的順序,依次用1、2、3、4……與3相乘,每次乘得的積都是3的倍數(shù)。同時板書:

3×1=(3)3×2=(6)……。

追問:能把3的倍數(shù)全部說完嗎?應(yīng)該怎樣表示3的倍數(shù)有哪些呢?

根據(jù)學生的回答課件演示:3的倍數(shù)有3、6、9、12、15……。

(3)完成后面的試一試。提醒學生注意有序的思考,并規(guī)范的表示出結(jié)果。

(4)一個數(shù)的倍數(shù)的特點。

提問:觀察上面的幾個例子,你發(fā)現(xiàn)一個數(shù)的倍數(shù)有什么特點?根據(jù)學生的交流歸納:一個數(shù)的倍數(shù)中,最小的是它的本身,沒有最大的倍數(shù),一個數(shù)的倍數(shù)的個數(shù)是無限的。

提問:現(xiàn)在你能很快說出6的最小倍數(shù)是多少嗎?10呢?

2、探索找一個數(shù)的因數(shù)的方法。

(1)提出問題:什么樣的數(shù)是36的因數(shù)?

學生舉例說明。明確:如果有兩個數(shù)相乘的積是36,那么這兩個數(shù)都是36的因數(shù)。

板書()×()=36。

學生試著在練習本上列式找出。

(3)學生匯報交流,根據(jù)學生的回答課件演示。

請同學們看書71頁,完成書上的填空。

(5)完成“試一試”。提醒學生有序的思考,做到不重復(fù),不遺漏。

學生匯報,說說你是怎樣找的。

(6)觀察發(fā)現(xiàn)。

提問:觀察上面的例子,你發(fā)現(xiàn)一個數(shù)的因數(shù)有什么特點?

小結(jié):一個數(shù)因數(shù)的個數(shù)是有限的,一個數(shù)的因數(shù)中,最小的是1,最大的是它本身。

提問:現(xiàn)在你能很快說出18的最小因數(shù)和最大因數(shù)是多少嗎?25呢?

四、鞏固練習。

1、“想想做做”第2題。

2、“想想做做”第3題。

五、全課總結(jié)。

這節(jié)課你學會了什么?

小學因數(shù)和倍數(shù)的教案篇七

1、嘗試用“列表”“畫示意圖”等解決問題的策略發(fā)現(xiàn)規(guī)律,運用數(shù)的奇偶性解決生活中的一些簡單問題。

2、經(jīng)歷探索加法中數(shù)的奇偶性變化的過程,在活動中發(fā)現(xiàn)加法中數(shù)的奇偶性變化規(guī)律,在活動中體驗研究的.方法,提高推理能力。

1、嘗試用“列表”“畫示意圖”等解決問題的策略發(fā)現(xiàn)規(guī)律,運用數(shù)的奇偶性解決生活中的一些簡單問題。

2、經(jīng)歷探索加法中數(shù)的奇偶性變化的過程,在活動中發(fā)現(xiàn)加法中數(shù)的奇偶性變化規(guī)律,在活動中體驗研究的方法,提高推理能力。

活動1:利用數(shù)的奇偶性解決一些簡單的實際問題。

讓學生嘗試解決問題,尋找解決問題的策略,利用解決問題的策略發(fā)現(xiàn)規(guī)律,教師適當進行“列表”“畫示意圖”等解決問題策略的指導。

本題是讓學生應(yīng)用上述活動中解決問題的策略嘗試自己解決問題,最后的結(jié)果是:翻動10次,杯口朝上;翻動19次,杯口朝下。解決問題后,讓學生以“硬幣”為題材,自己提出問題、解決問題,還可以開展游戲活動。

活動2:探索奇數(shù)、偶數(shù)相加的規(guī)律。

[板書設(shè)計]。

數(shù)的奇偶性。

12+34=48偶數(shù)+偶數(shù)=偶數(shù)。

11+37=48奇數(shù)+奇數(shù)=偶數(shù)。

12+11=23奇數(shù)+偶數(shù)=奇數(shù)。

小學因數(shù)和倍數(shù)的教案篇八

1、從操作活動中理解因數(shù)與倍數(shù)的意義,會判斷一個數(shù)不是另一個數(shù)的因數(shù)或倍數(shù)。

2、培養(yǎng)學生抽象、概括與觀察思考的能力,滲透事物之間相互聯(lián)系,相互依存的辨證唯物主義觀點。

3、培養(yǎng)學生的合作意識、探索意識,以及熱愛數(shù)學學習的情感。

小學因數(shù)和倍數(shù)的教案篇九

(父子、母子、母女關(guān)系)我和你們的關(guān)系是?(師生關(guān)系)。

在數(shù)學中,數(shù)與數(shù)之間也存在著多種關(guān)系,這節(jié)課,我們一起研究兩數(shù)之間的因數(shù)與倍數(shù)關(guān)系。

(二)探究新知-理解因數(shù)和倍數(shù)的意義。

教學例1:

1.觀察算式的特點,進行分類。

(1)仔細觀察算式的特點,你能把這些算式分類嗎?

(2)交流學生的分類情況。(預(yù)設(shè):學生會根據(jù)算式的計算結(jié)果分成兩類)。

第一類是被除數(shù)、除數(shù)、商都是整數(shù);第二類是被除數(shù)、除數(shù)都是整數(shù),而商不是整數(shù)。

2.明確因數(shù)和倍數(shù)的意義。

(1)同學們,在整數(shù)除法中,如果商是整數(shù)而沒有余數(shù),我們就說被除數(shù)是除數(shù)的倍數(shù),除數(shù)是被除數(shù)的因數(shù)。例如,12÷2=6,我們就說12是2的倍數(shù),2是12的因數(shù)。12÷6=2,我們就說12是6的倍數(shù),6是12的因數(shù)。

(2)在第一類算式中找一個算式,說一說,誰是誰的因數(shù)?誰是誰的倍數(shù)?

(3)強調(diào)一點:為了方便,在研究倍數(shù)與因數(shù)的時候,我們所說的數(shù)指的是自然數(shù)(一般不包括0)。

3.理解因數(shù)和倍數(shù)的依存關(guān)系。

(1)獨立完成教材第5頁“做一做”。

(2)我們能不能說“4是因數(shù)”“24是倍數(shù)”呢?表述時應(yīng)該注意什么?

4.理解一個數(shù)的“因數(shù)”和乘法算式中的“因數(shù)”的區(qū)別以及一個數(shù)的“倍數(shù)”與“倍”的區(qū)別。

(1)今天學的一個數(shù)的“因數(shù)”與以前乘法算式中的“因數(shù)”有什么區(qū)別呢?

課件出示:

乘法算式中的“因數(shù)”是相對于“積”而言的,可以是整數(shù),也可以是小數(shù)、分數(shù);而一個數(shù)的“因數(shù)”是相對于“倍數(shù)”而言的,它只能是整數(shù)。

(2)今天學的“倍數(shù)”與以前的“倍”又有什么不同呢?

“倍數(shù)”是相對于“因數(shù)”而言的,只適用于整數(shù);而“倍”適用于小數(shù)、分數(shù)、整數(shù)。

(3)交流匯報。

(三)探究新知-找一個數(shù)的因數(shù)。

教學例2:

1.探究找18的因數(shù)的方法。

(1)18的因數(shù)有哪些?你是怎么找的?

(2)交流方法。

預(yù)設(shè):方法一:根據(jù)因數(shù)和倍數(shù)的意義,通過除法算式找18的因數(shù)。

因為18÷1=18,所以1和18是18的因數(shù)。

因為18÷2=9,所以2和9是18的因數(shù)。

因為18÷3=6,所以3和6是18的.因數(shù)。

方法二:根據(jù)尋找哪兩個整數(shù)相乘的積是18,尋找18的因數(shù)。

因為1×18=18,所以1和18是18的因數(shù)。

因為2×9=18,所以2和9是18的因數(shù)。

因為3×6=18,所以3和6是18的因數(shù)。

2.明確18的因數(shù)的表示方法。

(1)我們怎樣來表示18的因數(shù)有哪些呢?怎樣表示簡潔明了?

(2)交流方法。

預(yù)設(shè):列舉法,18的因數(shù)有:1,2,3,6,9,18。

集合圖的方法(如下圖所示)。

3.練習找一個數(shù)的因數(shù)。

(1)你能找出30的因數(shù)有哪些嗎?36的因數(shù)呢?

(2)怎樣找才能不遺漏、不重復(fù)地找出一個數(shù)的所有因數(shù)?

(四)探究新知-找一個數(shù)的倍數(shù)。

教學例3:

1.探究找2的倍數(shù)的方法。

(1)2的倍數(shù)有哪些?你是怎么找的?

(2)想方法:利用乘法算式找2的倍數(shù)。

因為2×1=2,所以2是2的倍數(shù)。

因為2×2=4,所以4是2的倍數(shù)。

因為2×3=6,所以6是2的倍數(shù)。……。

(3)2的倍數(shù)能寫完嗎?你能繼續(xù)找嗎?寫不完怎么辦?

(4)根據(jù)前面的經(jīng)驗,試著表示出2的倍數(shù)有哪些?(預(yù)設(shè):列舉法、集合圖的方法)。

2.練習找一個數(shù)的倍數(shù)。

你能找出3的倍數(shù)有哪些嗎?5的倍數(shù)呢?

(五)我的發(fā)現(xiàn)-因數(shù)與倍數(shù)的特征。

舉例子,找規(guī)律,勾畫知識點,讀一讀。

預(yù)設(shè):一個數(shù)的因數(shù)的個數(shù)是有限的,最小的因數(shù)是1,最大的因數(shù)是它本身;一個數(shù)的倍數(shù)的個數(shù)是無限的,沒有最大的倍數(shù),最小的倍數(shù)是它本身。1是所有非零自然數(shù)的因數(shù)。

(六)智慧樂園。

1.在練習本上完成下列填空題。(獨立完成后,師訂正答案)。

一個數(shù)的最大因數(shù)是17,這個數(shù)是(),它的最小的因數(shù)是()。

一個數(shù)的最小倍數(shù)是17,這個數(shù)是(),它()最大的倍數(shù),17的倍數(shù)的個數(shù)是().

一個數(shù)既是12的因數(shù),又是12的倍數(shù),這個數(shù)是()。

2.在練習本上完成下列判斷題。(獨立完成后,師訂正答案)。

(1)在算式6×4=24中,6是因數(shù),24是倍數(shù)。()。

(2)15的倍數(shù)一定大于15。()。

(3)1是除0以外所有自然數(shù)的因數(shù)。()。

(4)40以內(nèi)6的倍數(shù)有12、18、24、30、36這5個。()。

(5)34的最小倍數(shù)是34;34的最小因數(shù)是17。()。

(6)1.2是3的倍數(shù)。()。

(七)全課總結(jié),交流收獲。

這節(jié)課我們學了哪些知識?你有什么收獲?

(八)布置作業(yè)。

完成課時練第3、4頁,提交家校本。

小學因數(shù)和倍數(shù)的教案篇十

教學內(nèi)容:

蘇教版義務(wù)教育教科書《數(shù)學五年級下冊第47~48頁整理與練習“回顧與整理”和“練習與應(yīng)用”第1~7題。

教學目標:

1.使學生加深認識因數(shù)和倍數(shù),能找一個數(shù)的因數(shù)或倍數(shù),進一步認識質(zhì)數(shù)和合數(shù);掌握2、5、3的倍數(shù)的特征,進一步認識偶數(shù)和奇數(shù);加深理解質(zhì)因數(shù),能正確分解質(zhì)因數(shù)。

2.使學生能整理因數(shù)和倍數(shù)的知識內(nèi)容,感受知識之間的內(nèi)在聯(lián)系;能應(yīng)用相關(guān)概念進行分析、判斷、推理,進一步掌握思考、解決數(shù)學問題的方法,積累數(shù)學思維的初步經(jīng)驗,提高分析、推理、判斷等思維能力;加深對數(shù)的認識,進一步發(fā)展數(shù)感。

3.使學生主動參與回顧、整理知識和分析、解決問題等活動,培養(yǎng)樂于思考的品質(zhì)和與同伴互相交流、傾聽等合作意識和能力;感受數(shù)學方面的知識積累和進步,提高學好數(shù)學的自信心。

教學重點:

教學難點:

應(yīng)用概念正確判斷、推理。

教學過程:

一、揭示課題。

談話:最近的數(shù)學課,我們學習了哪方面的內(nèi)容?回憶一下,都學到了哪些知識?

揭題:我們已經(jīng)學完了因數(shù)和倍數(shù)這一單元的內(nèi)容,今天開始主要整理與練習這一單元內(nèi)容。(板書課題)通過整理與練習,我們要進一多認識因數(shù)與倍數(shù),2.5.3的倍數(shù)的特征,能熟練掌握找一個數(shù)的因數(shù)或倍數(shù)的方法;能判斷偶數(shù)和奇數(shù)、質(zhì)數(shù)和合數(shù),了解這些概念之間的聯(lián)系與區(qū)別,能正確分解質(zhì)因數(shù),提高對數(shù)的特征的認識,加深對數(shù)的認識。

二、回顧與整理。

1.回顧討論。

出示討論題:

(1)你是怎樣理解因數(shù)和倍數(shù)的?舉例說明你的認識。

(2)2、5、3的倍數(shù)有什么特征?我們是怎樣發(fā)現(xiàn)的?

(3)自然數(shù)可以怎樣分類,各能分成哪幾類?舉例說說什么是質(zhì)因數(shù)和分解質(zhì)因數(shù)。

(4)什么是兩個數(shù)的公因數(shù)和最大公因數(shù),公倍數(shù)和最小公倍數(shù)?

讓學生在小組里討論,結(jié)合討論適當記錄自己的認識或例子。

2.交流整理。

圍繞討論題,引導學生展開交流,結(jié)合交流板書主要內(nèi)容。

(1)提問:能說說什么是因數(shù)和倍數(shù)嗎?可以用例子說明。(結(jié)合交流板書一兩個乘法或除法算式)。

(指名學生說一說,再集體說一說)。

你能找出6的因數(shù)嗎?(板書因數(shù))6的倍數(shù)呢?(板書倍數(shù))。

能說說找一個數(shù)的因數(shù)或倍數(shù)的方法嗎?

說明:一個數(shù)的因數(shù)可以從小到大一對一對地找,到中間兩個因數(shù)之間沒有因數(shù)為止;一個數(shù)的倍數(shù)可以用依次乘1、2、3……這樣的方法找,注意一個數(shù)的倍數(shù)是無限的,寫一個數(shù)的倍數(shù)要注意用省略號。

(2)提問:2、5、3的倍數(shù)各有什么特征?我們是怎樣發(fā)現(xiàn)的?

自然數(shù)可以怎樣分類,各可以分成哪幾類?

你能舉出偶數(shù)和奇數(shù)、質(zhì)數(shù)和合數(shù)的一些例子嗎?(學生舉出各類數(shù)的例子)。

說明:按是不是2的倍數(shù)可以把自然數(shù)分成偶數(shù)和奇數(shù)兩類,是2的倍數(shù)的是偶數(shù),不是2的倍數(shù)的是奇數(shù);按因數(shù)的個數(shù)可以把自然數(shù)分成1和質(zhì)數(shù)、合數(shù)三類,只有兩個因數(shù)的是質(zhì)數(shù),有兩個以上因數(shù)的是合數(shù),1既不是質(zhì)數(shù)也不是合數(shù)。

什么是質(zhì)因數(shù)和分解質(zhì)因數(shù)?6有哪些質(zhì)因數(shù)?怎樣把6分解質(zhì)因數(shù)?(板書式子,并說明其中的質(zhì)因數(shù))。

(3)提問:什么是公因數(shù)和最大公因數(shù),什么是公倍數(shù)和最小公倍數(shù)?

說明:兩個數(shù)公有的因數(shù)叫公因數(shù),其中最大的叫最大公因數(shù);兩個數(shù)公有的倍數(shù)叫公倍數(shù),其中最小的叫最小公倍數(shù)。

結(jié)合交流內(nèi)容,逐步板書成:

l

質(zhì)數(shù)質(zhì)因數(shù)。

合數(shù)分解質(zhì)因數(shù)。

(互相依存)。

2、5、3的倍數(shù)的特征。

偶數(shù)。

奇數(shù)。

(4)引導:請同學們現(xiàn)在觀察我們整理的這一單元學過的內(nèi)容,了解知識之間的聯(lián)系,同桌互相說說知識是怎樣發(fā)展的。

學生互相交流,教師巡視、傾聽。

交流:哪位同學能看黑板上整理的內(nèi)容,說說我們怎樣逐步認識這些知識的,知識是怎樣發(fā)展起來的。

三、練習與應(yīng)用。

1.做“練習與應(yīng)用”第1題。

指名學生交流,說說每組里因數(shù)和倍數(shù)關(guān)系。

提問:3和7有沒有因數(shù)和倍數(shù)關(guān)系?為什么沒有?

2.做“練習與應(yīng)用”第2題。

(1)讓學生獨立寫出前四個數(shù)的所有因數(shù),指名兩人板演。

交流:你是怎樣找它們的因數(shù)的?(檢查板演題)。

(2)口答后三個數(shù)的因數(shù)。

引導:能說出后面每個數(shù)的全部因數(shù)嗎?(學生口答,教師板書)。

提問:一個數(shù)的因數(shù)有什么特點?

說明:一個數(shù)因數(shù)的個數(shù)是有限的,最小的是1.最大的是它本身。

3.分別說出下面各數(shù)的倍數(shù)。

581217。

分別指名學生說出各數(shù)的倍數(shù),教師板書。

提問:為什么要寫省略號?一個數(shù)的倍數(shù)有什么特點?

說明:一個數(shù)倍數(shù)的個數(shù)是無限的,最小的是它本身,沒有最大的倍數(shù)。

4.做“練習與應(yīng)用”第3題。

(1)讓學生獨立完成填數(shù)。

交流:題里各是怎樣填的?(呈現(xiàn)結(jié)果)填數(shù)時怎樣想的?

提問:哪些數(shù)既是3的倍數(shù),又是5的倍數(shù)?你是怎樣想的?

哪些數(shù)既是2的倍數(shù),又是5和3的倍數(shù)?說說你的判斷方法。

(2)這里哪些數(shù)是偶數(shù)?奇數(shù)呢?

你是怎樣判斷偶數(shù)和奇數(shù)的?

5.做“練習與應(yīng)用”第4題。

要求學生獨立思考,自己選出兩張卡片,按各題的要求分別組成兩位數(shù),把能組成的數(shù)記錄下來。

交流:同時是5和3的倍數(shù)的數(shù)有哪些?(板書:30)如果是三位數(shù)呢?

(板書:180810)。

組成的兩位數(shù)中最大的偶數(shù)是多少?(板書:80)最小的奇數(shù)呢?(板書:13)。

6.做“練習與應(yīng)用”第5題。

讓學生把質(zhì)數(shù)圈出來,在合數(shù)下面畫線。

交流:哪些是質(zhì)數(shù),哪些是合數(shù)?(板書成兩類)質(zhì)數(shù)和合數(shù)是按什么分的?

說明:質(zhì)數(shù)只有2個因數(shù),合數(shù)至少有3個因數(shù)。

7.做“練習與應(yīng)用’’第6題。

交流、呈現(xiàn)結(jié)果。

提問:觀察表里選出的質(zhì)數(shù)和偶數(shù),所有的質(zhì)數(shù)都是奇數(shù)嗎?請舉出一個具體例子。

所有的合數(shù)都是偶數(shù)嗎?你能舉例子說明嗎?

指出:如果要說明一個結(jié)論是錯誤的,只要舉一個反例。比如,要判斷質(zhì)數(shù)都是奇數(shù)的說法是錯的,只要舉出質(zhì)數(shù)2是偶數(shù)這個例子。這里質(zhì)數(shù)2是偶數(shù)就是一個反例。要判斷合數(shù)都是偶數(shù)是錯的,也只要舉一個反例,比如合數(shù)9就是奇數(shù)。

8.下面的說法正確嗎?

(1)大于0的自然數(shù)不是奇數(shù)就是偶數(shù)。

(2)大于0的自然數(shù)不是質(zhì)數(shù)就是合數(shù)。

(3)奇數(shù)都是質(zhì)數(shù),偶數(shù)都是合數(shù)。

(4)自然數(shù)中最小的偶數(shù)是2,最小的合數(shù)是4。

(5)一個數(shù)本身既是它的因數(shù),又是它的倍數(shù)。

9.做“練習與應(yīng)用”第7題。

(1)讓學生填空,指名板演。交流并確認結(jié)果。

提問:這里填寫的質(zhì)數(shù)都叫積的什么數(shù)?為什么稱它是積的質(zhì)因數(shù)?

說明:這里把合數(shù)寫成這種質(zhì)數(shù)相乘的形式,叫什么?

(2)把30、42分別分解質(zhì)因數(shù)。

學生完成,交流板書,檢查訂正。

四、全課總結(jié)。

提問:這節(jié)課主要復(fù)習的哪些內(nèi)容?你有哪些收獲?

將本文的word文檔下載到電腦,方便收藏和打印。

小學因數(shù)和倍數(shù)的教案篇十一

4、培養(yǎng)學生的觀察能力。

1、出示主題圖,讓學生各列一道乘法算式。

2、師:看你能不能讀懂下面的算式?

出示:因為2×6=12。

所以2是12的因數(shù),6也是12的因數(shù);

12是2的倍數(shù),12也是6的倍數(shù)。

3、師:你能不能用同樣的方法說說另一道算式?

(指名生說一說)。

師:你有沒有明白因數(shù)和倍數(shù)的關(guān)系了?

那你還能找出12的其他因數(shù)嗎?

4、你能不能寫一個算式來考考同桌?學生寫算式。

師:誰來出一個算式考考全班同學?

5、師:今天我們就來學習因數(shù)和倍數(shù)。(出示課題:因數(shù)倍數(shù))。

齊讀p12的注意。

(一)找因數(shù):

1、出示例1:18的因數(shù)有哪幾個?

學生嘗試完成:匯報。

(18的因數(shù)有:1,2,3,6,9,18)。

師:說說看你是怎么找的?(生:用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=…;用乘法一對一對找,如1×18=18,2×9=18…)。

師:18的因數(shù)中,最小的是幾?最大的是幾?我們在寫的時候一般都是從小到大排列的。

2、用這樣的方法,請你再找一找36的因數(shù)有那些?

匯報36的因數(shù)有:1,2,3,4,6,9,12,18,36。

師:你是怎么找的?

舉錯例(1,2,3,4,6,6,9,12,18,36)。

師:這樣寫可以嗎?為什么?(不可以,因為重復(fù)的因數(shù)只要寫一個就可以了,所以不需要寫兩個6)。

仔細看看,36的因數(shù)中,最小的'是幾,最大的是幾?

看來,任何一個數(shù)的因數(shù),最小的一定是(),而最大的一定是()。

3、你還想找哪個數(shù)的因數(shù)?(18、5、42……)請你選擇其中的一個在自練本上寫一寫,然后匯報。

4、其實寫一個數(shù)的因數(shù)除了這樣寫以外,還可以用集合表示:如。

18的因數(shù)。

小結(jié):我們找了這么多數(shù)的因數(shù),你覺得怎樣找才不容易漏掉?

從最小的自然數(shù)1找起,也就是從最小的因數(shù)找起,一直找到它的本身,找的過程中一對一對找,寫的時候從小到大寫。

(二)找倍數(shù):

1、我們一起找到了18的因數(shù),那2的倍數(shù)你能找出來嗎?

匯報:2、4、6、8、10、16、……。

師:為什么找不完?

你是怎么找到這些倍數(shù)的?(生:只要用2去乘1、乘2、乘3、乘4、…)。

那么2的倍數(shù)最小是幾?最大的你能找到嗎?

2、讓學生完成做一做1、2小題:找3和5的倍數(shù)。

匯報3的倍數(shù)有:3,6,9,12。

師:這樣寫可以嗎?為什么?應(yīng)該怎么改呢?

改寫成:3的倍數(shù)有:3,6,9,12,……。

你是怎么找的?(用3分別乘以1,2,3,……倍)。

5的倍數(shù)有:5,10,15,20,……。

師:表示一個數(shù)的倍數(shù)情況,除了用這種文字敘述的方法外,還可以用集合來表示。

2的倍數(shù)3的倍數(shù)5的倍數(shù)。

師:我們知道一個數(shù)的因數(shù)的個數(shù)是有限的,那么一個數(shù)的倍數(shù)個數(shù)是怎么樣的呢?

(一個數(shù)的倍數(shù)的個數(shù)是無限的,最小的倍數(shù)是它本身,沒有最大的倍數(shù))。

我們一起來回憶一下,這節(jié)課我們重點研究了一個什么問題?你有什么收獲呢?

完成練習二1~4題。

小學因數(shù)和倍數(shù)的教案篇十二

:p70~72的例題及相應(yīng)的試一試、想想做做中的1—3題。

1、使學生初步理解倍數(shù)和因數(shù)的含義,知道倍數(shù)和因數(shù)相互依存的關(guān)系。

2、使學生依據(jù)倍數(shù)和因數(shù)的含義以及已有乘除法知識,通過嘗試、交流等活動,探索并掌握找一個數(shù)倍數(shù)和因數(shù)的方法,能在1—100的自然數(shù)中找出10以內(nèi)某個數(shù)的所有倍數(shù),找出100以內(nèi)某個數(shù)的所有因數(shù)。

3、使學生在認識倍數(shù)和因數(shù)以及找一個數(shù)的倍數(shù)和因數(shù)的過程中進一步感受數(shù)學知識的內(nèi)在聯(lián)系,提高數(shù)學思考的水平。

:理解因數(shù)和倍數(shù)的含義,知道它們的關(guān)系是相互依存的。

探索并掌握找一個數(shù)的因數(shù)的方法。

:12個小正方形片、每個學生的學號紙。

1、操作活動。

(1)明確操作要求:用12個同樣大的正方形拼成一個長方形。每排擺幾個?擺了幾排?用乘法算式把自己的擺法記錄下來。

(2)整理、交流,分別板書4×3=1212×1=126×2=12。

2、通過剛才的學習,我們發(fā)現(xiàn)用12個同樣的小正方形可以擺出3種不同的長方形,由此,還得出3道不一樣的乘法算式。4×3=12可以說12是4的倍數(shù),12也是3的倍數(shù);反過來,4和3都是12的因數(shù)。

(1)那其它兩道算式,你能說出誰是誰的倍數(shù)嗎?你能說出誰是誰的因數(shù)嗎?

指名回答后,教師追問:如果說12是倍數(shù),2是因數(shù),是否可以?為什么?

小結(jié):倍數(shù)和因數(shù)是指兩個數(shù)之間的關(guān)系,他們是相互依存的。

指出:為了方便,我們在研究倍數(shù)和因數(shù)時,所說的數(shù)都是指不是0的自然數(shù)。

二、探索找一個數(shù)倍數(shù)的方法。

1、從4×3=12中,知道12是3的倍數(shù)。3的倍數(shù)還有哪些?從小到大,你能找到幾個?同桌交流自己的思考方法。

3、議一議:你發(fā)現(xiàn)找3的倍數(shù)有什么小竅門?

明確:可以按從小到大的順序,依次用1、2、3……與3相乘,乘得的積就是3的倍數(shù)。

4、試一試:你能用學會的竅門很快地寫出2和5的倍數(shù)嗎?

生獨立完成,集體交流。注意用……表示結(jié)果。

5、觀察上面的3個例子,你發(fā)現(xiàn)一個數(shù)的倍數(shù)有什么特點?

根據(jù)學生的交流歸納:一個數(shù)的倍數(shù)中,最小的是它本身,沒有最大的倍數(shù),一個數(shù)倍數(shù)的個數(shù)是無限的。

6、做“想想做做”第2題。

1、學會了找一個數(shù)倍數(shù)的方法,再來研究求一個數(shù)的因數(shù)。

你能找出36的所有因數(shù)嗎?

2、小組合作,把36的所有因數(shù)一個不漏的寫出來,看看哪個組挑戰(zhàn)成功。并盡可能把找的方法寫出來。教師巡視,發(fā)現(xiàn)不同的找法。

3、出示一份作業(yè):對照自己找出的36的因數(shù),你想對他說點什么?

4、交流整理找36因數(shù)的方法,明確:哪兩個數(shù)相乘的積等于36,那么這兩個數(shù)就是36的因數(shù)。(一對一對地找,又要按次序排列)。

板書:(有序、全面)。正因為思考的有序,才會有答案的全面。

5、試一試:請你用有序的思考找一找15和16的因數(shù)。

指名寫在黑板上。

一個數(shù)的因數(shù)最小是1,最大是它本身,一個數(shù)因數(shù)的個數(shù)是有限的。

7、“想想做做”第3題。

生獨立填寫,交流。觀察表格,表中的排數(shù)和每排人數(shù)與24有怎樣的關(guān)系。

四、課堂總結(jié):學到這兒,你有哪些收獲?

五、游戲:“看誰反應(yīng)快”。

規(guī)則:學號符合下面要求的請站起來,并舉起學號紙。

(1、)學號是5的倍數(shù)的。

(2、)誰的學號是24的因數(shù)。

(4、)誰的學號是1的倍數(shù)。

2、在得出這些乘法算式以后,先根據(jù)4×3=12說明12是3和4的倍數(shù),3和4都是12的因數(shù),使學生初步體會倍數(shù)和因數(shù)的含義。在學生初步理解的基礎(chǔ)上,再讓他們舉一反三,結(jié)合另兩道乘法算式說一說。在這一個環(huán)節(jié)中,我設(shè)計了一個練習。即“根據(jù)下面的算式,同桌互相說說誰是誰的倍數(shù),誰是誰的因數(shù)”第一個是20×3=60,根據(jù)學生回答后質(zhì)疑“能不能說3是因數(shù),60是倍數(shù)”,從而強調(diào)倍數(shù)和因數(shù)是相互依存的。第二個是36÷4=9,讓學生根據(jù)除法算式說出誰是誰的因數(shù),誰是誰的倍數(shù),并追問:你是怎么想的?使學生知道把它轉(zhuǎn)化為乘法算式去說。

在學生有了倍數(shù)、因數(shù)的初步感受后,再向?qū)W生說明:我們在研究倍數(shù)和因數(shù)時,所說的數(shù)一般指不是0的自然數(shù),明確了因數(shù)和倍數(shù)的研究范圍。

3、p71例一:找3的倍數(shù),先讓學生獨立思考,“你還能再寫出幾個3的倍數(shù)?你是怎樣想的?”在學生交流的基礎(chǔ)上,適時提出:什么樣的數(shù)就是3的倍數(shù)?你能按照從小到大的順序有條理地說出3的倍數(shù)嗎?使學生明確:找3的倍數(shù)時,可以按從到大的`順序,依次用1、2、3……與3相乘,而每次乘得的積都是3的倍數(shù)。在此基礎(chǔ)上,引導學生進一步思考:你能把3的倍數(shù)全都說完嗎?從而使學生學會規(guī)范地表示一個數(shù)的所有倍數(shù),并初步體會到一個數(shù)的個數(shù)是無限的。隨后,讓學生試著找出2和5的倍數(shù),并正確表達2和5的所有倍數(shù)。最后引導學生觀察寫出的3、2和5的所有倍數(shù),發(fā)現(xiàn)一個數(shù)的倍數(shù)的特點,即:一個數(shù)的最小的倍數(shù)是它本身,沒有最大的倍數(shù)。一個數(shù)的倍數(shù)的個數(shù)是無限的。

4、例二:找36的所有因數(shù),準備讓學生獨立嘗試,但這部分內(nèi)容對學生來說是個難點,所以我采用了四人小組合作的方式讓學生試著找出36的所有因數(shù)。在找36的因數(shù)時,無論想乘法算式還是想除法算式,學生一般都從無序到有序,從有重復(fù)或遺漏到不重復(fù)不遺漏。所以,我在教學時允許他們經(jīng)歷這樣的過程。先按自己的思路、用自己的方法寫36的因數(shù),能寫幾個就寫幾個,是什么順序就什么順序。然后在交流中互相評價,讓他們知道一組一組地找比較方便,可以利用乘法算式,按一個因數(shù)從小到大的順序,同時又讓他們掌握按次序地書寫。此外,結(jié)合例題和試一試,通過比較和歸納,使學生明確:一個數(shù)的因數(shù)的個數(shù)是有限的,一個數(shù)的因數(shù)中最小的是1,最大的是它本身。

5、教材p72第2題讓學生解決實際問題在表里填數(shù),把4依次乘1、2、3、……得出“應(yīng)付元數(shù)”,然后思考下面的問題,可以使學生進一步認識把4依次乘1,2,3,……所得的積,就是4的倍數(shù),進一步理解找倍數(shù)的方法。第3題也是解決實際問題填寫表里的數(shù),并提出問題讓學生思考,使學生明確兩個相乘的數(shù)都是它們積的因數(shù),求一個數(shù)的所有因數(shù),可以想乘法一對一對地找出來,理解找一個數(shù)的因數(shù)的方法。

為了提高學生學習興趣,鞏固所學的知識。最后安排了一個游戲,讓學生在游戲中進一步練習找一個數(shù)倍數(shù)或因數(shù)的方法。

小學因數(shù)和倍數(shù)的教案篇十三

1、精簡概念,減輕學生記憶負擔。

三方面的調(diào)整:

a。不再出現(xiàn)“整除”概念,直接從乘法算式引出因數(shù)和倍數(shù)的概念。

b。不再正式教學“分解質(zhì)因數(shù)”,只作為閱讀性材料進行介紹。

c。公因數(shù)、公因數(shù)、公倍數(shù)、最小公倍數(shù)移至“分數(shù)的意義和性質(zhì)”單元,作為約分和通分的知識基礎(chǔ),更突出其應(yīng)用性。

2、注意體現(xiàn)數(shù)學的抽象性。

數(shù)論知識本身具有抽象性。學生到了高年級也應(yīng)注意培養(yǎng)其抽象思維。

小學因數(shù)和倍數(shù)的教案篇十四

1、理解倍數(shù)和因數(shù)之間的關(guān)系是相互依存的。

2、根據(jù)具體的問題情景,能正確確定某個非零自然數(shù)的所有因數(shù)。

3、使學生體味數(shù)學的趣味性,激發(fā)學生對數(shù)學的探究熱情。

理解倍數(shù)和因數(shù)之間的關(guān)系是相互依存的,能正確求一個數(shù)的倍數(shù)和因數(shù)。

能正確有序求一個數(shù)的倍數(shù)和因數(shù)。

師:同學們,在我們的日常生活中,人與人之間存在著許多相互依存的關(guān)系,如:丁爸是丁丁的爸爸,丁丁是丁爸的兒子。丁哥是丁丁的哥哥,丁丁是丁哥的弟弟。其實在我們的數(shù)學王國里,數(shù)與數(shù)之間也存在著這種相互依存的關(guān)系,請看大屏幕,認識這些數(shù)嗎?(課件出示:0,1,2,3,4,5)。

生:自然數(shù)。

(課件去“0”)。

(研究范圍:非零自然數(shù)中)。

(一)找一個數(shù)的因數(shù)。

1、(課件出示例1情境圖)。

師:請看大屏幕,這是36人列隊操練,每排人數(shù)要一樣多,可以怎樣排列?同學們可以先同桌討論,作好記錄,再匯報。(引導生說:可以站幾排,每排站幾個。)。

根據(jù)這些信息我們能列出哪些乘法算是呢?

板書:1×36=362×18=363×12=364×9=366×6=361。

師:在4×9=36這個算式中,4和9叫什么?(因數(shù))36是?(積),這是我們以前學的乘法各部分名稱。其實,在整數(shù)乘法中,因數(shù)和積之間還存在一種相互依存的關(guān)系,也就是說4是36的因數(shù),36是4的倍數(shù)。,同樣,在這個算式中,我們還可以說9是36的?(因數(shù)),36是9的?(倍數(shù))。

2、誰能像老師這樣,說一說3×12=36他們之間的關(guān)系。(先請一個學生站起來說一說)。

4、你能根據(jù)左邊的乘法算式寫出相應(yīng)的除法算式嗎?(師根據(jù)生的回答板書)。

我們現(xiàn)在就以36÷4=9為例,你能從這個除法算式中說一說誰是誰的倍數(shù),誰是誰的因數(shù)?(說好后再讓學生逐個說出除法算式中的關(guān)系)。

5、剛才同學們都說4是36的因數(shù),那能單獨說4是因數(shù)嗎?(生發(fā)表意見)。

到底可以不可以這樣說,請看大屏幕,(課件出示:4×9=362×2=4),請你說說4是倍數(shù)還是因數(shù)?(課件著重強調(diào)數(shù)字“4”)。

引導學生說:第一個式子中,4是36的因數(shù),第二個式子中4是2的'倍數(shù)。(課件出示結(jié)果)。

師:從剛才的回答中你明白了什么?(引導生知道:因數(shù)和倍數(shù)是相互依存的,不能單獨存在)。

6、師:下面,請同學們看這個式子,說一說誰是誰的倍數(shù),誰是誰的因數(shù)。(課件出示:4×5=2014÷3=53+6=96-4=20.3×2=0.6)。

生回答后,引導生知道:通過后三個算式使生進一步理解,倍數(shù)和因數(shù)都是建立在乘法或除法的基礎(chǔ)之上的,他們的研究范圍在非零自然數(shù)中。

7、你能根據(jù)上面所寫的乘法算式或除法算式說出36的所有因數(shù)嗎?

師;那么你知道怎樣找一個數(shù)的所有因數(shù)呢?(同桌商討后,指名回答,課件出示。)。

找一個數(shù)的所有因數(shù)時,可以先寫出用這個數(shù)作積的所有乘法算式,或者寫出用這個數(shù)作被除數(shù)的所有除法算式,再寫出它的所有因數(shù)。注意,最好按照順序從小到大來寫,這樣不容易遺漏。

8、師:現(xiàn)在,我們來練習一下。同學們分組有序的找出15、16、24、25的所有因數(shù)嗎?打開練習本,快速的寫出來,開始。(師巡視指導困難學生)。

寫完后生匯報,并說出你是怎樣找出它們的因數(shù)的,課件出示。

9、引導歸納概括一個數(shù)的因數(shù)的特點。

師:看來同學們已經(jīng)充分掌握了找一個數(shù)因數(shù)的方法,觀察剛才我們找的這些數(shù)的因數(shù),你有什么發(fā)現(xiàn)嗎?(出示合作學習要求和目的)下面請小組合作,仔細觀察、比較我們找出的這些數(shù)的因數(shù),你從這幾個例子中發(fā)現(xiàn)了什么?請把你的發(fā)現(xiàn)和小組的成員說一說,注意:當一個同學在說的時候,其他成員一定要認真聽,不要打斷別人的發(fā)言,開始。

(二)找一個數(shù)的倍數(shù)。

1、師:找了這么多數(shù)的因數(shù),現(xiàn)在我們來找一個數(shù)的倍數(shù),好不好?

(課件出示例2)。

生寫,師巡視。

2、指明匯報后,并說出你是如何找一個數(shù)的倍數(shù)的?

歸納(出示找一個數(shù)的倍數(shù)的方法):找一個數(shù)的倍數(shù)從它本身開始,用非零自然數(shù)1,2,3···去乘,就可以得到。

那請大家觀察這些數(shù)的倍數(shù),你又能發(fā)現(xiàn)什么呢?同桌兩個先互相說一說,開始吧。

生發(fā)言。

4、引導學生發(fā)現(xiàn):一個數(shù)的倍數(shù)個數(shù)是無限的,其中最小的倍數(shù)是它本身,沒有最大的倍數(shù)。(課件出示)。

師;同學們認識了倍數(shù)和因數(shù),探索了因數(shù)和倍數(shù)的特點,并且能正確求一個數(shù)因數(shù)和倍數(shù)的,其實,這些這些知識就在課本125、126頁,打開書本,看一看書上的老師是如何說的,并把需要填寫的部分填寫以下。

這節(jié)課同學們通過自己的努力又發(fā)現(xiàn)了數(shù)學海洋里的新知識,真讓老師感到開心,在我們今后的學習中希望大家繼續(xù)帶著這些熱情和精神去探索、去發(fā)現(xiàn)。

書本127頁練習二十1、2、3題(課件出示)。

(非零自然數(shù)中)。

1×36=3636÷1=3636÷36=1。

2×18=3636÷2=1836÷18=2。

3×12=3636÷3=1236÷12=3。

4×9=3636÷4=936÷9=4。

6×6=3636÷6=6。

36的因數(shù)有:1、2、3、4、6、9、12、18、36.

小學因數(shù)和倍數(shù)的教案篇十五

教材第6頁例3及練習二第3~8題及思考題。

1.通過學習,使學生能自主探究,找出求一個數(shù)的倍數(shù)的方法。

2.結(jié)合具體情境,使學生進一步認識自然數(shù)之間存在因數(shù)和倍數(shù)的關(guān)系,掌握求一個數(shù)的因數(shù)和倍數(shù)的方法。

3.初步學會從數(shù)學的角度提出問題、理解問題,并能用所學知識解決問題。在解決問題的過程中,培養(yǎng)學生概括、分析和比較的能力,使學生體會數(shù)學知識的內(nèi)在聯(lián)系。

重點:掌握求一個數(shù)的倍數(shù)的方法。

難點:理解因數(shù)和倍數(shù)兩者之間的關(guān)系。

1、探索找倍數(shù)的方法。(教學例3)。

出示例3:2的倍數(shù)有哪些?

師:你會找2的倍數(shù)嗎?給你們1分鐘的時間,看誰寫得又對、又快、又多!準備好了嗎?開始!

師:時間到,你寫了多少個2的倍數(shù)?生1:15個。生2:24個。

師:大家都是用的什么方法呢?

生1:我是用乘法口訣,一二得二,二二得四……這樣寫下去的。

生2:我也是用乘法,用2去乘1、乘2……。

師:哪些同學也是用乘法做的?

師:你們都是用2去乘一個數(shù),所得的積就是2的倍數(shù)。還有不同的方法嗎?

生3:我用的'是除法,用2÷2=1,4÷2=2,6÷2=3,……依次除下去。

師:很好!如果給你更長的時間,你能把2的倍數(shù)全部寫出來嗎?(不能)。

師:為什么?(因為2的倍數(shù)有無數(shù)個)。

師:怎么辦?(用省略號)。

師:通過交流,你有什么發(fā)現(xiàn)?

引導學生初步體會2的倍數(shù)的個數(shù)是無限的。

追問:你能用集合圖表示2的倍數(shù)嗎?

學生填完后,教師組織學生進行核對。

(4)即時練習。讓學生找出3的倍數(shù)和5的倍數(shù),并組織交流。學生舉例時可能會產(chǎn)生錯誤,教師要引導學生根據(jù)錯例進行適時剖析。

2、反思提煉。師:從前面找因數(shù)和倍數(shù)的過程中,你有什么發(fā)現(xiàn)?

先讓學生在小組內(nèi)交流,再組織全班集體交流,通過全班交流,引導學生認識以下三點:

(1)一個數(shù)的最小因數(shù)是1,最大因數(shù)是它本身。

(2)一個數(shù)的最小倍數(shù)是它本身,沒有最大倍數(shù)。

(3)一個數(shù)的因數(shù)的個數(shù)是有限的,一個數(shù)的倍數(shù)的個數(shù)是無限的。

1、指導學生完成教材第7~8頁練習二第3~8題及思考題。

學生獨立完成全部練習后教師組織學生進行集體訂正。

集體訂正時,教師著重引導學生認識以下幾點:

(1)第4題“15的因數(shù)有哪些?”和“15是哪些數(shù)的倍數(shù)”答案是一樣的。

(2)第5題中的第(2)小題是錯的,因為一個數(shù)的倍數(shù)的個數(shù)是無限的,第(4)小題也是錯的,因為在研究因數(shù)和倍數(shù)時,我們所說的數(shù)指的是自然數(shù),不含小數(shù)。

(3)思考題:兩數(shù)如果都是7(或9)倍數(shù),它們的和也一定是7(或9)的倍數(shù),即如果兩數(shù)都是n的倍數(shù),它的和也是n的倍數(shù)。

2、利用求倍數(shù)的方法解決生活中的實際問題。

理解題意,分析解答。

教師提示“2個2個地數(shù),正好數(shù)完,說明西瓜的個數(shù)是2的倍數(shù),5個5個地數(shù),也正好數(shù)完,說明西瓜的個數(shù)是5的倍數(shù),所以西瓜的個數(shù)同時是2和5的倍數(shù)。

交流匯報:2的倍數(shù)有2,4,6,8,10,12,14,16,18,20,…。

5的倍數(shù)有5,10,15,20,25,30,…。

2和5共同的倍數(shù)有10,20,…所以2和5共同的倍數(shù)最小的是10。

答:這些西瓜最少有10個。

1、師:通過本節(jié)課的學習,你有什么收獲?(學生交流)。

2、讓學生自學“你知道嗎?”

2×1=22÷2=1。

2×2=44÷2=2。

2×3=66÷2=3。

2×4=88÷2=4。

2的倍數(shù)有2,4,6,……。

一個數(shù)的因數(shù)的個數(shù)是有限的,一個數(shù)的倍數(shù)的個數(shù)是無限的。

小學因數(shù)和倍數(shù)的教案篇十六

1.使學生初步掌握2、5的倍數(shù)的特征。

2.使學生知道奇數(shù)、偶數(shù)的概念。

能力目標。

1.會判斷一個數(shù)是否能被2、5整除。

2.會判斷奇數(shù)、偶數(shù)。

3.培養(yǎng)類推能力及主動獲取知識的能力。

情感目標。

激發(fā)學生的學習興趣。

小學因數(shù)和倍數(shù)的教案篇十七

一個數(shù)因數(shù)的求法和一個數(shù)倍數(shù)的求法(教材第6頁例2、例3,教材第7~8頁練習二第2~8題)。

1.通過學習使學生掌握找一個數(shù)的因數(shù),倍數(shù)的方法;

2.學生能了解一個數(shù)的因數(shù)是有限的,倍數(shù)是無限的;

3.能熟練地找一個數(shù)的因數(shù)和倍數(shù);

4.在解決問題的過程中,培養(yǎng)學生思維的有序性、條理性,增強學生的探究意識和求索精神。

掌握找一個數(shù)的因數(shù)和倍數(shù)的方法,能熟練地找一個數(shù)的因數(shù)和倍數(shù)。

說出下列各式中誰是誰的因數(shù)?誰是誰的倍數(shù)?20÷4=56×3=18。

在上面的算式中,6和3都是18的因數(shù),你知道還有哪些數(shù)是18的因數(shù)嗎?18是3的倍數(shù),你知道還有哪些數(shù)是3的倍數(shù)嗎?這節(jié)課我們就來學習如何找一個數(shù)的因數(shù)和倍數(shù)。

(一)找因數(shù):

1.出示例1:18的因數(shù)有哪幾個?

一個數(shù)的因數(shù)還不止一個,我們一起找找18的因數(shù)有哪些?

學生嘗試完成后匯報。

(18的因數(shù)有:1,2,3,6,9,18)教師:說說看你是怎么找的?(生:用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=…;用乘法一對一對找,如1×18=18,2×9=18…)。

教師:18的因數(shù)中,最小的是幾?最大的是幾?我們在寫的時候一般都是從小到大排列的。

2.用這樣的方法,請你再找一找36的因數(shù)有哪些?

舉錯例(1,2,3,4,6,6,9,12,18,36)。

教師:這樣寫可以嗎?為什么?(不可以,因為重復(fù)的因數(shù)只要寫一個就可以了,所以不需要寫兩個6)。

仔細看看,36的因數(shù)中,最小的是幾,最大的是幾?

教師板書:一個數(shù)的最小因數(shù)是1,最大因數(shù)是它本身。

3.你還想找哪個數(shù)的因數(shù)?(18、42……)請你選擇其中的一個在自練本上寫一寫,然后匯報。

從最小的自然數(shù)1找起,也就是從最小的因數(shù)找起,一直找到它的本身,找的過程中一對一對找,寫的時候從小到大寫。

(二)找倍數(shù):

教師:這樣寫可以嗎?為什么?應(yīng)該怎么改呢?

教師:表示一個數(shù)的倍數(shù)情況,除了用這種文字敘述的方法外,還可以用集合來表示2的倍數(shù),3的`倍數(shù),5的倍數(shù)。

教師:我們知道一個數(shù)的因數(shù)的個數(shù)是有限的,那么一個數(shù)的倍數(shù)個數(shù)是怎么樣的呢?

(一個數(shù)的倍數(shù)的個數(shù)是無限的,最小的倍數(shù)是它本身,沒有最大的倍數(shù))。

1.完成課本第7頁練習二第2~5題。

2.完成教材第8頁練習二第6~8題。

我們一起來回憶一下,這節(jié)課我們重點研究了一個什么問題?你有什么收獲呢?

一個數(shù)的因數(shù)的個數(shù)是有限的,最小的是1,最大的是它本身。一個數(shù)的倍數(shù)的個數(shù)是無限的,最小的倍數(shù)是它本身,沒有最大的倍數(shù)。

本節(jié)課是在學生認識因數(shù)和倍數(shù)的基礎(chǔ)上進行教學的,在找一個數(shù)的因數(shù)時,如何做到既不重復(fù)又不遺漏,對于剛剛對因數(shù)和倍數(shù)有感性認識的學生來說有一定的困難,教學時充分發(fā)揮小組學習的優(yōu)勢,在小組交流的過程中,學生對自己的方法進行反思,吸取同伴的好方法,很好的體現(xiàn)了自主探索和合作交流的教學理念。

小學因數(shù)和倍數(shù)的教案篇十八

教科書第25頁,練習四第5~8題。

1、通過練習與對比,使學生發(fā)現(xiàn)和掌握求兩個數(shù)最小公倍數(shù)的一些簡捷方法,進行有條理的思考。

2、通過練習,使學生建立合理的認識結(jié)構(gòu),形成解決問題的多樣策略。

3、在學生探索與交流的合作過程中,進一步發(fā)展學生與同伴合作交流的意識和能力,感受數(shù)學與生活的聯(lián)系。

1、我們已經(jīng)掌握了找兩個數(shù)的公倍數(shù)和最小公倍數(shù)的方法,這節(jié)課我們繼續(xù)鞏固這方面的知識,并能夠利用這些知識解決一些實際問題。

(板書課題:公倍數(shù)和最小公倍數(shù)練習)。

2、填空。

5的倍數(shù)有:()。

7的'倍數(shù)有:()。

5和7的公倍數(shù)有:()。

5和7的最小公倍數(shù)是:()。

3、完成練習四第5題。

(1)理解題意,獨立找出每組數(shù)的最小公倍數(shù)。

(2)匯報結(jié)果,集體評講。

(3)觀察第一組中兩個數(shù)的最小公倍數(shù),看看有什么發(fā)現(xiàn)?

每題中的兩個數(shù)有什么特征呢?(倍數(shù)關(guān)系)可以得出什么結(jié)論?

(4)第二組中兩個數(shù)的最小公倍數(shù)有什么特征?(是這兩個數(shù)的乘積)。

在有些情況下,兩個數(shù)的最小公倍數(shù)是這兩個數(shù)的乘積。

4、完成練習四第6題。

你能運用上一題的規(guī)律直接寫出每題中兩個數(shù)的最小公倍數(shù)嗎?

交流,匯報。

說說你是怎么想的?

1、完成練習四第7題。

(1)理解題意,獨立完成填表。

(2)你是怎樣找到這兩路車第二次同時發(fā)車的時間的?

你還有其他方法解決這個問題嗎?(7和8的最小公倍數(shù)是56)。

2、完成練習四第8題。

(1)理解題意。

你能說說,他們下次相遇,是在幾月幾日嗎?(8月24日)。

你是怎樣知道的?

要知道他們下次相遇的日期,其實就是求什么?(6和8的最小公倍數(shù))

通過練習,同學們又掌握了一些比較快的求兩個數(shù)最小公倍數(shù)的方法,并能運用這些方法解決一些實際問題。

在小組中互相說說自己本節(jié)課的收獲。

小學因數(shù)和倍數(shù)的教案篇十九

1、使學生理解質(zhì)數(shù)和合數(shù)的概念,能正確地判斷一個數(shù)是質(zhì)數(shù)還是合數(shù)。

2、培養(yǎng)學生觀察、比較、抽象、慨括的能力。

3、培養(yǎng)學生自主探究的精神和獨立思考的能力。教學重點:質(zhì)數(shù)和合效的概念。

質(zhì)數(shù)、臺數(shù)、濟數(shù)、偶數(shù)的區(qū)別

給教室里的人分類。體會:同樣的事物,依據(jù)不問的分類標準,可以有多種小_的分類方法。明確:分類的際準很重要。

說一說,在我們學習的空間,你可以得到那些數(shù)?(要求與同學說的盡也不重復(fù))

給這些自然數(shù)分類。根據(jù)自然數(shù)能不能被2整除,可以分成新數(shù)和偶數(shù)兩類。

板書對應(yīng)的集合圖。

自然數(shù)

(能不能被2整除)

把學生列舉的數(shù)填寫在對應(yīng)的集合圈里。

問:看了集合圖,你想說什么么?(學生看圖說自己的想法,復(fù)習奇數(shù)和偶數(shù)的有關(guān)知識)

說明:這是一種有價值的分類方法,在以后的學習中很有用。

問:想不想學一種新的分類方法?關(guān)于新的分類方法,你想知道些什么?

今天我們就用找約數(shù)的方法來給自然數(shù)分類。

復(fù)習:什么叫約數(shù)?怎樣找一個數(shù)所有的約數(shù)?

同桌合作。找出列舉的各數(shù)的所有的約數(shù)。(同時板演)

引導學生觀察:觀察以上各數(shù)所含的數(shù)的個數(shù),你能把它們分成幾種情況‘!

根據(jù)學生的回答板書。

自然數(shù)

(約數(shù)的個數(shù))

(只有兩個約數(shù))(有3個或3個以上的約數(shù))

引導學生思考:只含有兩個約數(shù)的,這兩個約數(shù)有什么特點?引出約數(shù)的概念。

明確:這是一種新的分類方法。看廠集合圈,你想說什么?(學生看圖說自己的想法,鞏固寺數(shù)陽臺數(shù)的知識)

猜一猜:奇數(shù)有多少個?合數(shù)呢?

明確:因為自然數(shù)的個數(shù)是無限的,所以,新數(shù)陽偶數(shù)的個數(shù)也是無限的。運用新知,解決問題。

出示例1下面各數(shù),哪些是質(zhì)數(shù)?哪些是合數(shù)?

15 28 31 53 77 89 1ll

學生獨立完成。

問:你是怎么判斷的?

明確:可以找出每個數(shù)所有的約數(shù),再根據(jù)質(zhì)數(shù)和合數(shù)的意義來判斷;一個數(shù),只有找到1和它本身以外的第三個約束,就能判斷這個數(shù)是合數(shù)還是質(zhì)數(shù)。不必找出所有的約數(shù)來,這樣可以提高判斷的效率。

說明:判斷一個數(shù)是不是質(zhì)數(shù)還可以查表。100以內(nèi)的質(zhì)數(shù)比較常用,看書本上的100以內(nèi)的質(zhì)數(shù)表。用質(zhì)數(shù)表檢查對例子1的判斷是否正確。

完成練一練。

1、堅持下面各數(shù)的約數(shù)的個數(shù),指出哪些是質(zhì)數(shù)哪些是合數(shù),再用質(zhì)數(shù)表檢查。

22 29 35 49 51 79 83

2、出示2到50的數(shù)。先劃掉2的倍數(shù),再依次劃掉3、5、7的倍數(shù)(但2、3、5、7本身不劃掉。)

學生操作后,提問:剩下的都是什么數(shù)?

告訴學生:古代的數(shù)學家就是用這樣的方法來找質(zhì)數(shù)的。

學到這里,一種新的分類方法,你掌握了嗎?學生回答:相機揭示課題,質(zhì)數(shù)和合數(shù)

討論:質(zhì)數(shù)、合數(shù)、奇數(shù)、偶數(shù)之間是這樣的關(guān)系呢?

(略)。

【本文地址:http://mlvmservice.com/zuowen/16843135.html】

全文閱讀已結(jié)束,如果需要下載本文請點擊

下載此文檔