2023年華師大版反比例函數(shù)教案(六篇)

格式:DOC 上傳日期:2023-03-17 20:19:03
2023年華師大版反比例函數(shù)教案(六篇)
時間:2023-03-17 20:19:03     小編:zxfb

作為一名老師,常常要根據(jù)教學需要編寫教案,教案是教學活動的依據(jù),有著重要的地位。那么我們該如何寫一篇較為完美的教案呢?下面是小編帶來的優(yōu)秀教案范文,希望大家能夠喜歡!

華師大版反比例函數(shù)教案篇一

1.對教材的分析

本節(jié)課講述內(nèi)容為北師大版教材九年級下冊第五章《反比例函數(shù)》的第二節(jié),也這一章的重點。本節(jié)課是在理解反比例函數(shù)的意義和概念的基礎上,進一步熟悉其圖象和性質(zhì)的過程。

本節(jié)課前一課時是在具體情境中領會反比例函數(shù)的意義和概念。函數(shù)的性質(zhì)蘊涵于概念之中,對反比例函數(shù)性質(zhì)的探索是對其內(nèi)在規(guī)定性的的認識,也是對函數(shù)的概念的深化。同時,本節(jié)課也是下一節(jié)課《反比例函數(shù)的應用》的基礎,有了本節(jié)課的知識儲備,便于學生利用函數(shù)的觀點來處理問題和解釋問題。

傳統(tǒng)教材在內(nèi)容和編寫意圖的比較:傳統(tǒng)教材里反比例函數(shù)的內(nèi)容僅有一節(jié),新教材里反比例函數(shù)的內(nèi)容增加至一章。本節(jié)課中的作函數(shù)圖象的要求在新舊教材中并不一樣,舊教材對畫圖只是一帶而過,而新教材中讓學生反復作反比例函數(shù)的圖象,為下一步性質(zhì)的探索打下良好的基礎。因為在學生進行函數(shù)的列表、描點作圖是活動中,就已經(jīng)開始了對反比例函數(shù)性質(zhì)的探索,而且通過對函數(shù)的三種表示方式的整和,逐步形成對函數(shù)概念的整體性認識。在舊教材中對反比例函數(shù)性質(zhì)只是簡單觀察以后,由老師講解得到,但是在新教材中注重從操作、觀察、概括和交流這些數(shù)學活動中得到性質(zhì)結論,從而逐步提高從函數(shù)圖象中獲取信息的能力。這也充分體現(xiàn)了重視獲取知識過程體驗的新課標的精神。

(1)教學目標:進一步熟悉作函數(shù)圖象的主要步驟,會作反比例函數(shù)的圖象;體會函數(shù)三種方式的相互轉換,對函數(shù)進行認識上的整和;逐步提高從函數(shù)圖象中獲取知識的能力,探索并掌握反比例函數(shù)的主要性質(zhì)。

(2)重點:會作反比例函數(shù)的圖象;探索并掌握反比例函數(shù)的主要性質(zhì)。

(3)難點:探索并掌握反比例函數(shù)的主要性質(zhì)。

2、對學情的分析

九年級學生在前面學習了一次函數(shù)之后,對函數(shù)有了一定的認識,雖然他們在小學已經(jīng)接觸了反比例,但都處于淺顯的、膚淺的知識表面,這對于他們理解反比例函數(shù)的圖象與性質(zhì)沒有多大的幫助,但由于本節(jié)課采用z+z智能教育平臺進行教學,比較形象,便于學生接受。

一、憶一憶

師:同學們還記得我們在學習一次函數(shù)時,是怎么作出一次函數(shù)圖象的嗎?一次函數(shù)的圖象是什么圖形?

生:作一次函數(shù)的圖象要采用以下幾個步驟:

(1)列表

(2)描點

(3)連線。

生乙:一次函數(shù)的圖象是一條直線。

師:大家說的很好,看來大家對過去的知識掌握的很牢固,那么同學們想一下,y=4/x是什么函數(shù)?

生:反比例函數(shù)。

師:你們能作出它的圖象嗎?

生:可以。

點評:復習舊知識,讓學生感受到新舊知識的聯(lián)系,并為后面的作反比例函數(shù)的圖象做好準備。

二、作圖象,試比較

師:請?zhí)顚戨娔X上的表格,并開始在坐標紙上描點,連線。

師:再按照上述方法作y=-4/x的圖象。

(學生動手操作)

師:下面大家分小組討論:對照你們所作出的兩個函數(shù)圖象,找出它們的相同點與不同點。

(學生討論交流,教師參與)

師:討論結束,下面哪個小組的同學說說你們的看法?

生1:它們的圖象都是由兩支曲線組成的。

生2:y=4/x的圖象的兩條曲線分布在一、三象限內(nèi),而y=-4/x的圖象的兩支曲線分布在二、四象限內(nèi)。

點評:這里讓學生自己上臺操作,既培養(yǎng)了學生的動手能力,又可以激發(fā)學生學好數(shù)學的興趣。

三、細觀察,找規(guī)律

師:大家都說得很好,下面我們一起觀察反比例函數(shù)y=k/x的圖象,當k的發(fā)值生變化時,函數(shù)的圖象發(fā)生了怎樣的變化,并分小組討論有什么規(guī)律。

(展示圖象,讓學生觀察y=k/x的圖象,按下動畫按鈕,在運動中觀察值的變化與函數(shù)的圖象變化之間的關系,并與同學們充分討論)

師:請同學們談一談剛才討論的結果。

生:我發(fā)現(xiàn)函數(shù)圖象的變化與k的值有關:當k>0時,在每一象限內(nèi),y隨x的增大而減小,當k<0時,在每一象限內(nèi),y隨x的增大而增大。

師:看來大家都經(jīng)過了認真的思考和討論,對規(guī)律總結的也比較完整,下面我們一起把剛才兩個環(huán)節(jié)的知識點一起總結一下。

(1)反比例函數(shù)y=k/x的圖象是由兩支曲線所組成的。

(2)當k>0時,兩支曲線分別在一、三象限;當k<0時,兩支曲線分別在二、四象限。

(3)當k>0時,在每一象限內(nèi),y隨x的增大而減小,當k<0時,在每一象限內(nèi),y隨x的增大而增大。

師:如果我們將反比例函數(shù)的圖象繞原點旋轉180后,你會發(fā)現(xiàn)什么現(xiàn)象?這說明了什么問題?

(由學生在電腦上進行操作)

生:我發(fā)現(xiàn)旋轉后的圖象與原圖象完全重合了,這說明反比例函數(shù)的圖象是一個中心對稱圖形。

師:大家做得很好。那么,如果我們在圖象上任取a、b兩點,經(jīng)過這兩點分別作軸、軸的垂線,與坐標軸圍成的矩形面積分別為s1、s2,觀察兩個矩形面積的變化情況,并找出其中的變化規(guī)律。

題目:

(1)拖動k,使k變化,觀察k不斷變化過程中,矩形面積的變化情況,討論得出結論。

(2)拖動函數(shù)上的點,觀察矩形面積的變化情況,討論得出結論。

生:我們發(fā)現(xiàn),在同一個反比例函數(shù)中,不管k值怎么變化,矩形的面積始終不變。

師:大家的觀察很仔細,總結得也很正確。

點評:在這個環(huán)節(jié)中,既讓學生動手操作,又讓他們分組交流,這樣既培養(yǎng)了他們的動手能力,又增強了他們的團結合作的意識。結論主要有學生來發(fā)現(xiàn),體現(xiàn)了新課程理論的精神。

四、用規(guī)律,練一練

1、課本137頁隨堂練習1

生:第一幅圖是y=-2/x的圖象,因為在這里的k<0,雙曲線應在第二、四象限。

2、下列函數(shù)中,其圖象唯一、三象限的有哪幾個?在其圖象所在象限內(nèi),的值隨的增大而增大的有哪幾個?

(1)y=1/(2x)

(2)y=0.3/x

(3)y=10/x

(4)y=-7/(100x)

生:其中(1)(2)(3)的圖象在一、三象限;(4)的圖象在每一象限內(nèi),y隨x的增大而增大。

五、想一想,談收獲

師:通過今天的學習,你有什么收獲?

生甲:我今天知道了怎樣畫反比例函數(shù)的圖象。

生乙:我今天知道了反比例函數(shù)的圖象是由兩支曲線所組成的。

生丙:我還懂得了:當k>0時,圖象分布在一、三象限,在每一個象限內(nèi),y隨x的增大而減小;當k<0時,圖象分布在二、四象限,在每一個象限內(nèi),y隨x的增大而增大

生?。何疫€能用反比例函數(shù)的相關性質(zhì)解題。

師:看來大家今天學到了不少知識,只要大家能保持這種對數(shù)學的熱情和勇于挑戰(zhàn)的精神,在數(shù)學上一定會有所收獲的。

總評:本節(jié)課很好的反映了新課程的一些理念,首先,就是將數(shù)學教學與多媒體教學進行了很好的整合,尤其是采用了z+z智能教育平臺進行教學,在本節(jié)課從進入課堂到結束,始終有多媒體教學的參與,如在講解反比例函數(shù)的性質(zhì)時運用多媒體展示可以給學生以直觀的感受,并給學生留下深刻的印象,教師也能熟練地操作電腦,可以看出教師扎實的基本功。其次,在本節(jié)課的教學中,教師將學習的主動權交給學生,課堂始終在學生自主探索、合作交流的氣氛中進行,如在得出反比例函數(shù)的性質(zhì)時,就在小組內(nèi)進行了廣泛交流,由學生自己去探索,去發(fā)現(xiàn)新知識,這樣可以激發(fā)學生求知的欲望,達到事半功倍的目的。同時教師也主動的參與進去,把自己也當成了教室里的一員,真正體現(xiàn)了新課程的理念。

本節(jié)課由于在課前進行了大量的準備工作,包括對教材的鉆研、教學內(nèi)容的設計、多媒體課件的制作、學生學情的了解,因此在教學中比較順利,對重難點內(nèi)容也有效的進行了突破,尤其是電腦的引入,極大的調(diào)動了學生的學習積極性。學生由于成了課堂的主人,所以在課堂上保持了高漲的熱情,因此這堂課的效果也較好。

華師大版反比例函數(shù)教案篇二

1.利用反比例函數(shù)的知識分析、解決實際問題

2.滲透數(shù)形結合思想,提高學生用函數(shù)觀點解決問題的能力

1.重點:利用反比例函數(shù)的知識分析、解決實際問題

2.難點:分析實際問題中的數(shù)量關系,正確寫出函數(shù)解析式

3.難點的突破方法:

用函數(shù)觀點解實際問題,一要搞清題目中的基本數(shù)量關系,將實際問題抽象成數(shù)學問題,看看各變量間應滿足什么樣的關系式(包括已學過的基本公式),這一步很重要;二是要分清自變量和函數(shù),以便寫出正確的函數(shù)關系式,并注意自變量的取值范圍;三要熟練掌握反比例函數(shù)的意義、圖象和性質(zhì),特別是圖象,要做到數(shù)形結合,這樣有利于分析和解決問題。教學中要讓學生領會這一解決實際問題的基本思路。

教材第57頁的例1,數(shù)量關系比較簡單,學生根據(jù)基本公式很容易寫出函數(shù)關系式,此題實際上是利用了反比例函數(shù)的定義,同時也是要讓學生學會分析問題的方法。

教材第58頁的例2是一道利用反比例函數(shù)的定義和性質(zhì)來解決的實際問題,此題的實際背景較例1稍復雜些,目的是為了提高學生將實際問題抽象成數(shù)學問題的能力,掌握用函數(shù)觀點去分析和解決問題的思路。

補充例題一是為了鞏固反比例函數(shù)的有關知識,二是為了提高學生從圖象中讀取信息的能力,掌握數(shù)形結合的思想方法,以便更好地解決實際問題

華師大版反比例函數(shù)教案篇三

1.回顧反比例函數(shù)的概念.通過實際問題,進一步感受用反比例函數(shù)解決實際問題的過程與方法,體會反比例函數(shù)是分析、解決實際問題的一種有效的模型.

2.歸納總結反比例函數(shù)的圖象和性質(zhì),進一步體會形數(shù)結合的數(shù)學思想方法.

1.回顧、梳理本章的知識:

如同已經(jīng)學過的有關方程、函數(shù)的內(nèi)容一樣,本章內(nèi)容分為3塊:

(1)從生活到數(shù)學:從問題到反比例函數(shù),即建構實際問題的數(shù)學模型;

(2)數(shù)學研究:反比例函數(shù)的圖象與性質(zhì);

(3)用數(shù)學解決問題:反比例函數(shù)的應用.

2.可以設計一組問題,重點歸納、整理反比例函數(shù)的圖象與性質(zhì),進一步感受形數(shù)結合的數(shù)學思想方法.例如:

(1)由形到數(shù)——用待定系數(shù)法求反比例函數(shù)的關系式;由圖象的位置或圖象的部分確定函數(shù)的特征;

(2)由數(shù)到形――根據(jù)反比例函數(shù)關系式或反比例函數(shù)的性質(zhì),確定圖形的位置、趨勢等;

(3)形數(shù)結合——函數(shù)的圖象與性質(zhì)的綜合應用

2例如:如圖,點p是反比例函數(shù)y?上的一點,pd垂直x軸于點d,則△xpod的面積為________

3.設計一個實際問題,讓學生經(jīng)歷“問題情境一建立模型一求解一解釋與應用”的基本過程.

例如:為了預防“非典”,某學校對教室采用藥薰法進行消毒.已知藥物燃燒時.室內(nèi)每立方米空氣中的含藥量y(mg)與時間x(min)成正比例,藥物燃燒后,y與x成反比例(如圖).現(xiàn)測得藥物8min燃畢,此時室內(nèi)空氣中每立方米含藥量為6mg。

(1)寫出藥物燃燒前、后y與x的函數(shù)關系式;

(2)研究表明,當空氣中每立方米的含藥量低于1.6mg時,學生方可進教室.那么從消毒開始,至少需要多少時間,學生方能進入教室?

(3)研究表明,當空氣中每立方米的含藥量不低于3mg且持續(xù)時間不少于10min時,才能有效滅殺空氣中的病菌,那么這次消毒是否有效?

華師大版反比例函數(shù)教案篇四

1、本節(jié) 課講述內(nèi)容為北師大版教材九年級下冊第五章《反比例函數(shù)》 的第二節(jié),也這一章的重點。本節(jié)課是在理解反比例 函數(shù)的意義和概念的基礎上,進一步熟悉其圖象和性質(zhì)的過程。

2、對教材的分析

(1) 教學目標:進 一步熟悉作函數(shù)圖象的主要步驟,會作反比例函數(shù)的圖象;體會函數(shù)三種方式的相互轉換,對 函數(shù)進行認識上的整和;逐步提高從函數(shù)圖象中獲取知識的能力,探索并掌握反比例函數(shù)的主要性質(zhì)。

(2) 重點:會作反比例函數(shù)的圖象;探索并掌握反比例函數(shù)的主要性質(zhì)。

(3) 難點:探索并掌握反比例函數(shù)的主要性質(zhì)。

1、提問:

(1)=4/x 是什么函數(shù)?你會作反比例函數(shù)的圖象嗎?

(2)作圖的步驟是 怎樣的

(3)填寫電腦上的表格,開始在坐標紙上描點連線。

2、按照上述方法作 =—4/x 的圖象

3、 對照你所作的兩個函數(shù)圖象,找一下它們的相同點和不同點。

1、讓學生觀察函 數(shù) =/x 的圖象 ,按下動畫按鈕,在運動中觀察值的變化與函數(shù)圖象變化之間的關系,并與同學充分討論有何規(guī)律。

2、演示反比例函數(shù)中心 對稱的性質(zhì)以及軸對稱性質(zhì),顯示反比例函數(shù)的兩條對稱軸。

3、讓學生觀察函數(shù) =/x 的圖象,觀察過反比例函數(shù)上任意一 點作x軸和軸的垂線,觀察其圍成矩形的面積變化情況。

(1) 拖動,使變化,觀察不斷變化過程中,矩形面積的變化情況,討論得出 結論。

(2) 拖動函數(shù)上的點,觀察矩形面積的變化情況,討論得出結論。

1、給出兩個反比例函數(shù)的圖象,判斷哪一個是 =2/x 和 =—2/x 的圖象。

2、判斷一位同學畫的反比例函數(shù)的圖象是否正確。

3、下列函數(shù)中,其圖象位于第一、三象限的有哪幾個?在其圖象所在象限內(nèi),的值隨x的增大而增大的有哪幾個?

:課本137頁第1題、141頁第2題

華師大版反比例函數(shù)教案篇五

教學目標:

1、通過感知生活中的事例,理解并掌握反比例的含義,經(jīng)初步判斷兩種相關聯(lián)的量是否成反比例

2、培養(yǎng)學生的邏輯思維能力

3、感知生活中的數(shù)學知識

重點難點1.通過具體問題認識反比例的量。

2、掌握成反比例的量的變化規(guī)律及其 特征

教學難點:

認識反比例,能根據(jù)反比例的意義判斷兩個相關聯(lián)的量是不是成反比例。

教學過程:

一、課前預習

預習24---26頁內(nèi)容

1、什么是成反比例的量?你是怎么理解的?

2、情境一中的兩個表中量變化關系相同嗎?

3、三個情境中的兩個量哪些是成反比例的量?為什么?

二、展示與交流

利用反義詞來導入今天研究的課題。今天研究兩種量成反比例關系的變化規(guī)律

情境(一)

認識加法表中和是12的直線及乘法表中積是12的曲線。

引導學生發(fā)現(xiàn)規(guī)律:加法表中和是12,一個加數(shù)隨另一個加數(shù)的變化而變化;乘法表中積是12,一個乘數(shù)隨另一個乘數(shù)的變化而變化。

情境(二)

讓學生把汽車行駛的速度和時間的表填完整,當速度發(fā)生變化時,時間怎樣變化?每

兩個相對應的數(shù)的乘積各是多少?你有什么發(fā)現(xiàn)?獨立觀察,思考

同桌交流,用自己的語言表達

寫出關系式:速度×時間=路程(一定)

觀察思考并用自己的語言描述變化關系乘積(路程)一定

情境(三)

把杯數(shù)和每杯果汁量的表填完整,當杯數(shù)發(fā)生變化時,每杯果汁量怎樣變化?每兩個相對應的數(shù)的乘積各是多少?你有什么發(fā)現(xiàn)?用自己的語言描述變化關系

寫出關系式:每杯果汁量×杯數(shù)=果汗總量(一定)

5、以上兩個情境中有什么共同點?

反比例意義

引導小結:都有兩種相關聯(lián)通的量,其中一種量變化,另一種量也隨著變化,并且這兩種量中相對應的兩個數(shù)的乘積是一定的。這兩種量之間是反比例關系。

活動四:想一想

二、 反饋與檢測

1、判斷下面每題是否成反比例

(1)出油率一定,香油的質(zhì)量與芝麻的質(zhì)量。

(2)三角形的面積一定,它的底與高。

(3)一個數(shù)和它的倒數(shù)。

(4)一捆100米電線,用去長度與剩下長度。

(5)圓柱體的體積一定,底面積和高。

(6)小林做10道數(shù)學題,已做的題和沒有做的題。

(7)長方形的長一定,面積和寬。

(8)平行四邊形面積一定,底和高。

2、教材“練一練”p33第1題。

3、教材“練一練”p33第2題。

4、找一找生活中成反比例的例子,并與同伴交流。

華師大版反比例函數(shù)教案篇六

1、利用反比例函數(shù)的知識分析、解決實際問題

2、滲透數(shù)形結合思想,提高學生用函數(shù)觀點解決問題的能力

1、重點:利用反比例函數(shù)的知識分析、解決實際問題

2、難點:分析實際問題中的數(shù)量關系,正確寫出函數(shù)解析式

3、難點的突破方法:

用函數(shù)觀點解實際問題,一要搞清題目中的基本數(shù)量關系,將實際問題抽象成數(shù)學問題,看看各變量間應滿足什么樣的關系式(包括已學過的基本公式),這一步很重要;二是要分清自變量和函數(shù),以便寫出正確的函數(shù)關系式,并注意自變量的取值范圍;三要熟練掌握反比例函數(shù)的意義、圖象和性質(zhì),特別是圖象,要做到數(shù)形結合,這樣有利于分析和解決問題。教學中要讓學生領會這一解決實際問題的基本思路。

教材第57頁的例1,數(shù)量關系比較簡單,學生根據(jù)基本公式很容易寫出函數(shù)關系式,此題實際上是利用了反比例函數(shù)的定義,同時也是要讓學生學會分析問題的方法。

教材第58頁的例2是一道利用反比例函數(shù)的定義和性質(zhì)來解決的實際問題,此題的實際背景較例1稍復雜些,目的是為了提高學生將實際問題抽象成數(shù)學問題的能力,掌握用函數(shù)觀點去分析和解決問題的思路。

補充例題一是為了鞏固反比例函數(shù)的有關知識,二是為了提高學生從圖象中讀取信息的能力,掌握數(shù)形結合的思想方法,以便更好地解決實際問題

【本文地址:http://mlvmservice.com/zuowen/1673192.html】

全文閱讀已結束,如果需要下載本文請點擊

下載此文檔