針對周末的規(guī)劃與安排,我們需要寫一份總結(jié)了吧。如何保持良好的心態(tài)和情緒對于個人的健康和幸福至關(guān)重要。在閱讀總結(jié)范文時要有批判性思維,不盲目追隨,注重個性化表達。
探索勾股定理教學(xué)設(shè)計篇一
勾股定理是學(xué)生在已經(jīng)掌握了直角三角形的有關(guān)性質(zhì)的基礎(chǔ)上進行學(xué)習(xí)的,它是直角三角形的一條非常重要的性質(zhì),是幾何中最重要的定理之一,它揭示了一個三角形三條邊之間的數(shù)量關(guān)系,它可以解決直角三角形中的計算問題,是解直角三角形的主要根據(jù)之一,在實際生活中用途很大。
教材在編寫時注意培養(yǎng)學(xué)生的動手操作能力和分析問題的能力,通過實際分析、拼圖等活動,使學(xué)生獲得較為直觀的印象;通過聯(lián)系和比較,理解勾股定理,以利于正確的進行運用。
據(jù)此,制定教學(xué)目標(biāo)如下:
3、培養(yǎng)學(xué)生觀察、比較、分析、推理的能力。
4、通過介紹中國古代勾股方面的成就,激發(fā)學(xué)生熱愛祖國與熱愛祖國悠久文化的思想感情,培養(yǎng)他們的民族自豪感和鉆研精神。
教法和學(xué)法是體現(xiàn)在整個教學(xué)過程中的,本課的教法和學(xué)法體現(xiàn)如下特點:
以自學(xué)輔導(dǎo)為主,充分發(fā)揮教師的`主導(dǎo)作用,運用各種手段激發(fā)學(xué)生學(xué)習(xí)欲望和興趣,組織學(xué)生活動,讓學(xué)生主動參與學(xué)習(xí)全過程。
切實體現(xiàn)學(xué)生的主體地位,讓學(xué)生通過觀察、分析、討論、操作、歸納,理解定理,提高學(xué)生動手操作能力,以及分析問題和解決問題的能力。
通過演示實物,引導(dǎo)學(xué)生觀察、操作、分析、證明,使學(xué)生得到獲得新知的成功感受,從而激發(fā)學(xué)生鉆研新知的欲望。
本節(jié)內(nèi)容的教學(xué)主要體現(xiàn)在學(xué)生動手、動腦方面,根據(jù)學(xué)生的認知規(guī)律和學(xué)習(xí)心理,教學(xué)程序設(shè)計如下:
1、由故事引入,3000多年前有個叫商高的人對周公說,把一根直尺折成直角,兩端連接得到一個直角三角形,如果勾是3,股是4。那么弦等于5。這樣引起學(xué)生學(xué)習(xí)興趣,激發(fā)學(xué)生求知欲。
2、是不是所有的直角三角形都有這個性質(zhì)呢?教師要善于激疑,使學(xué)生進入樂學(xué)狀態(tài)。
3、板書課題,出示學(xué)習(xí)目標(biāo)。
教師指導(dǎo)學(xué)生自學(xué)教材,通過自學(xué)感悟理解新知,體現(xiàn)了學(xué)生的自主學(xué)習(xí)意識,鍛煉學(xué)生主動探究知識,養(yǎng)成良好的自學(xué)習(xí)慣。
1、教師設(shè)疑或?qū)W生提疑。如:怎樣證明勾股定理?學(xué)生通過自學(xué),中等以上的學(xué)生基本掌握,這時能激發(fā)學(xué)生的表現(xiàn)欲。
2、教師引導(dǎo)學(xué)生按照要求進行拼圖,觀察并分析;
(1)這兩個圖形有什么特點?
(2)你能寫出這兩個圖形的面積嗎?
(3)如何運用勾股定理?是否還有其他形式?
這時教師組織學(xué)生分組討論,調(diào)動全體學(xué)生的積極性,達到人人參與的效果,接著全班交流。先有某一組代表發(fā)言,說明本組對問題的理解程度,其他各組作評價和補充。教師及時進行富有啟發(fā)性的點撥,最后,師生共同歸納,形成一致意見,最終解決疑難。
1、出示練習(xí),學(xué)生分組解答,并由學(xué)生總結(jié)解題規(guī)律。課堂教學(xué)中動靜結(jié)合,以免引起學(xué)生的疲勞。
2、出示例1學(xué)生試解,師生共同評價,以加深對例題的理解與運用。針對例題再次出現(xiàn)鞏固練習(xí),進一步提高學(xué)生運用知識的能力,對練習(xí)中出現(xiàn)的情況可采取互評、互議的形式,在互評互議中出現(xiàn)的具有代表性的問題,教師可以采取全班討論的形式予以解決,以此突出教學(xué)重點。
引導(dǎo)學(xué)生對知識要點進行總結(jié),梳理學(xué)習(xí)思路。分發(fā)自我反饋練習(xí),學(xué)生獨立完成。
探索勾股定理教學(xué)設(shè)計篇二
通過本節(jié)內(nèi)容的學(xué)習(xí),使學(xué)生親身經(jīng)歷和體驗,感受發(fā)現(xiàn)規(guī)律的樂趣,同時體會計算器的工具性作用。
五年級學(xué)生已經(jīng)基本掌握計算器的使用方法,但是還并不完全認識計算器在學(xué)習(xí)、生活中的工具性作用,所以教學(xué)中還要讓學(xué)生進一步加深認識;在數(shù)學(xué)計算過程中,學(xué)生已有一定的通過計算結(jié)果尋找計算規(guī)律的經(jīng)驗,通過進一步探討,體會發(fā)現(xiàn)規(guī)律是學(xué)習(xí)捷徑,感受其中的樂趣。
1、能借助計算器探求簡單的數(shù)學(xué)規(guī)律。
2、培養(yǎng)學(xué)生觀察、歸納、概括、推理的數(shù)學(xué)能力。
3、讓學(xué)生感受到計算器給學(xué)習(xí)與生活帶來的便捷。
重點:
1、能讓學(xué)生發(fā)現(xiàn)簡單的數(shù)學(xué)規(guī)律。
2、培養(yǎng)學(xué)生合作交流的學(xué)習(xí)方法。
難點:
幫助學(xué)生培養(yǎng)觀察、推理的數(shù)學(xué)能力。
一、激發(fā)學(xué)生興趣。
1、小組合作。
巡視,指導(dǎo)學(xué)生討論。
2、小組討論,匯報。
二、自主探索。
出示例題10,讓學(xué)生觀察等式的變化,發(fā)現(xiàn)規(guī)律。
1、觀察,發(fā)現(xiàn)。
2、知識遷移。
不用計算,用發(fā)現(xiàn)的規(guī)律直接寫出后幾題的商。
學(xué)生能應(yīng)用所發(fā)現(xiàn)的規(guī)律填出后幾題的商。
敘述發(fā)現(xiàn)的規(guī)律。
設(shè)計意圖【發(fā)揮學(xué)生的觀察、發(fā)現(xiàn)的自主能動性】。
3、小結(jié)。
三、知識拓展。
1、練習(xí)。
出示題目:先找規(guī)律,再按規(guī)律填數(shù)。
6×7=42。
6.6×6.7=44.22。
6.66×66.7=444.222。
6.6666×6666.7=。
6.66666×66666.7=。
2、觀察式子所呈現(xiàn)的特征。
設(shè)計意圖【培養(yǎng)學(xué)生知識遷移能力、應(yīng)用能力】。
四、指導(dǎo)學(xué)生總結(jié)。
設(shè)計意圖【培養(yǎng)學(xué)生歸納、概括、推理能力。因為計算器顯示的數(shù)位有限。】。
五、作業(yè)。
1÷0.1=1×10。
3×100=3÷。
設(shè)計意圖【感受數(shù)學(xué)美?!?。
板書設(shè)計。
探索勾股定理教學(xué)設(shè)計篇三
3、探求給定的事物中隱含的規(guī)律或變化趨勢。
1、經(jīng)歷探索數(shù)與數(shù)之間、圖形與圖形之間的規(guī)律,驗證規(guī)律的過程。
2、培養(yǎng)學(xué)生分析問題、解決問題的能力。
1、培養(yǎng)學(xué)生合作意識。
2、使學(xué)生在探索規(guī)律的過程中體會與日常生活的聯(lián)系,獲得成功體驗。
3、能用語言和其它方式把事物中的規(guī)律表示出來。
1、探索、猜想、歸納、驗證等能力的培養(yǎng)。
2、發(fā)現(xiàn)數(shù)學(xué)規(guī)律。
多媒體。
一、激趣引入:一年之內(nèi)1對家鴿可以繁殖成多少對?
二、新課探索:
1、填表。
師:(投影展示未完成的乘法表)這張乘法表中有好多的空白,你們能把它補充完整嗎?
(生親自填乘法表,為發(fā)現(xiàn)其中的規(guī)律做準(zhǔn)備)。
1)師:現(xiàn)在我們已經(jīng)填好了一張完整的乘法表,我們一起對照表,找一找數(shù)字之間有哪些規(guī)律?(展示完整的表)你們可以小組之間互相交流。
(教師巡視參與討論)。
2)交流發(fā)現(xiàn)。
師:現(xiàn)在我們就一起來交流我們發(fā)現(xiàn)的規(guī)律,告訴教師你們都發(fā)現(xiàn)了哪些規(guī)律?
生:從1這個表格出發(fā),得到的數(shù)字都是一樣的。
師:這是什么規(guī)律呢?
生:1和任何相乘都等于它本身。
師:還有什么規(guī)律呢?
(生各抒已見)。
3、找規(guī)律,填一填。
1)8111417()23()。
2)491625()4964。
3)1827()125(),
4)3691524()63()。
(學(xué)生思考其中的規(guī)律,抽生回答,并說明原因)。
學(xué)生認真思考,找出其中的規(guī)律,并嘗試用字母表示出來。
5、為了迎接“六一”的到來,我班準(zhǔn)備按如下的方式為教室掛上氣球。
(抽生回答問題,并說明理由)。
(抽生回答問題,并說明理由)。
7、學(xué)生討論生活中還有哪些有規(guī)律的事情?(激發(fā)學(xué)生的學(xué)習(xí)興趣,體會的美)。
8、解決引題問題。
三、本節(jié)小結(jié)。
今天老師和大家一起探索了許多有趣的規(guī)律,同時也運用發(fā)現(xiàn)的規(guī)律解決了生活中的許多問題,在我們的樂園里還有許多更有趣的知識等待我們大家去繼續(xù)探索,希望大家做有心人,永攀高峰。
探索勾股定理教學(xué)設(shè)計篇四
教學(xué)過程:
一、創(chuàng)設(shè)情境。
出示有規(guī)律的葡萄,讓學(xué)生們猜一猜下一串會是什么顏色?說說你是怎么知道的?
師:像葡萄這樣一串紫一串綠連續(xù)重復(fù)出現(xiàn)的,我們就說它們是有規(guī)律的,有規(guī)律的排列幫大家猜準(zhǔn)了葡萄的顏色。其實在生活中對規(guī)律的排列還有很多,今天這節(jié)課我們繼續(xù)探索規(guī)律。(板書:探索規(guī)律)。
二、探索新知。
1、出示超市開業(yè)情境圖,讓同學(xué)們仔細觀察,圖中哪些東西的排列是有規(guī)律的?它們的排列有什么規(guī)律?小組合作,互相說一說吧!開始。
2、找同學(xué)說一說你發(fā)現(xiàn)了什么東西的排列是有規(guī)律的?
學(xué)生可能回答:
我發(fā)現(xiàn)彩旗的排列是有規(guī)律的。(有什么規(guī)律,你能說說嗎?)。
彩旗的排列規(guī)律是……(多找同學(xué)說)(和同桌說一說)。
師:我們看彩旗的排列規(guī)律是一面紅色,一面黃色,一面藍色,三個一組連續(xù)重復(fù)出現(xiàn)的,也就是這一組的后面緊跟著又出現(xiàn)一組,又一組,這就是連續(xù)重復(fù)出現(xiàn)。
(板書:一組一組連續(xù)重復(fù))。
師:我們找到了彩旗的排列規(guī)律,下面我們接著看,圖中還有哪些東西的排列是有規(guī)律的?
(學(xué)生想說哪個說哪個,提示學(xué)生用完整的話說)。
三、游戲。
師:好了,現(xiàn)在我們放松一下。
做拍手、跺腳、伸手臂游戲。
師:其實我們都發(fā)現(xiàn)了規(guī)律,知道后面怎么做了,我們把拍手、跺腳、伸手臂這一組動作連著做了三次,我們就發(fā)現(xiàn)了規(guī)律,找到了規(guī)律,我們就知道怎么做了。其實一組固定的事物,他就是要連續(xù)重復(fù)出現(xiàn)三次,也就是至少要三次,三次可以,比三次多也可以,它們的排列是有規(guī)律的,我們就能找出規(guī)律,并且按規(guī)律接著去完成了。
師:好了,等了這么久,我們?nèi)コ锌匆豢础?/p>
瞧,這些物品多整齊啊,它們的排列有規(guī)律嗎?(小組合作學(xué)習(xí),找同學(xué)匯報)。
五、闖一闖。
(學(xué)生說一道解釋為什么?)。
第三關(guān)設(shè)計一幅有規(guī)律的圖形,請同學(xué)們拿出老師給大家準(zhǔn)備的學(xué)具,倒出里邊的學(xué)具,再拿出作業(yè)紙,把長長的雙面膠撕下來,用這些學(xué)具在作業(yè)紙上擺出有規(guī)律的圖形。聽明白了嗎?開始。(你可以邊擺邊說)。
找同學(xué)說設(shè)計想法,并把作品粘貼在黑板上。
六、欣賞。
下面就請同學(xué)們開動你的小腦筋去想一想在我們身邊還有哪些有規(guī)律的事物?
生:自由說。(說出具體的規(guī)律)。
師:為了獎勵大家,老師這也有幾幅有規(guī)律的圖片,我們一起看一看。
最后,請同學(xué)們設(shè)計一幅有規(guī)律的圖畫。
探索勾股定理教學(xué)設(shè)計篇五
勾股定理是平面幾何有關(guān)度量的最基本定理,它從邊的角度進一步刻畫了直角三角形的特點。學(xué)習(xí)勾股定理極其逆定理是進一步認識和理解直角三角形的需要,也是后續(xù)有關(guān)幾何度量運算和代數(shù)學(xué)習(xí)的必然基礎(chǔ)?!?0xx版數(shù)學(xué)課程標(biāo)準(zhǔn)》對勾股定理教學(xué)內(nèi)容的要求是:
1、在研究圖形性質(zhì)和運動等過程中,進一步發(fā)展空間觀念;
2、在多種形式的數(shù)學(xué)活動中,發(fā)展合情推理能力;
3、經(jīng)歷從不同角度分析問題和解決問題的方法的過程,體驗解決問題方法的多樣性;
4、探索勾股定理及其逆定理,并能運用它們解決一些簡單的實際問題。
本節(jié)課的教學(xué)目標(biāo)是:
1、能正確運用勾股定理及其逆定理解決簡單的實際問題。
教學(xué)重點和難點:
應(yīng)用勾股定理及其逆定理解決實際問題是重點。
把實際問題化歸成數(shù)學(xué)模型是難點。
根據(jù)新課標(biāo)提出的“要從學(xué)生已有的生活經(jīng)驗出發(fā),讓學(xué)生親身經(jīng)歷將實際問題抽象成數(shù)學(xué)模型并進行解釋和運用的同時,在思維能力情感態(tài)度和價值觀等方面得到進步和發(fā)展”的理念,我想盡量給學(xué)生創(chuàng)設(shè)豐富的實際問題情境,使教學(xué)活動充滿趣味性和吸引力,讓他們在自主探究,合作交流中分析問題,建立數(shù)學(xué)模型,利用勾股定理及其逆定理解決問題。在教學(xué)過程中,采用一題多變的形式拓寬學(xué)生視野,訓(xùn)練學(xué)生思維的靈活性,滲透化歸的思想以及分類討論思想,方程思想等,使學(xué)生在獲得知識的同時提高能力。
在教學(xué)設(shè)計中,盡量考慮到不同學(xué)習(xí)水平的學(xué)生,注意知識由易到難的層次性,在課堂上,要照顧到接受較慢的學(xué)生。使不同學(xué)生有不同的收獲和發(fā)展。
第一環(huán)節(jié):情境引入。
情景1:復(fù)習(xí)提問:勾股定理的語言表述以及幾何語言表達?
設(shè)計意圖:溫習(xí)舊知識,規(guī)范語言及數(shù)學(xué)表達,體現(xiàn)。
設(shè)計意圖:既靈活考察學(xué)生對勾股定理的理解,又增加了趣味性,還能考察學(xué)生三角形三邊關(guān)系。
第二環(huán)節(jié):合作探究(圓柱體表面路程最短問題)。
情景3:課本引例(螞蟻怎樣走最近)。
第三環(huán)節(jié):變式訓(xùn)練(由圓柱體表面路程最短問題逐步變?yōu)殚L方體表面的距離最短問題)。
設(shè)計意圖:將問題的條件稍做改變,讓學(xué)生嘗試獨立解決,拓展學(xué)生視野,又加深他們對知識的理解和鞏固。再將圓柱問題變?yōu)檎襟w長方體問題,學(xué)生有了之前的經(jīng)驗,自然而然的將立體轉(zhuǎn)化為平面,利用勾股定理解決,此處長方體問題中學(xué)生會有不同的做法,正好透分類討論思想。
第四環(huán)節(jié):議一議。
設(shè)計意圖:
第六環(huán)節(jié):交流小結(jié)內(nèi)容:師生相互交流總結(jié):
1、解決實際問題的方法是建立數(shù)學(xué)模型求解、
2、在尋求最短路徑時,往往把空間問題平面化,利用勾股定理及其逆定理解決實際問題。
3、在直角三角形中,已知一條邊和另外兩條邊的關(guān)系,借助方程可以求出另外兩條邊。
第七環(huán)作業(yè)設(shè)計:
第一道題難度較小,大部分學(xué)生可以獨立完成,第二道題有較大難度,可以交流討論完成。
知識技能:了解勾股定理的文化背景,體驗勾股定理的探索過程、
數(shù)學(xué)思考:在勾股定理的探索過程中,發(fā)展合情推理能力,體會數(shù)形結(jié)合的思想、解決問題:
1、通過拼圖活動,體驗數(shù)學(xué)思維的嚴謹性,發(fā)展形象思維、
2、在探究活動中,學(xué)會與人合作并能與他人交流思維的過程和探究結(jié)果、
情感態(tài)度:
1、通過對勾股定理歷史的了解,感受數(shù)學(xué)文化,激發(fā)學(xué)習(xí)熱情、
2、在探究活動中,體驗解決問題方法的多樣性,培養(yǎng)學(xué)生的合作交流意識和探索精神、
2、難點是用拼圖的方法證明勾股定理、
探索勾股定理教學(xué)設(shè)計篇六
(2)了解互逆命題、互逆定理.
2.目標(biāo)解析。
目標(biāo)(2)能根據(jù)原命題寫出它的逆命題,并了解原命題為真命題時,逆命題不一定為真命題.
三、教學(xué)問題診斷分析。
勾股定理的逆定理的證明是先作一個合適的直角三角形,再證明有已知條件的三角形和直角三角形全等等,這種證法學(xué)生不容易想到,難以理解,在教學(xué)時應(yīng)該注意啟發(fā)引導(dǎo).
本課的教學(xué)難點是證明勾股定理的逆定理.
1.創(chuàng)設(shè)問題情境。
師生活動:學(xué)生獨立回憶勾股定理,師生共同分析得出其題設(shè)和結(jié)論,教師引導(dǎo)指出勾股定理是從形的特殊性得出三邊之間的數(shù)量關(guān)系.
追問1:你能把勾股定理的題設(shè)與結(jié)論交換得到一個新的命題嗎?
師生活動:師生共同得出新的命題,教師指出其為勾股定理的逆命題.
追問2:“如果三角形三邊長、b、c滿足,那么這個三角形是直角三角形.”能否把它作為判定直角三角形的依據(jù)呢?本節(jié)課我們一起來研究這個問題.
探索勾股定理教學(xué)設(shè)計篇七
生:首先是任意兩邊大于第三邊。
師:任意兩邊大于第三邊?
生:任意兩邊之和大于第三邊。
生:a加上b大于c。
師:好的。a+bc,我們選擇兩條直角邊的和大于斜邊。非常好,還有沒有?
生:還有斜邊一定是大于a或者b。
生(齊):有!
師:大家都很有信心。但是,直接去找它的數(shù)量關(guān)系是不是感到有些困難,無從入手?我給大家一些提示,嘗試學(xué)習(xí)一下古人用面積法來探究直角三角形三邊的數(shù)量關(guān)系。
請同學(xué)們在方格紙上三角形abc外,畫一個以ac為一邊的正方形,畫一個以bc為邊的正方形;再求出這兩個正方形的面積。(如圖1--1)。
(一名學(xué)生上黑板畫圖,教師巡視、指導(dǎo)。)學(xué)生畫好后。
師:怎樣畫以ab為邊的正方形呢?(學(xué)生思考,部分學(xué)生竊竊私語)。
師:哪位同學(xué)愿意上來畫?(少數(shù)同學(xué)欲舉手,但還猶豫)。
師:請李斯婷上黑板畫一下;。
教師巡視中發(fā)現(xiàn):許多同學(xué)畫“以ab為邊的正方形”時,正方形的另外兩個頂點不是格點,使求面積發(fā)生困難。
師:請同學(xué)們思考:以ab為邊的正方形的另兩個頂點是不是格點?為什么?
學(xué)生遇到困難,教師及時點拔、指導(dǎo),這是學(xué)生自主學(xué)習(xí)過程中不可忽缺的,也是學(xué)生自主探究活動取得實效,教師應(yīng)做的工作。)。
師:請同學(xué)們思考:怎樣求出圖1-2中,以ab為一邊的正方形的面積?(由于不知道邊長,學(xué)生“冷場”)。
師:假設(shè)每格的長為1,請每組前后兩桌四位同學(xué)為一小組討論,然后我們一起交流!(課堂氣氛活躍、熱烈起來。約一分鐘后有學(xué)生舉手,教師和他進行了個別交流,隨后舉手的同學(xué)又有一些。)。
師:請同學(xué)們來交流思路與方法。
生(阮穎旋):我用割補法。
師:請把你的方法用圖展示一下。
阮穎旋走上講臺,教師用展示平臺投影出該生的示意圖(如圖3)。
生(劉世航):我用補形法,在正方形各邊上補一個直角三角形在形外,變成一個大的正方形。
師:請把你的方法用圖展示一下。
生(劉世航):走上講臺,教師用展示平臺投影出該生的示意圖(如圖4)。
生(劉世航):等于25。
師:圖2--2中,以pq為一邊的正方形的面積等于多少?
生:等于4××4×2+22=20。
師:圖2--2中,三個正方形的面積有什么關(guān)系?
二、定理探索。
師:請同學(xué)們在圖5中,考察各直角三角形周圍的三個正方形的面積之間的關(guān)系。(學(xué)生獨立操作,教師巡視。)。
生(李梅):大正方形減小正方形等于第三個正方形。
生(潔婷):兩個小正方形相加等于大正方形。
生(炯輝):兩個小正方形面積相加等于大正方形面積。
……。
生(李梅):兩邊平方和等于第三邊的平方。
生(潔婷):兩直角邊的平方和等于斜邊的平方。
師:你真棒!這就是在數(shù)學(xué)史上具有里程碑意義、非常著名的勾股定理(板書課題),即:直角三角形中,兩直角邊的平方和等于斜邊的平方。(投影)但這僅僅是在幾個直角三角形(有具體數(shù)值)中發(fā)現(xiàn)的,在任意一個直角三角形(斜邊為c、兩直角邊為a、b)中是否仍成立(a2+b2=c2)呢?(投影)。
師:請同學(xué)們用課前準(zhǔn)備好的四個全等的直角三角形在桌面上拼圖,圍成一個正方形可以嗎?(教師巡視)。
師:比一比,誰的圖形漂亮?(教師繼續(xù)巡視)。
師:誰愿把自己拼(圍)得到的優(yōu)美圖案與大家共享?(同學(xué)們紛紛舉手。)。
師:同學(xué)們自由上臺展示(可一起上臺)。
教師拿出課前準(zhǔn)備的“雙面膠”供學(xué)生在黑板上粘貼。
生(潘思婷):面積為c2+2ab。
師:介紹一下算法。
生(潘思婷):中間小正方形的面積為c2,再加四個直角三角形的面積就行了。
師:還有什么不同方法呢?
生(宋彬賢):大正方形的邊長就是a+b,所以大正方形的面積就等于(a+b)2。
生(潘思婷):c2+2ab=(a+b)2。
師:能簡化嗎?
生(潘思婷):能,結(jié)果是c2=a2+b2。
生(齊):哇!就是勾股定理哎。學(xué)生的臉上流露出欣喜、愉悅的表情。這就是成就感!是教師課堂教學(xué)的最大成功。
師:剛才我們通過圖6的面積計算,驗證了勾股定理;能否在圖7中,通過面積計算,驗證勾股定理?圖7中,大正方形的面積=c2或4(ab)+(a-b)2.步驟類似于圖6中的驗證過程。
師:至此,我們已用兩種方法證明了勾股定理,從勾股定理的發(fā)現(xiàn)到今,已有了400多種證明方法,同學(xué)們課后有興趣可查閱有關(guān)資料。
三、小結(jié)。
師:什么樣的三角形適合用勾股定理?如何用代數(shù)式表示勾股定理?你能用一種方法證明勾股定理?(鄭曉珊、蘇俊輝在黑板做)。
生:(齊)點評。
(布置作業(yè):書后69頁第1,2,3題)。
(鈴響,圓滿完成教學(xué)任務(wù))師生下課。
探索勾股定理教學(xué)設(shè)計篇八
1、知識與技能目標(biāo):會用勾股定理及直角三角形的判定條件解決實際問題。
2、過程與方法目標(biāo):經(jīng)歷勾股定理的應(yīng)用過程,熟練掌握其應(yīng)用方法,明確應(yīng)用的條件。
3、情感態(tài)度與價值觀目標(biāo):通過自主學(xué)習(xí)的發(fā)展體驗獲取數(shù)學(xué)知識的感受;通過有關(guān)勾股定理的歷史講解,對學(xué)生進行德育。
知識點1:(已知兩邊求第三邊)。
1.在直角三角形中,若兩直角邊的長分別為1cm,2cm,則斜邊長為xx。
2.已知直角三角形的兩邊長為3、4,則另一條邊長是xx。
3.三角形abc中,ab=10,ac=17,bc邊上的高線ad=8,求bc的長?
知識點2:
利用方程求線段長。
(1)使得c,d兩村到e站的距離相等,e站建在離a站多少km處?
(2)de與ce的位置關(guān)系。
(3)使得c,d兩村到e站的距離最短,e站建在離a站多少km處?
利用方程解決翻折問題。
3、在矩形紙片abcd中,ad=4cm,ab=10cm,按圖所示方式折疊,使點b與點d重合,折痕為ef,求de的長。
談一談你這節(jié)課都有哪些收獲?
本節(jié)課是人教版數(shù)學(xué)八年級下冊第十七章第一節(jié)第二課時的內(nèi)容,是學(xué)生在學(xué)習(xí)了三角形的'有關(guān)知識,了解了直角三角形的概念,掌握了直角三角形的性質(zhì)和一個三角形是直角三角形的條件的基礎(chǔ)上學(xué)習(xí)勾股定理,加深對勾股定理的理解,提高學(xué)生對數(shù)形結(jié)合的應(yīng)用與理解。本節(jié)第一課時安排了對勾股定理的觀察、計算、猜想、證明及簡單應(yīng)用的過程;第二課時是通過例題分析與講解,讓學(xué)生感受勾股定理在實際生活中的應(yīng)用,通過從實際問題中抽象出直角三角形這一模型,強化轉(zhuǎn)化思想,培養(yǎng)學(xué)生解決問題的意識和應(yīng)用能力。
探索勾股定理教學(xué)設(shè)計篇九
1、讓學(xué)生通過對的圖形創(chuàng)造、觀察、思考、猜想、驗證等過程,體會勾股定理的產(chǎn)生過程。
2、通過介紹我國古代研究勾股定理的成就感培養(yǎng)民族自豪感,激發(fā)學(xué)生為祖國的復(fù)興努力學(xué)習(xí)。
3、培養(yǎng)學(xué)生數(shù)學(xué)發(fā)現(xiàn)、數(shù)學(xué)分析和數(shù)學(xué)推理證明的能力。
探索勾股定理教學(xué)設(shè)計篇十
一是讓學(xué)生自己回顧總結(jié)本節(jié)的收獲。(多數(shù)為具體的知識和方法)。
二是教師要引導(dǎo)學(xué)生學(xué)習(xí)科學(xué)家敏銳的觀察力和勤于思考的作風(fēng),不斷提高自己的數(shù)學(xué)素養(yǎng),適時對大家進行思想教育。
通過本節(jié)課的教學(xué),讓我更深刻地認識到:
3.要相信學(xué)生的能力,為學(xué)生創(chuàng)造自我學(xué)習(xí)和創(chuàng)造的機會。我相信:只要堅持不懈地這樣去做,不但能很好地實施新課改,實現(xiàn)教育的本來目標(biāo),而且也一定能讓學(xué)生“考出”好的成績。
探索勾股定理教學(xué)設(shè)計篇十一
勾股定理是平面幾何有關(guān)度量的最基本定理,它從邊的角度進一步刻畫了直角三角形的特點。學(xué)習(xí)勾股定理極其逆定理是進一步認識和理解直角三角形的需要,也是后續(xù)有關(guān)幾何度量運算和代數(shù)學(xué)習(xí)的必然基礎(chǔ)。《20xx版數(shù)學(xué)課程標(biāo)準(zhǔn)》對勾股定理教學(xué)內(nèi)容的要求是:
1、在研究圖形性質(zhì)和運動等過程中,進一步發(fā)展空間觀念;
2、在多種形式的數(shù)學(xué)活動中,發(fā)展合情推理能力;
3、經(jīng)歷從不同角度分析問題和解決問題的方法的過程,體驗解決問題方法的多樣性;
4、探索勾股定理及其逆定理,并能運用它們解決一些簡單的實際問題。
本節(jié)課的教學(xué)目標(biāo)是:
1、能正確運用勾股定理及其逆定理解決簡單的實際問題。
教學(xué)重點和難點:
應(yīng)用勾股定理及其逆定理解決實際問題是重點。
把實際問題化歸成數(shù)學(xué)模型是難點。
二、教學(xué)設(shè)想。
根據(jù)新課標(biāo)提出的“要從學(xué)生已有的生活經(jīng)驗出發(fā),讓學(xué)生親身經(jīng)歷將實際問題抽象成數(shù)學(xué)模型并進行解釋和運用的同時,在思維能力情感態(tài)度和價值觀等方面得到進步和發(fā)展”的理念,我想盡量給學(xué)生創(chuàng)設(shè)豐富的實際問題情境,使教學(xué)活動充滿趣味性和吸引力,讓他們在自主探究,合作交流中分析問題,建立數(shù)學(xué)模型,利用勾股定理及其逆定理解決問題。在教學(xué)過程中,采用一題多變的形式拓寬學(xué)生視野,訓(xùn)練學(xué)生思維的靈活性,滲透化歸的思想以及分類討論思想,方程思想等,使學(xué)生在獲得知識的同時提高能力。
在教學(xué)設(shè)計中,盡量考慮到不同學(xué)習(xí)水平的`學(xué)生,注意知識由易到難的層次性,在課堂上,要照顧到接受較慢的學(xué)生。使不同學(xué)生有不同的收獲和發(fā)展。
三、教學(xué)過程分析。
第一環(huán)節(jié):情境引入。
情景1:復(fù)習(xí)提問:勾股定理的語言表述以及幾何語言表達?
設(shè)計意圖:溫習(xí)舊知識,規(guī)范語言及數(shù)學(xué)表達,體現(xiàn)。
設(shè)計意圖:既靈活考察學(xué)生對勾股定理的理解,又增加了趣味性,還能考察學(xué)生三角形三邊關(guān)系。
第二環(huán)節(jié):合作探究(圓柱體表面路程最短問題)。
情景3:課本引例(螞蟻怎樣走最近)。
第三環(huán)節(jié):變式訓(xùn)練(由圓柱體表面路程最短問題逐步變?yōu)殚L方體表面的距離最短問題)。
設(shè)計意圖:將問題的條件稍做改變,讓學(xué)生嘗試獨立解決,拓展學(xué)生視野,又加深他們對知識的理解和鞏固。再將圓柱問題變?yōu)檎襟w長方體問題,學(xué)生有了之前的經(jīng)驗,自然而然的將立體轉(zhuǎn)化為平面,利用勾股定理解決,此處長方體問題中學(xué)生會有不同的做法,正好透分類討論思想。
第四環(huán)節(jié):議一議。
設(shè)計意圖:
第六環(huán)節(jié):交流小結(jié)內(nèi)容:師生相互交流總結(jié):
1、解決實際問題的方法是建立數(shù)學(xué)模型求解、
2、在尋求最短路徑時,往往把空間問題平面化,利用勾股定理及其逆定理解決實際問題。
3、在直角三角形中,已知一條邊和另外兩條邊的關(guān)系,借助方程可以求出另外兩條邊。
第七環(huán)作業(yè)設(shè)計:
第一道題難度較小,大部分學(xué)生可以獨立完成,第二道題有較大難度,可以交流討論完成。
探索勾股定理教學(xué)設(shè)計篇十二
1、知識目標(biāo):
(2)學(xué)會利用勾股定理進行計算、證明與作圖;。
2、能力目標(biāo):
(1)在定理的證明中培養(yǎng)學(xué)生的拼圖能力;。
(2)通過問題的解決,提高學(xué)生的運算能力。
3、情感目標(biāo):
(1)通過自主學(xué)習(xí)的發(fā)展體驗獲取數(shù)學(xué)知識的感受;。
(2)通過有關(guān)勾股定理的歷史講解,對學(xué)生進行德育教育.
教學(xué)難點:通過有關(guān)勾股定理的歷史講解,對學(xué)生進行德育教育。
教學(xué)用具:直尺,微機。
教學(xué)方法:以學(xué)生為主體的討論探索法。
探索勾股定理教學(xué)設(shè)計篇十三
這節(jié)課是九年制義務(wù)教育課程標(biāo)準(zhǔn)實驗教科書八年級第一章第一節(jié)探索勾股定理第一課時,勾股定理是幾何中幾個重要定理之一,它揭示的是直角三角形中三邊的數(shù)量關(guān)系。它在數(shù)學(xué)的發(fā)展中起過重要的作用,在現(xiàn)時世界中也有著廣泛的作用。學(xué)生通過對勾股定理的學(xué)習(xí),可以在原有的基礎(chǔ)上對直角三角形有進一步的認識和理解。
2、會初步運用勾股定理進行簡單的計算和實際運用。
3、在探索勾股定理的過程中,讓學(xué)生經(jīng)歷“觀察—猜想—歸納—驗證”的數(shù)學(xué)思想,并體會數(shù)形結(jié)合和特殊到一般的思想方法。
4、通過介紹勾股定理在中國古代的研究,激發(fā)學(xué)生熱愛祖國,熱愛祖國悠久文化的思想,激勵學(xué)生發(fā)奮學(xué)習(xí)。
本課的教學(xué)難點:以直角三角形為邊的正方形面積的計算。
教法分析:針對初二年級學(xué)生的知識結(jié)構(gòu)和心理特征,本節(jié)課可選擇引導(dǎo)探索法,由淺入深,由特殊到一般地提出問題。引導(dǎo)學(xué)生自主探索,合作交流,這種教學(xué)理念反映了時代精神,有利于提高學(xué)生的思維能力,能有效地激發(fā)學(xué)生的思維積極性,基本教學(xué)流程是:提出問題—實驗操作—歸納驗證—問題解決—課堂小結(jié)—布置作業(yè)六部分。
學(xué)法分析:在教師的組織引導(dǎo)下,采用自主探索、合作交流的研討式學(xué)習(xí)方式,讓學(xué)生思考問題,獲取知識,掌握方法,借此培養(yǎng)學(xué)生動手、動腦、動口的能力,使學(xué)生真正成為學(xué)習(xí)的主體。
首先創(chuàng)設(shè)這樣一個問題情境:某樓房三樓失火,消防隊員趕來救火,了解到每層樓高3米,消防隊員取來6.5米長的云梯,如果梯子的底部離墻基的距離是2.5米,請問消防隊員能否進入三樓滅火?問題設(shè)計具有一定的挑戰(zhàn)性,目的是激發(fā)學(xué)生的探究欲望,教師引導(dǎo)學(xué)生將實際問題轉(zhuǎn)化成數(shù)學(xué)問題,也就是“已知一直角三角形的兩邊,如何求第三邊?”的問題。學(xué)生會感到困難,從而教師指出學(xué)習(xí)了今天這一課后就有辦法解決了。這種以實際問題為切入點引入新課,不僅自然,而且反映了數(shù)學(xué)來源于實際生活,數(shù)學(xué)是從人的需要中產(chǎn)生這一認識的基本觀點,同時也體現(xiàn)了知識的發(fā)生過程,而且解決問題的過程也是一個“數(shù)學(xué)化”的過程。
1、投影課本圖1—1,圖1—2的有關(guān)直角三角形問題,讓學(xué)生計算正方形a,b,c的面積,學(xué)生可能有不同的方法,不管是通過直接數(shù)小方格的個數(shù),還是將c劃分為4個全等的等腰直角三角形來求等等,各種方法都應(yīng)予于肯定,并鼓勵學(xué)生用語言進行表達,引導(dǎo)學(xué)生發(fā)現(xiàn)正方形a,b,c的面積之間的數(shù)量關(guān)系,從而學(xué)生通過正方形面積之間的關(guān)系容易發(fā)現(xiàn)對于等腰直角三角形而言滿足兩直角邊的平方和等于斜邊的平方。這樣做有利于學(xué)生參與探索,感受數(shù)學(xué)學(xué)習(xí)的過程,也有利于培養(yǎng)學(xué)生的語言表達能力,體會數(shù)形結(jié)合的思想。
2、接著讓學(xué)生思考:如果是其它一般的直角三角形,是否也具備這一結(jié)論呢?于是投影圖1—3,圖1—4,同樣讓學(xué)生計算正方形的面積,但正方形c的面積不易求出,可讓學(xué)生在預(yù)先準(zhǔn)備的方格紙上畫出圖形,在剪一剪,拼一拼后學(xué)生也不難發(fā)現(xiàn)對于一般的以整數(shù)為邊長的直角三角形也有兩直角邊的平方和等于斜邊的平方。這樣設(shè)計不僅有利于突破難點,而且為歸納結(jié)論打下了基礎(chǔ),讓學(xué)生體會到觀察、猜想、歸納的思想,也讓學(xué)生的分析問題和解決問題的能力在無形中得到了提高,這對后面的學(xué)習(xí)及有幫助。
3、給出一個邊長為0.5,1.2,1.3,這種含小數(shù)的直角三角形,讓學(xué)生計算是否也滿足這個結(jié)論,設(shè)計的目的是讓學(xué)生體會到結(jié)論更具有一般性。
1、歸納通過對邊長為整數(shù)的等腰直角三角形到一般直角三角形再到邊長含小數(shù)的直角三角形三邊關(guān)系的研究,讓學(xué)生用數(shù)學(xué)語言概括出一般的結(jié)論,盡管學(xué)生可能講的不完全正確,但對于培養(yǎng)學(xué)生運用數(shù)學(xué)語言進行抽象、概括的能力是有益的,同時發(fā)揮了學(xué)生的主體作用,也便于記憶和理解,這比教師直接教給學(xué)生一個結(jié)論要好的多。
2、驗證為了讓學(xué)生確信結(jié)論的正確性,引導(dǎo)學(xué)生在紙上任意作一個直角三角形,通過測量、計算來驗證結(jié)論的正確性。這一過程有利于培養(yǎng)學(xué)生嚴謹、科學(xué)的學(xué)習(xí)態(tài)度。然后引導(dǎo)學(xué)生用符號語言表示,因為將文字語言轉(zhuǎn)化為數(shù)學(xué)語言是學(xué)習(xí)數(shù)學(xué)學(xué)習(xí)的一項基本能力。接著教師向?qū)W生介紹“勾,股,弦”的含義、勾股定理,進行點題,并指出勾股定理只適用于直角三角形。最后向?qū)W生介紹古今中外對勾股定理的研究,對學(xué)生進行愛國主義教育。
讓學(xué)生解決開頭的實際問題,前后呼應(yīng),學(xué)生從中能體會到成功的喜悅。完成課本“想一想”進一步體會勾股定理在實際生活中的應(yīng)用,數(shù)學(xué)是與實際生活緊密相連的。
主要通過學(xué)生回憶本節(jié)課所學(xué)內(nèi)容,從內(nèi)容、應(yīng)用、數(shù)學(xué)思想方法、獲取新知的途徑方面先進行小結(jié),后由教師總結(jié)。
課本p6習(xí)題1.11,2,3,4一方面鞏固勾股定理,另一方面進一步體會定理與實際生活的聯(lián)系。另外,補充一道開放題。
1、本節(jié)課是公式課,根據(jù)學(xué)生的知識結(jié)構(gòu),我采用的教學(xué)流程是:提出問題—實驗操作—歸納驗證—問題解決—課堂小結(jié)—布置作業(yè)六部分,這一流程體現(xiàn)了知識發(fā)生、形成和發(fā)展的過程,讓學(xué)生體會到觀察、猜想、歸納、驗證的思想和數(shù)形結(jié)合的思想。
2、探索定理采用了面積法,引導(dǎo)學(xué)生利用實驗由特殊到一般再到更一般的對直角三角形三邊關(guān)系的研究,得出結(jié)論。這種方法是認識事物規(guī)律的重要方法之一,通過教學(xué)讓學(xué)生初步掌握這種方法,對于學(xué)生良好思維品質(zhì)的形成有重要作用,對學(xué)生的終身發(fā)展也有一定的作用。
3、關(guān)于練習(xí)的設(shè)計,除兩個實際問題和課本習(xí)題以外,我準(zhǔn)備設(shè)計一道開放題,大致思路是在已畫出斜邊上的高的直角三角形中讓學(xué)生盡量地找出線段之間的關(guān)系。
4、本課小結(jié)從內(nèi)容,應(yīng)用,數(shù)學(xué)思想方法,獲取知識的途徑等幾個方面展開,既有知識的總結(jié),又有方法的提煉,這樣對于學(xué)生學(xué)知識,用知識的意識是有很大的促進的。
探索勾股定理教學(xué)設(shè)計篇十四
教材分析:勾股定理是直角三角形的重要性質(zhì),它把三角形有一個直角的“形”的特點,轉(zhuǎn)化為三邊之間的“數(shù)”的關(guān)系,它是數(shù)形結(jié)合的典范。它可以解決許多直角三角形中的計算問題,它是直角三角形特有的性質(zhì),是初中數(shù)學(xué)教學(xué)內(nèi)容重點之一。本節(jié)課的重點是發(fā)現(xiàn)勾股定理,難點是說明勾股定理的正確性。
學(xué)生分析:
1、考慮到三角尺學(xué)生天天在用,較為熟悉,但真正能仔細研究過三角尺的同學(xué)并不多,通過這樣的情景設(shè)計,能非常簡單地將學(xué)生的注意力引向本節(jié)課的本質(zhì)。
2、以與勾股定理有關(guān)的人文歷史知識為背景展開對直角三角形三邊關(guān)系的討論,能激發(fā)學(xué)生的學(xué)習(xí)興趣。
設(shè)計理念:本教案以學(xué)生手中舞動的三角尺為知識背景展開,以勾股定理在古今中外的發(fā)展史為主線貫穿課堂始終,讓學(xué)生對勾股定理的發(fā)展過程有所了解,讓他們感受勾股定理的豐富文化內(nèi)涵,體驗勾股定理的探索和運用過程,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,特別是通過向?qū)W生介紹我國古代在勾股定理研究和運用方面的成就,激發(fā)學(xué)生熱愛祖國,熱愛祖國悠久文化的思想感情,培養(yǎng)他們的自豪感和探究創(chuàng)新的精神。
教學(xué)目標(biāo):
1、經(jīng)歷用面積割、補法探索勾股定理的過程,培養(yǎng)學(xué)生主動探究意識,發(fā)展合理推理能力,體現(xiàn)數(shù)形結(jié)合思想。
2、經(jīng)歷用多種割、補圖形的方法驗證勾股定理的過程,發(fā)展用數(shù)學(xué)的眼光觀察現(xiàn)實世界和有條理地思考能力以及語言表達能力等,感受勾股定理的'文化價值。
3、培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和愛國熱情。
4、欣賞設(shè)計圖形美。
教學(xué)準(zhǔn)備階段:
學(xué)生準(zhǔn)備:正方形網(wǎng)格紙若干,全等的直角三角形紙片若干,彩筆、直角三角尺、鉛筆等。
老師準(zhǔn)備:畢達哥拉斯、趙爽、劉徽等證明勾股定理的圖片以及其它有關(guān)人物歷史資料等投影圖片。
(一)引入
同學(xué)們,當(dāng)你每天手握三角尺繪制自己的宏偉藍圖時,你是否想過:他們的邊有什么關(guān)系呢?今天我們來探索這一小秘密。(板書課題:探索直角三角形三邊關(guān)系)
(二)實驗探究
設(shè)網(wǎng)格正方形的邊長為1,直角三角形的直角邊分別為a、b,斜邊為c,觀察并計算每個正方形的面積,以四人小組為單位填寫下表:
(討論難點:以斜邊為邊的正方形的面積找法)
交流后得出一般結(jié)論:(用關(guān)于a、b、c的式子表示)
(三)探索所得結(jié)論的正確性
當(dāng)直角三角形的直角邊分別為a、b,斜邊為c時,是否一定成立?
1、指導(dǎo)學(xué)生運用拼圖、或正方形網(wǎng)格紙構(gòu)造或設(shè)計合理分割(或補全)圖形,去探索本結(jié)論的正確性:(以四人小組為單位進行)
在學(xué)生所創(chuàng)作圖形中選擇有代表性的割、補圖,展示出來交流講解,并引導(dǎo)學(xué)生進行說理:
如圖2(用補的方法說明)
師介紹:(出示圖片)畢達哥拉斯,公元前約500年左右,古西臘一位哲學(xué)家、數(shù)學(xué)家。一天,他應(yīng)邀到一位朋友家做客,他一進朋友家門就被朋友家的豪華的方形大理石地磚的形狀深深吸引住了,于是他立刻找來尺子和筆又量又畫,他發(fā)現(xiàn)以每塊大理石地磚的相鄰兩直角邊向三角形外作正方形,它們的面積和等于以這塊大理石地磚的對角線為邊向形外作正方形的面積。于是他回到家里立刻對他的這一發(fā)現(xiàn)進行了探究證明……,終獲成功。后來西方人們?yōu)榱思o(jì)念他的這一發(fā)現(xiàn),將這一定理命名為“畢達哥拉斯定理”。1952年,希臘政府為了紀(jì)念這位偉大的數(shù)學(xué)家,特別選用他設(shè)計的這種圖形為主圖發(fā)行了一枚紀(jì)念郵票。(見課本52頁彩圖2―1,欣賞圖片)
如圖3(用割的方法去探索)
師介紹:(出示圖片)中國古代數(shù)學(xué)家們很早就發(fā)現(xiàn)并運用這個結(jié)論。早在公元前20xx年左右,大禹治水時期,就曾經(jīng)用過此方法測量土地的等高差,公元前1100年左右,西周的數(shù)學(xué)家商高就曾用“勾三、股四、弦五”測量土地,他們對這一結(jié)論的運用至少比古希臘人早500多年。公元200年左右,三國時期吳國數(shù)學(xué)家趙爽曾構(gòu)造此圖驗證了這一結(jié)論的正確性。他的這個證明,可謂別具匠心,極富創(chuàng)新意識,他用幾何圖形的割、來證明代數(shù)式之間的相等關(guān)系,既嚴密,又直觀,為中國古代以“形”證“數(shù)”,形、數(shù)統(tǒng)一的獨特風(fēng)格樹立了一個典范。他是我國有記載以來第一個證明這一結(jié)論的數(shù)學(xué)家。我國數(shù)學(xué)家們?yōu)榱思o(jì)念我國在這方面的數(shù)學(xué)成就,將這一結(jié)論命名為“勾股定理”。(點題)
20xx年,世界數(shù)學(xué)家大會在中國北京召開,當(dāng)時選用這個圖案作為會場主圖,它標(biāo)志著我國古代數(shù)學(xué)的輝煌成就。(見課本50頁彩圖,欣賞圖片)
如圖4(構(gòu)造新圖形的方法去探索)
本節(jié)課學(xué)習(xí)的勾股定理用語言敘說為:
1、繼續(xù)收集、整理有關(guān)勾股定理的證明方的探索問題并交流。
2、探索勾股定理的運用。
探索勾股定理教學(xué)設(shè)計篇十五
知識與技能:
了解勾股定理的一些證明方法,會簡單應(yīng)用勾股定理解決問題。
在充分觀察、歸納、猜想的基礎(chǔ)上,探究勾股定理,在探究的過程中,發(fā)展合情推理,體會數(shù)形結(jié)合、從特殊到一般等數(shù)學(xué)思想。
通過對我國古代研究勾股定理的成就介紹,培養(yǎng)學(xué)生的民族自豪感。
1、創(chuàng)設(shè)情境。
師生活動:教師引導(dǎo)學(xué)生尋找圖形中的直角三角形和正方形等,并引導(dǎo)學(xué)生發(fā)現(xiàn)直角三角形的全等關(guān)系,指出通過今天的學(xué)習(xí),就能理解會徽圖案的含義。
設(shè)計意圖:本節(jié)課是本章的起始課,重視引言教學(xué),從國際數(shù)學(xué)家大會的會徽說起,設(shè)置懸念,引入課題。
觀看洋蔥數(shù)學(xué)中關(guān)于勾股定理引入的視頻,讓我們一起走進神奇的數(shù)學(xué)世界。
追問:由這三個正方形的邊長構(gòu)成的等腰直角三角形三條邊長之間又有怎么樣的關(guān)系?
師生活動:教師引導(dǎo)學(xué)生發(fā)現(xiàn)正方形的面積等于邊長的平方,歸納出:等腰直角三角形兩條直角邊的平方和等于斜邊的平方。
設(shè)計意圖:從最特殊的等腰直角三角形入手,便于學(xué)生觀察得到結(jié)論。
問題3:數(shù)學(xué)研究遵循從特殊到一般的數(shù)學(xué)思想,既然我們得到了等腰直角三角形三邊的這種特殊的數(shù)量關(guān)系,那我們不妨大膽猜測在一般的直角三角形(在下圖的方格紙中,每個方格的面積是1)中,這種特殊的數(shù)量關(guān)系也同樣成立。
師生活動:學(xué)生獨立思考后小組討論,難點是如何證明求以斜邊為邊長的正方形的面積,可由師生共同總結(jié)得出可以通過割、補兩種方法,求出其面積。
探索勾股定理教學(xué)設(shè)計篇十六
作為一名數(shù)學(xué)教師,如何才能引領(lǐng)一年級學(xué)生走進數(shù)學(xué),培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣呢?我想,應(yīng)該從孩子們接觸到的真正意義上的第一堂數(shù)學(xué)課開始,用心地為孩子們翻開這精彩的第一頁。于是,我把各種教學(xué)常規(guī)、學(xué)生的實際情況以及相應(yīng)的數(shù)學(xué)知識進行有機整合,精心設(shè)計了以下兩個環(huán)節(jié),和大家一起共享。
環(huán)節(jié)一:我和數(shù)學(xué)書交朋友。
1、認一認數(shù)學(xué)書。(片段摘要)師:小朋友,這一節(jié)是數(shù)學(xué)課,那你認識數(shù)學(xué)書嗎?
師:(拿數(shù)學(xué)書演示)請小朋友仔細觀察數(shù)學(xué)書的封面上都有些什么呢?他們在干什么?(生自由說,重點引導(dǎo)學(xué)生說出有幾個小朋友在干什么。)。
師:你能找到“數(shù)學(xué)”兩個字嗎?誰會指著讀一讀?你還認識封面上的哪些字呢?(師可帶領(lǐng)學(xué)生認一認,讀一讀,如:一年級,上冊等等。)。
反思:剛上一年級的小朋友,通過三年的幼兒園學(xué)習(xí),已經(jīng)掌握了一些知識,但在孩子們的思想中對語文、數(shù)學(xué)、音樂等課程的區(qū)分并不清楚,也從未接觸過具體的課本,于是,在這真正意義上的第一堂數(shù)學(xué)課上,指導(dǎo)他們來認一認數(shù)學(xué)書是很有必要的。實踐也證明,通過此環(huán)節(jié)的設(shè)計,在后來的教學(xué)中,我很難發(fā)現(xiàn)學(xué)生有拿錯數(shù)學(xué)課本的現(xiàn)象。
2、聞一聞數(shù)學(xué)書。我一直保留著一個習(xí)慣,不,應(yīng)該是一種癖好,就是一拿到新書,就會不自覺地隨手一翻,然后用鼻子靠近書頁,去聞一聞新書所特有的那種濃濃的油墨香味。細細想來,這個癖好是從何而起?記憶最深處,還是和這群學(xué)生一樣大時,跟幾個同齡人背著一大包新書聚在一起,用隔年的年歷紙小心翼翼地包書,期間,就會不時聞到一縷縷幽幽的油墨香味,漸漸地,便記住并喜歡上了這種獨特的味道。無獨有偶,跟同事或朋友談起這個話題,他們竟然也有著同樣的感受。于是,我堅信,讓學(xué)生來聞一聞新書的味道是學(xué)習(xí)的開始,讓他們在這種濃濃的油墨香味中感受到要學(xué)習(xí)新知的美好憧憬,并教育學(xué)生要愛惜書本,等把這本書都學(xué)完了,再讓他們來問聞聞它的味道。
3、翻一翻數(shù)學(xué)書。翻書最基本的要求是要認識頁碼,還要準(zhǔn)確地知道數(shù)字的排列規(guī)律。一年級的小朋友基本上都會熟練地從1數(shù)到100,也會比較一些數(shù)字的大小。根據(jù)這一情況,我設(shè)計了一個翻書的小游戲“比誰找得快”。
(片段摘要)。
師:請小朋友把書翻到第8頁。
師:你是怎樣找到第8頁的?
生1:我是一頁一頁翻過去的。
生2:因為第8頁在很前面,我就先翻一點點,看看是不是,我翻到的是第10頁,第8頁在前面,我就再往前翻過一頁。
師:你真會動腦筋,想的方法很好,鼓掌表揚。小朋友們,看來翻書也有很大的學(xué)問呢。接著,我有連續(xù)地變換著方式來讓學(xué)生找頁數(shù)。
-反思:備課時,這一環(huán)節(jié)的設(shè)計旨在讓學(xué)生學(xué)會翻書,認識頁碼,知道數(shù)字的大小,也便于自己能更好地熟悉和了解學(xué)生對已有知識的掌握情況。但學(xué)生的實際反應(yīng)太讓我驚訝了,原來他們已經(jīng)對數(shù)字有把如此深刻的理解。而且在具體的操作中有部分同學(xué)已經(jīng)有了估計的意識,對于具體的數(shù)字頁碼,他們沒有一頁一頁地去翻,而是會用“先翻過一些,再比較”的方法來快速找到教師所要求的頁碼,這是一條捷徑,這條捷徑就是學(xué)生對于認識數(shù)字的已有經(jīng)驗,也是教師進行再次教學(xué)的一個起點,教師若摸不清學(xué)生原有的`知識基礎(chǔ),也就找不到再次教學(xué)時的這個關(guān)鍵起點,更不能抓住學(xué)生學(xué)習(xí)的生長點,那樣在以后的教學(xué)中,必將多走重復(fù)路、冤枉路。
環(huán)節(jié)二:我的“新家”在哪里?
1、認一認教室。師:小朋友,你知道自己在哪個班嗎?
(開學(xué)初,經(jīng)常有學(xué)生會走錯教室,此設(shè)計旨在讓學(xué)生認清并記住自己的班級所在地。)。
師:小朋友,這個教室就是你們在學(xué)校里的“新家”,看一看,我們的“新家”布置得怎樣?你會按著前后左右的順序來說一說嗎?(鼓勵并引導(dǎo)學(xué)生按一定的順序來敘述)。
2、找一找位置。教師先介紹教室課桌的擺放,告訴學(xué)生什么叫“一排”,什么叫“一組”,然后舉例:×××坐在第3排,×××坐在第2組第5個。讓學(xué)生學(xué)著說說自己的位置。
變換方式:說出你好朋友的位置,讓大家來猜一猜。
(這一環(huán)節(jié)的設(shè)計旨在讓學(xué)生認識并喜歡自己的教室,熟悉身邊的同學(xué)、老師,在交流中培養(yǎng)學(xué)生的觀察能力和語言表達能力。)。
探索勾股定理教學(xué)設(shè)計篇十七
1.知識與技能目標(biāo):會用勾股定理及直角三角形的判定條件解決實際問題。
2.過程與方法目標(biāo):經(jīng)歷勾股定理的應(yīng)用過程,熟練掌握其應(yīng)用方法,明確應(yīng)用的條件。
3.情感態(tài)度與價值觀目標(biāo):通過自主學(xué)習(xí)的發(fā)展體驗獲取數(shù)學(xué)知識的感受;通過有關(guān)勾股定理的歷史講解,對學(xué)生進行德育教育。
一、知識點講解。
知識點1:(已知兩邊求第三邊)。
1.在直角三角形中,若兩直角邊的長分別為1cm,2cm,則斜邊長為_____________。
2.已知直角三角形的兩邊長為3、4,則另一條邊長是______________。
3.三角形abc中,ab=10,ac=17,bc邊上的高線ad=8,求bc的長?
知識點2:
利用方程求線段長。
(1)使得c,d兩村到e站的距離相等,e站建在離a站多少km處?
(2)de與ce的位置關(guān)系。
(3)使得c,d兩村到e站的距離最短,e站建在離a站多少km處?
利用方程解決翻折問題。
3、在矩形紙片abcd中,ad=4cm,ab=10cm,按圖所示方式折疊,使點b與點d重合,折痕為ef,求de的長。
5、折疊矩形abcd的一邊ad,折痕為ae,且使點d落在bc邊上的點f處,已知ab=8cm,bc=10cm,以b點為原點,bc為x軸,ba為y軸建立平面直角坐標(biāo)系。求點f和點e坐標(biāo)。
6、邊長為8和4的矩形oabc的兩邊分別在直角坐標(biāo)系的x軸和y軸上,若沿對角線ac折疊后,點b落在第四象限b1處,設(shè)b1c交x軸于點d,求(1)三角形adc的面積,(2)點b1的坐標(biāo),(3)ab1所在的直線解析式.
知識點3:判斷一個三角形是否為直角三角形間接給出三邊的長度或比例關(guān)系。
1.(1).若一個三角形的周長12cm,一邊長為3cm,其他兩邊之差為1cm,則這個三角形是___________。
(2).將直角三角形的三邊擴大相同的倍數(shù)后,得到的三角形是____________。
(3)在abc中,a:b:c=1:1:,那么abc的確切形狀是_____________。
二、課堂小結(jié)。
談一談你這節(jié)課都有哪些收獲?
三、課堂練習(xí)以上習(xí)題。
四、課后作業(yè)卷子。
本節(jié)課是人教版數(shù)學(xué)八年級下冊第十七章第一節(jié)第二課時的內(nèi)容,是學(xué)生在學(xué)習(xí)了三角形的有關(guān)知識,了解了直角三角形的概念,掌握了直角三角形的性質(zhì)和一個三角形是直角三角形的條件的基礎(chǔ)上學(xué)習(xí)勾股定理,加深對勾股定理的理解,提高學(xué)生對數(shù)形結(jié)合的應(yīng)用與理解。本節(jié)第一課時安排了對勾股定理的觀察、計算、猜想、證明及簡單應(yīng)用的過程;第二課時是通過例題分析與講解,讓學(xué)生感受勾股定理在實際生活中的應(yīng)用,通過從實際問題中抽象出直角三角形這一模型,強化轉(zhuǎn)化思想,培養(yǎng)學(xué)生解決問題的意識和應(yīng)用能力。
針對本班學(xué)生的特點,學(xué)生知識水平、學(xué)習(xí)能力的差距,本節(jié)課安排了如下幾個環(huán)節(jié):
一、復(fù)習(xí)引入。
對上節(jié)課勾股定理內(nèi)容進行回顧,強調(diào)易錯點。由于學(xué)生的注意力集中時間較短,學(xué)生知識水平低,引入內(nèi)容簡短明了,花費時間短。
二、例題講解,鞏固練習(xí),總結(jié)數(shù)學(xué)思想方法。
活動一:用對媒體展示搬運工搬木板的問題,讓學(xué)生以小組交流合作,如何將木板運進門內(nèi)?需要知道們的寬、高,還是其他的條件?學(xué)生展示交流結(jié)果,之后教師引導(dǎo)學(xué)生書寫板書。整個活動以學(xué)生為主體,教師及時的引導(dǎo)和強調(diào)。
活動二:解決例二梯子滑落的問題。學(xué)生自主討論解決問題,書寫過程,之后投影學(xué)生書寫過程,教師與學(xué)生一起合作修改解題過程。
活動三:學(xué)生討論總結(jié)如何將實際生活中的問題轉(zhuǎn)化為數(shù)學(xué)問題,然后利用勾股定理解決問題。利用勾股定理的前提是什么?如何作輔助線構(gòu)造這一前提條件?在數(shù)學(xué)活動中發(fā)展了學(xué)生的探究意識和合作交流的習(xí)慣;體會勾股定理的應(yīng)用價值,讓學(xué)生體會到數(shù)學(xué)來源于生活,又應(yīng)用到生活中去,在學(xué)習(xí)的過程中體會獲得成功的喜悅,提高了學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和信心。
二、鞏固練習(xí),熟練新知。
通過測量旗桿活動,發(fā)展學(xué)生的探究意識,培養(yǎng)學(xué)生動手操作的能力,增加學(xué)生應(yīng)用數(shù)學(xué)知識解決實際問題的經(jīng)驗和感受。
在教學(xué)設(shè)計的實施中,也存在著一些問題:
1.由于本班學(xué)生能力的差距,本想著通過學(xué)生幫帶活動,使學(xué)困生充分參與課堂,但在學(xué)生合作交流是由于學(xué)習(xí)能力強的學(xué)生,對問題的分析解決所用時間短,而在整個環(huán)節(jié)設(shè)計中轉(zhuǎn)接的快,未給學(xué)困生充分的時間,導(dǎo)致部分學(xué)生未能真正的參與到課堂中來。
2.課堂上質(zhì)疑追問要起到好處,不要增加學(xué)生展示的難度,影響展示進程出現(xiàn)中斷或偏離主題的現(xiàn)象。
3.對學(xué)生課堂展示的評價方式應(yīng)體現(xiàn)生評生,師評生,及評價的針對性和及時性。
探索勾股定理教學(xué)設(shè)計篇十八
一、教案背景概述:
教材分析:勾股定理是直角三角形的重要性質(zhì),它把三角形有一個直角的“形”的特點,轉(zhuǎn)化為三邊之間的“數(shù)”的關(guān)系,它是數(shù)形結(jié)合的典范。它可以解決許多直角三角形中的計算問題,它是直角三角形特有的性質(zhì),是初中數(shù)學(xué)教學(xué)內(nèi)容重點之一。本節(jié)課的重點是發(fā)現(xiàn)勾股定理,難點是說明勾股定理的正確性。
學(xué)生分析:
1、考慮到三角尺學(xué)生天天在用,較為熟悉,但真正能仔細研究過三角尺的同學(xué)并不多,通過這樣的情景設(shè)計,能非常簡單地將學(xué)生的注意力引向本節(jié)課的本質(zhì)。
2、以與勾股定理有關(guān)的人文歷史知識為背景展開對直角三角形三邊關(guān)系的討論,能激發(fā)學(xué)生的學(xué)習(xí)興趣。
設(shè)計理念:本教案以學(xué)生手中舞動的三角尺為知識背景展開,以勾股定理在古今中外的發(fā)展史為主線貫穿課堂始終,讓學(xué)生對勾股定理的發(fā)展過程有所了解,讓他們感受勾股定理的豐富文化內(nèi)涵,體驗勾股定理的探索和運用過程,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,特別是通過向?qū)W生介紹我國古代在勾股定理研究和運用方面的成就,激發(fā)學(xué)生熱愛祖國,熱愛祖國悠久文化的思想感情,培養(yǎng)他們的民族自豪感和探究創(chuàng)新的精神。
教學(xué)目標(biāo):
1、經(jīng)歷用面積割、補法探索勾股定理的過程,培養(yǎng)學(xué)生主動探究意識,發(fā)展合理推理能力,體現(xiàn)數(shù)形結(jié)合思想。
2、經(jīng)歷用多種割、補圖形的方法驗證勾股定理的過程,發(fā)展用數(shù)學(xué)的眼光觀察現(xiàn)實世界和有條理地思考能力以及語言表達能力等,感受勾股定理的文化價值。
3、培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和愛國熱情。
4、欣賞設(shè)計圖形美。
二、教案運行描述:
教學(xué)準(zhǔn)備階段:
學(xué)生準(zhǔn)備:正方形網(wǎng)格紙若干,全等的直角三角形紙片若干,彩筆、直角三角尺、鉛筆等。
老師準(zhǔn)備:畢達哥拉斯、趙爽、劉徽等證明勾股定理的圖片以及其它有關(guān)人物歷史資料等投影圖片。
三、教學(xué)流程:
(一)引入。
同學(xué)們,當(dāng)你每天手握三角尺繪制自己的宏偉藍圖時,你是否想過:他們的邊有什么關(guān)系呢?今天我們來探索這一小秘密。(板書課題:探索直角三角形三邊關(guān)系)。
(二)實驗探究。
設(shè)網(wǎng)格正方形的邊長為1,直角三角形的直角邊分別為a、b,斜邊為c,觀察并計算每個正方形的面積,以四人小組為單位填寫下表:
(討論難點:以斜邊為邊的正方形的面積找法)。
交流后得出一般結(jié)論:(用關(guān)于a、b、c的式子表示)。
(三)探索所得結(jié)論的正確性。
當(dāng)直角三角形的直角邊分別為a、b,斜邊為c時,是否一定成立?
1、指導(dǎo)學(xué)生運用拼圖、或正方形網(wǎng)格紙構(gòu)造或設(shè)計合理分割(或補全)圖形,去探索本結(jié)論的正確性:(以四人小組為單位進行)。
在學(xué)生所創(chuàng)作圖形中選擇有代表性的割、補圖,展示出來交流講解,并引導(dǎo)學(xué)生進行說理:
如圖2(用補的方法說明)。
師介紹:(出示圖片)畢達哥拉斯,公元前約500年左右,古西臘一位哲學(xué)家、數(shù)學(xué)家。一天,他應(yīng)邀到一位朋友家做客,他一進朋友家門就被朋友家的豪華的方形大理石地磚的形狀深深吸引住了,于是他立刻找來尺子和筆又量又畫,他發(fā)現(xiàn)以每塊大理石地磚的相鄰兩直角邊向三角形外作正方形,它們的面積和等于以這塊大理石地磚的對角線為邊向形外作正方形的面積。于是他回到家里立刻對他的這一發(fā)現(xiàn)進行了探究證明……,終獲成功。后來西方人們?yōu)榱思o(jì)念他的這一發(fā)現(xiàn),將這一定理命名為“畢達哥拉斯定理”。1952年,希臘政府為了紀(jì)念這位偉大的數(shù)學(xué)家,特別選用他設(shè)計的這種圖形為主圖發(fā)行了一枚紀(jì)念郵票。(見課本52頁彩圖2―1,欣賞圖片)。
如圖3(用割的方法去探索)。
師介紹:(出示圖片)中國古代數(shù)學(xué)家們很早就發(fā)現(xiàn)并運用這個結(jié)論。早在公元前左右,大禹治水時期,就曾經(jīng)用過此方法測量土地的等高差,公元前1100年左右,西周的數(shù)學(xué)家商高就曾用“勾三、股四、弦五”測量土地,他們對這一結(jié)論的運用至少比古希臘人早500多年。公元200年左右,三國時期吳國數(shù)學(xué)家趙爽曾構(gòu)造此圖驗證了這一結(jié)論的正確性。他的這個證明,可謂別具匠心,極富創(chuàng)新意識,他用幾何圖形的割、來證明代數(shù)式之間的相等關(guān)系,既嚴密,又直觀,為中國古代以“形”證“數(shù)”,形、數(shù)統(tǒng)一的獨特風(fēng)格樹立了一個典范。他是我國有記載以來第一個證明這一結(jié)論的數(shù)學(xué)家。我國數(shù)學(xué)家們?yōu)榱思o(jì)念我國在這方面的數(shù)學(xué)成就,將這一結(jié)論命名為“勾股定理”。(點題)。
20xx年,世界數(shù)學(xué)家大會在中國北京召開,當(dāng)時選用這個圖案作為會場主圖,它標(biāo)志著我國古代數(shù)學(xué)的輝煌成就。(見課本50頁彩圖,欣賞圖片)。
如圖4(構(gòu)造新圖形的方法去探索)。
四、總結(jié):
本節(jié)課學(xué)習(xí)的勾股定理用語言敘說為:
五、作業(yè):
1、繼續(xù)收集、整理有關(guān)勾股定理的證明方的探索問題并交流。
探索勾股定理教學(xué)設(shè)計篇十九
教學(xué)目標(biāo)具體要求:
1.知識與技能目標(biāo):會用勾股定理及直角三角形的判定條件解決實際問題。
2.過程與方法目標(biāo):經(jīng)歷勾股定理的應(yīng)用過程,熟練掌握其應(yīng)用方法,明確應(yīng)用的條件。
3.情感態(tài)度與價值觀目標(biāo):通過自主學(xué)習(xí)的發(fā)展體驗獲取數(shù)學(xué)知識的感受;通過有關(guān)勾股定理的歷史講解,對學(xué)生進行德育教育。
重點:
難點:
教案設(shè)計。
一、知識點講解。
知識點1:(已知兩邊求第三邊)。
1.在直角三角形中,若兩直角邊的長分別為1cm,2cm,則斜邊長為xx。
2.已知直角三角形的兩邊長為3、4,則另一條邊長是xx。
3.三角形abc中,ab=10,ac=17,bc邊上的高線ad=8,求bc的長?
知識點2:
利用方程求線段長。
(1)使得c,d兩村到e站的距離相等,e站建在離a站多少km處?
(2)de與ce的位置關(guān)系。
(3)使得c,d兩村到e站的距離最短,e站建在離a站多少km處?
利用方程解決翻折問題。
3、在矩形紙片abcd中,ad=4cm,ab=10cm,按圖所示方式折疊,使點b與點d重合,折痕為ef,求de的長。
二、課堂小結(jié)。
談一談你這節(jié)課都有哪些收獲?
三、課堂練習(xí)以上習(xí)題。
四、課后作業(yè)卷子。
本節(jié)課是人教版數(shù)學(xué)八年級下冊第十七章第一節(jié)第二課時的內(nèi)容,是學(xué)生在學(xué)習(xí)了三角形的有關(guān)知識,了解了直角三角形的概念,掌握了直角三角形的性質(zhì)和一個三角形是直角三角形的條件的基礎(chǔ)上學(xué)習(xí)勾股定理,加深對勾股定理的理解,提高學(xué)生對數(shù)形結(jié)合的應(yīng)用與理解。本節(jié)第一課時安排了對勾股定理的觀察、計算、猜想、證明及簡單應(yīng)用的過程;第二課時是通過例題分析與講解,讓學(xué)生感受勾股定理在實際生活中的應(yīng)用,通過從實際問題中抽象出直角三角形這一模型,強化轉(zhuǎn)化思想,培養(yǎng)學(xué)生解決問題的意識和應(yīng)用能力。
【本文地址:http://mlvmservice.com/zuowen/16658424.html】