文學(xué)作品是用語言藝術(shù)的方式表達(dá)思想感情的一種創(chuàng)作成果。如何提高寫作能力是許多人關(guān)注的問題,可以通過多讀書、多寫作、多思考來不斷提升??偨Y(jié)可以幫助我們發(fā)現(xiàn)自己的優(yōu)點和不足,為未來的發(fā)展提供參考。
反比例教學(xué)設(shè)計篇一
教學(xué)內(nèi)容:第64—65頁的例3和“試一試”,“練一練”和練習(xí)十三的第6—8題。教學(xué)目標(biāo):
1.使學(xué)生經(jīng)歷從具體實例中認(rèn)識成反比例的量的過程,初步理解反比例的意義,學(xué)會根據(jù)反比例的意義判斷兩種相關(guān)聯(lián)的量是不是成反比例。
2.使學(xué)生在認(rèn)識成反比例的量的過程中,體會數(shù)量之間相依互變的關(guān)系,感受有效表示數(shù)量關(guān)系及其變化規(guī)律的不同數(shù)學(xué)模型,進(jìn)一步培養(yǎng)觀察能力和發(fā)現(xiàn)規(guī)律的能力。
3.使學(xué)生進(jìn)一步體會數(shù)學(xué)與日常生活的密切聯(lián)系,增強從生活現(xiàn)象中探索數(shù)學(xué)知識和規(guī)律的意識。教學(xué)重難點:教學(xué)過程:
一、教學(xué)例11.談話引出例1的表格,讓學(xué)生說一說表中列出了哪兩種量。
2.引導(dǎo)學(xué)生觀察表中的數(shù)據(jù),說一說這兩種量的數(shù)值分別是怎樣變化的。
可先讓同桌相互說一說,再組織全班交流。通過交流,使學(xué)生初步感知兩種量的變化情況:單價擴(kuò)大,數(shù)量反而縮??;單價縮小,數(shù)量反而擴(kuò)大。
小結(jié):數(shù)量和單價是兩種相關(guān)聯(lián)的量,單價變化,數(shù)量也隨著變化。
3.引導(dǎo)學(xué)生進(jìn)一步觀察表中的數(shù)據(jù),找一找這兩種量的變化的規(guī)律,啟發(fā)學(xué)生從“變化”中去尋找“不變”。
學(xué)生可能會從不同的角度去尋找規(guī)律。
教師可根據(jù)交流的實際情況,及時引導(dǎo)學(xué)生通過計算確認(rèn)這一規(guī)律,并有意識地從后一種角度突出這一規(guī)律。
如果學(xué)生發(fā)現(xiàn)不了上述規(guī)律,可引導(dǎo)學(xué)生寫出幾組相對應(yīng)的路程與時間的比,并求出比值。
根據(jù)學(xué)生的回答,教師板書關(guān)系式:數(shù)量×單價=總價(一定)。
5.教師對兩種量之間的關(guān)系作具體說明:數(shù)量和單價是兩種相關(guān)聯(lián)的量,單價變化,數(shù)量也隨著變化。當(dāng)單價和對應(yīng)數(shù)量的積總是一定,也就是總價一定時,單價和數(shù)量成反比例,單價和數(shù)量是成反比例的量。
(板書:路程和時間成正比例)。
二、教學(xué)“試一試”
1.要求學(xué)生根據(jù)表中的已知條件先把表格填寫完整。
2.根據(jù)表中的數(shù)據(jù),依次討論表格下面的三個問題,并仿照例3作適當(dāng)?shù)陌鍟?.讓學(xué)生根據(jù)板書完整地說一說鉛筆的總價和數(shù)量成什么關(guān)系。
三、抽象表達(dá)正比例的意義。
1.引導(dǎo)學(xué)生觀察上面的兩個例子,說說它們有什么共同點。
愛心。
用心。
專心。
根據(jù)學(xué)生的回答,板書關(guān)系式:
四、鞏固練習(xí)。
1.完成第65頁的“練一練”。
先讓學(xué)生獨立思考并作出判斷,再要求說明判斷理由。2.做練習(xí)十三第6~8題。
第6、7題讓學(xué)生按題目要求先各自算一算、想一想,再組織討論和交流。讓學(xué)生完整地說出判斷兩種量是否成反比例的思考過程。
第8題。
(1)讓學(xué)生根據(jù)左邊表格中的要求收集數(shù)據(jù),并回答問題(1)。(2)(1)讓學(xué)生根據(jù)右邊表格中的要求收集數(shù)據(jù),并回答問題(2)。
填好表格后,組織學(xué)生討論,明確:只有當(dāng)兩種相關(guān)聯(lián)的量的積一定時,它們才能成反比例。
五、全課小結(jié)。
這節(jié)課你學(xué)會了什么?通過這節(jié)課的學(xué)習(xí),你還有哪些收獲?
愛心。
用心。
專心2。
反比例教學(xué)設(shè)計篇二
教學(xué)目標(biāo):
2.通過解答應(yīng)用題使學(xué)生熟練地判斷兩種相關(guān)聯(lián)的量是否成反比例,從而加深對反比例意義的理解。
3.培養(yǎng)學(xué)生分析問題、解決問題的能力。
4.發(fā)展學(xué)生綜合運用知識解決問題的能力。
教學(xué)重點:
教學(xué)難點:
通過解答應(yīng)用題使學(xué)生熟練地判斷兩種相關(guān)聯(lián)的量是否成反比例,掌握用反比例的方法解答相關(guān)應(yīng)用題。
教法:
創(chuàng)設(shè)情境,質(zhì)疑引導(dǎo)。經(jīng)歷用比例方法解決問題的過程,體驗解決問題的策略,培養(yǎng)和發(fā)展學(xué)生的發(fā)散思維。
學(xué)法:
理解分析與合作交流相結(jié)合。
教具:課件。
教學(xué)過程:
一、定向?qū)W(xué)(5分)。
1、判斷下面每題中的兩種量成什么比例?并說明理由。
(1)總價一定,單價和數(shù)量。
(2)我們班學(xué)生做操,每行站的人數(shù)和站的行數(shù)。
(3)路程一定,速度和時間。
(4)水費一定,每噸水的價錢和用水的噸數(shù)。
2、出示目標(biāo)。
(2)熟練地判斷兩種相關(guān)聯(lián)的量是否成反比例,從而加深對反比例意義的理解。
二、自主學(xué)習(xí)(10分鐘)。
內(nèi)容:課本62頁例61、方法:自主學(xué)習(xí),小組合作。
2、時間:5分鐘。
3、思考問題:
(1)、題目中有哪些變化的量和不變的量?你是從題中哪里發(fā)現(xiàn)的?
(2)、這三種量成什么關(guān)系?你是怎樣判定的?
(3)、列出關(guān)系式。
4、跟蹤練習(xí)。
這批書如果每包20本,要捆18包。如果要捆15包,每包多少本?
三、合作交流(10分鐘)。
1、課本59頁“做一做”第2題。
四、質(zhì)疑探究(5分)。
針對學(xué)生的學(xué)習(xí)情況,重點強調(diào)用反比例知識解決問題的解題步驟和方法。
(1)、題目中有哪些變化的量和不變的量?
(2)、這三種量成什么關(guān)系?
(3)、列出關(guān)系式。
五、小結(jié)檢測(10分鐘)。
1、這節(jié)課有什么收獲?你學(xué)會了什么?
2、檢測。
第64頁的5、6、7、8題。
板書設(shè)計:
(1)、題目中有哪些變化的量和不變的量?
(2)、這三種量成什么關(guān)系?
(3)、列出關(guān)系式。
反比例教學(xué)設(shè)計篇三
聽了靳老師講的這節(jié)解決問題的課,我感覺最大的亮點是給我們展示了一節(jié)環(huán)環(huán)相扣的課堂,能讓學(xué)生在40分鐘的課堂上學(xué)到更多的知識。
首先,在課堂設(shè)計上,以練習(xí)為主,在練習(xí)中提升知識的運用。教學(xué)中,靳老師從剛開始的溫故互查環(huán)節(jié),就有目的的引導(dǎo)學(xué)生總結(jié)解決問題的6個步驟,然后讓學(xué)生以這6個步驟為解決問題的主要思路,從出示的例題,以至于后面的'練習(xí)題,都是圍繞這一思路完成。每道題都分析了題目中哪兩種量是相關(guān)聯(lián)的?哪一種量是固定不變的?從哪里可以看出?它們成什么關(guān)系?學(xué)生以小組為單位圍繞以下兩個問題討論,并嘗試列示。解答完后提出還需要檢驗。通過例題的教學(xué)引導(dǎo)學(xué)生熟練運用解題步驟:整個教學(xué)環(huán)節(jié)都貫穿在這一環(huán)境中,這種聯(lián)系實際的方式,學(xué)生倍感親切,興趣盎然;同時能體會到數(shù)學(xué)在實際生活中的應(yīng)用價值。
其次,靳老師緊緊圍繞教研主題主題“重點導(dǎo)學(xué)、疑點導(dǎo)練”,教學(xué)目標(biāo)明確,在導(dǎo)學(xué)時言簡意賅。例如:每一道題目中“哪兩種量是相關(guān)聯(lián)的量?哪一種量是固定不變的,從哪里可以看出?它們成什么關(guān)系?”這些問題作為引導(dǎo)學(xué)生分析問題的關(guān)鍵去共同交流,然后讓學(xué)生在練習(xí)中發(fā)現(xiàn)問題,在疑惑中解決問題,成就了高效的課堂。
最后,我覺得教師主導(dǎo)、學(xué)生主體作用發(fā)揮較好。課上自始至終讓學(xué)生參與體驗解決問題的過程,通過自主學(xué)習(xí)和互動交流,很快掌握了本節(jié)課知識。在教學(xué)中力求通過知識的遷移,結(jié)合學(xué)生的生活經(jīng)驗,在實際教學(xué)中,將課堂的主動權(quán)放手學(xué)生,讓學(xué)生在自己探索、獨立嘗試、同桌交流、概括小結(jié)、拓展延伸中輕松,高效地完成了教學(xué)任務(wù)。
建議:
1、引導(dǎo)學(xué)生說出檢驗的方法。
2、有些題可以適當(dāng)?shù)挠嬎阋幌隆?/p>
反比例教學(xué)設(shè)計篇四
教學(xué)內(nèi)容:教材第62頁的例6,完成練習(xí)十一的第八題。知識與技能:
1、使學(xué)生能正確判斷應(yīng)用題中涉及的量成什么比例關(guān)系,能利用反比例的意義正確解答實際問題。
2、進(jìn)一步培養(yǎng)學(xué)生應(yīng)用已學(xué)知識進(jìn)行分析、推理的能力。
過程與方法:理解、掌握用比例知識解答應(yīng)用題的解題思路和方法。情感態(tài)度價值觀:
3、在解決實際問題的過程中,開拓思維。教學(xué)重點:認(rèn)識反比例實際問題的特點。
一、復(fù)習(xí)導(dǎo)入。
1、判斷下面的量各成什么比例。路程一定,行駛的速度和時間。
2、判斷題中相關(guān)聯(lián)的兩種量成什么比例,并列出相應(yīng)的等式。
一列火車行駛360千米。每小時行90千米,要行4小時;每小時行80千米,要行x小時。
3、一列火車5小時行駛800千米,用同樣的速度行駛1280千米,需要多少小時?(學(xué)生獨立解答,訂正時說一說解題的步驟。)。
4、導(dǎo)入揭題:我們繼續(xù)學(xué)習(xí)用比例解決問題——用反比例解決問題。
二、教學(xué)新課。
1、出示例題:一批書,如果每包20本,要捆18包;如果每包30本,要捆多少包?
2、學(xué)生讀題,分析題意。
3、學(xué)生嘗試解答,集體交流:說說你是怎么做的?
4、變式練習(xí):一批書,如果每包20本,要捆18包;如果要捆15包,每包是多少本?
5、歸納解題步驟(1)分析判斷。
(2)找出列比例式所需的相等關(guān)系(3)設(shè)未知數(shù)列等式(4)求解。
(5)檢驗寫答語。
三、鞏固練習(xí)。
1、同學(xué)們做廣播操,每行站20人,正好站18行;如果每行站24人,可以站多少行?
四、課堂總結(jié)。
2、自我評價:我學(xué)的怎么樣?
五、作業(yè):完成練習(xí)九的第4、7題。
六、思維訓(xùn)練。
反比例教學(xué)設(shè)計篇五
公開課上完了,總的感覺有成功的地方,也有不足之處。我認(rèn)為本堂課成功的做法有以下幾方面:
一、定位較準(zhǔn),立足于本校學(xué)情。由于學(xué)生基礎(chǔ)較差,本節(jié)復(fù)習(xí)是按知識點復(fù)習(xí),目的是落實知識點和掌握一些基本的題型,通過教學(xué)來看目標(biāo)已達(dá)成。
二、習(xí)題設(shè)計合理,立足于思維訓(xùn)練。本節(jié)課每個知識點都設(shè)計了針對性的變式練習(xí),通過練習(xí)學(xué)生的解體技巧、方法、思維都得到了訓(xùn)練。
三、注重了數(shù)學(xué)思想方法的滲透。在反比例函數(shù)的性質(zhì)教學(xué)時,緊緊抓住關(guān)鍵詞語,突破難點。性質(zhì)強調(diào)“在同一象限內(nèi)”,而我們學(xué)生往往忽略這個問題,無論是怎樣的兩點,都直接用性質(zhì),對此,采用討論的觀點,結(jié)合圖像觀察,讓學(xué)生看到理解到:在同一象限內(nèi)可直接用性質(zhì),不在同一象限內(nèi),一、二象限的點的縱坐標(biāo)永遠(yuǎn)大于三、四象限內(nèi)點的縱坐標(biāo)。這樣,非常明了的讓學(xué)生把最容易混淆的知識分清了,突破難點的同時及時總結(jié)出這其中體現(xiàn)出的數(shù)學(xué)思想方法:分類討論和數(shù)形結(jié)合的思想方法。
四、大膽嘗試信息技術(shù)教學(xué)?!鞍喟嗤ā弊哌M(jìn)了課堂,信息技術(shù)的教學(xué)正沖擊著傳統(tǒng)的數(shù)學(xué)課堂,雖然白板的功能還沒完全了解,使用的也不夠熟練,但也能體現(xiàn)出信息技術(shù)在數(shù)學(xué)教學(xué)的靈活性、直觀性,對本節(jié)課“反比例函數(shù)的性質(zhì)”等多處教學(xué)都起到一定的作用,提高了課堂效率。
不足之處:。
一、預(yù)見性不夠。這主要體現(xiàn)在知識回顧中的第二題,本來打算一點而過,結(jié)果學(xué)生的回答偏離了老師的預(yù)想,老師勢必站在學(xué)生的角度給他們一一糾正,從而浪費了時間,自己對于突發(fā)事件的處理靈活性還不夠,掌控課堂的能力有待提高。
二、對學(xué)生的情感關(guān)注太少。本來想營造一種和諧的課堂氣氛,學(xué)生因為緊張回答問題不積極,不敢大膽發(fā)表自己的觀點,課堂氣氛死氣沉沉,沒有煥發(fā)出學(xué)生的激情。如果在一開始就用生動活潑激趣的語言導(dǎo)入課題,在教學(xué)過程中對少數(shù)同學(xué)的回答能及時給予表揚和激勵,不但能消除學(xué)生的緊張情緒,也能激發(fā)學(xué)生的興趣,堅定學(xué)習(xí)的信心。
三、角色轉(zhuǎn)換不徹底。在整個課堂教學(xué)過程中,教師圍繞主題、圍繞學(xué)生提問的多,給學(xué)生提問的時間和機會很少.不能大膽放心把課堂交還給學(xué)生.今后還需要改進(jìn)的地方:
一、在上課過程中,要始終關(guān)注學(xué)生的情感。因為學(xué)生的學(xué)習(xí)是認(rèn)知和情感的結(jié)合,只有給了他們情感上的極大滿足,學(xué)生才會獲得渴望成功的動力,我們的自主學(xué)習(xí)活動才能收到應(yīng)有的效果。
二、不斷學(xué)習(xí)新的教育理論,不斷更新教學(xué)觀念,使數(shù)學(xué)教育面向全體學(xué)生,實現(xiàn)——人人學(xué)有價值的數(shù)學(xué),人人都能獲得必需的數(shù)學(xué),不同的人在數(shù)學(xué)上得到不同的發(fā)展。
三、注意評價的多元化,全面了解學(xué)生的數(shù)學(xué)學(xué)習(xí)歷程,對數(shù)學(xué)學(xué)習(xí)的評價不僅要關(guān)注學(xué)生學(xué)習(xí)的結(jié)果,更要關(guān)注他們學(xué)習(xí)的過程,幫助學(xué)生認(rèn)識自我,建立信心。
四、努力學(xué)習(xí)多媒體軟件設(shè)計和制作,把它作為教師備課、教學(xué)改革的工具,使電腦、網(wǎng)絡(luò)、光盤、白板等現(xiàn)代媒體成為像黑板、粉筆一樣的得心應(yīng)手的工具,恰如其分地應(yīng)用于日常課堂教學(xué)中,真正為教學(xué)服務(wù)。
有反思才會有進(jìn)步,作為身處課程改革第一線的教育工作者,應(yīng)迅速轉(zhuǎn)變傳統(tǒng)的教育觀念,勇于創(chuàng)新,積極接受挑戰(zhàn)。
反比例教學(xué)設(shè)計篇六
知識與技能:1.進(jìn)一步熟悉作函數(shù)圖象的主要步驟,會作反比例函數(shù)的圖象。
2.體會函數(shù)的三種表示方法的相互轉(zhuǎn)換,對函數(shù)進(jìn)行認(rèn)識上的整合。
3.培養(yǎng)學(xué)生從函數(shù)圖象中獲取信息的能力,初步探索反比例函數(shù)的性質(zhì)。
過程與方法:通過學(xué)生自己動手列表,描點,連線,提高學(xué)生的作圖能力;通過觀察圖象,概括反比例函數(shù)圖象的有關(guān)性質(zhì),訓(xùn)練學(xué)生的概括總結(jié)能力。
情感、態(tài)度與價值觀:讓學(xué)生積極參與到數(shù)學(xué)學(xué)習(xí)活動中去,增強他們對數(shù)學(xué)學(xué)習(xí)的好奇心和求知欲。
教學(xué)難點1)重點:畫反比例函數(shù)圖象并認(rèn)識圖象的特點。
教學(xué)關(guān)鍵教師畫圖中要規(guī)范,為學(xué)生樹立一個可以學(xué)習(xí)的模板。
教學(xué)方法激發(fā)誘導(dǎo),探索交流,講練結(jié)合三位一體的教學(xué)方式。
教學(xué)手段教師畫圖,學(xué)生模仿。
教具三角板,小黑板。
學(xué)法學(xué)生動手,動眼,動耳,采用自主,合作,探究的學(xué)習(xí)方法。
(包含課前檢測、新課導(dǎo)入、新課講解、課堂練習(xí)、小結(jié)、形成性檢測、反饋拓展、作業(yè)布置)。
內(nèi)容設(shè)計意圖。
(一般地,如果兩個變量x、y之間的關(guān)系可以表示成y=(k為常數(shù),k0)的形式,那么稱y是x的反比例函數(shù)。)。
2.反比例函數(shù)的定義中需要注意什么?
(1)k為常數(shù),k0。
(2)從y=中可知x作為分母,所以x不能為零。
問題1:對于一次函數(shù)y=kx+b(k0)的圖象與性質(zhì),我們是如何研究的?
y=kx+by=kx。
k0一、二、三一、三。
b0一、三、四。
k0一、二、四二、四。
b0二、三、四。
可以。
問題3:畫圖象的步驟有哪些呢?
(1)列表。
(2)描點。
(3)連線。
(教學(xué)片斷:
師:上一節(jié)課我們研究了反比例函數(shù),今天我們繼續(xù)研究反比例函數(shù),下面哪位同學(xué)說一下自己對反比例函數(shù)的了解。
生:我知道反比例函數(shù)來源于生活,生活中的許多問題都屬于反比例函數(shù)問題,例如,在勻速運動中當(dāng)路程一定時,且路程不等于零,則速度與時間成反比例函數(shù)關(guān)系。
生:我知道反比例函數(shù)的解析式為且k不等于0。
師:現(xiàn)在給大家?guī)追昼姷臅r間探討一下反比例函數(shù)圖象該怎么畫?
學(xué)生思考、交流、回答。
提問:你能畫出的圖象嗎?
學(xué)生動手畫圖,相互觀摩。
(1)列表(取值的特殊與有效性)。
x-8-4-2-1-1/21/21248。
(2)描點(描點的準(zhǔn)確)。
(3)連線(注意光滑曲線)。
議一議。
(1)你認(rèn)為作反比例函數(shù)圖象時應(yīng)注意哪些問題?與同伴進(jìn)行交流。
(2)如果在列表時所選取的數(shù)值不同,那么圖象的形狀是否相同?
(3)連接時能否連成折線?為什么必須用光滑的曲線連接各點?
(4)曲線的發(fā)展趨勢如何?
曲線無限接近坐標(biāo)軸但不與坐標(biāo)軸相交。
學(xué)生先分四人小組進(jìn)行討論,而后小組匯報。
做一做。
學(xué)生動手畫圖,相互觀摩。
想一想。
觀察和的圖象,它們有什么相同點和不同點?
學(xué)生小組討論,弄清上述兩個圖象的異同點。
相同點:(1)圖象分別都是由兩支曲線組成(2)都不與坐標(biāo)軸相交(3)都是軸對稱圖形(y=x、y=-x)和中心對稱圖形(對稱中心(0,0)即坐標(biāo)原點)。
不同點:第一個圖象位于一、三象限;第二個圖象位于二、四象限。
反比例函數(shù)y=有下列性質(zhì):反比例函數(shù)的圖象y=是由兩支曲線組成的。
(1)當(dāng)k0時,兩支曲線分別位于第___、___象限,
(2)當(dāng)k0時,兩支曲線分別位于第___、___象限。
(1)。
(1)已知函數(shù)的圖象分布在第二、四象限內(nèi),則的取值范圍是_________。
(2)若ab0,則函數(shù)與在同一坐標(biāo)系內(nèi)的圖象大致可能是下圖中的()。
(a)(b)(c)(d)。
(3)畫和的圖象。
在同一坐標(biāo)系中作出函數(shù)y=2/x與函數(shù)y=x-1的圖象,并利用圖象求它們的交點坐標(biāo)。
(2)習(xí)題5.2.1。
復(fù)習(xí)上節(jié)主要內(nèi)容。
(3分鐘)。
(5分鐘)。
運用類比研究一次函數(shù)性質(zhì)的方法,來研究反比例函數(shù)圖象與性質(zhì)。
由于初中學(xué)生屬于義務(wù)教育階段,沒有經(jīng)過入學(xué)選拔,所以兩極分化比較嚴(yán)重,上面提出的問題帶有一定的開放性,面向各層次的學(xué)生,使不同層次的學(xué)生都有一定的問題可答,從而激發(fā)起不同層次學(xué)生的學(xué)習(xí)積極性。
數(shù)學(xué)教學(xué)重要目的之一是使學(xué)生學(xué)會學(xué)習(xí),利用這個問題可以使學(xué)生學(xué)會尋找研究的方向,會提出研究的課題,提高學(xué)習(xí)的能力。
數(shù)學(xué)學(xué)習(xí)活動是學(xué)生對自己頭腦中已有知識的重新建構(gòu),所以利用學(xué)生頭腦中已有的一次函數(shù)圖象與性質(zhì),及研究一次函數(shù)圖象與性質(zhì)的方法,創(chuàng)設(shè)問題情境,可以激發(fā)學(xué)習(xí)研究的熱情,點燃學(xué)生思維的火花,并使學(xué)生知道如何研究新問題,使學(xué)生在探究過程中實現(xiàn)知識的遷移,形成新的認(rèn)知結(jié)構(gòu)。
(12分鐘)。
引導(dǎo)學(xué)生正確畫出反比例函數(shù)圖象,并能歸納反比例函數(shù)圖象的有關(guān)性質(zhì)。
在畫第一個圖象時,教師要在黑板上用三角板一步一步的示范,在重要地方再重點強調(diào),直到整個圖象的完成。只有以身示范,同學(xué)學(xué)習(xí)才有樣可依,有了正確標(biāo)準(zhǔn)的樣板,學(xué)生學(xué)習(xí)也變得容易。這樣可以培養(yǎng)學(xué)生嚴(yán)謹(jǐn)與嚴(yán)密的做題步驟以及做題的規(guī)范性。
注:(1)x取絕對值相等符號相反的數(shù)值。
(2)x取值要盡可能多,而且有代表性。
(3)連線時用光滑曲線從小到大依次連接。
(4)圖象不與坐標(biāo)軸相交。
在此學(xué)生若是回答圖象是軸對稱圖象或者中心對稱圖象都要予以肯定,這些內(nèi)容留給學(xué)生課下探討,并鼓勵提出問題的學(xué)生繼續(xù)探索不要放棄。
(3分鐘)。
此時圖象由學(xué)生仿照第一個在下邊自己獨立畫出,并且監(jiān)督學(xué)生,在有學(xué)生畫的不對的地方及時指出,并使其改正后鼓勵。最后在黑板上畫出正確的圖象,使學(xué)生自己畫的圖象與黑板對比。
(5分鐘)。
(4分鐘)。
培養(yǎng)學(xué)生歸納,語言表達(dá)能力。
此中注意分類討論思想的應(yīng)用。
(2分鐘)。
與新課較接近的簡化檢測可以再次回顧所學(xué)內(nèi)容,以及內(nèi)容重點。這類題多為口算或口答,題目簡單不過所學(xué)內(nèi)容可以全部體現(xiàn)。
(5分鐘)。
這類練習(xí)要求動筆計算或者畫圖,有一定難度,可以深化所學(xué)內(nèi)容。
(4分鐘)。
此題既是對函數(shù)圖象畫法的復(fù)習(xí)又是對方程求解的深化。其中蘊含了數(shù)形結(jié)合思想。
(1分鐘)。
鞏固作反比例函數(shù)圖象的步驟,預(yù)習(xí)下一節(jié)課內(nèi)容。
本節(jié)課通過學(xué)生自主探索,合作交流,自主畫圖,以認(rèn)知規(guī)律為主線,以發(fā)展能力為目標(biāo),以從直觀感受到分析歸納為手段,培養(yǎng)學(xué)生的合情推理能力和積極的情感態(tài)度,促進(jìn)良好的數(shù)學(xué)觀的形成。培養(yǎng)了學(xué)生的抽象思維能力,同時也向?qū)W生滲透了歸納類比,數(shù)形結(jié)合以及分類討論的數(shù)學(xué)思想方法。
由于此節(jié)課是動手畫圖,限于器材以及教學(xué)設(shè)備,圖象顯示不能用幾何畫板和投影儀,不過一筆一筆的教學(xué)生一個范例,既可給學(xué)生思考也可有學(xué)習(xí)的空間。
在由圖象獲取性質(zhì)的時候有一些不足,以后教課時要注意引導(dǎo),使學(xué)生較快獲得有效信息,從而歸納出要得到的性質(zhì)和結(jié)論。在這節(jié)課要多強調(diào)光滑曲線以及畫法。
(1)列表(取值的特殊與有效性)。
x-8-4-2-1-1/21/21248。
(2)描點(描點的準(zhǔn)確)。
(3)連線(注意光滑曲線)。
注:(1)x取絕對值相等符號相反的數(shù)值。
(2)x取值要盡可能多,而且有代表性三:練習(xí)。
(3)連線時用光滑曲線從小到大依次連接。
(4)圖象不與坐標(biāo)軸相交。
(1)當(dāng)k0時,兩支曲線分別位于第一、三象限,
(2)當(dāng)k0時,兩支曲線分別位于第二、四象限。
反比例教學(xué)設(shè)計篇七
數(shù)學(xué)備課大師目錄式免費主題備課平臺!
反比例關(guān)系是一種重要的數(shù)量關(guān)系,它滲透了初步的函數(shù)思想。所以本節(jié)課體現(xiàn)了以下2點:
1、溫故知新,滲透難點。
本節(jié)課《成反比例的量》中重點和難點都是學(xué)生理解“成反比例”這個概念,而這個概念的得出要從研究數(shù)量關(guān)系入手,實質(zhì)上是對數(shù)量之間關(guān)系一種新的定義,一種新的內(nèi)在揭示。對于學(xué)生來說,數(shù)量關(guān)系并不陌生,在以前的應(yīng)用題學(xué)習(xí)中是反復(fù)強調(diào)過的,本節(jié)課的教學(xué)并不僅僅停留在數(shù)量關(guān)系上,而是要從一個新的數(shù)學(xué)角度來加以研究,用一種新的數(shù)學(xué)思想來加以理解,用一種新的數(shù)學(xué)語言來加以定義?!俺煞幢壤牧俊迸c數(shù)量關(guān)系是有本質(zhì)聯(lián)系的,都是研究兩種數(shù)量之間的關(guān)系,而且是兩種數(shù)量之間相乘的關(guān)系,因此在復(fù)習(xí)題中我讓學(xué)生大量的復(fù)習(xí)了常見的乘法數(shù)量關(guān)系,并且聯(lián)系教材復(fù)習(xí)了教材及練習(xí)中涉及到的一些數(shù)量關(guān)系,滲透了難點。
2、重概念的形成過程,加強思維訓(xùn)練。
學(xué)習(xí)數(shù)學(xué)概念的最終目的是應(yīng)用于實際,去靈活解決實際問題,而實現(xiàn)這個目標(biāo)歸根結(jié)底依賴于對概念的本質(zhì)理解。成功的概念教學(xué)是要在得出概念之前下功夫,要設(shè)計多種教學(xué)環(huán)節(jié),利用各種教學(xué)手段使學(xué)生充分體驗得出概念的思維過程,先做到對概念本質(zhì)的理解,再順理成章的引出概念的物質(zhì)外殼---即用語句表達(dá)。
例如我在教學(xué)《成反比例的量》時,我通過復(fù)習(xí)常見的數(shù)量關(guān)系,從生活事例中引出數(shù)量關(guān)系,然后給這種數(shù)量關(guān)系一種新的理解,將這種數(shù)量關(guān)系重新定義為成反比例關(guān)系,給具備這種數(shù)量關(guān)系的數(shù)量重新定義為成反比例的量,沿著這條線索學(xué)生由淺入深,由表及里的體驗了概念形成的過程。為幫助學(xué)生建構(gòu)“反比例”的意義,課堂流程重點設(shè)計兩大板塊。其一是“選擇材料、主體解讀”的“原型體驗”板塊。在這一板塊中,借助三則具體材料讓學(xué)生經(jīng)歷商量選擇、獨立解讀、交流互評和推薦典型等數(shù)學(xué)活動,積累了較多的與反比例有關(guān)的信息和感性認(rèn)識;其二是交流思維、點化引領(lǐng)的數(shù)學(xué)化生成板塊。在這一板塊中,學(xué)生立足小組間的交流和思維共享,借助教師適時介入的適度點撥,生成了“反比例”數(shù)學(xué)概念,并通過回饋材料的概念解釋促進(jìn)了理解的深入。并能利用概念準(zhǔn)確的判斷兩種量是否成反比例。
宏豐小學(xué)。
王建軍。
數(shù)學(xué)備課大師今日用大師明日做大師!
反比例教學(xué)設(shè)計篇八
本堂課是在學(xué)生學(xué)習(xí)了正比例的基礎(chǔ)上學(xué)習(xí)反比例,由于學(xué)生有了前面學(xué)習(xí)正比例的基礎(chǔ),加上正比例與反比例在意義上研究的時候存在有一定的共性,因此學(xué)生在整堂課的學(xué)習(xí)上與前面學(xué)習(xí)的正比例相比有明顯的提高,而且在課時的安排上,在學(xué)習(xí)正比例的安排了2個課時,這里只是安排了1個課時,緊隨著課之后教材安排了一堂正反比例比較、綜合的一堂課,對學(xué)生在出現(xiàn)正反比例有點模糊的時候就及時地加以糾正。
反比例關(guān)系和正比例關(guān)系一樣,是比較重要的一種數(shù)量關(guān)系,學(xué)生理解并掌握了這種數(shù)量關(guān)系,可以加深對比例的理解,并能應(yīng)用它解決一些簡單的正、反比例方面的實際問題。同時通過反比例的教學(xué),可以進(jìn)一步滲透函數(shù)思想,為學(xué)生今后學(xué)習(xí)中學(xué)數(shù)學(xué)和物理、化學(xué)打下基礎(chǔ)。反比例的意義這部分內(nèi)容是在學(xué)生理解并掌握比和比例的意義、性質(zhì)的基礎(chǔ)上進(jìn)行教學(xué)的,但概念比較抽象,學(xué)習(xí)難度比較大,是六年級教學(xué)內(nèi)容的一個教學(xué)重點也是一個教學(xué)難點。
反比例教學(xué)設(shè)計篇九
1.能靈活列反比例函數(shù)表達(dá)式解決一些實際問題。
2.能綜合利用幾何、方程、反比例函數(shù)的知識解決一些實際問題。
1.經(jīng)歷分析實際問題中變量之間的關(guān)系,建立反比例函數(shù)模型,進(jìn)而解決問題。
2.體會數(shù)學(xué)與現(xiàn)實生活的緊密聯(lián)系,增強應(yīng)用意識,提高運用代數(shù)方法解決問題的能力。
情感態(tài)度與價值觀。
體驗反比例函數(shù)是有效地描述現(xiàn)實世界的重要手段,認(rèn)識到數(shù)學(xué)是解決實際問題和進(jìn)行交流的重要工具。
掌握從實際問題中建構(gòu)反比例函數(shù)模型。
從實際問題中尋找變量之間的關(guān)系。關(guān)鍵是充分運用所學(xué)知識分析實際情況,建立函數(shù)模型,教學(xué)時注意分析過程,滲透數(shù)形結(jié)合的思想。
教學(xué)方法。
啟發(fā)引導(dǎo)、合作探究。
教學(xué)媒體。
課件。
(一)創(chuàng)設(shè)問題情境,引入新課。
[生]是為了應(yīng)用。
[師]很好。學(xué)習(xí)的目的是為了用學(xué)到的知識解決實際問題。究竟反比例函數(shù)能解決一些什么問題呢?本節(jié)課我們就來學(xué)一學(xué)。
問題:某校科技小組進(jìn)行野外考察,途中遇到一片十幾米寬的爛泥濕地,為了安全、迅速通過這片濕地,他們沿著前進(jìn)路線鋪墊了若干塊木板,構(gòu)筑成一條臨時通道,從而順利完成了任務(wù)的情境。
反比例教學(xué)設(shè)計篇十
人教版六年制第十二冊第42~43頁的內(nèi)容。
二、教學(xué)目標(biāo)。
(一)經(jīng)歷探索兩種相關(guān)聯(lián)的量的變化過程,發(fā)現(xiàn)規(guī)律,理解反比例的意義。
(二)根據(jù)反比例的意義,正確判斷兩種量是否成反比例。
(三)滲透函數(shù)思想,使學(xué)生受到辯證唯物主義觀點的啟蒙教育。
三、教學(xué)難點。
正確判斷兩種相關(guān)聯(lián)的量是否成反比例。
四、教學(xué)過程。
(一)情境導(dǎo)入。
1.課前談話:同學(xué)們,你們?nèi)ミ^南昌嗎?你知道萍鄉(xiāng)到南昌需要多長時間嗎?(媒體顯示:幾年前,我乘坐由萍鄉(xiāng)開往南昌的k8727次列車需要4小時到達(dá),現(xiàn)在改乘d117次列車,只需2小時5分鐘,這是為什么呢?)。
2.學(xué)生對上述問題發(fā)表意見。
3.師:今天,我們就來研究這種類型的問題。
(二)探索新知。
將本文的word文檔下載到電腦,方便收藏和打印。
反比例教學(xué)設(shè)計篇十一
教學(xué)目的:
1.通過檢測講評,進(jìn)一步理解和掌握正、反比例應(yīng)用題的解題規(guī)律。
2.通過一題多變、一題多解等題組練習(xí)形式,由淺入深,由易到難,培養(yǎng)學(xué)生思維的靈活性。
我們已經(jīng)學(xué)過了正、反比例應(yīng)用題,今天我們上一節(jié)檢測講評課課。(板書課題:正反比例應(yīng)用題)通過這節(jié)課的學(xué)習(xí),希望進(jìn)一步理解和掌握正反比例應(yīng)用題的解題規(guī)律。
檢測題。
1.什么叫成正比例的量?它的關(guān)系式是什么?
2.什么叫成反比例的量?它的關(guān)系式是什么?
3.判斷下面兩種量成不成比例?成什么比例?
a.訂閱《中國少年報》的份數(shù)和錢數(shù)。
b.日產(chǎn)量一定,天數(shù)和總產(chǎn)量。
c.路程一定,速度和時間。
d.圓的周長和半徑。
e.長方形的周長一定,長和寬。
f.圓錐的體積一定,底面積和高。
大家對概念掌握得較熟練,但在應(yīng)用中可看出對概念的理解程度還是有差距的。兩種量是不是成正反比例的量先明確是誰和誰,其次看它們是不是相互影響,若是,就看著兩種量是不是屬于積商關(guān)系,積商一定時,就下斷論。例如人的身高和體重是不是成正反比例的量,這兩種量一種量變化,另一種量不一定發(fā)生變化,直接否定。再如,圓周率和圓周長是不是成正反比例的量,因為圓周長變化時圓周率并不發(fā)生變化,也是直接否定。a、b、c、d、f中兩種量相互影響,且積或商一定所以成正反比例的量,e中兩種量相互影響,但不實際上已定,故不成正反比例的'量。大家一定要把握概念的實質(zhì),靈活運用。
二、練一練。
1.計算下列各題:
農(nóng)具廠生產(chǎn)一批農(nóng)具,3天生產(chǎn)360臺,照這樣計算,30天可生產(chǎn)多少臺?(指名讀題)。
師:這道題用比例方法來解答請同學(xué)們自己做一做。(一人板演)。
訂正時請板演的同學(xué)先講一講,做題的時候自己是怎么想的?并板書列式:360/3=x/30。
師:這道題,你們覺得他做得咋樣?如果工作時間30天不直接告訴我們,還可以怎么說?
生:如果再生產(chǎn)27天,一共可生產(chǎn)多少臺?
師:同原題比較,這道題復(fù)雜在哪呢?
生:原題的條件是直接的,這題的條件是間接的。
生:原題問題所對應(yīng)的量是已知的,這題問題所對應(yīng)的量是未知的。
師:這道題怎樣解答呢?(要求學(xué)生口頭列出比例式)。
生:解:設(shè)一共可生產(chǎn)x臺,360/3=x/(3+27)(板書:360/3=x/(3+27))。
教師提問:3+27求的是什么?把3+27寫成27可以嗎?
教師強調(diào):列式時一定要找準(zhǔn)相關(guān)聯(lián)的量中相對應(yīng)的數(shù)。
師;這道題還可以怎樣解答?
生:解:設(shè)27天可生產(chǎn)x臺,360/3=x/27x+360。(板書:360/3=x/27x+360)。
教師小結(jié):80%同學(xué)能做出地一題,第二問題就有點大了。其實象這道題,問題雖然變了,但題中基本數(shù)量關(guān)系未變,所以我們都是用正比例的方法來解答的。這道題我們可以直接設(shè)問題為x,列出這樣的比例式(指360/3=x/(3+27))。也可以間接設(shè)27天的生產(chǎn)量為x,求出27天的生產(chǎn)量再加上前3天的生產(chǎn)量,就得到了一共的生產(chǎn)量。
解答正比例應(yīng)用題的關(guān)鍵一是要正確判斷相關(guān)聯(lián)的兩種量是否成正比例,二是要找準(zhǔn)相關(guān)聯(lián)的量中相對應(yīng)的數(shù)。
師:這道題用比例方法來解答請同學(xué)們自己做一做。(一人板演)。
教師訂正時請同學(xué)講述解題思路,并板書方程:100x=80*20。
將原題變成:
以上4題要求學(xué)生獨立完成。
教師評講:通過剛才的變換我們發(fā)現(xiàn),較復(fù)雜的反比例應(yīng)用題,其復(fù)雜性表現(xiàn)在兩個方面。一是已知條件發(fā)生變化,引起未知數(shù)x對應(yīng)值的復(fù)雜化。二是問題發(fā)生變化,引起未知數(shù)x的復(fù)雜化。但不管怎樣,我們要緊扣反比例的意義,對應(yīng)用題中兩相關(guān)聯(lián)的量進(jìn)行正確的判斷。
等于兩種相關(guān)聯(lián)的量相除,則成正比例;定量等于兩種相關(guān)聯(lián)的量相乘,則成反比例。
反比例教學(xué)設(shè)計篇十二
教學(xué)目標(biāo):
1.通過觀察、分析、對比等活動,理解成反比例的量,并能找出生活中成反比例的量的實例。
2.揭示知識間的聯(lián)系,培養(yǎng)學(xué)生分析、比較、判斷和推理及處理紛繁復(fù)雜信息的能力。
3.進(jìn)一步培養(yǎng)自主學(xué)習(xí),合作交流,探索研究的意識和能力,激發(fā)學(xué)習(xí)數(shù)學(xué)的熱情。教學(xué)重點:
認(rèn)真分析兩種量的變化情況及規(guī)律。教具:
教學(xué)課件教學(xué)過程:一.復(fù)習(xí)導(dǎo)入。
1.什么是成正比例的量?
2.判斷兩個量是否成正比例必須滿足哪些條件?
3.判斷下面表格中的兩個量是否成正比例,并說明理由。課件出示。
表一。
高度/厘米24681012。
體積/立方厘米50100150200250300表二。
高度/厘米302015105。
底面積/平方厘米1015203060。
學(xué)生獨立思考,指名匯報。
1.研究表2中高度與底面積的變化規(guī)律。
師:表2中的數(shù)據(jù)是通過這樣一個實驗得到的。課件出示課本第42頁例3中學(xué)生實驗的畫面。
請同學(xué)們口算驗證一下,這些杯子里水的體積是相同嗎?學(xué)生口算驗證并填表。
2.水的高度是怎樣隨著底面積變化的?
3.水的高度和底面積的變化有什么規(guī)律?學(xué)生小組討論并匯報討論結(jié)果。
請同學(xué)們結(jié)合上例小結(jié):什么是成反比例的量?
學(xué)生試概括,師引導(dǎo)學(xué)生準(zhǔn)確表述并板書反比例的意義。思考:怎樣依據(jù)反比例的意義判斷兩種量是否成反比例?3.用字母表示反比例關(guān)系。如果用字母x和y表示兩種相關(guān)聯(lián)的量,用k表示他們的積一定,反比例關(guān)系可以表示為()。4.反比例關(guān)系圖像。學(xué)習(xí)了正比例關(guān)系,我們認(rèn)識了正比例關(guān)系的圖像,知道正比例關(guān)系的圖像是一條經(jīng)過原點的直線,反比例關(guān)系的圖像是怎樣的,讓我們一起看看剛才例3中的反比例關(guān)系圖像。
1.出示課本第43頁的做一做。指名讀題,理解題意。
學(xué)生先獨立思考,再指名匯報。2.填空。(1)兩種()的量,一種量變化,另一種量也隨著變化,如果這兩種量中()的兩個數(shù)的()一定,這兩種量就叫做(),他們的關(guān)系叫做反比例關(guān)系。(2)如果用字母x和y表示兩種相關(guān)聯(lián)的量,用k表示它們的積(一定),反比例的關(guān)系式可以表示為()。
3.判斷下面題中的兩個量是否成反比例,并說明理由。(1)路程一定,速度和時間。
(2)書的總冊數(shù)一定,每包的冊數(shù)和包數(shù)。(3)在一塊菜地上種的黃瓜和西紅柿的面積。4.判斷。
1.被除數(shù)一定,除數(shù)和商成反比例。()2.2x5=10,所以2和5成反比例。()。
3.鋪地面積一定時,方磚面積和所需塊數(shù)成反比例。()4.班級學(xué)生的總?cè)藬?shù)一定,出勤率與缺勤率成反比例。()四.拓展應(yīng)用。
你能舉一個生活中成反比例的量的例子嗎?
五、課堂小結(jié)。
通過本節(jié)課的學(xué)習(xí)你有什么新的收獲?板書設(shè)計:
兩種相關(guān)聯(lián)的量。
成反比例的量一種量變化,另一種量也隨著變化。
如果這兩種量中相對應(yīng)的兩個數(shù)的積一定。
這兩種量就叫做成反比例的量,它們的關(guān)系叫做反比例關(guān)系。
反比例教學(xué)設(shè)計篇十三
1、理解反比例的意義,能根據(jù)反比例的意義,正確的判斷兩種量是否成反比例。
2、通過引導(dǎo)學(xué)生討論探究,分析合作,使學(xué)生進(jìn)一步認(rèn)識事物之間的聯(lián)系和發(fā)展變化的規(guī)律。
3、初步滲透函數(shù)思想。
引導(dǎo)學(xué)生總結(jié)出成反比例的量,是相關(guān)的兩種量中相對應(yīng)的兩個數(shù)積一定,進(jìn)而抽象概括出成反比例的關(guān)系式.
利用反比例的意義,正確判斷兩個量是否成反比例.
教法:自主探究,合作交流。
學(xué)法:小組合作交流。
教具:課件。
一、定向?qū)W(xué)(5分).
1、下面兩種量是不是成正比例?為什么?
購買練習(xí)本的價錢0.80元,1本;1.60元,2本;3.20元,4本;4.80元6本.
2、成正比例的量有什么特征?(口答)。
3、出示學(xué)習(xí)目標(biāo)。
1、理解反比例的意義,能根據(jù)反比例的意義。
2、正確的判斷兩種量是否成反比例。
二、自主學(xué)習(xí)(15分).
1、自學(xué)課本p47例2。
思考:
a、表中的兩種量是()和()。這兩種量是不是相關(guān)聯(lián)?為什么?
b、水的高度是隨著()的變化而變化,水的高度越()杯子的底面積就越()。
c、相對應(yīng)的杯子底面積和水的高度的乘積分別是(),一定嗎?
d、這個積表示()表示它們之間的數(shù)量關(guān)系式是()。
(2)從中你發(fā)現(xiàn)了什么?這與復(fù)習(xí)題相比有什么不同?
a、學(xué)生討論交流。
b、引導(dǎo)學(xué)生回答:
(3)教師引導(dǎo)學(xué)生明確:因為水的體積一定,所以水的高度隨著底面積的.變化面變化。底面積增加,高度反而降低,底面積減少,高度反而升高,而且高度和底面積的乘積一定,我們就說高度和底面積成反比例關(guān)系,高度和底面積叫做成反比例的量。
(4)如果用字母x和y表示兩種相關(guān)的量,用k表示它們的積一定,反比例可以用一個什么樣的式子表示?板書:x×y=k(一定)。
三、合作交流(6分)。
1、成反比例的量應(yīng)具備什么條件?
2、數(shù)學(xué)書第48頁的做一做,學(xué)生獨立完成,集體訂正。
四、質(zhì)疑探究(4分)。
舉出生活中反比例關(guān)系的例子。
五、小結(jié)檢測(4分)。
1、說說反比例的意義,如何判斷兩種量是否成反比例。
2、檢測。
判斷下面每題中的兩個量是不是成反比例,并說明理由。
(1)路程一定,速度和時間。
(2)小明從家到學(xué)校,每分走的速度和所需時間。
(3)平行四邊形面積一定,底和高。
(4)小林做10道數(shù)學(xué)題,已做的題和沒有做的題。
(5)小明拿一些錢買鉛筆,單價和購買的數(shù)量。
(6)你能舉一個反比例的例子嗎?
3、第51頁8題。
4、第51頁9題。
六、堂清(6分)。
p51練習(xí)九第10、11、12題。
兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應(yīng)的兩個數(shù)的積一定,這兩種量就叫做成反比例的量,它們的關(guān)系叫做反比例關(guān)系。
用字母表示:x×y=k(一定)。
反比例教學(xué)設(shè)計篇十四
1、理解反比例的意義,能根據(jù)反比例的意義,正確的判斷兩種量是否成反比例。
2、通過引導(dǎo)學(xué)生討論探究,分析合作,使學(xué)生進(jìn)一步認(rèn)識事物之間的聯(lián)系和發(fā)展變化的規(guī)律。
3、初步滲透函數(shù)思想。
引導(dǎo)學(xué)生總結(jié)出成反比例的量,是相關(guān)的兩種量中相對應(yīng)的兩個數(shù)積一定,進(jìn)而抽象概括出成反比例的關(guān)系式。
利用反比例的意義,正確判斷兩個量是否成反比例。
1、下面兩種量是不是成正比例?為什么?
購買練習(xí)本的價錢0。80元,1本;1。60元,2本;3。20元,4本;4。80元6本。
2、成正比例的量有什么特征?
1、導(dǎo)入新課:這節(jié)課我們繼續(xù)學(xué)習(xí)常見的數(shù)量關(guān)系中的另一種特征——成反比例的量。
2、教學(xué)p42例3。
(1)引導(dǎo)學(xué)生觀察上表內(nèi)數(shù)據(jù),然后回答下面問題:
a、表中有哪兩種量?這兩種量相關(guān)聯(lián)嗎?為什么?
b、水的高度是否隨著底面積的變化而變化?怎樣變化的?
d、這個積表示什么?寫出表示它們之間的數(shù)量關(guān)系式。
(2)從中你發(fā)現(xiàn)了什么?這與復(fù)習(xí)題相比有什么不同?
a、學(xué)生討論交流。
b、引導(dǎo)學(xué)生回答:
(3)教師引導(dǎo)學(xué)生明確:因為水的體積一定,所以水的高度隨著底面積的變化面變化。底面積增加,高度反而降低,底面積減少,高度反而升高,而且高度和底面積的乘積一定,我們就說高度和底面積成反比例關(guān)系,高度和底面積叫做成反比例的量。
(4)如果用字母x和y表示兩種相關(guān)的量,用k表示它們的積一定,反比例可以用一個什么樣的式子表示?板書:x×y=k(一定)。
1、想一想:成反比例的量應(yīng)具備什么條件?
2、判斷下面每題中的兩個量是不是成反比例,并說明理由。
(1)路程一定,速度和時間。
(2)小明從家到學(xué)校,每分走的速度和所需時間。
(3)平行四邊形面積一定,底和高。
(4)小林做10道數(shù)學(xué)題,已做的題和沒有做的題。
(5)小明拿一些錢買鉛筆,單價和購買的數(shù)量。
(6)你能舉一個反比例的例子嗎?
這節(jié)課我們學(xué)習(xí)了成反比例的量,知道了什么樣的兩個量是成反比例的兩個量,也學(xué)會了怎樣判斷兩種量是不是成反比例。
p45~46練習(xí)七第6~11題。
反比例教學(xué)設(shè)計篇十五
教學(xué)目標(biāo):
知識與技能:1.結(jié)合豐富的實例,認(rèn)識反比例。2.能根據(jù)反比例的意義,判斷兩個相關(guān)聯(lián)的量是不是反比例。
過程與方法:通過猜想、分析、對比、概括、舉例、判斷等活動,結(jié)合實例,理解反比例的意義,認(rèn)識反比例。
情感態(tài)度價值觀:培養(yǎng)學(xué)生自主、合作學(xué)習(xí)、探索新知的能力,激發(fā)學(xué)習(xí)數(shù)學(xué)的熱情。感受反比例關(guān)系在生活中的廣泛應(yīng)用。初步滲透函數(shù)思想。
教學(xué)重點:認(rèn)識反比例,根據(jù)反比例意義判斷兩個相關(guān)聯(lián)的量是否成。
反比例。
教學(xué)難點:認(rèn)識反比例,根據(jù)反比例意義判斷兩個相關(guān)聯(lián)的量是否成。
反比例。
教具準(zhǔn)備:電腦課件。
教學(xué)過程:
一、復(fù)習(xí)引入。
1、計算。
2、判斷下面各題中的兩種量是否成正比例?為什么?
(1)文具盒的單價一定,買文具盒的個數(shù)和總價。
(2)一堆貨物一定,運走的量和剩下的量。
(3)汽車行駛的速度一定,行駛的路程和時間。
3、說說什么是正比例。
師:大家對正比例知識理解掌握得非常好,接下來我們就該學(xué)習(xí)什么了?
二、出示學(xué)習(xí)目標(biāo)。
1.能根據(jù)反比例的意義,判斷兩個相關(guān)聯(lián)的量是不是反比例。2通過猜想、分析、對比、概括、舉例、判斷等活動,結(jié)合實例,理解反比例的意義,認(rèn)識反比例。
3培養(yǎng)學(xué)生探索研究的能力,感受反比例關(guān)系在生活中的廣泛應(yīng)用。
三、指導(dǎo)自學(xué)。
師:給你們講個小故事:
聰明!嘿嘿??
過了幾天,財主到了裁縫店取帽子,結(jié)果一看,頓時傻了眼:10頂?shù)拿弊有〉弥荒艽髟谑种割^上了!
學(xué)習(xí)提示:
一獨立思考?
1、“為什么同一匹布,裁縫說做1頂帽子,2頂帽子,10頂都可以呢?”
二合作學(xué)習(xí)。
小組討論上述的問題。
三看書合作學(xué)習(xí)。
1、把25頁例2、例3的表格補充完整。
4、你知道什么是反比例嗎?
四、學(xué)生自學(xué)。
五、檢查自學(xué)效果。
讓學(xué)生說說自學(xué)要求中的內(nèi)容。
師歸納:兩種相關(guān)聯(lián)的量,一種量隨著另一種量的變化而變化,
在變化過程中兩種量的積一定,那么這兩種量成反比例。
六、引導(dǎo)更正,指導(dǎo)運用。
你們還找出類似這樣關(guān)系的'量來嗎?”
排隊做操,總?cè)藬?shù)不變,排隊的行數(shù)和每行的人數(shù)是反比例;長方體的體積一定,底面積和高是反比例。
七、當(dāng)堂訓(xùn)練。
基礎(chǔ)練習(xí)。
1、填空。
兩種_____的量,一種量隨著另一種量變化,如果這兩種量中相對應(yīng)的兩個數(shù)的______,這兩種量叫做成反比例的量,它們的關(guān)系叫做_______關(guān)系。
2、判斷下面每題中的兩種量是不是成反比例,并說明理由。
(1)煤的總量一定,每天的燒煤量和能夠燒的天數(shù)。
(2)張伯伯騎自行車從家到縣城,騎自行車的速度和所需的時間。
(3)生產(chǎn)電視機的總臺數(shù)一定,每天生產(chǎn)的臺數(shù)和所用的天數(shù)。
(4)圓柱體的體積一定,底面積和高。
(5)小林做10道數(shù)學(xué)題,已做的題和沒有做的題。
(6)長方形的長一定,面積和寬。
(7)平行四邊形面積一定,底和高。
提高練習(xí)。
寬/cm1。
四、小結(jié)。
通過這節(jié)課的學(xué)習(xí),你有什么收獲?
這節(jié)課我們學(xué)習(xí)了成反比例的量,知道了什么樣的兩種量是成反比例的量,也學(xué)會了怎樣判斷兩種量是不是成反比例。
相關(guān)聯(lián),一個量變化,另一個量也隨著變化積一定。
xy=k(一定)。
反比例教學(xué)設(shè)計篇十六
一、教學(xué)內(nèi)容:反比例。(教材第47頁例2)。教學(xué)目標(biāo):
1.使學(xué)生理解反比例的意義,能正確地判斷兩種相關(guān)聯(lián)的量是不是成反比例的量。
2.讓學(xué)生經(jīng)歷反比例意義的探究過程,體驗觀察比較、推理、歸納的學(xué)習(xí)方法。
二、重點難點:
引導(dǎo)學(xué)生總結(jié)出成反比例的量的特點,進(jìn)而抽象概括出反比例的關(guān)系式。利用反比例的意義,正確判斷兩個量是否成反比例。
三、教學(xué)準(zhǔn)備:投影儀。
四、教學(xué)過程:
(一)復(fù)習(xí)導(dǎo)入。
1.讓學(xué)生說說什么是正比例,然后用投影出示下面的題。下面各題中哪兩種量成正比例?為什么?(1)每公頃產(chǎn)量一定,總產(chǎn)量和公頃數(shù)。
(2)一袋大米的重量一定,吃了的和剩下的。(3)修房屋時,粉刷的面積和所需涂料的數(shù)量。
2.說出每小時加工零件數(shù)、加工零件總數(shù)和加工時間三者之間的關(guān)系。在什么條件下,其中兩種量成正比例?教師:如果加工零件總數(shù)一定,每小時加工數(shù)和加工時間會成什么變化?關(guān)系怎樣?這就是我們這節(jié)課要學(xué)習(xí)的內(nèi)容。
(二)目標(biāo)解讀:
1、學(xué)生認(rèn)真度學(xué)習(xí)目標(biāo)。
2、理解目標(biāo)。
(三)自主預(yù)習(xí):
理解:哪兩種量叫做成反比例的量?什么是反比例關(guān)系?請舉例說明。
(四)檢查預(yù)習(xí)。
(五)合作探究活動一:
1、學(xué)習(xí)例2:把相同體積的水倒入底面積不同的杯子,高度會怎樣變化?出示教材第47頁例2的情境圖和表格。
3、高度和底面積有這樣的變化關(guān)系,我們就說高度和底面積成反比例的關(guān)系,高度和底面積叫做成反比例的量。活動二:
1、歸納反比例的意義。
像這樣,兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應(yīng)的兩個數(shù)的積一定,這兩種量就叫做成反比例的量,它們的關(guān)系叫做反比例關(guān)系。
2、.用字母表示。
如果用字母x和y表示兩種相關(guān)聯(lián)的量,用k表示它們的乘積(一定),反比例關(guān)系的式子怎么表示?學(xué)生探討后得出結(jié)果。x×y=k(一定)。
3、生活中還有哪些成反比例的量?學(xué)生舉例說明。如:
(1)大米的質(zhì)量一定,每袋質(zhì)量和袋數(shù)成反比例。
(2)教室地板面積一定,每塊地磚的面積和塊數(shù)成反比例。(3)長方形的面積一定,長和寬成反比例?;顒尤?/p>
1、.組織學(xué)生將例1與例2進(jìn)行比較,小組內(nèi)討論:正比例與反比例的相同點和不同點有哪些?學(xué)生交流、匯報后,引導(dǎo)學(xué)生歸納:
相同點:都表示兩種相關(guān)聯(lián)的量,且一種量變化,另一種量也隨著變化。不同點:正比例關(guān)系中比值一定,反比例關(guān)系中乘積一定。
2、你還有什么疑問。
如果學(xué)生提出表示反比例關(guān)系的圖像有什么特征,教師應(yīng)該引導(dǎo)學(xué)生觀察教材第48頁“你知道嗎”中的圖像。
1.教材第48頁的“做一做”。2.教材第51頁第9、10題。課堂小結(jié)。
說一說成反比例關(guān)系的量的變化特征。(六)當(dāng)堂檢測:
1.完成練習(xí)冊中本課時的練習(xí)。2.教材51~52頁第8、14題。
(七)總結(jié)歸納:
反比例。
兩種相關(guān)聯(lián)的量。
變化。
xy=k(一定)。
積一定。
學(xué)習(xí)例2:把相同體積的水倒入底面積不同的杯子,高度會怎樣變化?出示教材第47頁例2的情境圖和表格。
請學(xué)生認(rèn)真觀察表中數(shù)據(jù)的變化情況,組織學(xué)生分小組討論:(1)水的高度和底面積變化有關(guān)系嗎?(2)水的高度是怎樣隨著底面積變化的?(3)水的高度和底面積的變化有什么規(guī)律?發(fā)現(xiàn)規(guī)律:(底面積越大,水的高度越低;底面積越小,水的高度越高,而且高度和底面積的乘積(水的體積)一定。)教師板書配合說明這一規(guī)律:30×10=20×15=15×20=??=300教師根據(jù)學(xué)生的匯報說明:高度和底面積有這樣的變化關(guān)系,我們就說高度和底面積成反比例的關(guān)系,高度和底面積叫做成反比例的量。2.歸納反比例的意義。
組織學(xué)生小組內(nèi)討論:反比例的意義是什么?學(xué)生小組內(nèi)交流,指名匯報。
教師總結(jié):像這樣,兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應(yīng)的兩個數(shù)的積一定,這兩種量就叫做成反比例的量,它們的關(guān)系叫做反比例關(guān)系。3.用字母表示。
如果用字母x和y表示兩種相關(guān)聯(lián)的量,用k表示它們的乘積(一定),反比例關(guān)系的式子怎么表示?學(xué)生探討后得出結(jié)果。x×y=k(一定)。
4.師:生活中還有哪些成反比例的量?在教師的引導(dǎo)下,學(xué)生舉例說明。如:
(1)大米的質(zhì)量一定,每袋質(zhì)量和袋數(shù)成反比例。
(2)教室地板面積一定,每塊地磚的面積和塊數(shù)成反比例。(3)長方形的面積一定,長和寬成反比例。
5.組織學(xué)生將例1與例2進(jìn)行比較,小組內(nèi)討論:正比例與反比例的相同點和不同點有哪些?學(xué)生交流、匯報后,引導(dǎo)學(xué)生歸納:
如果學(xué)生提出表示反比例關(guān)系的圖像有什么特征,教師應(yīng)該引導(dǎo)學(xué)生觀察教材第48頁“你知道嗎”中的圖像。
1.教材第48頁的“做一做”。2.教材第51頁第9、10題。課堂小結(jié)。
說一說成反比例關(guān)系的量的變化特征。課后作業(yè)。
1.完成練習(xí)冊中本課時的練習(xí)。2.教材51~52頁第8、14題。
反比例教學(xué)反思(六年級)今天用《反比例的意義》作為校內(nèi)的研究課,這節(jié)課是上周六臨時決定的,本來是要用復(fù)習(xí)單元《量的計量》來上的,但是擔(dān)心畢業(yè)班后面的時間會很緊,所以臨時決定提前。不過,我想不管什么的課,只要教師的素質(zhì)高,一樣能上出精彩,不能因為內(nèi)容好上而選來作為公開課,相反,越是難上的課就越要拿出來研究研究,因為研究課就是供大家來討論研究的,這樣,以后上到同樣的內(nèi)容時就不會不知所措了,再者,越是難上才越能體現(xiàn)功底,并且這樣的課上過之后,其他內(nèi)容的課就會顯得不是很難了,因為在信心上占有了優(yōu)勢。
周六決定了這節(jié)課后,我便整理了一份草案請師傅過目,在和師傅及其他幾位老師研究過后,大家的意見是:這節(jié)課的內(nèi)容比較多,要上好不容易,以往上到這個內(nèi)容時是最麻煩的,因為這個內(nèi)容十分抽象,所以,這節(jié)課的容量不宜太大。我雖然沒有教過六年級,但是看過教材之后,也覺得這部分內(nèi)容容量比較大,其實也不能說是容量大,就是比較抽象,如果學(xué)生學(xué)不好、說不出來其中的道理,就比較麻煩,就會影響到這節(jié)課能否上完。所以,在修改教案時,我十分注意容量問題,能精簡的精簡,盡量不在碎小的地方拌足。下面是我設(shè)計的思路。
首先簡單回顧正比例的概念知識,然后給出單價、總價、數(shù)量,問:怎樣組合才能符合正比例的要求?接著小結(jié):“既然有正比例,那就有…”(學(xué)生說:反比例)引出課題《反比例》,引出課題后,我讓學(xué)生先根據(jù)正比例的意義猜一猜什么是反比例,或者說,你認(rèn)為什么是反比例。通過猜想,先初步的感知反比例,不管學(xué)生猜的對與錯,最起碼調(diào)動了學(xué)生的積極性和質(zhì)疑心理,為后面的學(xué)習(xí)先奠定一定的基礎(chǔ)。因為,后面我們要通過學(xué)習(xí)來驗證猜想的對不對,通過驗證后,之前猜對的學(xué)生在情感體驗上就會得到滿足,同時也培養(yǎng)了估計的能力,這也符合《課程標(biāo)準(zhǔn)》培養(yǎng)估計能力和推理的要求。在初步的猜想之后,用了一段小動畫來直觀的經(jīng)歷、感受反比例的建構(gòu)過程(這個動畫我做錯了,后來經(jīng)大家的提醒,我把這個動畫作了修改),這個動畫是這樣的:有一堆黃沙,先用載重量大一些的貨車運,然后換成載重量小一些的貨車運,接著再換一輛載重量還要小的貨車運,并提問:從動畫中能想到什么?讓學(xué)生知道,每次運的越少,運的次數(shù)就越多,每次運的越多,運的次數(shù)就越少,初步經(jīng)歷、感受反比例的建構(gòu)過程。有了這樣的一個基礎(chǔ),接下來出示例4和例5并按要求回答,然后把例4和例5放在一起比較,尋找這兩道例題的共同點:都有兩種相關(guān)聯(lián)的量、都是一種量隨著另一種量的變化而變化、兩種量里對應(yīng)數(shù)值的乘積一定。找出共同點之后,分步出示反比例的意義,然后用反比例的意義在回去解釋例4,接著要求學(xué)生用這一知識解釋例5,然后學(xué)會用字母x、y和k來表示它們之間的關(guān)系,接著實際運用,做練一練第1題和練習(xí)八的第4題,到這里我都是教要用一句話來判斷兩個量是否成反比例的,接下來出示例6,跟學(xué)生說明,我們也可以列數(shù)量關(guān)系式來判斷,如果要列數(shù)量關(guān)系式判斷的話,它們的乘積就要一定。至此,課的內(nèi)容已經(jīng)基本上完,后面就做了兩組相關(guān)的練習(xí),一組是判斷兩種量是否成反比例,其中有一題不成比例,有一題成正比例,有兩題成反比例,另外一組題目是先把數(shù)量關(guān)系式填寫完整,然后根據(jù)數(shù)量關(guān)系式回答問題。最后總結(jié)本課內(nèi)容,總結(jié)時,學(xué)生提到了和正比例的區(qū)別的聯(lián)系,這是我備課時所沒有想到的,而正好時間又多(因為擔(dān)心不能上完,所以一直趕著上的),我就順著學(xué)生的思路,要大家比較它們之間的區(qū)別和聯(lián)系,由于前面學(xué)的比較好,學(xué)生很清楚地找出了它們之間的區(qū)別和聯(lián)系,其中有個學(xué)生說到了它們之間的聯(lián)系時是這樣說的:它們相同點都是一種量隨著另一種量的變化而變化,但是如果要講具體怎么變化的就有區(qū)別了。為學(xué)生的精彩回答而感到高興,看來他們今天學(xué)的比較好。同時,我也暗自為自己慶幸,不是慶幸上的好,而是慶幸課的內(nèi)容按預(yù)計的上完了,也改掉了一直伴隨我的老毛病——課堂上羅羅嗦嗦。下午教研活動時大家發(fā)表了意見,其中那個動畫大家講的最多,我也知道動畫做錯了,所以已經(jīng)做了修改,另外大家提的比較多的是后面的總結(jié),大家認(rèn)為這節(jié)課沒有必要進(jìn)行正比例和反比例的比較,這節(jié)課的內(nèi)容就是理解反比例的意義,但是我卻不這樣想,首先這部分內(nèi)容不是我的預(yù)設(shè)生成,而是非預(yù)設(shè)生成,學(xué)生能想到為什么不趁熱打鐵比較一下呢?雖然這部分內(nèi)容是下節(jié)課要專門講的,在這里為什么不可提一提?學(xué)生能掌握不是更好嗎?所以,在修改教案時,我決定把這個環(huán)節(jié)添上去。另外大家還認(rèn)為這節(jié)課光練習(xí)說了,沒有什么寫的練習(xí),光會說,那作業(yè)怎么寫?沒有經(jīng)歷寫的練習(xí),學(xué)生會嗎?我想,這的確是有必要的,所以,在修改教案時也增添了進(jìn)去。這樣一來,這節(jié)課的內(nèi)容滿滿當(dāng)當(dāng),不多不少了。
下面是我整理之后的教案和課件,大家看看,提些建議??!
原文地址:http://內(nèi)容來源:綠色圃中小學(xué)教育網(wǎng)-http:///。
反比例教學(xué)設(shè)計篇十七
1、大家好,我是西街小學(xué)的劉老師。今天我們學(xué)習(xí)的內(nèi)容是判斷兩種量是否成反比例關(guān)系。首先我們必須明確成反比例關(guān)系的兩種量滿足的條件:兩種量成相關(guān)聯(lián)的量,意思就是說這兩種量有關(guān)系2它們乘積一定,這決定了兩種量的變化趨勢是相反的,一種量隨著另外一種量增大而減小。這兩個條件,我們可以用一個數(shù)學(xué)表達(dá)式代替:xy=k(一定),滿足這個式子就可以證明出他們是反比例關(guān)系。接下來我們觀察這個等式的特征。等號右邊是一個定值,等號左邊是兩種相關(guān)聯(lián)的量相乘。抓住反比例關(guān)系的數(shù)學(xué)表達(dá)式的特征,對于判斷兩種量是否成反比例關(guān)系十分重要。下面我們結(jié)合練習(xí)題進(jìn)行講解。
二練習(xí)。
1、判斷下面每題中的兩種量是不是成反比例,并說明理由。(1)全班人數(shù)一定,按各組人數(shù)相等的要求分組,組數(shù)與每組人數(shù)根據(jù)常識我們知道,組數(shù)和每組人數(shù)是兩種相關(guān)聯(lián)的量。組數(shù)乘以每組人數(shù)等于全班人數(shù),根據(jù)條件可知全班人數(shù)一定。所以組數(shù)和每組人數(shù)成反比例關(guān)系。
(2)生產(chǎn)手機的總量一定,工作時間和效率。
同樣工作時間和效率是兩種相關(guān)聯(lián)的量,工作時間乘以效率等于工作總量,有條件可知,手機的總量是一定的,所以生產(chǎn)時間和效率成反比例關(guān)系。(3)在一塊菜地上種的黃瓜與生菜的面積。
黃瓜和生菜的面積是相關(guān)聯(lián)的量,但是黃瓜的面積+生菜的面積=菜地的面積,不符合乘積一定的條件,所以不是反比例關(guān)系。通過上面的題目我們不難發(fā)現(xiàn)判斷兩種量是否相關(guān)比較容易,重點在于判斷乘積是否一定。
二、填一填。
(1)平行四邊形的()一定,()和()成反比例關(guān)系。平行四邊形中哪兩種量成反比例關(guān)系,我們首先能夠想到它的面積公式,底乘以高等于面積,我們讓面積一定,就剛好符合反比例關(guān)系的表達(dá)式,這道題就迎刃而解了。
(2)三角形的()一定,()和()成反比例關(guān)系。同樣我們會想到三角形的面積公式:底乘以高除以二等于三角形的面積。這個等式與我們的反比例的數(shù)學(xué)表達(dá)式有所不同,等號的左邊多個2怎們辦?我們可以通過等式的性質(zhì)對這個式子變形,兩邊同時乘以二就可以得到底乘以高等于三角形的面積乘以2。我們讓三角的面積一定,兩個三角形的面積也是一定的。這樣就符合我們的關(guān)系式。所以三角形的面積一定,底和高也成反比例關(guān)系。對于第二題,我們主要是對相關(guān)的公式進(jìn)行變形然后判斷。
三、有x,y,z三個相關(guān)聯(lián)的量,并有xy=z.(1)當(dāng)z一定時,x和y成()比例關(guān)系;(2)當(dāng)x一定時,z和y成()比例關(guān)系;(3)y一定時,z和x成()比例關(guān)系。
我們看第一題,x和y直接滿足了題目中的條件xy=z,所以很容易判定是反比例的關(guān)系;第二題,當(dāng)x一定時,我們就把x放在等式的右邊,x等于z除以y,滿足了正比例的數(shù)學(xué)表達(dá)式,所以x和y成正比例關(guān)系;我們就可以用同樣的方法判定第三題,y一定時,我們就把y放在等式的右邊,y等于z除以x,滿足了正比例的數(shù)學(xué)表達(dá)式,x和z成正比例關(guān)系。這種題型就是考察對代數(shù)式的轉(zhuǎn)化能力。一般可以通過對代數(shù)式進(jìn)行變形,把兩種相關(guān)量寫在等號的左邊,不變的數(shù)寫在右邊。在看他們是乘還是除,繼而判斷是什么比例。以上就是我們學(xué)習(xí)的全部內(nèi)容,謝謝。
【本文地址:http://mlvmservice.com/zuowen/16389748.html】