高中數(shù)學冪函數(shù)教案(專業(yè)18篇)

格式:DOC 上傳日期:2023-11-27 08:22:05
高中數(shù)學冪函數(shù)教案(專業(yè)18篇)
時間:2023-11-27 08:22:05     小編:雅蕊

教案的編寫過程需要教師反復推敲和修改,力求完善。在編寫教案時,教師應考慮到不同學生的差異化學習需求。這些教案范文涵蓋了不同學科和年級的內容,具有一定的代表性。

高中數(shù)學冪函數(shù)教案篇一

教材分析:

冪函數(shù)作為一類重要的函數(shù)模型,是學生在系統(tǒng)地學習了指數(shù)函數(shù)、對數(shù)函數(shù)之后研究的又一類基本的初等函數(shù)。?冪函數(shù)模型在生活中是比較常見的,學習時結合生活中的具體實例來引出常見的冪函數(shù)?.組織學生畫出他們的圖象,根據(jù)圖象觀察、總結這幾個常見冪函數(shù)的性質。對于冪函數(shù),只需重點掌握?這五個函數(shù)的圖象和性質。學習中學生容易將冪函數(shù)和指數(shù)函數(shù)混淆,因此在引出冪函數(shù)的概念之后,可以組織學生對兩類不同函數(shù)的表達式進行辨析。學生已經有了學習冪函數(shù)和對象函數(shù)的學習經歷,這為學習冪函數(shù)做好了方法上的準備。因此,學習過程中,引入冪函數(shù)的概念之后,嘗試放手讓學生自己進行合作探究學習。

課時分配1課時。

教學目標。

重點:從五個具體的冪函數(shù)中認識的概念和性質。

難點:從冪函數(shù)的圖象中概括其性質,據(jù)冪函數(shù)的單調性比較兩個同指數(shù)的指數(shù)式的大小。

知識點:冪函數(shù)的定義、五個冪函數(shù)圖象特征。

能力點:通過具體實例了解冪函數(shù)的圖象和性質,并能進行簡單的應用。

自主探究點:通過作圖歸納總結冪函數(shù)的相關性質。

考試點:了解冪函數(shù)的概念,

結合函數(shù)的圖象了解它們的變化情況。

易錯易混點:學生容易將冪函數(shù)和指數(shù)函數(shù)混淆。

拓展點:通過指數(shù)函數(shù)的圖象性質研究冪函數(shù)指數(shù)的變化。

教具準備:多媒體輔助教學。

課堂模式:導學案。

一、引入新課。

(一)回顧引入。

【師生互動】師:數(shù)學的內在美常常讓我感動,下面我們共同來欣賞運算的完美性,

思考:由8、2、3、這四個數(shù),運用數(shù)學符號可組成哪些等式?

生:探討,交流。

師生共同分析:

師:我們知道對于等式。

1.如果一定,隨著的變化而變化,我們建立了指數(shù)函數(shù)。

2.如果一定,隨著的變化而變化,我們建立了對數(shù)函數(shù)。

設想:如果一定,隨著的變化而變化,是不是也可以確定一個函數(shù)呢?

【設計說明】使學生回憶所學兩個基本初等函數(shù),為所要學習的冪函數(shù)作鋪墊。

(二)觀察下列對象:

問題(1):如果張紅購買了每千克1元的蔬菜千克,那么她需要付的錢數(shù)=元,

問題(2):如果正方形的邊長為,那么正方形的面是=。

問題3):如果正方體的邊長為,那么正方體的體積是=。

問題(4):如果正方形場地面積為,那么正方形的邊長=。

問題(5):如果某人s內騎車行進了1km,那么他騎車的平均速度=。

【師生互動】師:(1)它們的對應法則分別是什么?

(2)以上問題中的函數(shù)有什么共同特征?

讓學生獨立思考后交流,引導學生概括出結論。

生:(1)乘以1(2)求平方(3)求立方。

(4)求算術平方根(5)求-1次方。

師:上述的問題涉及到的函數(shù),都是形如:,其中是自變量,是常數(shù)。

師生:共同辨析這種新函數(shù)與指數(shù)函數(shù)的異同。

二、探究新知。

組織探究。

1.冪函數(shù)的定義。

一般地,形如(r)的函數(shù)稱為冪函數(shù),其中是自變量,是常數(shù)。

如等都是冪函數(shù),冪函數(shù)與指數(shù)函數(shù),對數(shù)函數(shù)一樣,都是基本初等函數(shù)。

【師生互動】師:1.冪函數(shù)的定義來自于實踐,它同指數(shù)函數(shù)、對數(shù)函數(shù)一樣,也是基本初等函數(shù),同樣也是一種“形式定義”的函數(shù),引導學生注意辨析。

2.研究函數(shù)的圖像。

(1)(2)(3)。

(4)(5)。

生:利用所學知識和方法嘗試作出五個具體冪函數(shù)的圖象,觀察所作圖象,體會冪函數(shù)的變化規(guī)律。

師:引導學生應用函數(shù)的性質畫圖象,如:定義域、奇偶性。

師生共同分析:強調畫圖象易犯的錯誤。

【設計意圖】(1)通過具體作圖,可使學生加深對圖象的直觀印象,記憶比較牢固;同時也提高了學生數(shù)形結合的思維能力;(2)符合學生的認知規(guī)律,由特殊到一般,從具體到抽象;(3)充分發(fā)揮學生學習的能動性,以學生為主體,展開課堂教學。

【師生互動】師:引導學生觀察圖象,歸納概括冪函數(shù)的的性質及圖象變化規(guī)律。

生:觀察圖象,分組討論,探究冪函數(shù)的性質和圖象的變化規(guī)律,并展示各自的結論進行交流評析,并填表。

定義域值域奇偶性單調性定點。

師生共同分析冪函數(shù)性質:

(1)所有的冪函數(shù)在(0,+∞)都有定義,并且圖象都過點(1,1);。

高中數(shù)學冪函數(shù)教案篇二

《考試說明》和《考綱》是每位考生必須熟悉的最權威最準確的高考信息,通過研究應明確“考什么”、“考多難”、“怎樣考”這三個問題。

命題通常注意試題背景,強調數(shù)學思想,注重數(shù)學應用;試題強調問題性、啟發(fā)性,突出基礎性;重視通性通法,淡化特殊技巧,凸顯數(shù)學的問題思考;強化主干知識;關注知識點的銜接,考察創(chuàng)新意識。

《考綱》明確指出“創(chuàng)新意識是理性思維的高層次表現(xiàn)”。因此試題都比較新穎活潑。所以復習中你就要加強對新題型的練習,揭示問題的本質,創(chuàng)造性地解決問題。

2.多維審視知識結構。

高考數(shù)學試題一直注重對思維方法的考查,數(shù)學思維和方法是數(shù)學知識在更高層次上的抽象和概括。知識是思維能力的載體,因此通過對知識的考察達到考察數(shù)學思維的目的。你需要建立各部分內容的知識網(wǎng)絡;全面、準確地把握概念,在理解的基礎上加強記憶;加強對易錯、易混知識的梳理;要多角度、多方位地去理解問題的實質;體會數(shù)學思想和解題的方法。

3.把答案蓋住看例題。

參考書上例題不能看一下就過去了,因為看時往往覺得什么都懂,其實自己并沒有理解透徹。所以,在看例題時,把解答蓋住,自己去做,做完或做不出時再去看,這時要想一想,自己做的與解答哪里不同,哪里沒想到,該注意什么,哪一種方法更好,還有沒有另外的解法。經過上面的`訓練,自己的思維空間擴展了,看問題也全面了。如果把題目的來源搞清了,在題后加上幾個批注,說明此題的“題眼”及巧妙之處,收益將更大。

4.研究每題都考什么。

數(shù)學能力的提高離不開做題,“熟能生巧”這個簡單的道理大家都懂。但做題不是搞題海戰(zhàn)術,要通過一題聯(lián)想到多題。你需要著重研究解題的思維過程,弄清基本數(shù)學知識和基本數(shù)學思想在解題中的意義和作用,研究運用不同的思維方法解決同一數(shù)學問題的多條途徑,在分析解決問題的過程中既構建知識的橫向聯(lián)系又養(yǎng)成多角度思考問題的習慣。

與其一節(jié)課抓緊時間大汗淋淋地做二、三十道考查思路重復的題,不如深入透徹地掌握一道典型題。例如深入理解一個概念的多種內涵,對一個典型題,盡力做到從多條思路用多種方法處理,即一題多解;對具有共性的問題要努力摸索規(guī)律,即多題一解;不斷改變題目的條件,從各個側面去檢驗自己的知識,即一題多變。習題的價值不在于做對、做會,而在于你明白了這道題想考你什么。

5.答題少費時多辦事。

解題上要抓好三個字:數(shù),式,形;閱讀、審題和表述上要實現(xiàn)數(shù)學的三種語言自如轉化(文字語言、符號語言、圖形語言)。要重視和加強選擇題的訓練和研究。不能僅僅滿足于答案正確,還要學會優(yōu)化解題過程,追求解題質量,少費時,多辦事,以贏得足夠的時間思考解答高檔題。要不斷積累解選擇題的經驗,盡可能小題小做,除直接法外,還要靈活運用特殊值法、排除法、檢驗法、數(shù)形結合法、估計法來解題。在做解答題時,書寫要簡明、扼要、規(guī)范,不要“小題大做”,只要寫出“得分點”即可。

6.錯一次反思一次。

每次考試或多或少會發(fā)生一些錯誤,這并不可怕,要緊的是避免類似的錯誤在今后的考試中重現(xiàn)。

因此平時要注意把錯題記下來,做錯題筆記包括三個方面:

(1)記下錯誤是什么,最好用紅筆劃出。

(2)錯誤原因是什么,從審題、題目歸類、重現(xiàn)知識和找出答案四個環(huán)節(jié)來分析。

(3)錯誤糾正方法及注意事項。根據(jù)錯誤原因的分析提出糾正方法并提醒自己下次碰到類似的情況應注意些什么。你若能將每次考試或練習中出現(xiàn)的錯誤記錄下來分析,并盡力保證在下次考試時不發(fā)生同樣錯誤,那么在高考時發(fā)生錯誤的概率就會大大減少。

7.分析試卷總結經驗。

每次考試結束試卷發(fā)下來,要認真分析得失,總結經驗教訓。特別是將試卷中出現(xiàn)的錯誤進行分類。

(1)遺憾之錯。就是分明會做,反而做錯了的題。

(2)似非之錯。記憶不準確,理解不夠透徹,應用不夠自如;回答不嚴密不完整等等。

(3)無為之錯。由于不會答錯了或猜錯了,或者根本沒有作答,這是無思路、不理解,更談不上應用的問題。原因找到后就盡早消除遺憾、弄懂似非、力爭有為。切實解決“會而不對、對而不全”的老大難問題。

8.優(yōu)秀是一種習慣。

柏拉圖說:“優(yōu)秀是一種習慣”。好的習慣終生受益,不好的習慣終生后悔、吃虧。如“審題之錯”是否出在急于求成?可采取“一慢一快”戰(zhàn)術,即審題要慢,要看清楚,步驟要到位,動作要快,步步為營,穩(wěn)中求快,立足于一次成功,不要養(yǎng)成唯恐做不完,匆匆忙忙搶著做,寄希望于檢查的壞習慣。

高中數(shù)學冪函數(shù)教案篇三

3.能夠綜合運用各種法則求函數(shù)的導數(shù).。

函數(shù)的和、差、積、商的求導法則的推導與應用.。

1.問題情境.。

(1)常見函數(shù)的導數(shù)公式:(默寫)。

(2)求下列函數(shù)的`導數(shù):;;.。

(3)由定義求導數(shù)的基本步驟(三步法).。

2.探究活動.。

例1求的導數(shù).。

思考已知,怎樣求呢?

函數(shù)的和差積商的導數(shù)求導法則:

練習課本p22練習1~5題.。

點評:正確運用函數(shù)的四則運算的求導法則.。

函數(shù)的和差積商的導數(shù)求導法則.。

1.見課本p26習題1.2第1,2,5~7題.。

高中數(shù)學冪函數(shù)教案篇四

引入課題1.觀察下列各個函數(shù)的圖象,并說說它們分別反映了相應函數(shù)的哪些變化規(guī)律:

yx1-11-1yx1-11-1yx1-11-1。

1隨x的增大,y的值有什么變化?2能否看出函數(shù)的最大、最小值?

2.畫出下列函數(shù)的圖象,觀察其變化規(guī)律:

f(x)=x1從左至右圖象上升還是下降______?2在區(qū)間____________上,隨著x的增大,f(x)的值隨著________.

yx1-11-1。

2.f(x)=-2x+11從左至右圖象上升還是下降______?2在區(qū)間____________上,隨著x的增大,f(x)的`值隨著________.

1在區(qū)間____________上,f(x)的值隨著x的增大而________.

2在區(qū)間____________上,f(x)的值隨著x的增大而________.

高中數(shù)學冪函數(shù)教案篇五

1、先做簡單題,后做難題。

2、遇到較難的大題,把所有跟該題有關的知識點都寫出來,要知道數(shù)學講究步驟分。

3、若是證明題,萬一不會,可以先寫出已知條件,再寫出要證明的最后一步,再一步一步往上推,中間步驟隨便寫點。(使用于粗心的教師,但我們不提倡,重點是要平時學好)。

一、整體把握、抓大放小。

拿到試卷后可以先快速瀏覽一下所有題目,根據(jù)積累的考試經驗,大致估計一下每部分應該分配的時間。對于能夠很快做出來的.題目,一定要拿到應得的分數(shù)。

二、確定每部分的答題時間。

1、考試時占用了很多時間卻一點也沒有做出來的題目。對于這類題目,你以后考試時就應該盡量減少時間,或者放棄,等以后學習進階了再嘗試著做。

2、考試時花了過多的時間才做出來的題目。對于這類題目,你以后平時做題時要盡量加快速度,或者通過“反復訓練”等提高反應速度,這樣,你下次考試時能用較少的時間做出來。

三、碰到難題時。

1、你可以先用“直覺”最快的找到解題思路;。

2、如果“直覺”不管用,你可以聯(lián)想以前做過的類似的題目,從而找到解題思路;。

3、如果這樣也不行,你可以猜測一下這道題目可能涉及到的知識點和解題技巧。

4、對于花了一定時間仍然不能做出來的題目,要勇于放棄。

四、卷面整潔、字跡清楚、注意小節(jié)。

做到卷面整潔、字跡清楚,把標點、符號、解題步驟等小的地方盡量做好,不要丟掉應得的每一分。

高中數(shù)學冪函數(shù)教案篇六

老師講課認真聽講,不會的問題及時標記。在課堂上,做一個好學生,認真聽講,對于老師講的問題及時記錄,進行相應的標記,在下課的時候,及時詢問老師,早日解決問題。

一定要課前預習一下知識點。在上課前或平時閑暇時間,一定要注意課下多多預習,預習比復習更加重要,真的很重要,關乎到課堂的思維能力的轉變,多多看看,對自己的理解有幫助。

課上要學會學習,記筆記,也要記住老師講的知識點。課堂上,自己要活躍一點,帶給老師感覺,讓老師對你有印象,便于日后學習高中數(shù)學,與老師探討學習方法,記筆記,記住講的重點。

多做一些比較普通而又常出的問題,來熟悉自己學的知識。在課下的時候,自己找出適合自己做的題,在做題中找出適合自己的題目,來進行做和學,總有一份題目適合自己做,便會更熟悉自己學的知識。

學會總結本節(jié)課的知識點,重點,做一個學會學習的人。及時總結所學的知識點,做一個學好習的人,讓自己的心中有著大致的思路,能夠解答出老師的,這便是可以了。

建立一個記錯本,錯誤的題記錄到本子上。將自己以前做過的錯題,及時的整理出來,并且能夠及時的回顧,便于日后在本子上學習到知識,能夠復習到自己以前錯過的題。

與老師經常交流學習方法,總有一個適合你。多多的與老師交流,給老師留下一個好印象,便于自己和老師更深入的交流學習,及時的詢問一下高中數(shù)學的學習方法,總有一個適合自己。

高中數(shù)學冪函數(shù)教案篇七

指數(shù)函數(shù)的一般形式為,從上面我們對于冪函數(shù)的討論就可以知道,要想使得x能夠取整個實數(shù)集合為定義域,則只有使得如圖所示為a的不同大小影響函數(shù)圖形的情況。

可以看到:

(1)指數(shù)函數(shù)的定義域為所有實數(shù)的集合,這里的前提是a大于0,對于a不大于0的情況,則必然使得函數(shù)的定義域不存在連續(xù)的區(qū)間,因此我們不予考慮。

(2)指數(shù)函數(shù)的值域為大于0的實數(shù)集合。

(3)函數(shù)圖形都是下凹的。

(4)a大于1,則指數(shù)函數(shù)單調遞增;a小于1大于0,則為單調遞減的。

(5)可以看到一個顯然的規(guī)律,就是當a從0趨向于無窮大的過程中(當然不能等于0),函數(shù)的曲線從分別接近于y軸與x軸的正半軸的單調遞減函數(shù)的位置,趨向分別接近于y軸的正半軸與x軸的負半軸的單調遞增函數(shù)的位置。其中水平直線y=1是從遞減到遞增的一個過渡位置。

(6)函數(shù)總是在某一個方向上無限趨向于x軸,永不相交。

(7)函數(shù)總是通過(0,1)這點。

高中數(shù)學冪函數(shù)教案篇八

1、初步掌握函數(shù)概念,能判斷兩個變量間的關系是否可看作函數(shù)。

2、根據(jù)兩個變量間的關系式,給定其中一個量,相應地會求出另一個量的值。

3、會對一個具體實例進行概括抽象成為數(shù)學問題。

過程與方法。

1、通過函數(shù)概念,初步形成學生利用函數(shù)的觀點認識現(xiàn)實世界的意識和能力。

2、經歷具體實例的抽象概括過程,進一步發(fā)展學生的抽象思維能力。

情感與價值觀。

1、經歷函數(shù)概念的抽象概括過程,體會函數(shù)的模型思想。

2、讓學生主動地從事觀察、操作、交流、歸納等探索活動,形成自己對數(shù)學知識的理解和有效的學習模式。

1、掌握函數(shù)概念。

2、判斷兩個變量之間的關系是否可看作函數(shù)。

3、能把實際問題抽象概括為函數(shù)問題。

1、理解函數(shù)的概念。

2、能把實際問題抽象概括為函數(shù)問題。

一、創(chuàng)設問題情境,導入新課。

『師』:同學們,你們看下圖上面那個像車輪狀的物體是什么?

高中數(shù)學冪函數(shù)教案篇九

一次函數(shù)和代數(shù)式以及方程有著密不可分的聯(lián)系。如一次函數(shù)和正比例函數(shù)仍然是函數(shù),同時,等號的兩邊又都是代數(shù)式。需要注意的是,與一般代數(shù)式有很大區(qū)別。首先,一次函數(shù)和正比例函數(shù)都只能存在兩個變量,而代數(shù)式可以是多個變量;其次,一次函數(shù)中的變量指數(shù)只能是1,而代數(shù)式中變量指數(shù)還可以是1以外的數(shù)。另外,一次函數(shù)解析式也可以理解為二元一次方程。

高中數(shù)學冪函數(shù)教案篇十

(3)能正確使用“區(qū)間”及相關符號,能正確求解各類的定義域.。

2.通過概念的學習,使學生在符號表示,運算等方面的能力有所提高.。

(1)對記號有正確的理解,準確把握其含義,了解(為常數(shù))與的區(qū)別與聯(lián)系;

(2)在求定義域中注意運算的合理性與簡潔性.。

3.通過定義由變量觀點向映射觀點的過渡,是學生能從發(fā)展的角度看待數(shù)學的學習.。

1.教材分析。

(1)知識結構。

(2)重點難點分析。

是的定義和符號的認識與使用.。

2.教法建議。

高中數(shù)學冪函數(shù)教案篇十一

(二)解析:本節(jié)課要學的內容指的是會判定函數(shù)在某個區(qū)間上的單調性、會確定函數(shù)的單調區(qū)間、能證明函數(shù)的單調性,其關鍵是利用形式化的定義處理有關的單調性問題,理解它關鍵就是要學會轉換式子。學生已經掌握了函數(shù)單調性的定義、代數(shù)式的變換、函數(shù)的概念等知識,本節(jié)課的內容就是在此基礎上的應用。教學的重點是應用定義證明函數(shù)在某個區(qū)間上的單調性,解決重點的關鍵是嚴格按過程進行證明。

二、教學目標及解析。

(一)教學目標:

掌握用定義證明函數(shù)單調性的步驟,會求函數(shù)的單調區(qū)間,提高應用知識解決問題的能力。

(二)解析:

會證明就是指會利用三步曲證明函數(shù)的單調性;會求函數(shù)的單調區(qū)間就是指會利用函數(shù)的圖象寫出單調增區(qū)間或減區(qū)間;應用知識解決問題就是指能利用函數(shù)單調性的意義去求參變量的取值情況或轉化成熟悉的問題。

三、問題診斷分析。

在本節(jié)課的教學中,學生可能遇到的問題是如何才能準確確定的符號,產生這一問題的原因是學生對代數(shù)式的恒等變換不熟練。要解決這一問題,就是要根據(jù)學生的實際情況進行知識補習,特別是因式分解、二次根式中的分母有理化的補習。

在本節(jié)課的教學中,準備使用(),因為使用(),有利于()。

高中數(shù)學冪函數(shù)教案篇十二

1.使學生了解反函數(shù)的概念,初步掌握求反函數(shù)的方法.

2.通過反函數(shù)概念的學習,培養(yǎng)學生分析問題,解決問題的能力及抽象概括的能力.

3.通過反函數(shù)的學習,幫助學生樹立辨證唯物主義的世界觀.

重點是反函數(shù)概念的形成與認識.

難點是掌握求反函數(shù)的方法.

投影儀。

自主學習與啟發(fā)結合法。

一.揭示課題。

今天我們將學習函數(shù)中一個重要的概念----反函數(shù).

(一)反函數(shù)的概念(板書)。

二.講解新課。

教師首先提出這樣一個問題:在函數(shù)中,如果把當作因變量,把當作自變量,能否構成一個函數(shù)呢?(讓學生思考后回答,要講明理由)可以根據(jù)函數(shù)的定義在的允許取值范圍內的任一值,按照法則都有唯一的與之相對應.(還可以讓學生畫出函數(shù)的圖象,從形的角度解釋“任一對唯一”)。

學生很快會意識到是的反函數(shù),教師可再引申為與是互為反函數(shù)的.然后利用問題再引申:是不是所有的函數(shù)都有反函數(shù)呢?如果有,請舉出例子.在教師啟發(fā)下學生可以舉出象這樣的函數(shù),若將當自變量,當作因變量,在允許取值范圍內一個可能對兩個(可畫圖輔助說明,當時,對應),不能構成函數(shù),說明此函數(shù)沒有反函數(shù).

通過剛才的例子,了解了什么是反函數(shù),把對的反函數(shù)的研究過程一般化,概括起來就可以得到反函數(shù)的定義,但這個數(shù)學的抽象概括,要求比較高,因此我們一起閱讀書上相關的內容.

1.反函數(shù)的定義:(板書)(用投影儀打出反函數(shù)的定義)。

為了幫助學生理解,還可以把定義中的換成某個具體簡單的函數(shù)如解釋每一步驟,如得,再判斷它是個函數(shù),最后改寫為.給出定義后,再對概念作點深入研究.

2.對概念得理解(板書)。

教師先提出問題:反函數(shù)的“反”字應當是相對原來給出的函數(shù)而言,指的是兩者的關系你能否從函數(shù)三要素的角度解釋“反”的含義呢?(仍可以與為例來說)。

學生很容易先想到對應法則是“反”過來的,把與的位置換位了,教師再追問它們的互換還會帶來什么變化?啟發(fā)學生找出另兩個要素之間的關系.最后得出結論:的定義域和值域分別由的值域和定義域決定的.再把結論從特殊發(fā)展到一般,概括為:反函數(shù)的三要素是由原來函數(shù)的三要素決定的.給出的函數(shù)確定了,反函數(shù)的三要素就已經確定了.簡記為“三定”.

(1)“三定”(板書)。

最后教師進一步明確“反”實際體現(xiàn)為“三反”,“三反”中起決定作用的是與的位置的反置,正是由于它的反置,才把它的范圍也帶走了,引起了另外兩“反”.

(2)“三反”(板書)。

此時教師可把問題再次引向深入,提出:如果一個函數(shù)存在反函數(shù),應怎樣求這個反函數(shù)呢?下面我給出兩個函數(shù),請同學們根據(jù)自己對概念的理解來求一下它們的反函數(shù).

例1.求的反函數(shù).(板書)。

(由學生說求解過程,有錯或不規(guī)范之處,暫時不追究,待例2解完之后再一起講評)。

解:由得,所求反函數(shù)為.(板書)。

例2.求,的反函數(shù).(板書)。

解:由得,又得,。

故所求反函數(shù)為.(板書)。

求完后教師請同學們作評價,學生之間可以討論,充分暴露表述中得問題,讓學生自行發(fā)現(xiàn),自行解決.最后找代表發(fā)表意見,指出例2中問題,結果應為,.

教師可先明知故問,與,有什么不同?讓學生明確指出兩個函數(shù)定義域分別是和,所以它們是不同的函數(shù).再追問從何而來呢?讓學生能從三定和三反中找出理由,是從原來函數(shù)的值域而來.

在此基礎上,教師最后明確要求,由于反函數(shù)的定義域必是原來函數(shù)的值域,而不是從自身解析式出發(fā)尋求滿足的條件,所以求反函數(shù),就必須先求出原來函數(shù)的值域.之后由學生調整剛才的求解過程.

解:由得,又得,。

又的值域是,。

故所求反函數(shù)為,.

(可能有的學生會提出例1中為什么不求原來函數(shù)的值域的問題,此時不妨讓學生去具體算一算,會發(fā)現(xiàn)原來函數(shù)的值域域求出的函數(shù)解析式中所求定義域時一致的,所以使得最后結果沒有出錯.但教師必須指出結論得一致性只是偶然,而不是必然,因此為規(guī)范求解過程要求大家一定先求原來函數(shù)的值域,并且在最后所求結果上注明反函數(shù)的定義域,同時讓學生調整例的表述,將過程補充完整)。

最后讓學生一起概括求反函數(shù)的步驟.

3.求反函數(shù)的步驟(板書)。

(1)反解:。

(2)互換。

(3)改寫:。

對以上環(huán)節(jié)教師可稍作解釋,然后提出再通過下面的練習來檢驗是否真正理解了.

三.鞏固練習。

練習:求下列函數(shù)的反函數(shù).

(1)(2).(由兩名學生上黑板寫)。

解答過程略.

教師可針對學生解答中出現(xiàn)的問題,進行講評.(如正負的選取,值域的計算,符號的使用)。

四.小結。

1.對反函數(shù)概念的認識:。

2.求反函數(shù)的基本步驟:。

五.作業(yè)。

課本第68頁習題2.4第1題中4,6,8,第2題.

六.板書設計。

2.4反函數(shù)例1.練習.

一.反函數(shù)的概念(1)(2)。

1.定義。

2.對概念的理解例2.

(1)三定(2)三反。

3.求反函數(shù)的步驟。

(1)反解(2)互換(3)改寫。

高中數(shù)學冪函數(shù)教案篇十三

數(shù)學是一門培養(yǎng)人的思維,發(fā)展人的思維的重要學科。因此,在教學中,不僅要使學生“知其然”而且要使學生“知其所以然”。所以在學生為主體,教師為主導的原則下,要充分揭示獲取知識和方法的思維過程。因此本節(jié)課我以建構主義的“創(chuàng)設問題情境——提出數(shù)學問題——嘗試解決問題——驗證解決方法”為主,主要采用觀察、啟發(fā)、類比、引導、探索相結合的教學方法。在教學手段上,則采用多媒體輔助教學,將抽象問題形象化,使教學目標體現(xiàn)的更加完美。

三角函數(shù)的誘導公式是普通高中課程標準實驗教科書(人教a版)數(shù)學必修四,第一章第三節(jié)的內容,其主要內容是三角函數(shù)誘導公式中的公式(二)至公式(六).本節(jié)是第一課時,教學內容為公式(二)、(三)、(四).教材要求通過學生在已經掌握的任意角的三角函數(shù)的定義和誘導公式(一)的基礎上,利用對稱思想發(fā)現(xiàn)任意角與終邊的對稱關系,發(fā)現(xiàn)他們與單位圓的交點坐標之間關系,進而發(fā)現(xiàn)他們的三角函數(shù)值的關系,即發(fā)現(xiàn)、掌握、應用三角函數(shù)的誘導公式公式(二)、(三)、(四).同時教材滲透了轉化與化歸等數(shù)學思想方法,為培養(yǎng)學生養(yǎng)成良好的學習習慣提出了要求.為此本節(jié)內容在三角函數(shù)中占有非常重要的地位.

本節(jié)課的授課對象是本校高一(1)班全體同學,本班學生水平處于中等偏下,但本班學生具有善于動手的良好學習習慣,所以采用發(fā)現(xiàn)的教學方法應該能輕松的完成本節(jié)課的教學內容.

(1).基礎知識目標:理解誘導公式的發(fā)現(xiàn)過程,掌握正弦、余弦、正切的誘導公式;。

(4).個性品質目標:通過誘導公式的學習和應用,感受事物之間的普通聯(lián)系規(guī)律,運用化歸等數(shù)學思想方法,揭示事物的本質屬性,培養(yǎng)學生的唯物史觀.

理解并掌握誘導公式.

正確運用誘導公式,求三角函數(shù)值,化簡三角函數(shù)式.

“授人以魚不如授之以魚”,作為一名老師,我們不僅要傳授給學生數(shù)學知識,更重要的是傳授給學生數(shù)學思想方法,如何實現(xiàn)這一目的,要求我們每一位教者苦心鉆研、認真探究.下面我從教法、學法、預期效果等三個方面做如下分析.

數(shù)學教學是數(shù)學思維活動的教學,而不僅僅是數(shù)學活動的結果,數(shù)學學習的目的不僅僅是為了獲得數(shù)學知識,更主要作用是為了訓練人的思維技能,提高人的思維品質.

在本節(jié)課的教學過程中,本人以學生為主題,以發(fā)現(xiàn)為主線,盡力滲透類比、化歸、數(shù)形結合等數(shù)學思想方法,采用提出問題、啟發(fā)引導、共同探究、綜合應用等教學模式,還給學生“時間”、“空間”,由易到難,由特殊到一般,盡力營造輕松的學習環(huán)境,讓學生體味學習的快樂和成功的喜悅.

“現(xiàn)代的文盲不是不識字的人,而是沒有掌握學習方法的人”,很多課堂教學常常以高起點、大容量、快推進的做法,以便教給學生更多的知識點,卻忽略了學生接受知識需要時間消化,進而泯滅了學生學習的興趣與熱情.如何能讓學生最大程度的消化知識,提高學習熱情是教者必須思考的問題.

在本節(jié)課的教學過程中,本人引導學生的學法為思考問題共同探討解決問題簡單應用重現(xiàn)探索過程練習鞏固.讓學生參與探索的全部過程,讓學生在獲取新知識及解決問題的方法后,合作交流、共同探索,使之由被動學習轉化為主動的自主學習.

1.復習銳角300,450,600的三角函數(shù)值;。

2.復習任意角的三角函數(shù)定義;。

3.問題:由,你能否知道sin2100的值嗎?引如新課.

自信的鼓勵是增強學生學習數(shù)學的自信,簡單易做的題加強了每個學生學習的熱情,具體數(shù)據(jù)問題的出現(xiàn),讓學生既有好像會做的心理但又有迷惑的茫然,去發(fā)掘潛力期待尋找機會證明我能行,從而思考解決的辦法.

1.讓學生發(fā)現(xiàn)300角的終邊與2100角的終邊之間有什么關系;。

2100與sin300之間有什么關系.

由特殊問題的引入,使學生容易了解,實現(xiàn)教學過程的平淡過度,為同學們探究發(fā)現(xiàn)任意角與的三角函數(shù)值的關系做好鋪墊.

高中數(shù)學冪函數(shù)教案篇十四

對數(shù)函數(shù)的一般形式為,它實際上就是指數(shù)函數(shù)的反函數(shù)。因此指數(shù)函數(shù)里對于a的規(guī)定,同樣適用于對數(shù)函數(shù)。

右圖給出對于不同大小a所表示的函數(shù)圖形:

可以看到對數(shù)函數(shù)的圖形只不過的指數(shù)函數(shù)的圖形的關于直線y=x的對稱圖形,因為它們互為反函數(shù)。

(1)對數(shù)函數(shù)的定義域為大于0的實數(shù)集合。

(2)對數(shù)函數(shù)的值域為全部實數(shù)集合。

(3)函數(shù)總是通過(1,0)這點。

(4)a大于1時,為單調遞增函數(shù),并且上凸;a小于1大于0時,函數(shù)為單調遞減函數(shù),并且下凹。

高中數(shù)學冪函數(shù)教案篇十五

2.能較熟練地運用指數(shù)函數(shù)的性質解決指數(shù)函數(shù)的平移問題;。

指數(shù)函數(shù)的性質的應用;。

指數(shù)函數(shù)圖象的平移變換.

1.復習指數(shù)函數(shù)的概念、圖象和性質。

練習:函數(shù)y=ax(a0且a1)的定義域是_____,值域是______,函數(shù)圖象所過的定點坐標為.若a1,則當x0時,y1;而當x0時,y1.若00時,y1;而當x0時,y1.

例1解不等式:

(1);(2);。

(3);(4).

小結:解關于指數(shù)的不等式與判斷幾個指數(shù)值的大小一樣,是指數(shù)性質的運用,關鍵是底數(shù)所在的范圍.

例2說明下列函數(shù)的圖象與指數(shù)函數(shù)y=2x的圖象的關系,并畫出它們的示意圖:

(1);(2);(3);(4).

小結:指數(shù)函數(shù)的平移規(guī)律:y=f(x)左右平移y=f(x+k)(當k0時,向左平移,反之向右平移),上下平移y=f(x)+h(當h0時,向上平移,反之向下平移).

練習:

(1)將函數(shù)f(x)=3x的圖象向右平移3個單位,再向下平移2個單位,可以得到函數(shù)的圖象.

(2)將函數(shù)f(x)=3x的圖象向右平移2個單位,再向上平移3個單位,可以得到函數(shù)的圖象.

(3)將函數(shù)圖象先向左平移2個單位,再向下平移1個單位所得函數(shù)的解析式是.

(4)對任意的a0且a1,函數(shù)y=a2x1的圖象恒過的定點的坐標是.函數(shù)y=a2x-1的圖象恒過的定點的坐標是.

小結:指數(shù)函數(shù)的定點往往是解決問題的突破口!定點與單調性相結合,就可以構造出函數(shù)的簡圖,從而許多問題就可以找到解決的突破口.

(5)如何利用函數(shù)f(x)=2x的圖象,作出函數(shù)y=2x和y=2|x2|的圖象?

(6)如何利用函數(shù)f(x)=2x的圖象,作出函數(shù)y=|2x-1|的圖象?

小結:函數(shù)圖象的對稱變換規(guī)律.

例3已知函數(shù)y=f(x)是定義在r上的奇函數(shù),且x0時,f(x)=1-2x,試畫出此函數(shù)的圖象.

例4求函數(shù)的最小值以及取得最小值時的x值.

小結:復合函數(shù)常常需要換元來求解其最值.

練習:

(1)函數(shù)y=ax在[0,1]上的最大值與最小值的和為3,則a等于;。

(2)函數(shù)y=2x的值域為;。

(4)當x0時,函數(shù)f(x)=(a2-1)x的值總大于1,求實數(shù)a的取值范圍.

1.指數(shù)函數(shù)的性質及應用;。

2.指數(shù)型函數(shù)的定點問題;。

3.指數(shù)型函數(shù)的草圖及其變換規(guī)律.

課本p55-6,7.

(1)函數(shù)f(x)的定義域為(0,1),則函數(shù)的定義域為.

(2)對于任意的x1,x2r,若函數(shù)f(x)=2x,試比較的大小.

高中數(shù)學冪函數(shù)教案篇十六

3.探究發(fā)現(xiàn)任意角 與 的三角函數(shù)值的關系.

利用誘導公式(二),口答下列三角函數(shù)值.

(1). ;(2). ;(3). .

喜悅之后讓我們重新啟航,接受新的挑戰(zhàn),引入新的問題.

由sin300= 出發(fā),用三角的定義引導學生求出 sin(-300),sin1500值,讓學生聯(lián)想若已知sin = ,能否求出sin( ),sin( )的值.

1.探究任意角 與 的三角函數(shù)又有什么關系;

2.探究任意角 與 的三角函數(shù)之間又有什么關系.

遺忘的規(guī)律是先快后慢,過程的再現(xiàn)是深刻記憶的重要途徑,在經歷思考問題-觀察發(fā)現(xiàn)-到一般化結論的探索過程,從特殊到一般,數(shù)形結合,學生對知識的理解與掌握以深入腦中,此時以類同問題的提出,大膽的放手讓學生分組討論,重現(xiàn)了探索的整個過程,加深了知識的深刻記憶,對學生無形中鼓舞了氣勢,增強了自信,加大了挑戰(zhàn).而新知識點的自主探討,對教師駕馭課堂的能力也充滿了極大的挑戰(zhàn).彼此相信,彼此信任,產生了師生的默契,師生共同進步.

誘導公式(三)、(四)

給出本節(jié)課的課題

三角函數(shù)誘導公式

標題的后出,讓學生在經歷整個探索過程后,還回味在探索,發(fā)現(xiàn)的成功喜悅中,猛然回頭,哦,原來知識點已經輕松掌握,同時也是對本節(jié)課內容的小結.

的三角函數(shù)值,等于 的同名函數(shù)值,前面加上一個把 看成銳角時原函數(shù)值的符合.(即:函數(shù)名不變,符號看象限.)

設計意圖

簡便記憶公式.

求下列三角函數(shù)的值:(1).sin( ); (2). co.

設計意圖

本練習的設置重點體現(xiàn)一題多解,讓學生不僅學會靈活運用應用三角函數(shù)的誘導公式,還能養(yǎng)成靈活處理問題的良好習慣.這里還要給學生指出課本中的“負角”化為“正角”是針對具體負角而言的.

學生練習

化簡: .

設計意圖

重點加強對三角函數(shù)的誘導公式的綜合應用.

1.小結使用誘導公式化簡任意角的三角函數(shù)為銳角的步驟.

2.體會數(shù)形結合、對稱、化歸的思想.

3.“學會”學習的習慣.

1.課本p-27,第1,2,3小題;

2.附加課外題 略.

設計意圖

加強學生對三角函數(shù)的誘導公式的記憶及靈活應用,附加題的設置有利于有能力的同學“更上一樓”.

八.課后反思

對本節(jié)內容在進行教學設計之前,本人反復閱讀了課程標準和教材,針對教材的內容,編排了一系列問題,讓學生親歷知識發(fā)生、發(fā)展的過程,積極投入到思維活動中來,通過與學生的互動交流,關注學生的思維發(fā)展,在逐漸展開中,引導學生用已學的知識、方法予以解決,并獲得知識體系的更新與拓展,收到了一定的預期效果,尤其是練習的處理,讓學生通過個人、小組、集體等多種解難釋疑的嘗試活動,感受“觀察——歸納——概括——應用”等環(huán)節(jié),在知識的形成、發(fā)展過程中展開思維,逐步培養(yǎng)學生發(fā)現(xiàn)問題、探索問題、解決問題的能力和創(chuàng)造性思維的能力,充分發(fā)揮了學生的主體作用,也提高了學生主體的合作意識,達到了設計中所預想的目標。

然而還有一些缺憾:對本節(jié)內容,難度不高,本人認為,教師的干預(講解)還是太多。

在以后的教學中,對于一些較簡單的內容,應放手讓學生多一些探究與合作。隨著教育改革的深化,教學理念、教學模式、教學內容等教學因素,都在不斷更新,作為數(shù)學教師要更新教學觀念,從學生的全面發(fā)展來設計課堂教學,關注學生個性和潛能的發(fā)展,使教學過程更加切合《課程標準》的要求。用全新的理論來武裝自己,讓自己的課堂更有效。

高中數(shù)學冪函數(shù)教案篇十七

2.通過對抽象符號的認識與使用,使學生在符號表示方面的能力得以提高.。

難點:重點是在映射的基礎上理解的概念;

難點是對抽象符號的認識與使用.。

投影儀。

自學研究與啟發(fā)討論式.。

(要求學生盡量用自己的話描述初中的定義,并試舉出各類學過的例子)。

提問1.是嗎?

(由學生討論,發(fā)表各自的意見,有的認為它不是,理由是沒有兩個變量,也有的認為是,理由是可以可做.)。

現(xiàn)在請同學們打開書翻到第50頁,從這開始閱讀有關的內容,再回答我的問題.(約2-3分鐘或開始提問)。

提問2.新的的定義是什么?能否用最簡單的語言來概括一下.。

(板書)2.2。

一、的概念。

問題3:映射與有何關系?(一定是映射嗎?映射一定是嗎?)。

引導學生發(fā)現(xiàn),是特殊的映射,特殊在集合a,b必是非空的數(shù)集.。

2.本質:是非空數(shù)集到非空數(shù)集的映射.(板書)。

然后讓學生試回答剛才關于是不是的問題,要求從映射的角度解釋.。

此時學生可以清楚的看到滿足映射觀點下的定義,故是一個,這樣解釋就很自然.。

教師繼續(xù)把問題引向深入,提出在映射的觀點下如何解釋是個?

從映射角度看可以是其中定義域是,值域是.。

3.的三要素及其作用(板書)。

例1以下關系式表示嗎?為什么?

(1);(2).。

解:(1)由有意義得,解得.由于定義域是空集,故它不能表示.。

(2)由有意義得,解得.定義域為,值域為.。

由以上兩題可以看出三要素的作用。

(1)判斷一個關系是否存在.(板書)。

例2下列各中,哪一個與是同一個.。

(1);(2)(3);(4).。

解:先認清,它是(定義域)到(值域)的映射,其中。

再看(1)定義域為且,是不同的;(2)定義域為,是不同的;

(4),法則是不同的;

而(3)定義域是,值域是,法則是乘2減1,與完全相同.。

(2)判斷兩個是否相同.(板書)。

4.對符號的理解(板書)。

例3已知試求(板書)。

分析:首先讓學生認清的含義,要求學生能從變量觀點和映射觀點解釋,再進行計算.。

含義1:當自變量取3時,對應的值即;

含義2:定義域中原象3的象,根據(jù)求象的方法知.而應表示原象的象,即.。

計算之后,要求學生了解與的區(qū)別,是常量,而是變量,只是中一個特殊值.。

1.的定義。

2.對三要素的認識。

3.對符號的認識。

五、

2.2例1.例3.。

一.的概念。

1.定義。

2.本質例2.小結:

3.三要素的認識及作用。

4.對符號的理解。

探究活動。

答案:

高中數(shù)學冪函數(shù)教案篇十八

投影儀

自學研究與啟發(fā)討論式.

一、復習與引入

(要求學生盡量用自己的話描述初中函數(shù)的定義,并試舉出各類學過的函數(shù)例子)

提問1.是函數(shù)嗎?

(由學生討論,發(fā)表各自的意見,有的認為它不是函數(shù),理由是沒有兩個變量,也有的認為是函數(shù),理由是可以可做.)

二、新課

現(xiàn)在請同學們打開書翻到第50頁,從這開始閱讀有關的內容,再回答我的問題.(約2-3分鐘或開始提問)

提問2.新的函數(shù)的定義是什么?能否用最簡單的語言來概括一下.

(板書)2.2函數(shù)

一、函數(shù)的概念

問題3:映射與函數(shù)有何關系?(函數(shù)一定是映射嗎?映射一定是函數(shù)嗎?)

引導學生發(fā)現(xiàn),函數(shù)是特殊的映射,特殊在集合a,b必是非空的數(shù)集.

2.本質:函數(shù)是非空數(shù)集到非空數(shù)集的映射.(板書)

然后讓學生試回答剛才關于是不是函數(shù)的問題,要求從映射的角度解釋.

此時學生可以清楚的看到滿足映射觀點下的函數(shù)定義,故是一個函數(shù),這樣解釋就很自然.

教師繼續(xù)把問題引向深入,提出在映射的觀點下如何解釋是個函數(shù)?

從映射角度看可以是其中定義域是,值域是.

3.函數(shù)的三要素及其作用(板書)

以下關系式表示函數(shù)嗎?為什么?

(1);(2).

解:(1)由有意義得,解得.由于定義域是空集,故它不能表示函數(shù).

(2)由有意義得,解得.定義域為,值域為.

由以上兩題可以看出三要素的作用

(1)判斷一個函數(shù)關系是否存在.(板書)

(1);(2) (3);(4).

解:先認清,它是(定義域)到(值域)的映射,其中

再看(1)定義域為且,是不同的;(2)定義域為,是不同的;

(4),法則是不同的;

而(3)定義域是,值域是,法則是乘2減1,與完全相同.

(2)判斷兩個函數(shù)是否相同.(板書)

4.對函數(shù)符號的理解(板書)

已知函數(shù)試求(板書)

分析:首先讓學生認清的含義,要求學生能從變量觀點和映射觀點解釋,再進行計算.

含義1:當自變量取3時,對應的函數(shù)值即;

含義2:定義域中原象3的象,根據(jù)求象的方法知.而應表示原象的象,即.

計算之后,要求學生了解與的區(qū)別,是常量,而是變量,只是中一個特殊值.

三、小結

1.函數(shù)的定義

2.對函數(shù)三要素的認識

3.對函數(shù)符號的認識

四、作業(yè):略

五、

2.2函數(shù)例1.例3.

一.函數(shù)的概念

1.定義

2.本質例2.小結:

3.函數(shù)三要素的認識及作用

4.對函數(shù)符號的理解

答案:

【本文地址:http://mlvmservice.com/zuowen/15578486.html】

全文閱讀已結束,如果需要下載本文請點擊

下載此文檔