在生活中,總結(jié)經(jīng)驗是我們不斷進步的關(guān)鍵??偨Y(jié)要注意語言的準確性和流暢性,使讀者容易理解??偨Y(jié)是在一段時間內(nèi)對學習和工作生活等表現(xiàn)加以總結(jié)和概括的一種書面材料,它可以促使我們思考,我想我們需要寫一份總結(jié)了吧。那么我們該如何寫一篇較為完美的總結(jié)呢?以下是小編為大家收集的總結(jié)范文,僅供參考,大家一起來看看吧。
反比例函數(shù)的教學設(shè)計篇一
一、數(shù)學本質(zhì)與教學目標定位。
《實際問題與反比例函數(shù)(第三課時)》是新人教版八年級下冊第十七章第二節(jié)的課題,是在前面學習了反比例函數(shù)、反比例函數(shù)的圖象和性質(zhì)的基礎(chǔ)上的一節(jié)應用課。體現(xiàn)反比例函數(shù)是解決實際問題有效的數(shù)學模型,經(jīng)歷“找出常量和變量,建立并表示函數(shù)模型,討論函數(shù)模型,解決實際問題“的過程。
本節(jié)課的教學目標分以下三個方面:
1、知識與技能目標:
(2)通過對實際問題中變量之間關(guān)系的分析,建立函數(shù)模型,運用已學過的反比例函數(shù)知識加以解決,體會數(shù)學建模思想和學以致用的數(shù)學理念。
2、能力訓練目標。
分析實際問題中變量之間的關(guān)系,建立反比例函數(shù)模型解決問題,進一步運用函數(shù)的圖像、性質(zhì)挖掘杠桿原理中蘊涵的道理。
3.情感、態(tài)度與價值觀目標:
(1)利用函數(shù)探索古希臘科學家阿基米德發(fā)現(xiàn)的“杠桿定律”,使學生的求知欲望得到激發(fā),再通過自己所學知識解決了身邊的問題,大大提高了學生學習數(shù)學的興趣。
(2)訓練學生能把思考的結(jié)果用語言很好地表達出來,同時要讓學生很好地交流和合作.。
二、學習內(nèi)容的基礎(chǔ)以及其作用。
在17.1學習了反比例函數(shù)的概念及函數(shù)的圖像和性質(zhì)基礎(chǔ)上,《實際問題與反比例函數(shù)》這一節(jié)重點介紹反比例函數(shù)在現(xiàn)實生活中的廣泛性,以及如何應用反比例函數(shù)的知識解決現(xiàn)實生活中的實際問題。
本節(jié)課的探究的例題和練習題都是現(xiàn)實生活中的常見問題,反映了數(shù)學與實際的關(guān)系,即數(shù)學理論來源于實際又發(fā)過來服務實際,這樣有助于提高學生把抽象的數(shù)學概念應用于實際問題的能力。在數(shù)學課上涉及了物理學力學的實際問題,運用到古希臘科學家阿基米德發(fā)現(xiàn)的“杠桿定理”,其本質(zhì)體現(xiàn)的是力與力臂兩個量的發(fā)比例關(guān)系,最后落實到運用數(shù)學來解決。通過學習,讓學生進一步加深對反比例函數(shù)的運用和理解,更深層次體會建立反比例模型解決實際問題的思想,鞏固和提高所學知識,鼓勵學生將所學知識應用到生活中去。
反比例函數(shù)的教學設(shè)計篇二
公開課上完了,總的感覺有成功的地方,也有不足之處。我認為本堂課成功的做法有以下幾方面:
一、定位較準,立足于本校學情。由于學生基礎(chǔ)較差,本節(jié)復習是按知識點復習,目的是落實知識點和掌握一些基本的題型,通過教學來看目標已達成。
二、習題設(shè)計合理,立足于思維訓練。本節(jié)課每個知識點都設(shè)計了針對性的變式練習,通過練習學生的解體技巧、方法、思維都得到了訓練。
三、注重了數(shù)學思想方法的滲透。在反比例函數(shù)的性質(zhì)教學時,緊緊抓住關(guān)鍵詞語,突破難點。性質(zhì)強調(diào)“在同一象限內(nèi)”,而我們學生往往忽略這個問題,無論是怎樣的兩點,都直接用性質(zhì),對此,采用討論的觀點,結(jié)合圖像觀察,讓學生看到理解到:在同一象限內(nèi)可直接用性質(zhì),不在同一象限內(nèi),一、二象限的點的縱坐標永遠大于三、四象限內(nèi)點的縱坐標。這樣,非常明了的讓學生把最容易混淆的知識分清了,突破難點的同時及時總結(jié)出這其中體現(xiàn)出的數(shù)學思想方法:分類討論和數(shù)形結(jié)合的思想方法。
四、大膽嘗試信息技術(shù)教學?!鞍喟嗤ā弊哌M了課堂,信息技術(shù)的教學正沖擊著傳統(tǒng)的數(shù)學課堂,雖然白板的功能還沒完全了解,使用的也不夠熟練,但也能體現(xiàn)出信息技術(shù)在數(shù)學教學的靈活性、直觀性,對本節(jié)課“反比例函數(shù)的性質(zhì)”等多處教學都起到一定的作用,提高了課堂效率。
不足之處:。
一、預見性不夠。這主要體現(xiàn)在知識回顧中的第二題,本來打算一點而過,結(jié)果學生的回答偏離了老師的預想,老師勢必站在學生的角度給他們一一糾正,從而浪費了時間,自己對于突發(fā)事件的處理靈活性還不夠,掌控課堂的能力有待提高。
二、對學生的情感關(guān)注太少。本來想營造一種和諧的課堂氣氛,學生因為緊張回答問題不積極,不敢大膽發(fā)表自己的觀點,課堂氣氛死氣沉沉,沒有煥發(fā)出學生的激情。如果在一開始就用生動活潑激趣的語言導入課題,在教學過程中對少數(shù)同學的回答能及時給予表揚和激勵,不但能消除學生的緊張情緒,也能激發(fā)學生的興趣,堅定學習的信心。
三、角色轉(zhuǎn)換不徹底。在整個課堂教學過程中,教師圍繞主題、圍繞學生提問的多,給學生提問的時間和機會很少.不能大膽放心把課堂交還給學生.今后還需要改進的地方:
一、在上課過程中,要始終關(guān)注學生的情感。因為學生的學習是認知和情感的結(jié)合,只有給了他們情感上的極大滿足,學生才會獲得渴望成功的動力,我們的自主學習活動才能收到應有的效果。
二、不斷學習新的教育理論,不斷更新教學觀念,使數(shù)學教育面向全體學生,實現(xiàn)——人人學有價值的數(shù)學,人人都能獲得必需的數(shù)學,不同的人在數(shù)學上得到不同的發(fā)展。
三、注意評價的多元化,全面了解學生的數(shù)學學習歷程,對數(shù)學學習的評價不僅要關(guān)注學生學習的結(jié)果,更要關(guān)注他們學習的過程,幫助學生認識自我,建立信心。
四、努力學習多媒體軟件設(shè)計和制作,把它作為教師備課、教學改革的工具,使電腦、網(wǎng)絡、光盤、白板等現(xiàn)代媒體成為像黑板、粉筆一樣的得心應手的工具,恰如其分地應用于日常課堂教學中,真正為教學服務。
有反思才會有進步,作為身處課程改革第一線的教育工作者,應迅速轉(zhuǎn)變傳統(tǒng)的教育觀念,勇于創(chuàng)新,積極接受挑戰(zhàn)。
反比例函數(shù)的教學設(shè)計篇三
上完此節(jié)課后,我回憶著這節(jié)課的段段細節(jié),不斷思索著這節(jié)課的成功之處與不足之處,希望能使自己在這節(jié)課中獲得更大的收獲。
在這節(jié)課中,我認為最成功之處是比較充分地調(diào)動了學生的積極性、主動性。由于此節(jié)課是以現(xiàn)在最熱門的房產(chǎn)買賣為切入點,從生活中買房的例子出發(fā),從一開始就吸引了學生的注意力,充分引發(fā)了學生學習的興趣,從而使得這節(jié)課能得以發(fā)揮。由于學生的興趣得以激發(fā),所以在教授新課的過程中,師生得以互動。在正反比例解析式及其性質(zhì)的比較中,學生能自主分析,解決問題。在圖象畫法比賽中,許多學生能積極指出圖象的優(yōu)缺點,并且不斷發(fā)現(xiàn)圖象畫法的不足之處。這樣讓學生自己發(fā)現(xiàn)問題,自己解決問題,既提高了他們畫圖的本領(lǐng),更為后面學習圖象性質(zhì)做了鋪墊。當對圖象性質(zhì)進行小組討論時,許多學生能積極思考,互相反駁,互相提問解決問題,并且運用類比方法進行分析。應當說這節(jié)課讓學生得到了一個良好的自主學習的環(huán)境,整節(jié)課學生積極舉手發(fā)言,場面比較熱烈,使我也能充分發(fā)揮。
在課程設(shè)計中,我將反比例函數(shù)比較數(shù)學化的問題實際化,從實際出發(fā)又回到實際也是比較合理的。由于現(xiàn)在學生知識面的擴大,數(shù)學教學應該為實際服務越來越被大家接受,因此我認為聯(lián)系實際是很重要的。
在這節(jié)課中,多媒體教學也起了舉足輕重的地位。在電腦課件的幫助下,這節(jié)課變得比較充實豐富。而電腦動畫更是使復雜問題變得簡單化。當然這節(jié)課存在很多不足之處。例如后半節(jié)課有些緊湊等等。
反比例函數(shù)的教學設(shè)計篇四
1.回顧、梳理本章的知識:
如同已經(jīng)學過的有關(guān)方程、函數(shù)的內(nèi)容一樣,本章內(nèi)容分為3塊:
(1)從生活到數(shù)學:從問題到反比例函數(shù),即建構(gòu)實際問題的數(shù)學模型;
(3)用數(shù)學解決問題:反比例函數(shù)的應用.。
2.可以設(shè)計一組問題,重點歸納、整理反比例函數(shù)的圖象與性質(zhì),進一步感受形數(shù)結(jié)合的數(shù)學思想方法.例如:
(3)形數(shù)結(jié)合——函數(shù)的圖象與性質(zhì)的綜合應用。
例如:為了預防“非典”,某學校對教室采用藥薰法進行消毒.已知藥物燃燒時.室內(nèi)每立方米空氣中的含藥量y(mg)與時間x(min)成正比例,藥物燃燒后,y與x成反比例(如圖).現(xiàn)測得藥物8min燃畢,此時室內(nèi)空氣中每立方米含藥量為6mg。
(1)寫出藥物燃燒前、后y與x的函數(shù)關(guān)系式;
反比例函數(shù)的教學設(shè)計篇五
1、理解反比例的意義。
2、能根據(jù)反比例的意義,正確判斷兩種量是否成反比例。
3、培養(yǎng)學生的抽象概括能力和判斷推理能力。
引導學生理解反比例的意義。
利用反比例的意義,正確判斷兩種量是否成反比例。
一、復習鋪墊。
1、成正比例的量有什么特征?
2、下表中的兩種量是不是成正比例?為什么?
二、自主探究。
(一)教學例1。
1、出示例1,提出觀察思考要求:
從表中你發(fā)現(xiàn)了什么?這個表同復習的表相比,有什么不同?
(1)表中的兩種量是每小時加工的數(shù)量和所需的加工時間。
教師板書:每小時加工數(shù)和加工時間。
(2)每小時加工的數(shù)量擴大,所需的加工時間反而縮??;每小時加工的數(shù)量縮小,所需的加工時間反而擴大。
教師追問:這是兩種相關(guān)聯(lián)的量嗎?為什么?
(3)每兩個相對應的數(shù)的乘積都是600.
教師板書:零件總數(shù)。
每小時加工數(shù)×加工時間=零件總數(shù)。
3、小結(jié)。
通過剛才的研究,我們知道,每小時加工數(shù)和加工時間是兩種相關(guān)聯(lián)的量,每小時加工數(shù)變化,加工時間也隨著變化,每小時加工數(shù)乘以加工時間等于零件總數(shù),這里的`零件總數(shù)是一定的。
(二)教學例2。
1、出示例2,根據(jù)題意,學生口述填表。
2、教師提問:
(1)表中有哪兩種量?是相關(guān)聯(lián)的量嗎?
教師板書:每本張數(shù)和裝訂本數(shù)。
(2)裝訂的本數(shù)是怎樣隨著每本的張數(shù)變化的?
(3)表中的兩種量有什么變化規(guī)律?
(三)比較例1和例2,概括反比例的意義。
1、請你比較例1和例2,它們有什么相同點?
(1)都有兩種相關(guān)聯(lián)的量。
(2)都是一種量變化,另一種量也隨著變化。
(3)都是兩種量中相對應的兩個數(shù)的積一定。
2、教師小結(jié)。
像這樣的兩種量,我們就把它們叫做成反比例的量,它們的關(guān)系叫做反比例關(guān)系。
教師板書:xy=k(一定)。
三、課堂小結(jié)。
1、這節(jié)課我們學習了成反比例的量,知道了什么樣的兩種量是成反比例的量,也學會了怎樣判斷兩種量是不是成反比例。在判斷時,同學們要按照反比例的意義,認真分析,做出正確的判斷。
2、通過今天的學習,正比例關(guān)系和反比例關(guān)系有什么相同點和不同點?
四、課堂練習。
完成教材43頁做一做。
五、課后作業(yè)。
練習七6、7、8、9題。
反比例函數(shù)的教學設(shè)計篇六
教學目標:
3、滲透數(shù)形結(jié)合的數(shù)學思想及普遍聯(lián)系的辨證唯物主義思想;
4、體會數(shù)學從實踐中來又到實際中去的研究、應用過程;
5、培養(yǎng)學生的觀察能力,及數(shù)學地發(fā)現(xiàn)問題,解決問題的能力.教學重點:
結(jié)合圖象分析總結(jié)出反比例函數(shù)的性質(zhì);
教學用具:直尺。
教學方法:小組合作、探究式。
教學過程:
我們在小學學過反比例關(guān)系.例如:當路程s一定時,時間t與速度v成反比例。
即vt=;
當矩形面積s一定時,長a與寬b成反比例,即ab=。
從函數(shù)的觀點看,在運動變化的過程中,有兩個變量可以分別看成自變量與函數(shù),寫成:
(s是常數(shù))。
(s是常數(shù))。
解:列表。
前面學習了三類基本的初等函數(shù),有了一定的基礎(chǔ),這里可視學生的程度或展開全面的討論,或在老師的引導下完成知識的學習。
顯示這兩個函數(shù)的圖象,提出問題:你能從圖象上發(fā)現(xiàn)什么有關(guān)反比例函數(shù)的性質(zhì)呢?并能從解析式或列表中得到論證.(下列答案僅供參考)。
從圖象中可以看出,當x從左向右變化時,圖象呈下坡趨勢.從列表中也可以看出這樣的變化趨勢.有理數(shù)除法說明了同樣的道理,被除數(shù)一定時,若除數(shù)大于零,除數(shù)越大,商越??;若除數(shù)小于零,同樣是除數(shù)越大,商越小.由此可歸納出,當k0時,函數(shù)的圖象,在每一個象限內(nèi),y隨x的增大而減小.同樣可以推出的圖象的性質(zhì).(3)函數(shù)的圖象不經(jīng)過原點,且不與x軸、y軸交.從解析式中也可以看出,.如果x取值越來越大時,y的值越來越小,趨近于零;如果x取負值且越來越小時,y的值也越來越趨近于零.因此,呈現(xiàn)的是雙曲線的樣子.同理,抽象出圖象的性質(zhì).函數(shù)的圖象性質(zhì)的討論與次類似.4、小結(jié):
反比例函數(shù)的教學設(shè)計篇七
由對現(xiàn)實問題的討論抽象出反比例函數(shù)的概念,通過對問題的解決進一步明確:1.反比例函數(shù)的意義;2.反比例函數(shù)的概念;3.反比例函數(shù)的一般形式。
1.從現(xiàn)實情境和已有的知識、經(jīng)驗出發(fā),討論兩個變量之間的相依關(guān)系,加深對函數(shù)概念的理解。
2.經(jīng)歷抽象反比例函數(shù)概念的過程,領(lǐng)會反比例函數(shù)的意義,表述反比例函數(shù)的概念。
1.經(jīng)歷對兩個變量之間相依關(guān)系的討論,培養(yǎng)辯證唯物主義觀點。
2.經(jīng)歷抽象反比例函數(shù)概念的過程,發(fā)展抽象思維能力,提高數(shù)學化意識。
1.認識到數(shù)學知識是有聯(lián)系的,逐步感受數(shù)學內(nèi)容的系統(tǒng)性;
2.通過分組討論,培養(yǎng)合作交流意識和探索精神。
啟發(fā)引導、分組討論。
1課時。
課件。
復習引入。
2.在上一學段,我們研究了現(xiàn)實生活中成反比例的兩個量。
反比例函數(shù)的教學設(shè)計篇八
教學目標:
教學重點:
教學程序:
一、新授:
1、實例1:(1)用含s的代數(shù)式表示p,p是s的反比例函數(shù)嗎?為什么?
(2)、當木板面積為0.2m2時,壓強是多少?
答:p=3000pa。
(3)、如果要求壓強不超過6000pa,木板的面積至少要多少?
答:2。
(4)、在直角坐標系中,作出相應的函數(shù)圖象。
(5)、請利用圖象(2)和(3)作出直觀解釋,并與同伴進行交流。
二、做一做。
1、(1)蓄電池的電壓為定值,使用此電源時,電流i(a)與電阻r()之間的函數(shù)關(guān)系如圖5-8所示。
(2)蓄電池的電壓是多少?你以寫出這一函數(shù)的表達式嗎?
電壓u=36v,i=60k。
r()345678910。
i(a)。
3、如圖5-9,正比例函數(shù)y=k1x的圖象與反比例函數(shù)y=60k的圖象相交于a、b兩點,其中點a的坐標為(3,23)。
(1)分別寫出這兩個函數(shù)的表達式;。
(2)你能求出點b的坐標嗎?你是怎樣求的?與同伴進行交流;。
隨堂練習:
p145~1461、2、3、4、5。
作業(yè):p146習題5.41、2。
反比例函數(shù)的教學設(shè)計篇九
(二)對反比例函數(shù)的三種表示方法進行鞏固和熟悉。
例題非常簡單,在例題的處理上我注重了學生解題步驟的培養(yǎng),同時通過兩次變式進一步鞏固解法,并拓寬了學生的思路。在變式訓練之后,我又補充了一個綜合性題目的例題,(在上學期曾有過類似問題的,由于時間的久遠學生不是很熟悉)但在補充例題的處理上點撥不到位,導致這個問題的解決有點走彎路。
題組(三)在本節(jié)既是知識的鞏固又是知識的檢測,通過這組題目的處理,發(fā)現(xiàn)學生對本節(jié)知識的掌握還可以。從整體來看,時間有點緊張,小結(jié)很是倉促,而且是由老師代勞了,沒有讓學生來談收獲,在這點有些包辦的趨勢。
雖然在題目的設(shè)計和教學設(shè)計上我注重了由淺入深的梯度,但有些問題的處理方式不是恰到好處,有的學生課堂表現(xiàn)不活躍,這也說明老師沒有調(diào)動起所有學生的學習積極性??傊?,我會在以后的教學中注意細節(jié)問題的。
還希望數(shù)學組的老題多提寶貴的意見。謝謝了!
反比例函數(shù)的教學設(shè)計篇十
教學目的:
1.通過檢測講評,進一步理解和掌握正、反比例應用題的解題規(guī)律。
2.通過一題多變、一題多解等題組練習形式,由淺入深,由易到難,培養(yǎng)學生思維的靈活性。
我們已經(jīng)學過了正、反比例應用題,今天我們上一節(jié)檢測講評課課。(板書課題:正反比例應用題)通過這節(jié)課的學習,希望進一步理解和掌握正反比例應用題的解題規(guī)律。
檢測題。
1.什么叫成正比例的量?它的關(guān)系式是什么?
2.什么叫成反比例的量?它的關(guān)系式是什么?
3.判斷下面兩種量成不成比例?成什么比例?
a.訂閱《中國少年報》的份數(shù)和錢數(shù)。
b.日產(chǎn)量一定,天數(shù)和總產(chǎn)量。
c.路程一定,速度和時間。
d.圓的周長和半徑。
e.長方形的周長一定,長和寬。
f.圓錐的體積一定,底面積和高。
大家對概念掌握得較熟練,但在應用中可看出對概念的理解程度還是有差距的。兩種量是不是成正反比例的量先明確是誰和誰,其次看它們是不是相互影響,若是,就看著兩種量是不是屬于積商關(guān)系,積商一定時,就下斷論。例如人的身高和體重是不是成正反比例的量,這兩種量一種量變化,另一種量不一定發(fā)生變化,直接否定。再如,圓周率和圓周長是不是成正反比例的量,因為圓周長變化時圓周率并不發(fā)生變化,也是直接否定。a、b、c、d、f中兩種量相互影響,且積或商一定所以成正反比例的量,e中兩種量相互影響,但不實際上已定,故不成正反比例的'量。大家一定要把握概念的實質(zhì),靈活運用。
二、練一練。
1.計算下列各題:
農(nóng)具廠生產(chǎn)一批農(nóng)具,3天生產(chǎn)360臺,照這樣計算,30天可生產(chǎn)多少臺?(指名讀題)。
師:這道題用比例方法來解答請同學們自己做一做。(一人板演)。
訂正時請板演的同學先講一講,做題的時候自己是怎么想的?并板書列式:360/3=x/30。
師:這道題,你們覺得他做得咋樣?如果工作時間30天不直接告訴我們,還可以怎么說?
生:如果再生產(chǎn)27天,一共可生產(chǎn)多少臺?
師:同原題比較,這道題復雜在哪呢?
生:原題的條件是直接的,這題的條件是間接的。
生:原題問題所對應的量是已知的,這題問題所對應的量是未知的。
師:這道題怎樣解答呢?(要求學生口頭列出比例式)。
生:解:設(shè)一共可生產(chǎn)x臺,360/3=x/(3+27)(板書:360/3=x/(3+27))。
教師提問:3+27求的是什么?把3+27寫成27可以嗎?
教師強調(diào):列式時一定要找準相關(guān)聯(lián)的量中相對應的數(shù)。
師;這道題還可以怎樣解答?
生:解:設(shè)27天可生產(chǎn)x臺,360/3=x/27x+360。(板書:360/3=x/27x+360)。
教師小結(jié):80%同學能做出地一題,第二問題就有點大了。其實象這道題,問題雖然變了,但題中基本數(shù)量關(guān)系未變,所以我們都是用正比例的方法來解答的。這道題我們可以直接設(shè)問題為x,列出這樣的比例式(指360/3=x/(3+27))。也可以間接設(shè)27天的生產(chǎn)量為x,求出27天的生產(chǎn)量再加上前3天的生產(chǎn)量,就得到了一共的生產(chǎn)量。
解答正比例應用題的關(guān)鍵一是要正確判斷相關(guān)聯(lián)的兩種量是否成正比例,二是要找準相關(guān)聯(lián)的量中相對應的數(shù)。
師:這道題用比例方法來解答請同學們自己做一做。(一人板演)。
教師訂正時請同學講述解題思路,并板書方程:100x=80*20。
將原題變成:
以上4題要求學生獨立完成。
教師評講:通過剛才的變換我們發(fā)現(xiàn),較復雜的反比例應用題,其復雜性表現(xiàn)在兩個方面。一是已知條件發(fā)生變化,引起未知數(shù)x對應值的復雜化。二是問題發(fā)生變化,引起未知數(shù)x的復雜化。但不管怎樣,我們要緊扣反比例的意義,對應用題中兩相關(guān)聯(lián)的量進行正確的判斷。
等于兩種相關(guān)聯(lián)的量相除,則成正比例;定量等于兩種相關(guān)聯(lián)的量相乘,則成反比例。
反比例函數(shù)的教學設(shè)計篇十一
一、教學內(nèi)容:反比例。(教材第47頁例2)。教學目標:
1.使學生理解反比例的意義,能正確地判斷兩種相關(guān)聯(lián)的量是不是成反比例的量。
2.讓學生經(jīng)歷反比例意義的探究過程,體驗觀察比較、推理、歸納的學習方法。
二、重點難點:
引導學生總結(jié)出成反比例的量的特點,進而抽象概括出反比例的關(guān)系式。利用反比例的意義,正確判斷兩個量是否成反比例。
三、教學準備:投影儀。
四、教學過程:
(一)復習導入。
1.讓學生說說什么是正比例,然后用投影出示下面的題。下面各題中哪兩種量成正比例?為什么?(1)每公頃產(chǎn)量一定,總產(chǎn)量和公頃數(shù)。
(2)一袋大米的重量一定,吃了的和剩下的。(3)修房屋時,粉刷的面積和所需涂料的數(shù)量。
2.說出每小時加工零件數(shù)、加工零件總數(shù)和加工時間三者之間的關(guān)系。在什么條件下,其中兩種量成正比例?教師:如果加工零件總數(shù)一定,每小時加工數(shù)和加工時間會成什么變化?關(guān)系怎樣?這就是我們這節(jié)課要學習的內(nèi)容。
(二)目標解讀:
1、學生認真度學習目標。
2、理解目標。
(三)自主預習:
理解:哪兩種量叫做成反比例的量?什么是反比例關(guān)系?請舉例說明。
(四)檢查預習。
(五)合作探究活動一:
1、學習例2:把相同體積的水倒入底面積不同的杯子,高度會怎樣變化?出示教材第47頁例2的情境圖和表格。
3、高度和底面積有這樣的變化關(guān)系,我們就說高度和底面積成反比例的關(guān)系,高度和底面積叫做成反比例的量。活動二:
1、歸納反比例的意義。
像這樣,兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數(shù)的積一定,這兩種量就叫做成反比例的量,它們的關(guān)系叫做反比例關(guān)系。
2、.用字母表示。
如果用字母x和y表示兩種相關(guān)聯(lián)的量,用k表示它們的乘積(一定),反比例關(guān)系的式子怎么表示?學生探討后得出結(jié)果。x×y=k(一定)。
3、生活中還有哪些成反比例的量?學生舉例說明。如:
(1)大米的質(zhì)量一定,每袋質(zhì)量和袋數(shù)成反比例。
(2)教室地板面積一定,每塊地磚的面積和塊數(shù)成反比例。(3)長方形的面積一定,長和寬成反比例?;顒尤?/p>
1、.組織學生將例1與例2進行比較,小組內(nèi)討論:正比例與反比例的相同點和不同點有哪些?學生交流、匯報后,引導學生歸納:
相同點:都表示兩種相關(guān)聯(lián)的量,且一種量變化,另一種量也隨著變化。不同點:正比例關(guān)系中比值一定,反比例關(guān)系中乘積一定。
2、你還有什么疑問。
如果學生提出表示反比例關(guān)系的圖像有什么特征,教師應該引導學生觀察教材第48頁“你知道嗎”中的圖像。
1.教材第48頁的“做一做”。2.教材第51頁第9、10題。課堂小結(jié)。
說一說成反比例關(guān)系的量的變化特征。(六)當堂檢測:
1.完成練習冊中本課時的練習。2.教材51~52頁第8、14題。
(七)總結(jié)歸納:
反比例。
兩種相關(guān)聯(lián)的量。
變化。
xy=k(一定)。
積一定。
學習例2:把相同體積的水倒入底面積不同的杯子,高度會怎樣變化?出示教材第47頁例2的情境圖和表格。
請學生認真觀察表中數(shù)據(jù)的變化情況,組織學生分小組討論:(1)水的高度和底面積變化有關(guān)系嗎?(2)水的高度是怎樣隨著底面積變化的?(3)水的高度和底面積的變化有什么規(guī)律?發(fā)現(xiàn)規(guī)律:(底面積越大,水的高度越低;底面積越小,水的高度越高,而且高度和底面積的乘積(水的體積)一定。)教師板書配合說明這一規(guī)律:30×10=20×15=15×20=??=300教師根據(jù)學生的匯報說明:高度和底面積有這樣的變化關(guān)系,我們就說高度和底面積成反比例的關(guān)系,高度和底面積叫做成反比例的量。2.歸納反比例的意義。
組織學生小組內(nèi)討論:反比例的意義是什么?學生小組內(nèi)交流,指名匯報。
教師總結(jié):像這樣,兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數(shù)的積一定,這兩種量就叫做成反比例的量,它們的關(guān)系叫做反比例關(guān)系。3.用字母表示。
如果用字母x和y表示兩種相關(guān)聯(lián)的量,用k表示它們的乘積(一定),反比例關(guān)系的式子怎么表示?學生探討后得出結(jié)果。x×y=k(一定)。
4.師:生活中還有哪些成反比例的量?在教師的引導下,學生舉例說明。如:
(1)大米的質(zhì)量一定,每袋質(zhì)量和袋數(shù)成反比例。
(2)教室地板面積一定,每塊地磚的面積和塊數(shù)成反比例。(3)長方形的面積一定,長和寬成反比例。
5.組織學生將例1與例2進行比較,小組內(nèi)討論:正比例與反比例的相同點和不同點有哪些?學生交流、匯報后,引導學生歸納:
如果學生提出表示反比例關(guān)系的圖像有什么特征,教師應該引導學生觀察教材第48頁“你知道嗎”中的圖像。
1.教材第48頁的“做一做”。2.教材第51頁第9、10題。課堂小結(jié)。
說一說成反比例關(guān)系的量的變化特征。課后作業(yè)。
1.完成練習冊中本課時的練習。2.教材51~52頁第8、14題。
反比例教學反思(六年級)今天用《反比例的意義》作為校內(nèi)的研究課,這節(jié)課是上周六臨時決定的,本來是要用復習單元《量的計量》來上的,但是擔心畢業(yè)班后面的時間會很緊,所以臨時決定提前。不過,我想不管什么的課,只要教師的素質(zhì)高,一樣能上出精彩,不能因為內(nèi)容好上而選來作為公開課,相反,越是難上的課就越要拿出來研究研究,因為研究課就是供大家來討論研究的,這樣,以后上到同樣的內(nèi)容時就不會不知所措了,再者,越是難上才越能體現(xiàn)功底,并且這樣的課上過之后,其他內(nèi)容的課就會顯得不是很難了,因為在信心上占有了優(yōu)勢。
周六決定了這節(jié)課后,我便整理了一份草案請師傅過目,在和師傅及其他幾位老師研究過后,大家的意見是:這節(jié)課的內(nèi)容比較多,要上好不容易,以往上到這個內(nèi)容時是最麻煩的,因為這個內(nèi)容十分抽象,所以,這節(jié)課的容量不宜太大。我雖然沒有教過六年級,但是看過教材之后,也覺得這部分內(nèi)容容量比較大,其實也不能說是容量大,就是比較抽象,如果學生學不好、說不出來其中的道理,就比較麻煩,就會影響到這節(jié)課能否上完。所以,在修改教案時,我十分注意容量問題,能精簡的精簡,盡量不在碎小的地方拌足。下面是我設(shè)計的思路。
首先簡單回顧正比例的概念知識,然后給出單價、總價、數(shù)量,問:怎樣組合才能符合正比例的要求?接著小結(jié):“既然有正比例,那就有…”(學生說:反比例)引出課題《反比例》,引出課題后,我讓學生先根據(jù)正比例的意義猜一猜什么是反比例,或者說,你認為什么是反比例。通過猜想,先初步的感知反比例,不管學生猜的對與錯,最起碼調(diào)動了學生的積極性和質(zhì)疑心理,為后面的學習先奠定一定的基礎(chǔ)。因為,后面我們要通過學習來驗證猜想的對不對,通過驗證后,之前猜對的學生在情感體驗上就會得到滿足,同時也培養(yǎng)了估計的能力,這也符合《課程標準》培養(yǎng)估計能力和推理的要求。在初步的猜想之后,用了一段小動畫來直觀的經(jīng)歷、感受反比例的建構(gòu)過程(這個動畫我做錯了,后來經(jīng)大家的提醒,我把這個動畫作了修改),這個動畫是這樣的:有一堆黃沙,先用載重量大一些的貨車運,然后換成載重量小一些的貨車運,接著再換一輛載重量還要小的貨車運,并提問:從動畫中能想到什么?讓學生知道,每次運的越少,運的次數(shù)就越多,每次運的越多,運的次數(shù)就越少,初步經(jīng)歷、感受反比例的建構(gòu)過程。有了這樣的一個基礎(chǔ),接下來出示例4和例5并按要求回答,然后把例4和例5放在一起比較,尋找這兩道例題的共同點:都有兩種相關(guān)聯(lián)的量、都是一種量隨著另一種量的變化而變化、兩種量里對應數(shù)值的乘積一定。找出共同點之后,分步出示反比例的意義,然后用反比例的意義在回去解釋例4,接著要求學生用這一知識解釋例5,然后學會用字母x、y和k來表示它們之間的關(guān)系,接著實際運用,做練一練第1題和練習八的第4題,到這里我都是教要用一句話來判斷兩個量是否成反比例的,接下來出示例6,跟學生說明,我們也可以列數(shù)量關(guān)系式來判斷,如果要列數(shù)量關(guān)系式判斷的話,它們的乘積就要一定。至此,課的內(nèi)容已經(jīng)基本上完,后面就做了兩組相關(guān)的練習,一組是判斷兩種量是否成反比例,其中有一題不成比例,有一題成正比例,有兩題成反比例,另外一組題目是先把數(shù)量關(guān)系式填寫完整,然后根據(jù)數(shù)量關(guān)系式回答問題。最后總結(jié)本課內(nèi)容,總結(jié)時,學生提到了和正比例的區(qū)別的聯(lián)系,這是我備課時所沒有想到的,而正好時間又多(因為擔心不能上完,所以一直趕著上的),我就順著學生的思路,要大家比較它們之間的區(qū)別和聯(lián)系,由于前面學的比較好,學生很清楚地找出了它們之間的區(qū)別和聯(lián)系,其中有個學生說到了它們之間的聯(lián)系時是這樣說的:它們相同點都是一種量隨著另一種量的變化而變化,但是如果要講具體怎么變化的就有區(qū)別了。為學生的精彩回答而感到高興,看來他們今天學的比較好。同時,我也暗自為自己慶幸,不是慶幸上的好,而是慶幸課的內(nèi)容按預計的上完了,也改掉了一直伴隨我的老毛病——課堂上羅羅嗦嗦。下午教研活動時大家發(fā)表了意見,其中那個動畫大家講的最多,我也知道動畫做錯了,所以已經(jīng)做了修改,另外大家提的比較多的是后面的總結(jié),大家認為這節(jié)課沒有必要進行正比例和反比例的比較,這節(jié)課的內(nèi)容就是理解反比例的意義,但是我卻不這樣想,首先這部分內(nèi)容不是我的預設(shè)生成,而是非預設(shè)生成,學生能想到為什么不趁熱打鐵比較一下呢?雖然這部分內(nèi)容是下節(jié)課要專門講的,在這里為什么不可提一提?學生能掌握不是更好嗎?所以,在修改教案時,我決定把這個環(huán)節(jié)添上去。另外大家還認為這節(jié)課光練習說了,沒有什么寫的練習,光會說,那作業(yè)怎么寫?沒有經(jīng)歷寫的練習,學生會嗎?我想,這的確是有必要的,所以,在修改教案時也增添了進去。這樣一來,這節(jié)課的內(nèi)容滿滿當當,不多不少了。
下面是我整理之后的教案和課件,大家看看,提些建議啊!
原文地址:http://內(nèi)容來源:綠色圃中小學教育網(wǎng)-http:///。
反比例函數(shù)的教學設(shè)計篇十二
1.能運用反比例函數(shù)的相關(guān)知識分析和解決一些簡單的實際問題。
2.在解決實際問題的過程中,進一步體會和認識反比例函數(shù)是刻
畫現(xiàn)實世界中數(shù)量關(guān)系的一種數(shù)學模型。
運用反比例函數(shù)解決實際問題
運用反比例函數(shù)解決實際問題
一、情景創(chuàng)設(shè)
反比例函數(shù)在生活、生產(chǎn)實際中也有著廣泛的應用。
例如:在矩形中s一定,a和b之間的關(guān)系?你能舉例嗎?
二、例題精析
例1、見課本73頁
例2、見課本74頁
四、課堂練習課本p74練習1、2題
五、課堂小結(jié)反比例函數(shù)的應用
六、課堂作業(yè)課本p75習題9.3第1、2題
七、教學反思
更多初二數(shù)學教案,請點擊
反比例函數(shù)的教學設(shè)計篇十三
解決問題
情感態(tài)度
重點
運用反比例函數(shù)解釋生活中的一些規(guī)律、解決一些實際問題
難點
把實際問題利用反比例函數(shù)轉(zhuǎn)化為數(shù)學問題加以解決
活動流程圖
活動內(nèi)容和目的
活動1創(chuàng)設(shè)情境,引出問題
活動2分析解決問題
活動3從函數(shù)的觀點進一步分析規(guī)律
活動4鞏固練習
活動5課堂小結(jié)、布置作業(yè)
教師提出生活中遇到的難題,請學生幫助解決,激發(fā)學生的興趣
與學生共同分析實際問題中的變量關(guān)系,引導學生利用反比例函數(shù)解決問題
引導學生追尋杠桿原理中蘊涵的規(guī)律,從反比例函數(shù)的圖象、性質(zhì)等角度挖掘
通過課堂練習,提高學生運用反比例函數(shù)解決實際問題的能力
歸納、總結(jié)所學,體會利用函數(shù)的觀點解決實際問題
問題與情境
師生行為
設(shè)計意圖
如何打開這個未開封的奶粉桶呢?―
教師提出實際生活中的問題,學生提出解決辦法,教師引出利用杠桿原理解決問題。
能否從數(shù)學角度探索杠桿原理中蘊涵的變量關(guān)系呢?
讓學生了解到日常生活中存在著許多兩個量之間具有反比例關(guān)系的例子,自然引入課題
展示問題1:
幾位同學玩撬石頭的游戲,已知阻力和阻力臂不變,分別是1200牛頓和0.5米,設(shè)動力為f,動力臂為?;卮鹣铝袉栴}:
(1)動力f與動力臂有怎樣的函數(shù)關(guān)系?
不妨列表描點畫出圖象
(圖象在第三象限會有嗎?)
分析問題中變量間的關(guān)系
教師按照學生的認知規(guī)律有層次、有步驟地引導學生分析解決問題
從函數(shù)的觀點進一步分析規(guī)律
(5)地球重量的近似值為(即為阻力),假設(shè)阿基米德有500牛頓的力量,阻力臂為20xx千米,請你幫助阿基米德設(shè)計該用動力臂為多長的杠桿才能把地球撬動?利用反比例函數(shù)的變化規(guī)律解釋實際生活中一些問題深入挖掘動力臂與動力f又有怎樣的函數(shù)關(guān)系呢?待定系數(shù)法解決函數(shù)問題公元前3世紀,古希臘科學家阿基米德發(fā)現(xiàn)了著名的“杠桿定律”:
阻力阻力臂=動力動力臂,他形象地說,“給我一個支點我可以把地球撬動”
展示練習
市政府計劃建設(shè)一項水利工程,工程需要運送的土石方總量為米,某運輸公司承辦了該項工程運送土方的任務。
歸納、總結(jié)
作業(yè):教科書習題17.2第6題
教師引導學生回憶、總結(jié),教師予以補充
通過小結(jié),使學生把所學知識進一步內(nèi)化、系統(tǒng)化
反比例函數(shù)的教學設(shè)計篇十四
1、理解反比例的意義,能根據(jù)反比例的意義,正確的判斷兩種量是否成反比例。
2、通過引導學生討論探究,分析合作,使學生進一步認識事物之間的聯(lián)系和發(fā)展變化的規(guī)律。
3、初步滲透函數(shù)思想。
引導學生總結(jié)出成反比例的量,是相關(guān)的兩種量中相對應的兩個數(shù)積一定,進而抽象概括出成反比例的關(guān)系式.
利用反比例的意義,正確判斷兩個量是否成反比例.
教法:自主探究,合作交流。
學法:小組合作交流。
教具:課件。
一、定向?qū)W(5分).
1、下面兩種量是不是成正比例?為什么?
購買練習本的價錢0.80元,1本;1.60元,2本;3.20元,4本;4.80元6本.
2、成正比例的量有什么特征?(口答)。
3、出示學習目標。
1、理解反比例的意義,能根據(jù)反比例的意義。
2、正確的判斷兩種量是否成反比例。
二、自主學習(15分).
1、自學課本p47例2。
思考:
a、表中的兩種量是()和()。這兩種量是不是相關(guān)聯(lián)?為什么?
b、水的高度是隨著()的變化而變化,水的高度越()杯子的底面積就越()。
c、相對應的杯子底面積和水的高度的乘積分別是(),一定嗎?
d、這個積表示()表示它們之間的數(shù)量關(guān)系式是()。
(2)從中你發(fā)現(xiàn)了什么?這與復習題相比有什么不同?
a、學生討論交流。
b、引導學生回答:
(3)教師引導學生明確:因為水的體積一定,所以水的高度隨著底面積的.變化面變化。底面積增加,高度反而降低,底面積減少,高度反而升高,而且高度和底面積的乘積一定,我們就說高度和底面積成反比例關(guān)系,高度和底面積叫做成反比例的量。
(4)如果用字母x和y表示兩種相關(guān)的量,用k表示它們的積一定,反比例可以用一個什么樣的式子表示?板書:x×y=k(一定)。
三、合作交流(6分)。
1、成反比例的量應具備什么條件?
2、數(shù)學書第48頁的做一做,學生獨立完成,集體訂正。
四、質(zhì)疑探究(4分)。
舉出生活中反比例關(guān)系的例子。
五、小結(jié)檢測(4分)。
1、說說反比例的意義,如何判斷兩種量是否成反比例。
2、檢測。
判斷下面每題中的兩個量是不是成反比例,并說明理由。
(1)路程一定,速度和時間。
(2)小明從家到學校,每分走的速度和所需時間。
(3)平行四邊形面積一定,底和高。
(4)小林做10道數(shù)學題,已做的題和沒有做的題。
(5)小明拿一些錢買鉛筆,單價和購買的數(shù)量。
(6)你能舉一個反比例的例子嗎?
3、第51頁8題。
4、第51頁9題。
六、堂清(6分)。
p51練習九第10、11、12題。
兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數(shù)的積一定,這兩種量就叫做成反比例的量,它們的關(guān)系叫做反比例關(guān)系。
用字母表示:x×y=k(一定)。
反比例函數(shù)的教學設(shè)計篇十五
1、能利用反比例函數(shù)的相關(guān)的知識分析和解決一些簡單的實際問題。
2、能根據(jù)實際問題中的條件確定反比例函數(shù)的解析式。
3、在解決實際問題的過程中,進一步體會和認識反比例函數(shù)是刻畫現(xiàn)實世界中數(shù)量關(guān)系的一種數(shù)學模型。
重點:能利用反比例函數(shù)的相關(guān)的知識分析和解決一些簡單的實際問題。
難點:根據(jù)實際問題中的條件確定反比例函數(shù)的解析式。
為了預防“非典”,某學校對教室采用藥熏消毒法進行消毒,已知藥物燃燒時,室內(nèi)每立方米空氣中的含藥量y(mg)與時間x(min)成正比例.藥物燃燒后,y與x成反比例(如圖所示),現(xiàn)測得藥物8min燃畢,此時室內(nèi)空氣中每立方米的含藥量為6mg,請根據(jù)題中所提供的信息,解答下列問題:。
(1)藥物燃燒時,y關(guān)于x的函數(shù)關(guān)系式為:________,自變量x的取值范圍是:_______,藥物燃燒后y關(guān)于x的函數(shù)關(guān)系式為_______。
(1)如果小明以每分種120字的速度錄入,他需要多少時間才能完成錄入任務?
(3)小明希望能在3h內(nèi)完成錄入任務,那么他每分鐘至少應錄入多少個字?
例2某自來水公司計劃新建一個容積為的長方形蓄水池。
(1)蓄水池的底部s與其深度有怎樣的函數(shù)關(guān)系?
(2)如果蓄水池的深度設(shè)計為5m,那么蓄水池的底面積應為多少平方米?
(3)由于綠化以及輔助用地的需要,經(jīng)過實地測量,蓄水池的長與寬最多只能設(shè)計為100m和60m,那么蓄水池的.深度至少達到多少才能滿足要求?(保留兩位小數(shù))。
1、一定質(zhì)量的氧氣,它的密度(kg/m3)是它的體積v(m3)的反比例函數(shù),當v=10m3時,=1.43kg/m3.(1)求與v的函數(shù)關(guān)系式;(2)求當v=2m3時求氧氣的密度。
2、某地上年度電價為0.8元度,年用電量為1億度.本年度計劃將電價調(diào)至0.55元至0.75元之間.經(jīng)測算,若電價調(diào)至x元,則本年度新增用電量y(億度)與(x-0.4)(元)成反比例,當x=0.65時,y=-0.8。
(1)求y與x之間的函數(shù)關(guān)系式;
3、如圖,矩形abcd中,ab=6,ad=8,點p在bc邊上移動(不與點b、c重合),設(shè)pa=x,點d到pa的距離de=y.求y與x之間的函數(shù)關(guān)系式及自變量x的取值范圍。
【本文地址:http://mlvmservice.com/zuowen/15529843.html】