在教案中,教師會詳細(xì)安排教學(xué)內(nèi)容、教學(xué)步驟和教學(xué)方法。教案要體現(xiàn)循序漸進(jìn)、啟發(fā)思考、激發(fā)興趣的原則。這些教案范例涵蓋了不同學(xué)科和年級的教學(xué)內(nèi)容,具有一定的實(shí)用性和可操作性。
數(shù)學(xué)教案一元二次方程的應(yīng)用篇一
一元二次方程的應(yīng)用是在學(xué)習(xí)了前面的一元二次方程的解法的基礎(chǔ)上,結(jié)合實(shí)際問題,討論了如何分析數(shù)量關(guān)系,利用相等關(guān)系來列方程,以及如何解答。
列方程解決實(shí)際問題,最重要的是審題,審題是列方程的基礎(chǔ),而列方程是解題的關(guān)鍵,只有在透徹理解題意的基礎(chǔ)上,才能恰當(dāng)?shù)卦O(shè)出未知數(shù),準(zhǔn)確找出已知量與未知量之間的等量關(guān)系,正確地列出方程。
在本章教學(xué)中我注意分散教學(xué)難點(diǎn),比如說,在學(xué)習(xí)增長率問題時,我先設(shè)計(jì)了這樣一組練習(xí):一個車間二月份生產(chǎn)零件500個,三月份比二月份增產(chǎn)10%,三月份生產(chǎn)xx個零件,如果四月份想再增產(chǎn)10%,四月份生產(chǎn)零件xx個。如果增產(chǎn)的百分率是x,那三月份和四月份各能生產(chǎn)零件多少個?通過分散教學(xué)難點(diǎn),引導(dǎo)學(xué)生理解題意,從而達(dá)到滿意的教學(xué)效果。
在本章教學(xué)中我還注意對學(xué)生進(jìn)行學(xué)法的指導(dǎo)。比如說,在做習(xí)題7.12第2題時,有的同學(xué)想象不出圖形,就應(yīng)引導(dǎo)他們畫出示意圖;在比如學(xué)習(xí)最后一個例題時,面對那么多的量,并且是運(yùn)動中的量,許多學(xué)生無從下手,此時就要引導(dǎo)學(xué)生把量在圖形中先標(biāo)示出來,在慢慢分析題中的數(shù)量關(guān)系。在分析問題時,要強(qiáng)調(diào)當(dāng)設(shè)完未知數(shù),那它就是已知數(shù),參與量的標(biāo)示。
總之,在教學(xué)中通過學(xué)生的自主探究、小組間的合作交流、教師的及時點(diǎn)撥,進(jìn)一步提高學(xué)生分析問題、解決問題的能力。
將本文的word文檔下載到電腦,方便收藏和打印。
數(shù)學(xué)教案一元二次方程的應(yīng)用篇二
在日常生活中,許多問題都可以通過建立一元二次方程這個模型進(jìn)行求解,然后回到實(shí)踐問題中進(jìn)行解釋和檢驗(yàn),從而體會數(shù)學(xué)建模的思想方法,解決這類問題的關(guān)鍵是弄清實(shí)際問題中所包含的數(shù)量關(guān)系。
本節(jié)內(nèi)容教材提供了與生活密切相關(guān),且有一定思考和探究性的問題,所以在教學(xué)中我讓學(xué)生綜合已有的知識,經(jīng)過自主探索和合作交流嘗試解決,提高學(xué)生的思維品質(zhì)和進(jìn)行探究學(xué)習(xí)的能力。主要有以下幾個成功之處:
1、讓學(xué)生自主交流方法,充分展示學(xué)生不同層次的思維,互相學(xué)習(xí),互相促進(jìn),從而創(chuàng)建平等、輕松的學(xué)習(xí)氛圍。
在出示了例7后,我提示學(xué)生解決此類問題可以自己畫出草圖,分析題目中的等量關(guān)系,學(xué)生根據(jù)題意很快可以畫出圖形,然后,我讓他們找出題目中可以寫等量關(guān)系的條件,根據(jù)條件寫出文字的等量關(guān)系。在這個環(huán)節(jié)有的學(xué)生遇到了困難,于是,我就讓他們互相討論,通過討論,大部分學(xué)生可以寫出等量關(guān)系,我再讓會的學(xué)生說出理由。在這個教學(xué)過程中,學(xué)生互相學(xué)習(xí),互相促進(jìn),輕松地學(xué)會了知識。
2、讓學(xué)生自主歸納,總結(jié)方法,尊重學(xué)生的個性選擇,學(xué)生的集體智慧更符合學(xué)生自己的口味,比教師說教更易于被學(xué)生接受。
例7的解答還有一種更簡單的方法,我讓學(xué)生觀察圖形,在圖形上做文章,還是讓他們自主探索,討論,很快有一部分學(xué)生想到了把圖形中的道路平移到一邊的方法,這樣就把種植面積集中起來,方程就好列了。這時,我就讓學(xué)生上來講述方法。學(xué)生用自己的語言講述,這樣其他人接受起來更快一些。并且,學(xué)生還總結(jié)此類問題的解決方法――將圖形平移,在以下練習(xí)的幾道題中都能得心應(yīng)手的解答了。由此可見,通過自己思考學(xué)到的知識能夠靈活應(yīng)用,且掌握的好。
在這節(jié)課的教學(xué)中也存在一些不足之處,教材中在例題之前設(shè)計(jì)了一個應(yīng)用,在解決這個問題上耽誤了時間,延誤了下面的教學(xué),導(dǎo)致設(shè)計(jì)的練習(xí)題沒有做完,所以在下次教學(xué)時,這個應(yīng)用問題只讓學(xué)生列出方程即可,不必在解答上花費(fèi)時間。另外,練習(xí)設(shè)計(jì)過于單一,只涉及到了例題這種類型的練習(xí),變式練習(xí)題少,所以,在下次教學(xué)時,要設(shè)計(jì)兩道不同題型的題目。
由這節(jié)課的教學(xué)我領(lǐng)悟到,數(shù)學(xué)學(xué)習(xí)是學(xué)生自己建構(gòu)數(shù)學(xué)知識的活動,學(xué)生應(yīng)該主動探索知識的建構(gòu)者,而不是模仿者,教學(xué)應(yīng)促進(jìn)學(xué)生主體的主動建構(gòu),離開了學(xué)生積極主動的學(xué)習(xí),教師講得再好,也會經(jīng)常出現(xiàn)“教師講完了,學(xué)生仍不會”的現(xiàn)象。所以,在以后的教學(xué)中,我要更有意識的多給學(xué)生自主探索、合作交流的機(jī)會,更加激發(fā)學(xué)生的學(xué)習(xí)積極性,使學(xué)生在他們的最近發(fā)展區(qū)發(fā)展。
數(shù)學(xué)教案一元二次方程的應(yīng)用篇三
(2)掌握一元二次方程的一般形式,會判斷一元二次方程的二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)和常數(shù)項(xiàng)。
(2)會用因式分解法解一元二次方程
【教學(xué)重點(diǎn)】一元二次方程的概念、一元二次方程的一般形式
【教學(xué)難點(diǎn)】因式分解法解一元二次方程
【教學(xué)過程】
(一)創(chuàng)設(shè)情景,引入新課
由學(xué)生說出這幾個方程的共同特征,從而引出一元二次方程的概念。
(二)新授
1:一元二次方程的概念。(一個未知數(shù)、最高次2次、等式兩邊都是整式)
2:一元二次方程的一般形式(形如ax+bx+c=0)
3:講解例子
4:利用因式分解法解一元二次方程
5:講解例子
6:一般步驟
(三)小結(jié)
(四)布置作業(yè)
數(shù)學(xué)教案一元二次方程的應(yīng)用篇四
新課程要求培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)的意識與能力,作為數(shù)學(xué)教師,我們要充分利用已有的生活經(jīng)驗(yàn),把所學(xué)的數(shù)學(xué)知識用到現(xiàn)實(shí)中去,體會數(shù)學(xué)在現(xiàn)實(shí)中應(yīng)用價值。
本章節(jié)的應(yīng)用基本上是以學(xué)生熟悉的'現(xiàn)實(shí)生活為問題的背景,讓學(xué)生從具體的問題情境中抽象出數(shù)量關(guān)系,歸納出變化規(guī)律,并能用數(shù)學(xué)符號表示,最終解決實(shí)際問題。這類注重聯(lián)系實(shí)際考查學(xué)生數(shù)學(xué)應(yīng)用能力的問題,體現(xiàn)時代性,并且結(jié)合社會熱點(diǎn)、焦點(diǎn)問題,引導(dǎo)學(xué)生關(guān)注國家、人類和世界的命運(yùn)。既有強(qiáng)烈的德育功能,又可以讓學(xué)生從數(shù)學(xué)的角度分析社會現(xiàn)象,體會數(shù)學(xué)在現(xiàn)實(shí)生活中的作用。
對教學(xué)過程進(jìn)行反思,既有成功的一面,又有不足之處。需改進(jìn)的方面有:
1、由于怕完不成任務(wù),給學(xué)生獨(dú)立思考時間安排有些不合理,這樣容易讓思維活躍的學(xué)生的回答代替了其他學(xué)生的思考,掩蓋了其他學(xué)生的疑問。例如p46有多種解法,課后一些學(xué)生與老師交流,但課上沒有得到充分的展示。
2、只考慮捕捉學(xué)生的思維亮點(diǎn),一生列錯了方程,老師沒有給予及時糾正。導(dǎo)致使一些同學(xué)陷入誤區(qū)。3、有些問題講的過于快,理解較慢的同學(xué)跟不上。
數(shù)學(xué)教案一元二次方程的應(yīng)用篇五
是一元二次方程的重要組成部分。方程,只有當(dāng)時,才叫做一元二次方程。如果且,它就是一元二次方程了。解題時遇到字母系數(shù)的方程可能出現(xiàn)以下情況:
(1)一元二次方程的條件是確定的,如方程(),把它化成一般形式為,由于,所以,符合一元二次方程的定義。
(2)條件是用“關(guān)于的一元二次方程”這樣的語句表述的,那么它就隱含了二次項(xiàng)系數(shù)不為零的條件。如“關(guān)于的一元二次方程”,這時題中隱含了的條件,這在解題中是不能忽略的。
(3)方程中含有字母系數(shù)的項(xiàng),且出現(xiàn)“關(guān)于的方程”這樣的語句,就要對方程中的字母系數(shù)進(jìn)行討論。如:“關(guān)于的方程”,這就有兩種可能,當(dāng)時,它是一元一次方程;當(dāng)時,它是一元二次方程,解題時就會有不同的結(jié)果。
教學(xué)目的。
2.知道一元二次方程的一般形式,會把一元二次方程化成一般形式。
3.通過本節(jié)課引入的教學(xué),初步培養(yǎng)學(xué)生的數(shù)學(xué)來源于實(shí)踐又反過來作用于實(shí)踐的辨證唯物主義觀點(diǎn),激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
教學(xué)難點(diǎn)和難點(diǎn):。
重點(diǎn):。
數(shù)學(xué)教案一元二次方程的應(yīng)用篇六
3.通過本節(jié)課引入的教學(xué),初步培養(yǎng)學(xué)生的數(shù)學(xué)來源于實(shí)踐又反過來作用于實(shí)踐的辨證唯物主義觀點(diǎn),激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
教學(xué)重點(diǎn)和難點(diǎn):
難點(diǎn):對一元二次方程的一般形式的正確理解及其各項(xiàng)系數(shù)的確定。
教學(xué)建議:
1.教材分析:
1)知識結(jié)構(gòu):本小節(jié)首先通過實(shí)例引出一元二次方程的概念,介紹了一元二次方程的一般形式以及一元二次方程中各項(xiàng)的名稱。
2)重點(diǎn)、難點(diǎn)分析。
是一元二次方程的重要組成部分。方程,只有當(dāng)時,才叫做一元二次方程。如果且,它就是一元二次方程了。解題時遇到字母系數(shù)的方程可能出現(xiàn)以下情況:
(1)一元二次方程的條件是確定的,如方程(),把它化成一般形式為,由于,所以,符合一元二次方程的定義。
(2)條件是用“關(guān)于的一元二次方程”這樣的語句表述的,那么它就隱含了二次項(xiàng)系數(shù)不為零的條件。如“關(guān)于的一元二次方程”,這時題中隱含了的條件,這在解題中是不能忽略的。
(3)方程中含有字母系數(shù)的項(xiàng),且出現(xiàn)“關(guān)于的方程”這樣的語句,就要對方程中的字母系數(shù)進(jìn)行討論。如:“關(guān)于的方程”,這就有兩種可能,當(dāng)時,它是一元一次方程;當(dāng)時,它是一元二次方程,解題時就會有不同的結(jié)果。
教學(xué)目的。
2.知道一元二次方程的一般形式,會把一元二次方程化成一般形式。
3.通過本節(jié)課引入的教學(xué),初步培養(yǎng)學(xué)生的數(shù)學(xué)來源于實(shí)踐又反過來作用于實(shí)踐的辨證唯物主義觀點(diǎn),激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
教學(xué)難點(diǎn)和難點(diǎn):。
重點(diǎn):。
數(shù)學(xué)教案一元二次方程的應(yīng)用篇七
(2)掌握一元二次方程的一般形式,會判斷一元二次方程的二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)和常數(shù)項(xiàng)。
【教學(xué)過程】。
(一)創(chuàng)設(shè)情景,引入新課。
由學(xué)生說出這幾個方程的共同特征,從而引出一元二次方程的概念。
(二)新授。
1:一元二次方程的概念。(一個未知數(shù)、最高次2次、等式兩邊都是整式)。
任一個一元二次方程都可以轉(zhuǎn)化成一般形式,注意二次項(xiàng)系數(shù)不為零。
3:講解例子。
5:講解例子。
6:一般步驟。
(三)小結(jié)。
(四)布置作業(yè)。
數(shù)學(xué)教案一元二次方程的應(yīng)用篇八
3.通過本節(jié)課引入的教學(xué),初步培養(yǎng)學(xué)生的數(shù)學(xué)來源于實(shí)踐又反過來作用于實(shí)踐的辨證唯物主義觀點(diǎn),激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
教學(xué)重點(diǎn)和難點(diǎn):
教學(xué)建議:
1.教材分析:
1)知識結(jié)構(gòu):本小節(jié)首先通過實(shí)例引出一元二次方程的概念,介紹了一元二次方程的一般形式以及一元二次方程中各項(xiàng)的名稱。
2)重點(diǎn)、難點(diǎn)分析。
是一元二次方程的重要組成部分。方程,只有當(dāng)時,才叫做一元二次方程。如果且,它就是一元二次方程了。解題時遇到字母系數(shù)的方程可能出現(xiàn)以下情況:
(1)一元二次方程的條件是確定的,如方程(),把它化成一般形式為,由于,所以,符合一元二次方程的定義。
(2)條件是用“關(guān)于的一元二次方程”這樣的語句表述的,那么它就隱含了二次項(xiàng)系數(shù)不為零的條件。如“關(guān)于的一元二次方程”,這時題中隱含了的條件,這在解題中是不能忽略的。
(3)方程中含有字母系數(shù)的項(xiàng),且出現(xiàn)“關(guān)于的方程”這樣的語句,就要對方程中的字母系數(shù)進(jìn)行討論。如:“關(guān)于的方程”,這就有兩種可能,當(dāng)時,它是一元一次方程;當(dāng)時,它是一元二次方程,解題時就會有不同的結(jié)果。
將本文的word文檔下載到電腦,方便收藏和打印。
數(shù)學(xué)教案一元二次方程的應(yīng)用篇九
學(xué)習(xí)目標(biāo):
2、進(jìn)一步培養(yǎng)學(xué)生分析問題、解決問題的能力。
學(xué)習(xí)重點(diǎn):
學(xué)習(xí)難點(diǎn):
如何分析題意,找出等量關(guān)系,列方程。
學(xué)習(xí)過程:
一、復(fù)習(xí)提問:
二、探索新知。
1、情境導(dǎo)入。
2、合作探究、師生互動。
教師引導(dǎo)學(xué)生運(yùn)用方程解決問題:
三、例題學(xué)習(xí)。
說明:題目中求平均每月增長的百分率,直接設(shè)增長的百分率為x,好處在于計(jì)算簡便且直接得出所求。
(小組合作交流教師點(diǎn)撥)。
時間基數(shù)降價降價后價錢。
第一次600600x600(1―x)。
第二次600(1―x)600(1―x)x600(1―x)2。
(由學(xué)生寫出解答過程)。
四、鞏固練習(xí)。
五、課堂總結(jié):
1、善于將實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題,嚴(yán)格審題,弄清各數(shù)據(jù)間相互關(guān)系,正確列出方程。
2、注意解方程中的巧算和方程兩個根的取舍問題。
六、反饋練習(xí):
a、x+(1+x)x=20%b、(1+x)2=20%。
c、(1+x)2=1、2d、(1+x%)2=1+20%。
2、某工廠計(jì)劃兩年內(nèi)降低成本36%,則平均每年降低成本的百分率是()。
數(shù)學(xué)教案一元二次方程的應(yīng)用篇十
據(jù)題意,得。
整理后,得。
解這個方程,得。
由得,由得,
答:這兩個奇數(shù)是17,19或者-19,-17。
解法(二)設(shè)較小的奇數(shù)為,則較大的奇數(shù)為。
據(jù)題意,得。
整理后,得。
解這個方程,得。
當(dāng)時,
當(dāng)時,。
答:兩個奇數(shù)分別為17,19;或者-19,-17。
第12頁。
數(shù)學(xué)教案一元二次方程的應(yīng)用篇十一
2.知道的一般形式,會把化成一般形式。
3.通過本節(jié)課引入的教學(xué),初步培養(yǎng)學(xué)生的數(shù)學(xué)來源于實(shí)踐又反過來作用于實(shí)踐的辨證唯物主義觀點(diǎn),激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
教學(xué)重點(diǎn)和難點(diǎn):
重點(diǎn):的概念和它的一般形式。
難點(diǎn):對的一般形式的正確理解及其各項(xiàng)系數(shù)的確定。
教學(xué)建議:
1.教材分析:
1)知識結(jié)構(gòu):本小節(jié)首先通過實(shí)例引出的概念,介紹了的一般形式以及中各項(xiàng)的名稱。
1.了解整式方程和的概念;
2.知道的一般形式,會把化成一般形式。
3.通過本節(jié)課引入的教學(xué),初步培養(yǎng)學(xué)生的數(shù)學(xué)來源于實(shí)踐又反過來作用于實(shí)踐的辨證唯物主義觀點(diǎn),激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
教學(xué)難點(diǎn)和難點(diǎn):。
重點(diǎn):。
1.的有關(guān)概念。
2.會把化成一般形式。
難點(diǎn):的含義.
第12頁。
數(shù)學(xué)教案一元二次方程的應(yīng)用篇十二
3.通過本節(jié)課引入的教學(xué),初步培養(yǎng)學(xué)生的數(shù)學(xué)來源于實(shí)踐又反過來作用于實(shí)踐的辨證唯物主義觀點(diǎn),激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
教學(xué)重點(diǎn)和難點(diǎn):
難點(diǎn):對一元二次方程的一般形式的正確理解及其各項(xiàng)系數(shù)的確定。
教學(xué)建議:
1.教材分析:
1)知識結(jié)構(gòu):本小節(jié)首先通過實(shí)例引出一元二次方程的概念,介紹了一元二次方程的一般形式以及一元二次方程中各項(xiàng)的名稱。
2)重點(diǎn)、難點(diǎn)分析。
數(shù)學(xué)教案一元二次方程的應(yīng)用篇十三
第二步:將左端的二次三項(xiàng)式分解為兩個一次因式的積;。
第三步:方程左邊兩個因式分別為0,得到兩個一次方程,它們的解就是原方程的解.
解法二:配方法。
x^2-4x+3=x^2-4x+4-1=(x-2)^2-1=0。
即(x-2)^2=1。
于是x=3或x=1。
一般來說,一元二次方程往往可以用這樣2種方法解答,特別是對配方來說,它可能更實(shí)用,普遍。
比如x^2+x-1=0。
我們可能分解不出它的因式來,不過我們可以采用配方法。
x^2+x-1=(x+1/2)^2-5/4=0。
于是得到x=(根號5-1)/2或x=(-根號5-1)/2。
小練習(xí)。
1.分解因式:
(4)(x+1)2-16=________。
2.方程(2x+1)(x-5)=0的解是_________。
3.方程2x(x-2)=3(x-2)的解是___________。
5.已知y=x2+x-6,當(dāng)x=________時,y的值為0;當(dāng)x=________時,y的值等于24.6.方程x2+2ax-b2+a2=0的解為__________.
數(shù)學(xué)教案一元二次方程的應(yīng)用篇十四
今天,在教務(wù)處的組織下,我參加了柏老師的九年級數(shù)學(xué)課——《用因式分解法解一元二次方程》的公開課活動。
這節(jié)課,柏老師運(yùn)用了“先學(xué)后導(dǎo),分層推進(jìn)”的教學(xué)模式開展教學(xué)活動。教學(xué)設(shè)計(jì)科學(xué)、嚴(yán)謹(jǐn)、合理。能對教材內(nèi)容進(jìn)行取舍,不照本宣科。習(xí)題設(shè)計(jì)典型,有梯度。整個教學(xué)過程環(huán)環(huán)相扣,層層推進(jìn),最終教學(xué)效果理想。但是我個人認(rèn)為在具體細(xì)節(jié)上還有有待改進(jìn)的地方:。
1、知識性錯誤。因式分解是指把一個多項(xiàng)式分解成幾個整式相乘的形式。柏老師說成了分解成單項(xiàng)式相乘的形式。整式既包含單項(xiàng)式也有多項(xiàng)式。
2、整個教學(xué)過程中,還是沒有把學(xué)習(xí)的主動權(quán)交給學(xué)生,牽著學(xué)生走。不讓學(xué)生大膽的進(jìn)行自主嘗試。其實(shí),我們從后面的課堂檢測環(huán)節(jié)中可以看出學(xué)生的自主學(xué)習(xí)能力是非常強(qiáng)的。那幾個比較難的解方程學(xué)生都能用最簡單的方法求解。
3、從新課前的復(fù)習(xí)環(huán)節(jié)可以看出學(xué)生對已經(jīng)學(xué)過的概念記憶不清楚,對每節(jié)課所學(xué)的知識點(diǎn)不清。我們每節(jié)課的教學(xué)環(huán)節(jié)里基本都有“學(xué)習(xí)目標(biāo)”出示和“歸納小結(jié)”的環(huán)節(jié)。這兩個環(huán)節(jié)看似不起眼,但細(xì)細(xì)推敲來,它們的作用就是讓學(xué)生清楚到底學(xué)什么和學(xué)到了什么,這兩個環(huán)節(jié)教學(xué)到位了,學(xué)生對所學(xué)知識也就是茶壺里煮餃子——心中有數(shù)了。
4、在“后導(dǎo)”環(huán)節(jié)要注重發(fā)揮學(xué)生的.自主、合作學(xué)習(xí)能力。因?yàn)閷W(xué)生在先學(xué)環(huán)節(jié)已經(jīng)掌握的一定的知識和能力,這時候教師適時的放手,讓學(xué)生通過自主學(xué)習(xí),掌握知識,從而才能水到渠成的對知識進(jìn)行歸納總結(jié)。就不會像本節(jié)課在歸納小結(jié)時這么牽強(qiáng)。
5、教師對教材鉆研不透徹。后面的六個解方程練習(xí)題是本節(jié)課的課后練習(xí)題,必然是都可以因式分解法來求解的。但是老師在個別輔導(dǎo)時強(qiáng)調(diào)用其他解法。
數(shù)學(xué)教案一元二次方程的應(yīng)用篇十五
理解并掌握一元二次方程求根公式的推導(dǎo)過程,能正確、熟練地運(yùn)用公式法解一元二次方程。
【過程與方法】。
經(jīng)歷探究求根公式的過程,發(fā)展合情推理能力,提高運(yùn)算能力并養(yǎng)成良好的運(yùn)算習(xí)慣。
【情感、態(tài)度與價值觀】。
通過公式法解一元二次方程,感受解法的多樣性,在學(xué)習(xí)活動中獲取成功的體驗(yàn)。
【教學(xué)重點(diǎn)】。
【教學(xué)難點(diǎn)】。
(一)引入新課。
配方,得。
(四)小結(jié)作業(yè)。
作業(yè):課后練習(xí)題,試著用多種方法解答。
略
數(shù)學(xué)教案一元二次方程的應(yīng)用篇十六
3、解決一些概念性的題目、
4、態(tài)度、情感、價值觀。
4、通過生活學(xué)習(xí)數(shù)學(xué),并用數(shù)學(xué)解決生活中的問題來激發(fā)學(xué)生的學(xué)習(xí)熱情、
一、復(fù)習(xí)引入。
學(xué)生活動:列方程、
問題(1)《九章算術(shù)》“勾股”章有一題:“今有戶高多于廣六尺八寸,兩隅相去適一丈,問戶高、廣各幾何?”
整理、化簡,得:__________、
問題(2)如圖,如果,那么點(diǎn)c叫做線段ab的黃金分割點(diǎn)、
整理,得:________、
二、探索新知。
學(xué)生活動:請口答下面問題、
(1)上面三個方程整理后含有幾個未知數(shù)?
(2)按照整式中的'多項(xiàng)式的規(guī)定,它們最高次數(shù)是幾次?
(3)有等號嗎?或與以前多項(xiàng)式一樣只有式子?
解:去括號,得:
移項(xiàng),得:4x2-26x+22=0。
其中二次項(xiàng)系數(shù)為4,一次項(xiàng)系數(shù)為-26,常數(shù)項(xiàng)為22、
解:去括號,得:
x2+2x+1+x2-4=1。
移項(xiàng),合并得:2x2+2x-4=0。
其中:二次項(xiàng)2x2,二次項(xiàng)系數(shù)2;一次項(xiàng)2x,一次項(xiàng)系數(shù)2;常數(shù)項(xiàng)-4、
三、鞏固練習(xí)。
教材p32練習(xí)1、2。
四、應(yīng)用拓展。
分析:要證明不論取何值,該方程都是一元二次方程,只要證明2-8+17≠0即可、
證明:2-8+17=(-4)2+1。
∵(-4)2≥0。
∴(-4)2+10,即(-4)2+1≠0。
五、歸納小結(jié)(學(xué)生總結(jié),老師點(diǎn)評)。
本節(jié)課要掌握:
六、布置作業(yè)。
數(shù)學(xué)教案一元二次方程的應(yīng)用篇十七
一、出示學(xué)習(xí)目標(biāo):
2.通過自學(xué)探究掌握裁邊分割問題。
二、自學(xué)指導(dǎo):(閱讀課本p47頁,思考下列問題)。
1.閱讀探究3并進(jìn)行填空;
2.完成p48的思考并掌握裁邊分割問題的特點(diǎn);
設(shè)上、下邊襯的寬均為9xcm,左、右邊襯的寬均為7xcm,則:
由中下層學(xué)生口答書中填空,老師再給予補(bǔ)充。
思考:如果換一種設(shè)法,是否可以更簡單?
設(shè)正中央的長方形長為9acm,寬為7acm,依題意得。
9a·7a=(可讓上層學(xué)生在自學(xué)時,先上來板演)。
效果檢測時,由同座的同學(xué)給予點(diǎn)評與糾正。
9.如圖,要設(shè)計(jì)一幅寬20m,長30m的圖案,兩橫兩豎寬度之比為3∶2,若使彩條面積是圖案面積的四分之一,應(yīng)怎樣設(shè)計(jì)彩條的寬帶?(討論用多種方法列方程比較)。
注意點(diǎn):要善于利用圖形的平移把問題簡單化!
三、當(dāng)堂訓(xùn)練:
(只要求設(shè)元、列方程)。
數(shù)學(xué)教案一元二次方程的應(yīng)用篇十八
九年級的學(xué)生,在講本節(jié)課之前,已經(jīng)系統(tǒng)的學(xué)習(xí)了一元一次方程及相關(guān)概念,學(xué)習(xí)了整式、分式和二次根式,從知識結(jié)構(gòu)上看他們已經(jīng)具備了繼續(xù)探究一元二次方程的基礎(chǔ)。這個階段的學(xué)生自主探究和合作交流的能力很強(qiáng),并且他們比較、分析、抽象和概括的能力也有很大提高。由于他們有強(qiáng)烈的求知欲,當(dāng)遇到新的問題時,會自然的產(chǎn)生進(jìn)一步探究的欲望。而我所教(11)班是年級中一個普通班,學(xué)生數(shù)學(xué)底子薄,基礎(chǔ)差,學(xué)生由于學(xué)習(xí)困難,基礎(chǔ)差,沒有自信,也就對數(shù)學(xué)的學(xué)習(xí)興趣越來越弱,有人甚至要放棄對數(shù)學(xué)的學(xué)習(xí),作為他們的老師,首先培養(yǎng)他們自信心,啟發(fā)他們對數(shù)學(xué)的喜愛,慢慢培養(yǎng)他們的自信心,使數(shù)學(xué)基本概念、基本運(yùn)算方法悄然走進(jìn)學(xué)生的生活、走進(jìn)他們對知識的運(yùn)用中去。
教學(xué)目標(biāo)。
一、知識與技能:
1.理解并掌握一元二次方程的概念,知道一元二次方程的一般形式;。
2.會把一個一元二次方程化為一般形式,會正確地判斷一元二次方程的項(xiàng)與系數(shù);。
3.通過本節(jié)課的學(xué)習(xí),培養(yǎng)學(xué)生觀察、比較、分析、探究和歸納的能力。
二、過程與方法。
三、情感態(tài)度與價值觀。
2.通過本節(jié)知識的學(xué)習(xí),使學(xué)生認(rèn)識到知識的產(chǎn)生、變化和發(fā)展的過程。
教學(xué)重點(diǎn)和難點(diǎn)。
難點(diǎn):1.由實(shí)際問題向數(shù)學(xué)問題的轉(zhuǎn)化過程。2.正確識別一般式中的“項(xiàng)”及“系數(shù)”。
【本文地址:http://mlvmservice.com/zuowen/15456634.html】