絕對值教案(通用14篇)

格式:DOC 上傳日期:2023-11-26 10:15:12
絕對值教案(通用14篇)
時間:2023-11-26 10:15:12     小編:筆硯

教案的質量直接關系到教學效果的好壞,教師需要嚴格按照教學計劃進行教學,不斷改進和提升自身的教學水平。教案應該有一定的教學結構,包括引入、整體學習、拓展等環(huán)節(jié)。以下教案范文的特點和亮點值得我們仔細研究和借鑒。

絕對值教案篇一

絕對值概念既【】是本節(jié)的又是。關于絕對值的概念,需要明確的是無論是絕對值的幾何定義,還是絕對值的代數定義,都揭示了絕對值的一個重要性質——非負性,也就是說,任何一個有理數的絕對值都是非負數,即無論a取任意有理數,都有。

教材上絕對值的定義是從幾何角度給出的,也就是從數軸上表示數的點在數軸上的位置出發(fā),得到的定義。這樣,數軸的概念、畫法、利用數軸比較有理數的大小、相反數,以及絕對值,通過數軸,這些知識都聯(lián)系在一起了。此外,0的絕對值是0,從幾何定義出發(fā),就十分容易理解了。

絕對值的定義絕對值的表示方法用絕對值比較有理數的大小。

1.絕對值的代數定義。

一個正數的絕對值是它本身;一個負數的絕對值是它的相反數;零的絕對值是零.。

2.絕對值的幾何定義。

在數軸上表示一個數的點離開原點的距離,叫做這個數的絕對值.。

3.絕對值的主要性質。

(4)兩個相反數的絕對值相等.。

1.兩個負數大小的比較,因為兩個負數在數軸上的位置關系是:絕對值較大的負數一定在絕對值較小的負數左邊,所以,兩個負數,絕對值大的反而小。

比較兩個負數的方法步驟是:

(1)先分別求出兩個負數的絕對值;

(2)比較這兩個絕對值的大?。?/p>

(3)根據“兩個負數,絕對值大的反而小”作出正確的判斷.。

絕對值教案篇二

一、選擇題(共10題)。

1.有理數的絕對值一定是()。

a.正數b.負數。

c.零或正數d.零或負數。

答案:c。

2.絕對值等于它本身的數有()。

a.0個b.1個c.2個d.無數個。

答案:d。

解析:解答:根據絕對值得定義可知正數和零的絕對值是它本身,所以答案選擇d選項。

分析:考查絕對值這一知識點.

3.相反數等于-5的數是()。

a.5b.-5c.5或-5d.不能確定。

答案:a。

分析:考查相反數的基本概念。

絕對值教案篇三

一、教學目標:

1、掌握絕對值的概念,有理數大小比較法則。

2、學會絕對值的計算,會比較兩個或多個有理數的大小。

3、體驗數學的概念、法則來自于實際生活,滲透數形結合和分類思想。

二、教學難點:

兩個負數大小的比較。

三、知識重點:

絕對值的概念。

四、教學過程:

(一)設置情境。

1、引入課題。

星期天黃老師從學校出發(fā),開車去游玩,她先向東行20千米,到朱家尖,下午她又向西行30千米,回到家中(學校、朱家尖、家在同一直線上),如果規(guī)定向東為正:

(1)用有理數表示黃老師兩次所行的路程。

(2)如果汽車每公里耗油0.15升,計算這天汽車共耗油多少升?

2、學生思考后,教師作如下說明:

實際生活中有些問題只關注量的具體值,而與相反意義無關,即正負性無關,如汽車的耗油量我們只關心汽車行駛的距離和汽油的價格,而與行駛的方向無關。

3、觀察并思考:

畫一條數軸,原點表示學校,在數軸上畫出表示朱家尖和黃老師家的點,觀察圖形,說出朱家尖黃老師家與學校的距離。

4、學生回答后,教師說明如下:

數軸上表示數的點到原點的距離只與這個點離開原點的長度有關,而與它所表示的數的正負性無關;一般地,數軸上表示數a的點與原點的距離叫做數a的絕對值,記做|a|。

例如,上面的問題中|20|=20,|―10|=10顯然,|0|=0這個例子中,第一問是相反意義的量,用正負數表示,后一問的解答則與符號沒有關系,說明實際生活中有些問題,人們只需知道它們的具體數值,而并不關注它們所表示的意義。為引入絕對值概念做準備。使學生體驗數學知識與生活實際的聯(lián)系。因為絕對值概念的幾何意義是數形轉化的典型模型,學生初次接觸較難接受,所以配置此觀察與思考,為建立絕對值概念作準備。

(二)合作交流。

1、探究規(guī)律例1求下列各數的絕對值,并歸納求有理數a的絕對有什么規(guī)律?

―3,5,0,+58,0.6。

2、要求小組討論,合作學習。

3、教師引導學生利用絕對值的意義先求出答案,然后觀察原數與它的絕對值這兩個數據的特征,并結合相反數的意義,最后總結得出求絕對值法則。

(三)鞏固練習。

1、其中第1題按法則直接寫出答案,是求絕對值的基本訓練;第2題是對相反數和絕對值概念進行辨別,對學生的分析、判斷能力有較高要求,要注意思考的周密性,要讓學生體會出不同說法之間的區(qū)別。求一個數的絕時值的法則,可看做是絕對值概念的一個應用,所以安排此例。學生能做的盡量讓學生完成,教師在教學過程中只是組織者。本著這個理念,設計這個討論。

2、結合實際發(fā)現新知引導學生看教科書第16頁的圖,并回答相關問題:

(1)把14個氣溫從低到高排列。

(2)把這14個數用數軸上的點表示出來。

3、觀察并思考:

(2)學生交流后,教師總結:

14個數從左到右的順序就是溫度從低到高的順序:在數軸上表示有理數,它們從左到右的順序就是從小到大的順序,即左邊的數小于右邊的數。在上面14個數中,選兩個數比較,再選兩個數試試,通過比較,歸納得出有理數大小比較法則。

4、想象練習:

想象頭腦中有一條數軸,其上有兩個點,分別表示數―100和―90,體會這兩個點到原點的距離(即它們的絕對值)以及這兩個數的大小之間的關系。要求學生在頭腦中有清晰的圖形。讓學生體會到數學的規(guī)定都來源于生活,每一種規(guī)定都有它的合理性。

數在大小比較法則第2點學生較難掌握,要從絕對值的意義和數軸上的.數左小右大這方面結合起來來了解,所以配置想象練習,加強數與形的想象。

5、課堂練習例2,比較下列各數的大小。

比較大小的過程要緊扣法則進行,注意書寫格式。

6、練習:第18頁練習。

(三)小結與作業(yè)。

課堂小結怎樣求一個數的絕對值,怎樣比較有理數的大???

(四)本課作業(yè)。

1、必做題:教產書第19頁習題1,2,第4,5,6,10。

2、選做題:教師自行安排。

五、本課教育評注。

1、情景的創(chuàng)設出于如下考慮:

(1)體現數學知識與生活實際的緊密聯(lián)系,讓學生在這些熟悉的日常生活情境中獲得數學體驗,不僅加深對絕對值的理解,更感受到學習絕對值概念的必要性和激發(fā)學習的興趣。

(2)教材中數的絕對值概念是根據幾何意義來定義的(其本質是將數轉化為形來解釋,是難點),然后通過練習歸納出求有理數的絕對值的規(guī)律,如果直接給出絕對值的概念,灌輸知識的味道很濃,且太抽象,學生不易接受。

2、一個數絕對值的法則,實際上是絕對值概念的直接應用,也體現著分類的數學思想,所以直接通過例1歸納得出,顯得非常緊湊,是教學重點;從知識的發(fā)展和學生的能力培養(yǎng)角度來看,教師應更重視學生的自主學習和探究的過程,關注學生的思維,做好教學的組織和引導,留給學生足夠的空間。

3、有理數大小的比較法則是大小規(guī)定的直接歸納,其中第(2)條學生較難理解,教學中要結合絕對值的意義和規(guī)定:在數軸上表示有理數,它們從左到右的順序就是從小到大的順序,幫助學生建立數軸上越左邊的點到原點的距離越大,所以表示的數越小這個數形結合的模型。為此設置了想象練習。

4、本節(jié)課的內容包括絕對值的概念和數的絕對值的求法、有理數大小比較的法則,教學內容很多,學生接受起來可能會有困難,建議把有理數的大小比較移到下節(jié)課教學。

絕對值教案篇四

在教學過程中,結合學生實際情況給枯燥的數學概念賦予生活的意味,貼近學生生活,使學生不再被動地接受知識,可以有自己獨到的見解,學生也可以大膽說出心中的想法。

2、激勵學生去發(fā)現問題、解決問題。

《新課程標準》明確地把“形成解決問題的一些基本策略”作為一個重要的課程目標。為此數學教學中設置一些具有挑戰(zhàn)性的問題情境,激發(fā)學生進行思考,提出具有一定跨度的問題串引導學生進行自主探索,用“試一試,你能行”、“請與同學交流你的想法”等語言鼓勵學生進行交流,使學生在探索的過程中進一步理解。

3、面向每一個學生,使每個人都獲得成功。

課堂教學中,我們投入一“石”,激起了學生學習的“千層浪”,使得課堂變成了學生思維操練的場所。教師引導學生去尋找和發(fā)現,自己只是一個組織者和參與者,和學生一起共同探索。學生真正成為學習的主任,學生不僅積極地參與每一個教學環(huán)節(jié),情緒高昂,切身感受了學習的快樂,品嘗了學生求知、參與、成功、交流和自尊的需要。我鼓勵學生“你學會多少就匯報多少…..”這充分調動了學生學習的積極性、主動性,大大引發(fā)了學生潛在的創(chuàng)造動因,創(chuàng)設了有利于個性發(fā)展的情境,因而引出了不同的學習結果,激發(fā)了學生學習的興趣,提高了課堂效率。

將本文的word文檔下載到電腦,方便收藏和打印。

絕對值教案篇五

借助于數軸理解相反數和絕對值的概念,會求一個數的絕對值,能借助絕對值比較兩個負數的大小。

【過程與方法】。

通過自主探索、小組討論、合作交流探索得到絕對值的過程,培養(yǎng)學生發(fā)現和解決問題的能力,鍛煉學生合作交流的意識。

【情感態(tài)度與價值觀】。

體會到數學和生活之間的聯(lián)系,提升學生學習數學的自信心和樂趣。

二、教學重難點。

【教學重點】。

【教學難點】。

求一個數的絕對值和相反數;借助絕對值比較負數間的大小。

三、教學過程。

(一)引入新課。

教師回顧舊知并提問:上節(jié)課學習了哪些知識?

預設:學習了數軸,知道了有理數都可以用數軸上的點來表示。

多媒體出示,3與-3,5和-5等數字,再次提出問題:這些數有什么相同點,你能找到這些數在數軸上的位置嗎?引出新課。

(二)探索新知。

學生自主觀察,并寫出幾組類似的數字。

絕對值教案篇六

一、教學目標:

1、掌握絕對值的概念,有理數大小比較法則。

2、學會絕對值的計算,會比較兩個或多個有理數的大小。

3、體驗數學的概念、法則來自于實際生活,滲透數形結合和分類思想。

二、教學難點:

兩個負數大小的比較。

三、知識重點:

絕對值的概念。

四、教學過程:

(一)設置情境。

1、引入課題。

星期天黃老師從學校出發(fā),開車去游玩,她先向東行20千米,到朱家尖,下午她又向西行30千米,回到家中(學校、朱家尖、家在同一直線上),如果規(guī)定向東為正:

(1)用有理數表示黃老師兩次所行的路程。

(2)如果汽車每公里耗油0.15升,計算這天汽車共耗油多少升?

2、學生思考后,教師作如下說明:

實際生活中有些問題只關注量的具體值,而與相反意義無關,即正負性無關,如汽車的耗油量我們只關心汽車行駛的距離和汽油的價格,而與行駛的方向無關。

3、觀察并思考:

畫一條數軸,原點表示學校,在數軸上畫出表示朱家尖和黃老師家的點,觀察圖形,說出朱家尖黃老師家與學校的距離。

4、學生回答后,教師說明如下:

數軸上表示數的點到原點的距離只與這個點離開原點的長度有關,而與它所表示的數的正負性無關;一般地,數軸上表示數a的點與原點的距離叫做數a的絕對值,記做|a|。

例如,上面的問題中|20|=20,|―10|=10顯然,|0|=0這個例子中,第一問是相反意義的量,用正負數表示,后一問的解答則與符號沒有關系,說明實際生活中有些問題,人們只需知道它們的具體數值,而并不關注它們所表示的意義。為引入絕對值概念做準備。使學生體驗數學知識與生活實際的聯(lián)系。因為絕對值概念的幾何意義是數形轉化的典型模型,學生初次接觸較難接受,所以配置此觀察與思考,為建立絕對值概念作準備。

(二)合作交流。

1、探究規(guī)律例1求下列各數的絕對值,并歸納求有理數a的絕對有什么規(guī)律?

―3,5,0,+58,0.6。

2、要求小組討論,合作學習。

3、教師引導學生利用絕對值的意義先求出答案,然后觀察原數與它的絕對值這兩個數據的特征,并結合相反數的意義,最后總結得出求絕對值法則。

(三)鞏固練習。

1、其中第1題按法則直接寫出答案,是求絕對值的基本訓練;第2題是對相反數和絕對值概念進行辨別,對學生的分析、判斷能力有較高要求,要注意思考的周密性,要讓學生體會出不同說法之間的區(qū)別。求一個數的絕時值的法則,可看做是絕對值概念的一個應用,所以安排此例。學生能做的盡量讓學生完成,教師在教學過程中只是組織者。本著這個理念,設計這個討論。

2、結合實際發(fā)現新知引導學生看教科書第16頁的圖,并回答相關問題:

(1)把14個氣溫從低到高排列。

(2)把這14個數用數軸上的點表示出來。

3、觀察并思考:

(2)學生交流后,教師總結:

14個數從左到右的順序就是溫度從低到高的順序:在數軸上表示有理數,它們從左到右的順序就是從小到大的順序,即左邊的數小于右邊的數。在上面14個數中,選兩個數比較,再選兩個數試試,通過比較,歸納得出有理數大小比較法則。

4、想象練習:

想象頭腦中有一條數軸,其上有兩個點,分別表示數―100和―90,體會這兩個點到原點的距離(即它們的絕對值)以及這兩個數的大小之間的關系。要求學生在頭腦中有清晰的圖形。讓學生體會到數學的規(guī)定都來源于生活,每一種規(guī)定都有它的合理性。

數在大小比較法則第2點學生較難掌握,要從絕對值的意義和數軸上的.數左小右大這方面結合起來來了解,所以配置想象練習,加強數與形的想象。

5、課堂練習例2,比較下列各數的大小。

比較大小的過程要緊扣法則進行,注意書寫格式。

6、練習:第18頁練習。

(三)小結與作業(yè)。

課堂小結怎樣求一個數的絕對值,怎樣比較有理數的大?。?/p>

(四)本課作業(yè)。

1、必做題:教產書第19頁習題1,2,第4,5,6,10。

2、選做題:教師自行安排。

五、本課教育評注。

1、情景的創(chuàng)設出于如下考慮:

(1)體現數學知識與生活實際的緊密聯(lián)系,讓學生在這些熟悉的日常生活情境中獲得數學體驗,不僅加深對絕對值的理解,更感受到學習絕對值概念的必要性和激發(fā)學習的興趣。

(2)教材中數的絕對值概念是根據幾何意義來定義的(其本質是將數轉化為形來解釋,是難點),然后通過練習歸納出求有理數的絕對值的規(guī)律,如果直接給出絕對值的概念,灌輸知識的味道很濃,且太抽象,學生不易接受。

2、一個數絕對值的法則,實際上是絕對值概念的直接應用,也體現著分類的數學思想,所以直接通過例1歸納得出,顯得非常緊湊,是教學重點;從知識的發(fā)展和學生的能力培養(yǎng)角度來看,教師應更重視學生的自主學習和探究的過程,關注學生的思維,做好教學的組織和引導,留給學生足夠的空間。

3、有理數大小的比較法則是大小規(guī)定的直接歸納,其中第(2)條學生較難理解,教學中要結合絕對值的意義和規(guī)定:在數軸上表示有理數,它們從左到右的順序就是從小到大的順序,幫助學生建立數軸上越左邊的點到原點的距離越大,所以表示的數越小這個數形結合的模型。為此設置了想象練習。

4、本節(jié)課的內容包括絕對值的概念和數的絕對值的求法、有理數大小比較的法則,教學內容很多,學生接受起來可能會有困難,建議把有理數的大小比較移到下節(jié)課教學。

絕對值教案篇七

絕對值概念既是本節(jié)的教學重點又是教學難點。關于絕對值的概念,需要明確的是無論是絕對值的幾何定義,還是絕對值的代數定義,都揭示了絕對值的一個重要性質——非負性,也就是說,任何一個有理數的絕對值都是非負數,即無論a取任意有理數,都有。

教材上絕對值的'定義是從幾何角度給出的,也就是從數軸上表示數的點在數軸上的位置出發(fā),得到的定義。這樣,數軸的概念、畫法、利用數軸比較有理數的大小、相反數,以及絕對值,通過數軸,這些知識都聯(lián)系在一起了。此外,0的絕對值是0,從幾何定義出發(fā),就十分容易理解了。

絕對值的定義絕對值的表示方法用絕對值比較有理數的大小。

1.絕對值的代數定義。

一個正數的絕對值是它本身;一個負數的絕對值是它的相反數;零的絕對值是零.。

2.絕對值的幾何定義。

在數軸上表示一個數的點離開原點的距離,叫做這個數的絕對值.。

3.絕對值的主要性質。

(4)兩個相反數的絕對值相等.。

1.兩個負數大小的比較,因為兩個負數在數軸上的位置關系是:絕對值較大的負數一定在絕對值較小的負數左邊,所以,兩個負數,絕對值大的反而小。

比較兩個負數的方法步驟是:

(1)先分別求出兩個負數的絕對值;

(2)比較這兩個絕對值的大??;

(3)根據“兩個負數,絕對值大的反而小”作出正確的判斷.。

絕對值教案篇八

3,體驗分類是數學上的常用處理問題的方法。

教學難點正確理解分類的標準和按照一定的標準進行分類。

知識重點正確理解有理數的概念。

教學過程(師生活動)設計理念。

探索新知在前兩個學段,我們已經學習了很多不同類型的數,通過上兩節(jié)課的學習,又知道了現在的數包括了負數,現在請同學們在草稿紙上任意寫出3個數(同時請3個同學在黑板上寫出).

問題1:觀察黑板上的9個數,并給它們進行分類。

學生思考討論和交流分類的情況。

學生可能只給出很粗略的分類,如只分為“正數”和“負數”或“零”三類,此時,教師應給予引導和鼓勵。

例如,

對于數5,可這樣問:5和5.1有相同的類型嗎?5可以表示5個人,而5.1可以表示人數嗎?(不可以)所以它們是不同類型的數,數5是正數中整個的數,我們就稱它為“正整數”,而5.1不是整個的數,稱為“正分數,,.??…(由于小數可化為分數,以后把小數和分數都稱為分數)。

通過教師的引導、鼓勵和不斷完善,以及學生自己的概括,最后歸納出我們已經學過的5類不同的數,它們分別是“正整數,零,負整數,正分數,負分數,’.

按照書本的說法,得出“整數”“分數”和“有理數”的概念。

看書了解有理數名稱的由來。

“統(tǒng)稱”是指“合起來總的名稱”的意思。

學生自己嘗試分類時,可能會很粗略,教師給予引導和鼓勵,劃分數的類型要從文字所表示的意義上去引導,這樣學生易于理解。

有理數的分類表要在黑板或媒體上展示,分類的標準要引導學生去體會。

練一練1,任意寫出三個有理數,并說出是什么類型的數,與同伴進行交流。

2,教科書第10頁練習。

此練習中出現了集合的概念,可向學生作如下的說明。

數集一般用圓圈或大括號表示,因為集合中的數是無限的,而本題中只填了所給的幾個數,所以應該加上省略號。

思考:上面練習中的四個集合合并在一起就是全體有理數的集合嗎?

也可以教師說出一些數,讓學生進行判斷。

集合的概念不必深入展開。

創(chuàng)新探究問題2:有理數可分為正數和負數兩大類,對嗎?為什么?

教學時,要讓學生總結已經學過的數,鼓勵學生概括,通過交流和討論,教師作適當的指導,逐步得到如下的分類表。

有理數這個分類可視學生的程度確定是否有必要教學。

小結與作業(yè)。

課堂小結到現在為止我們學過的數都是有理數(圓周率除外),有理數可以按不同的標準進行分類,標準不同,分類的結果也不同。

本課作業(yè)1,必做題:教科書第18頁習題1.2第1題。

2,教師自行準備。

本課教育評注(課堂設計理念,實際教學效果及改進設想)。

1,本課在引人了負數后對所學過的數按照一定的標準進行分類,提出了有理數的概。

念。分類是數學中解決問題的常用手段,通過本節(jié)課的學習使學生了解分類的思想并進。

行簡單的分類是數學能力的體現,教師在教學中應引起足夠的重視。關于分類標準與分。

類結果的關系,分類標準的確定可向學生作適當的滲透,集合的概念比較抽象,學生真正接受需要很長的過程,本課不要過多展開。

2,本課具有開放性的特點,給學生提供了較大的思維空間,能促進學生積極主動地參加學習,親自體驗知識的形成過程,可避免直接進行分類所帶來的枯燥性;同時還體現合作學習、交流、探究提高的特點,對學生分類能力的養(yǎng)成有很好的作用。

3,兩種分類方法,應以第一種方法為主,第二種方法可視學生的情況進行。

課題:1.2.2數軸。

教學目標1,掌握數軸的概念,理解數軸上的點和有理數的對應關系;

3,感受在特定的條件下數與形是可以相互轉化的,體驗生活中的數學。

教學難點數軸的概念和用數軸上的點表示有理數。

知識重點。

教學過程(師生活動)設計理念。

設置情境。

引入課題教師通過實例、課件演示得到溫度計讀數。

(多媒體出示3幅圖,三個溫度分別為零上、零度和零下)。

問題2:在一條東西向的馬路上,有一個汽車站,汽車站東3m和7.5m處分別有一棵柳樹和一棵楊樹,汽車站西3m和4.8m處分別有一棵槐樹和一根電線桿,試畫圖表示這一情境。

點表示數的感性認識。

點表示數的理性認識。

合作交流。

探究新知教師:由上述兩問題我們得到什么啟發(fā)?你能用一條直線上的點表示有理數嗎?

從而得出數軸的三要素:原點、正方向、單位長度體驗數形結合思想;只描述數軸特征即可,不用特別強調數軸三要求。

尋找規(guī)律。

歸納結論問題3:

1,你能舉出一些在現實生活中用直線表示數的實際例子嗎?

3,哪些數在原點的左邊,哪些數在原點的右邊,由此你會發(fā)現什么規(guī)律?

4,每個數到原點的距離是多少?由此你會發(fā)現了什么規(guī)律?

(小組討論,交流歸納)。

歸納出一般結論,教科書第12的歸納。這些問題是本節(jié)課要求學會的技能,教學中要以學生探究學習為主來完成,教師可結合教科書給學生適當指導。

鞏固練習。

教科書第12頁練習。

小結與作業(yè)。

課堂小結請學生總結:

1,數軸的三個要素;

2,數軸的作以及數與點的轉化方法。

本課作業(yè)1,必做題:教科書第18頁習題1.2第2題。

2,選做題:教師自行安排。

本課教育評注(課堂設計理念,實際教學效果及改進設想)。

1,數軸是數形轉化、結合的重要媒介,情境設計的原型來源于生活實際,學生易于體驗和接受,讓學生通過觀察、思考和自己動手操作、經歷和體驗數軸的形成過程,加深對數軸概念的理解,同時培養(yǎng)學生的抽象和概括能力,也體出了從感性認識,到理性認識,到抽象概括的認識規(guī)律。

2,教學過程突出了情竟到抽象到概括的主線,教學方法體了特殊到一般,數形結合的數學思想方法。

3,注意從學生的知識經驗出發(fā),充分發(fā)揮學生的主體意識,讓學生主動參與學習活,并引導學生在課堂上感悟知識的生成,發(fā)展與變化,培養(yǎng)學生自主探索的學習方法。

絕對值教案篇九

(1)、借助數軸,初步理解絕對值的概念,能求一個數的絕對值,會利用絕對值比較兩個負數的大小。

(2)、通過應用絕對值解決實際問題,體會絕對值的意義和作用。

2、過程與方法目標:

(3)、通過對“做一做”“議一議”“試一試”的交流和討論,培養(yǎng)學生有條理地用語言表達解決問題的方法;通過用絕對值或數軸對兩個負數大小的比較,讓學生學會嘗試評價兩種不同方法之間的差異。

3、情感態(tài)度與價值觀:

借助數軸解決數學問題,有意識地形成“腦中有圖,心中有數”的數形結合思想。通過“做一做“議一議”“試一試”問題的思考及回答,培養(yǎng)學生積極參與數學活動,并在數學活動中體驗成功,鍛煉學生克服困難的意志,建立自信心,發(fā)展學生清晰地闡述自己觀點的能力以及培養(yǎng)學生合作探索、合作交流、合作學習的新型學習方式。

理解絕對值的概念;求一個數的絕對值;比較兩個負數的大小。

1、教師檢查組長學案學習情況,組長檢查組員學案學習情況。(約5分鐘)。

2、在組長的組織下進行討論、交流。(約5分鐘)。

3、小組分任務展示。(約25分鐘)。

4、達標檢測。(約5分鐘)。

5、總結(約5分鐘)。

(一)、溫故知新:。

(二)小組合作交流,探究新知。

1、觀察下圖,回答問題:(五組完成)。

大象距原點多遠?兩只小狗分別距原點多遠?

歸納:在數軸上,一個數所對應的點與原點的距離叫做這個數的。一個數a的絕對值記作:4的絕對值記作,它表示在上與的距離,所以|4|=。

2、做一做:

(1)、求下列各數的絕對值:(四組完成)-1.5,0,-7,2。

(2)、求下列各組數的絕對值:(一組完成)。

(1)4,-4;。

(2)0.8,-0.8;。

從上面的結果你發(fā)現了什么?

3、議一議:(八組完成)。

你能從中發(fā)現什么規(guī)律?

小結:正數的絕對值是它,負數的絕對值是它的,0的絕對值是。

4、試一試:(二組完成)。

若字母a表示一個有理數,你知道a的絕對值等于什么嗎?

(通過上題例子,學生歸納總結出一個數的絕對值與這個數的關系。)。

5:做一做:(三組完成)。

1、

(1)在數軸上表示下列各數,并比較它們的大?。?/p>

-3,-1。

(2)求出(1)中各數的絕對值,并比較它們的大小。

(3)你發(fā)現了什么?

2、比較下列每組數的大小。

(1)-1和–5;(五組完成)。

(2)-8和-3(七組完成)。

5和-2.7(六組完成)。

1、填空:

|+15|=()|–4|=()。

|0|=()|4|=()。

2、判斷。

(2)、一個數的絕對值一定是正數。()。

(3)、一個數的絕對值不可能是負數。()。

(4)、互為相反數的兩個數,它們的絕對值一定相等。()。

(5)、一個數的絕對值越大,表示它的點在數軸上離原點越近。()。

1絕對值:在數軸上,一個數所對應的點與原點的距離叫做該數的絕對值。

2絕對值的性質:正數的絕對值是它本身;負數的絕對值是它的相反數;0的絕對值是0。

3、會利用絕對值比較兩個負數的大小:兩個負數比較大小,絕對值大的反而小。

p50頁,知識技能第1,2題。

絕對值教案篇十

一教材分析:

教材所處的地位及作用:

本節(jié)課選自新人教版七年級數學上冊§1.2節(jié),是學生進入初中階段后,在學習了正、負數、數軸以及相反數的基礎上,對絕對值進行探究、學習的一個課題。絕對值是本章的一個重點,是比較有理數大小的又一工具,也是以后學習有理數混和運算的基礎。另外,這一節(jié)課與前面所學的知識有千絲萬縷的聯(lián)系:絕對值的幾何意義是在數軸的基礎上得出的,代數意義又是運用前面所學的相反數知識來解決的。因此,這節(jié)課是一節(jié)承上啟下的課。

二學情分析:

七年級學生剛剛跨入少年期,他們在身體發(fā)育、知識經驗、心理品質方面,依然保留這小學生的天真活潑、對新生事物很感興趣,求知欲望強、具有強烈的好奇心與求知欲,直觀思維已比較成熟,但理性思維的發(fā)展還很有限,于是我用學生常見的行程問題導入這節(jié)課。

三教學目標:

知識目標:

(1)是學生掌握有理數的絕對值概念及表示方法。

(2)使學生熟練掌握有理數絕對值的求法和有關計算問題。

能力目標:

(1)在絕對值概念形成的過程中,滲透數形結合等思想方法,并注意培養(yǎng)學生的概括能力(2)能根據一個數的絕對值表示“距離”,初步理解絕對值的概念。

(3)給出一個數,能求出它的絕對值。

情感態(tài)度與價值觀:

從上節(jié)課學的相反數到本節(jié)的絕對值,使學生感知數學知識具有普遍的聯(lián)系性。

四教學重點、難點:

根據學生的實際和本節(jié)課的要求,確定以下重、難點:

重點:給出一個數會求它的絕對值。

難點:絕對值的幾何意義,代數意義的導出;負數的絕對值是它的相反數。

五教學方法與教學手段:

教法分析:

基于本節(jié)課內容的特點和七年級學生的心理特征,我在我在教學中選擇互動是學習模式,與學生建立平等融洽的關系,營造自主探究與合作交流的氛圍,共同演示、操作、觀察、練習等活動中運用多媒體來提高教學效果,驗證結論,激發(fā)學生學習興趣。

學法分析:

教學過程是師生互相交流的過程,教師起引導作用,學生在教師的啟發(fā)下充分發(fā)揮主體性作用。結合七年級學生的特點,讓學生自己通過觀察、類比、猜想、歸納,共同探討交流,利用課件和圖片自主探索等方式,激發(fā)學習興趣,培養(yǎng)應用意識和發(fā)散思維。

六教學過程:

創(chuàng)設情境。

2)它們行駛的路程的遠近相同嗎?

思考:-8與8是相反數,把它們在數軸上表示出來,它們有什么相同之處和不同之處?(讓學生充分發(fā)揮主體作用,()從自己的視點去觀察、歸納、總結得出絕對值的幾何意義。)2、形成概念:一般地,數軸上表示數a的點與原點的距離叫做數a的絕對值(absoutevalue),記作:|a|.

3、例題講解。

例1求下列各數的絕對值。

-19,0,-2.3,+0.56,-6,+6,。

練習:求下列各數的絕對值。

|9||-2.5||-9||2.5||0|議一議:上述各數的絕對值與這些數本身有什么關系?(通過練習求三種類型數的絕對值,得出絕對值的代數意義。)4、引出法則:正數的絕對值是它本身;負數的絕對值是它的相反數;0的絕對值是0.

議一議:

(1)當a是正數(a0)時,|a|=____;。

(2)當a是負數(a0)時,|a|=__;。

(3)當a=0時,(a=0)時|a|=__.

想一想:

(1)絕對值是3的數有幾個?各是什么?

(2)絕對值是0的數有幾個?各是什么?

(3)絕對值是-2的數是否存在?若存在,請說出來?

判斷。

(1)+7的絕對值與-7的絕對值互為相反數。()(2)既不是正數也不是負數的有理數的絕對值是零。()(3)數a的絕對值就是數軸上表示數a的點與原點的距離。()(4)絕對值最小的數是0.()。

如何求一個數的絕對值。

作業(yè)布置。

必做題:

寫出下列各數的絕對值:

-125,+23,-3.5,0,-0.05。

上面的數中那個數的絕對值最大?那個數的絕對值最小?

選做題:(通過這一活動可以拓寬學生的知識視野,1、讓學生了解一點分類討論的思想;2、把所學應用于生活)1、已知|x|=3,|y|=4,求x+y的值。

2、正式排球比賽對所用的排球重量是有嚴格規(guī)定的,現檢查5個排球的重量,超過規(guī)定重量的克數記作正數,不足規(guī)定重量的克數記作負數,檢查結果如下表:

+15。

-10。

+30。

-20。

-40。

問題:

(1)指出哪個排球的質量好一些(即重量最接近規(guī)定質量)?

絕對值教案篇十一

師:字母可表示任意的數,可以表示正數,也可以表示負數,也可以表示0.

教師引導學生用數學式子表示正數、負數、0,并再提問:這時的絕對值分別是多少?

學生活動:分組討論,教師加入討論,學生互相補充回答。

教師板書:

師強調:這種表示方法就相當于前面三句話,比較起來后者更通俗易懂。

【教法說明】用字母表示規(guī)律是難點。這時教師放手,讓學生有目的地考慮、分析,共同得出結論。

(四)歸納小結。

師:這節(jié)課我們學習了絕對值。

(1)一個數的絕對值是在數軸上表示這個數的點到原點的距離;(2)求一個數的絕對值必須先判斷是正數還是負數。

回顧反饋:

(出示投影2)。

1.-3的絕對值是在_____________上表示-3的點到__________的距離,-3的絕對值是____________.

2.絕對值是3的數有____________個,各是___________;絕對值是2.7的數有___________個,各是___________;絕對值是0的數有____________個,是____________.

八、隨堂練習。

1.判斷題。

(1)數的絕對值就是數軸上表示數的點與原點的距離()(2)負數沒有絕對值()。

2.填表。

九、布置作業(yè)。

課本第50頁2、4.

絕對值教案篇十二

一、學習與導學目標:

情感態(tài)度:通過創(chuàng)設情境,初步感悟學習絕對值的必要性,促進責任心的形成。

二、學程與導程活動:

a、創(chuàng)設情境(幻燈片或掛圖)。

1、兩輛汽車,其一向東行駛10km,另一向西行駛8km。為了區(qū)別,可規(guī)定向東行駛為正,則分別記作+10km和-8km。但在計算出租車收費,汽車行駛所耗的汽油,起主要作用的是汽車行駛的路程,而不是行駛的方向。此時,行駛路程則分別記作10km和8km。

再如測量誤差問題、排球重量誰更接近標準問題……。

2、在討論數軸上的點與原點的距離時,只需要觀察它與原點相隔多少個單位長度,與位于原點何方無關。

b、學習概念:

1、我們把在數軸上表示數a的點與原點的距離叫做數a的絕對值(absolutevalue),記作︱a︱(幻燈片)。因此,上述+10,-8的絕對值分別是10,8。

如在數軸上表示數-6的點和表示數6的點與原點的距離都是6,所以,-6和6的絕對值都是6,記作︱-6︱=6,︱6︱=6。(互為相反數的兩個數的絕對值相同)。

2、嘗試回答(1)︱+2︱=,︱1/5︱=,︱+8.2︱=;

(2)︱-3︱=,︱-0.2︱=,︱-8.2︱=;

(3)︱0︱=。(幻燈片)。

思考:你能從中發(fā)現什么規(guī)律?引導學生得出:(幻燈片)。

性質:一個正數的絕對值是它本身;

一個負數的絕對值是它的相反數;

如果用字母a表示有理數,上述性質可表述為:

當a是正數時,︱a︱=a;。

當a是負數時,︱a︱=-a;。

當a=0時,︱a︱=0。

解答課本p19/7及p15練習,由p19/7體會絕對值在實際中的應用,由練習1體會上面的三個等式,由練習2中提到的絕對值大小、數軸,引出問題:

在引入負數以后,如何比較兩個數的大小,尤其是兩個負數的大?。?/p>

3、讓我們仍然回到實際中去看看有怎樣的啟發(fā),引導閱讀p16(幻燈片)。

顯然,結合問題的實際意義不難得到:-4-3-2-1012……。

因此,在數軸上你有何發(fā)現?生討論后發(fā)現:從左往右表示的數越來越大。

再找?guī)讉€量試試是否如此?這些數的絕對值的大小如何?(可利用p19/6,8為素材)。

通過以上探究活動得到:正數大于0,0大于負數,正數大于負數;

兩個負數,絕對值大的反而小。

4、師生活動比較下列各對數的大?。簆17例,p18練習。

5、師生小結歸納(幻燈片)。

三、筆記與板書提綱:

1、幻燈片。

2、師生板演練習p15/1。

四、練習與拓展選題:

p19/4,5,9,10。

絕對值教案篇十三

1、能借助數軸初步理解絕對值的概念,會求一個數的絕對值。

2、正確理解絕對值的代數意義和幾何意義,滲透數形結合與分類討論思想。重點和難點:理解絕對值的概念,能求一個數的絕對值。

任務一、復習舊知:

1、什么叫互為相反數?在數軸上表示互為相反數的兩點和原點的位置關系怎樣?

2、數軸上與原點的距離是2的點表示的數有_____個,他們表示的數是_____;與原點的距離是5的點有____個、任務二、新知理解:

1、自讀課本p11-p12,體會絕對值的意義。

a的絕對值記作_______,如5的絕對值記作______,結果是_____、

(2)|0|=_______;

絕對值的代數意義:(1)一個正數的絕對值是__________;。

(2)一個負數的絕對值是___________(3)0的絕對值是___________。

上述可以用式子表示為:(1)當a是正數時,|a|=_______,

任務三:鞏固練習。

1、求下列各數的絕對值:?7。

12,?

110。

4、7510、5。

2.計算|-2|+|+8||34|?|?815。

||-20|?|?45|。

(2)如果一個數是正數,那么這個數的絕對值是它本身;(3)如果一個數的絕對值是它本身,那么這個數是正數(4)一個數的絕對值越大,表示它的'點在數軸上越靠右。歸納:(1)不論有理數a取何值,它的絕對值總是______。

(2)兩個互為相反數的絕對值____。能力提升:

4)若|a-2|=3,則a=______。

絕對值教案篇十四

蘇軾,北宋大文學家、書畫家。字子瞻,號東坡居士,眉山(今屬四川)人。蘇洵子,蘇轍兄。嘉佑進士。北宋中期的文壇領袖,文學巨匠,唐宋八大家之一。其文縱橫恣肆,其詩題材廣闊,清新豪健,善用夸張、比喻,獨具風格。詞開豪放一派,與辛棄疾并稱“蘇辛”,有《東坡全集》、《東坡樂府》。

3、《浣溪沙》上闕寫景,描繪了哪三幅畫面?畫面有何特點?山下小溪邊,長著矮小嬌嫩的蘭草,山上松間沙路潔凈無塵,黃昏時瀟瀟細雨中杜鵑在啼叫。畫面清新優(yōu)美,淡雅寧靜。

4、下闕轉入抒懷,抒發(fā)了怎樣的情懷?由西流的溪水,想到青春可以永駐,大可不必為日月變遷、人生衰老而嘆息。表現了積極進取的人生態(tài)度。

5、作者寫此詞時,正是在政治上失意,生活處于逆境之時,能有如此積極的人生觀,豁達的胸懷,實在難能可貴。

6、齊讀并背誦這首詞。

學習《赤壁》。

1、教師范讀,學生跟讀。

2、簡介作者并解題。

杜牧(803-852)唐代詩人。字牧之,京兆萬年人。太和進士,和李商隱并稱“小李杜”。赤壁是東漢末年周瑜大敗曹操的地方,但杜牧所詠赤壁并非此處,而是湖北黃岡的赤鼻磯,所以說此詩雖為詠史詩,其實也是借題發(fā)揮。

3、《赤壁》開頭為什么從一把不起眼的折戟寫起,這樣寫有何作用?

與古代戰(zhàn)爭聯(lián)系起來,很自然的引起后文對歷史的詠嘆。但是,這兩句的作用主要不在于作為詩的引導,它本身也蘊涵著強烈的意念活動。沙里沉埋著鐵戟,點出此地曾有過歷史風云。折戟沉沙而仍未銷蝕,又暗寓歲月流逝而物存人非之慨。凡是在歷史上留下蹤跡地人物、事件,常會被無情地時光銷蝕掉,也易從人們的記憶中消逝,就像這鐵戟一樣沉淪埋沒,但又常因偶然的'機會被人記起,或引起懷念,或勾起深思。正由于發(fā)現了這片折戟,使詩人心緒無法平靜,因此他要磨洗并辨認一番,發(fā)現原來是“前朝”三國赤壁之戰(zhàn)時的遺物。因此,“認前朝”又進一步勃發(fā)了作者浮想聯(lián)翩的思緒,為后二句論史抒懷做了鋪墊。

4、全詩最精彩的是久為人們傳誦的末二句,這兩句議論感慨抒發(fā)了作者怎樣的思想感情?

這兩句詩人發(fā)表議論,“東風”不僅僅指的是自然界的風,而是含有建功立業(yè)各種條件和因素。曲折的反映出詩人的抑郁不平和豪爽胸襟。慨嘆歷史上英雄成名的機遇,是因為他自己生不逢時,有政治軍事才能而不得一展。似乎又有另一層意思:只要有機遇,相信自己總會有所作為,顯示出一種逼人的英氣。

5、齊讀、背誦。

四、課堂練習。

課后練習:對對子。

出:白對:黑出:來對:去出:美對:丑出:是對:非出:藍天對:白云。

五、布置作業(yè)。

1、背誦并默寫五首詩詞。

2、完成課后練習四作者郵箱:xxx。

【本文地址:http://mlvmservice.com/zuowen/15233051.html】

全文閱讀已結束,如果需要下載本文請點擊

下載此文檔