教案的編寫應(yīng)該注重學(xué)生的主體地位,激發(fā)學(xué)生的學(xué)習(xí)主動性。編寫一份完美的教案需要考慮多個(gè)方面的因素。首先,教案的內(nèi)容應(yīng)該貼近教學(xué)目標(biāo),符合學(xué)生的學(xué)習(xí)需要。其次,教案的結(jié)構(gòu)應(yīng)該合理,包括教學(xué)目標(biāo)的設(shè)定、教學(xué)過程的設(shè)計(jì)、教學(xué)資源的選擇等。此外,教案應(yīng)該具有一定的靈活性,能夠根據(jù)實(shí)際情況進(jìn)行調(diào)整和改進(jìn)。以下是一份教學(xué)案例,通過這個(gè)例子來展示如何編寫有效的教案。
高一數(shù)學(xué)等差數(shù)列教案篇一
(1)通過實(shí)物操作,增強(qiáng)學(xué)生的直觀感知。
(2)能根據(jù)幾何結(jié)構(gòu)特征對空間物體進(jìn)行分類。
(3)會用語言概述棱柱、棱錐、圓柱、圓錐、棱臺、圓臺、球的結(jié)構(gòu)特征。
(4)會表示有關(guān)于幾何體以及柱、錐、臺的分類。
(1)讓學(xué)生通過直觀感受空間物體,從實(shí)物中概括出柱、錐、臺、球的幾何結(jié)構(gòu)特征。
(2)讓學(xué)生觀察、討論、歸納、概括所學(xué)的知識。
(1)使學(xué)生感受空間幾何體存在于現(xiàn)實(shí)生活周圍,增強(qiáng)學(xué)生學(xué)習(xí)的積極性,同時(shí)提高學(xué)生的觀察能力。
(2)培養(yǎng)學(xué)生的空間想象能力和抽象括能力。
重點(diǎn):讓學(xué)生感受大量空間實(shí)物及模型、概括出柱、錐、臺、球的結(jié)構(gòu)特征。難點(diǎn):柱、錐、臺、球的結(jié)構(gòu)特征的概括。
(1)學(xué)法:觀察、思考、交流、討論、概括。
(2)實(shí)物模型、投影儀四、教學(xué)思路。
1、教師提出問題:在我們生活周圍中有不少有特色的建筑物,你能舉出一些例子嗎?這些建筑的幾何結(jié)構(gòu)特征如何?引導(dǎo)學(xué)生回憶,舉例和相互交流。教師對學(xué)生的活動及時(shí)給予評價(jià)。
2、所舉的建筑物基本上都是由這些幾何體組合而成的,(展示具有柱、錐、臺、球結(jié)構(gòu)特征的空間物體),你能通過觀察。根據(jù)某種標(biāo)準(zhǔn)對這些空間物體進(jìn)行分類嗎?這是我們所要學(xué)習(xí)的內(nèi)容。
1、引導(dǎo)學(xué)生觀察物體、思考、交流、討論,對物體進(jìn)行分類,分辯棱柱、圓柱、棱錐。
3、組織學(xué)生分組討論,每小組選出一名同學(xué)發(fā)表本組討論結(jié)果。在此基礎(chǔ)上得出棱柱的主要結(jié)構(gòu)特征。
(1)有兩個(gè)面互相平行;
(2)其余各面都是平行四邊形;
(3)每相鄰兩上四邊形的公共邊互相平行。概括出棱柱的概念。
4、教師與學(xué)生結(jié)合圖形共同得出棱柱相關(guān)概念以及棱柱的表示。
5、提出問題:各種這樣的棱柱,主要有什么不同?可不可以根據(jù)不同對棱柱分類?
6、以類似的方法,讓學(xué)生思考、討論、概括出棱錐、棱臺的結(jié)構(gòu)特征,并得出相關(guān)的概念,分類以及表示。
7、讓學(xué)生觀察圓柱,并實(shí)物模型演示,如何得到圓柱,從而概括出圓標(biāo)的概念以及相關(guān)的概念及圓柱的表示。
8、引導(dǎo)學(xué)生以類似的方法思考圓錐、圓臺、球的結(jié)構(gòu)特征,以及相關(guān)概念和表示,借助實(shí)物模型演示引導(dǎo)學(xué)生思考、討論、概括。
9、教師指出圓柱和棱柱統(tǒng)稱為柱體,棱臺與圓臺統(tǒng)稱為臺體,圓錐與棱錐統(tǒng)稱為錐體。
1、有兩個(gè)面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱(舉反例說明,如圖)。
2、棱柱的何兩個(gè)平面都可以作為棱柱的底面嗎?
3、課本p8,習(xí)題1.1a組第1題。
5、棱臺與棱柱、棱錐有什么關(guān)系?圓臺與圓柱、圓錐呢?
由學(xué)生整理學(xué)習(xí)了哪些內(nèi)容六、布置作業(yè)。
課本p8練習(xí)題1.1b組第1題。
課外練習(xí)課本p8習(xí)題1.1b組第2題。
高一數(shù)學(xué)等差數(shù)列教案篇二
【知識與技能】能夠復(fù)述等差數(shù)列的概念,能夠?qū)W會等差數(shù)列的通項(xiàng)公式的推導(dǎo)過程及蘊(yùn)含的數(shù)學(xué)思想。
【過程與方法】在領(lǐng)會函數(shù)與數(shù)列關(guān)系的前提下,把研究函數(shù)的方法遷移來研究數(shù)列,提高知識、方法遷移能力;通過階梯性練習(xí),提高分析問題和解決問題的能力。
【情感態(tài)度與價(jià)值觀】通過對等差數(shù)列的研究,具備主動探索、勇于發(fā)現(xiàn)的求知精神;養(yǎng)成細(xì)心觀察、認(rèn)真分析、善于總結(jié)的良好思維習(xí)慣。
【教學(xué)重點(diǎn)】。
等差數(shù)列的概念、等差數(shù)列的通項(xiàng)公式的推導(dǎo)過程及應(yīng)用。
【教學(xué)難點(diǎn)】。
環(huán)節(jié)一:導(dǎo)入新課。
教師ppt展示幾道題目:
1.我們經(jīng)常這樣數(shù)數(shù),從0開始,每隔5一個(gè)數(shù),可以得到數(shù)列:0,5,15,20,252.小明目前會100個(gè)單詞,他她打算從今天起不再背單詞了,結(jié)果不知不覺地每天忘掉2個(gè)單詞,那么在今后的五天內(nèi)他的單詞量逐日依次遞減為:100,98,96,94,92。
在澳大利亞悉尼舉行的奧運(yùn)會上,女子舉重正式列為比賽項(xiàng)目,該項(xiàng)目共設(shè)置了7個(gè)級別,其中交情的4個(gè)級別體重組成數(shù)列(單位:kg):48,53,58,63。
教師提問學(xué)生這幾組數(shù)有什么特點(diǎn)?學(xué)生回答從第二項(xiàng)開始,每一項(xiàng)與前一項(xiàng)的差都等于一個(gè)常數(shù),教師引出等差數(shù)列。
環(huán)節(jié)二:探索新知。
學(xué)生閱讀教材,同桌討論,類比等比數(shù)列總結(jié)出等差數(shù)列的概念。
如果一個(gè)數(shù)列,從第二項(xiàng)開始它的每一項(xiàng)與前一項(xiàng)之差都等于同一常數(shù),這個(gè)數(shù)列就叫等差數(shù)列,這個(gè)常數(shù)叫做等差數(shù)列的公差,通常用字母d來表示。
問題1:等差數(shù)列的概念中,我們應(yīng)該注意哪些細(xì)節(jié)呢?
環(huán)節(jié)三:課堂練習(xí)。
(1)1,2,4,6,8,10,12,……。
(2)0,1,2,3,4,5,6,……。
(3)3,3,3,3,3,3,3,……。
(4)-8,-6,-4,-2,0,2,4,……。
(5)3,0,-3,-6,-9,……。
環(huán)節(jié)四:小結(jié)作業(yè)。
關(guān)鍵字:從第二項(xiàng)開始它的每一項(xiàng)與前一項(xiàng)之差都等于同一常數(shù)。
作業(yè):現(xiàn)實(shí)生活中還有哪些等差數(shù)列的實(shí)際應(yīng)用呢?根據(jù)實(shí)際問題自己編寫兩道等差數(shù)列的題目并進(jìn)行求解。
高一數(shù)學(xué)等差數(shù)列教案篇三
1.了解函數(shù)的單調(diào)性和奇偶性的概念,掌握有關(guān)證明和判斷的基本方法.
(1)了解并區(qū)分增函數(shù),減函數(shù),單調(diào)性,單調(diào)區(qū)間,奇函數(shù),偶函數(shù)等概念.
(2)能從數(shù)和形兩個(gè)角度認(rèn)識單調(diào)性和奇偶性.
(3)能借助圖象判斷一些函數(shù)的單調(diào)性,能利用定義證明某些函數(shù)的單調(diào)性;能用定義判斷某些函數(shù)的奇偶性,并能利用奇偶性簡化一些函數(shù)圖象的繪制過程.
2.通過函數(shù)單調(diào)性的證明,提高學(xué)生在代數(shù)方面的推理論證能力;通過函數(shù)奇偶性概念的形成過程,培養(yǎng)學(xué)生的觀察,歸納,抽象的能力,同時(shí)滲透數(shù)形結(jié)合,從特殊到一般的數(shù)學(xué)思想.
3.通過對函數(shù)單調(diào)性和奇偶性的理論研究,增學(xué)生對數(shù)學(xué)美的體驗(yàn),培養(yǎng)樂于求索的精神,形成科學(xué),嚴(yán)謹(jǐn)?shù)难芯繎B(tài)度.
(1)函數(shù)單調(diào)性的概念。包括增函數(shù)、減函數(shù)的定義,單調(diào)區(qū)間的概念函數(shù)的單調(diào)性的判定方法,函數(shù)單調(diào)性與函數(shù)圖像的關(guān)系.
(2)函數(shù)奇偶性的概念。包括奇函數(shù)、偶函數(shù)的定義,函數(shù)奇偶性的判定方法,奇函數(shù)、偶函數(shù)的圖像.
(1)本節(jié)教學(xué)的重點(diǎn)是函數(shù)的單調(diào)性,奇偶性概念的形成與認(rèn)識.教學(xué)的難點(diǎn)是領(lǐng)悟函數(shù)單調(diào)性, 奇偶性的本質(zhì),掌握單調(diào)性的證明.
(2)函數(shù)的單調(diào)性這一性質(zhì)學(xué)生在初中所學(xué)函數(shù)中曾經(jīng)了解過,但只是從圖象上直觀觀察圖象的上升與下降,而現(xiàn)在要求把它上升到理論的高度,用準(zhǔn)確的數(shù)學(xué)語言去刻畫它.這種由形到數(shù)的翻譯,從直觀到抽象的轉(zhuǎn)變對高一的學(xué)生來說是比較困難的,因此要在概念的形成上重點(diǎn)下功夫.單調(diào)性的證明是學(xué)生在函數(shù)內(nèi)容中首次接觸到的代數(shù)論證內(nèi)容,學(xué)生在代數(shù)論證推理方面的能力是比較弱的,許多學(xué)生甚至還搞不清什么是代數(shù)證明,也沒有意識到它的重要性,所以單調(diào)性的證明自然就是教學(xué)中的難點(diǎn).
(1)函數(shù)單調(diào)性概念引入時(shí),可以先從學(xué)生熟悉的一次函數(shù),,二次函數(shù).反比例函數(shù)圖象出發(fā),回憶圖象的增減性,從這點(diǎn)感性認(rèn)識出發(fā),通過問題逐步向抽象的定義靠攏.如可以設(shè)計(jì)這樣的問題:圖象怎么就升上去了?可以從點(diǎn)的坐標(biāo)的角度,也可以從自變量與函數(shù)值的關(guān)系的角度來解釋,引導(dǎo)學(xué)生發(fā)現(xiàn)自變量與函數(shù)值的的變化規(guī)律,再把這種規(guī)律用數(shù)學(xué)語言表示出來.在這個(gè)過程中對一些關(guān)鍵的詞語(某個(gè)區(qū)間,任意,都有)的理解與必要性的認(rèn)識就可以融入其中,將概念的形成與認(rèn)識結(jié)合起來.
(2)函數(shù)單調(diào)性證明的步驟是嚴(yán)格規(guī)定的,要讓學(xué)生按照步驟去做,就必須讓他們明確每一步的必要性,每一步的目的,特別是在第三步變形時(shí),讓學(xué)生明確變換的目標(biāo),到什么程度就可以斷號,在例題的選擇上應(yīng)有不同的變換目標(biāo)為選題的標(biāo)準(zhǔn),以便幫助學(xué)生總結(jié)規(guī)律.
函數(shù)的奇偶性概念引入時(shí),可設(shè)計(jì)一個(gè)課件,以的圖象為例,讓自變量互為相反數(shù),觀察對應(yīng)的函數(shù)值的變化規(guī)律,先從具體數(shù)值開始,逐漸讓在數(shù)軸上動起來,觀察任意性,再讓學(xué)生把看到的用數(shù)學(xué)表達(dá)式寫出來.經(jīng)歷了這樣的過程,再得到等式時(shí),就比較容易體會它代表的是無數(shù)多個(gè)等式,是個(gè)恒等式.關(guān)于定義域關(guān)于原點(diǎn)對稱的問題,也可借助課件將函數(shù)圖象進(jìn)行多次改動,幫助學(xué)生發(fā)現(xiàn)定義域的對稱性,同時(shí)還可以借助圖象說明定義域關(guān)于原點(diǎn)對稱只是函數(shù)具備奇偶性的必要條件而不是充分條件.
高一數(shù)學(xué)等差數(shù)列教案篇四
3.通過參與編題解題,激發(fā)學(xué)生學(xué)習(xí)的興趣.
教學(xué)重點(diǎn)是通項(xiàng)公式的認(rèn)識;教學(xué)難點(diǎn)是對公式的靈活運(yùn)用.。
用具。
方法。
研探式.
一.復(fù)習(xí)提問。
等差數(shù)列的概念是從相鄰兩項(xiàng)的關(guān)系加以定義的,這個(gè)關(guān)系用遞推公式來表示比較簡單,但我們要圍繞通項(xiàng)公式作進(jìn)一步的理解與應(yīng)用.
二.主體設(shè)計(jì)。
通項(xiàng)公式反映了項(xiàng)與項(xiàng)數(shù)之間的函數(shù)關(guān)系,當(dāng)?shù)炔顢?shù)列的首項(xiàng)與公差確定后,數(shù)列的每一項(xiàng)便確定了,可以求指定的項(xiàng)(即已知求).找學(xué)生試舉一例如:“已知等差數(shù)列中,首項(xiàng),公差,求.”這是通項(xiàng)公式的簡單應(yīng)用,由學(xué)生解答后,要求每個(gè)學(xué)生出一些運(yùn)用等差數(shù)列通項(xiàng)公式的題目,包括正用、反用與變用,簡單、復(fù)雜,定量、定性的均可,教師巡視將好題搜集起來,分類投影在屏幕上.
1.方程思想的運(yùn)用。
(1)已知等差數(shù)列中,首項(xiàng),公差,則-397是該數(shù)列的第______項(xiàng).
(2)已知等差數(shù)列中,首項(xiàng),則公差。
(3)已知等差數(shù)列中,公差,則首項(xiàng)。
這一類問題先由學(xué)生解決,之后教師點(diǎn)評,四個(gè)量,在一個(gè)等式中,運(yùn)用方程的思想方法,已知其中三個(gè)量的值,可以求得第四個(gè)量.
2.基本量方法的使用。
(1)已知等差數(shù)列中,,求的值.
若學(xué)生的題目只有這兩種類型,教師可以小結(jié)(最好請出題者、解題者概括):因?yàn)橐阎獥l件可以化為關(guān)于和的二元方程組,所以這些等差數(shù)列是確定的,由和寫出通項(xiàng)公式,便可歸結(jié)為前一類問題.解決這類問題只需把兩個(gè)條件(等式)化為關(guān)于和的二元方程組,以求得和,和稱作基本量.
教師提出新的問題,已知等差數(shù)列的一個(gè)條件(等式),能否確定一個(gè)等差數(shù)列?學(xué)生回答后,教師再啟發(fā),由這一個(gè)條件可得到關(guān)于和的二元方程,這是一個(gè)和的制約關(guān)系,從這個(gè)關(guān)系可以得到什么結(jié)論?舉例說明(例題可由學(xué)生或教師給出,視具體情況而定).
類似的還有。
(4)已知等差數(shù)列中,求的值.
以上屬于對數(shù)列的項(xiàng)進(jìn)行定量的研究,有無定性的判斷?引出。
4.研究項(xiàng)的符號。
這是為研究等差數(shù)列前項(xiàng)和的最值所做的準(zhǔn)備工作.可配備的題目如。
(1)已知數(shù)列的通項(xiàng)公式為,問數(shù)列從第幾項(xiàng)開始小于0?
(2)等差數(shù)列從第________項(xiàng)起以后每項(xiàng)均為負(fù)數(shù).
三.小結(jié)。
1.用方程思想認(rèn)識等差數(shù)列通項(xiàng)公式;
四.板書設(shè)計(jì)。
1.方程思想的運(yùn)用。
2.基本量方法的使用。
4.研究項(xiàng)的符號。
高一數(shù)學(xué)等差數(shù)列教案篇五
本節(jié)的重點(diǎn)是二次根式的化簡.本章自始至終圍繞著二次根式的化簡與計(jì)算進(jìn)行,而二次根式的化簡不但涉及到前面學(xué)習(xí)過的算術(shù)平方根、二次根式等概念與二次根式的運(yùn)算性質(zhì),還要牽涉到絕對值以及各種非負(fù)數(shù)、因式分解等知識,在應(yīng)用中常常需要對字母進(jìn)行分類討論.
本節(jié)的難點(diǎn)是正確理解與應(yīng)用公式.這個(gè)公式的表達(dá)形式對學(xué)生來說,比較生疏,而實(shí)際運(yùn)用時(shí),則要牽涉到對字母取值范圍的討論,學(xué)生往往容易出現(xiàn)錯(cuò)誤.
教法建議
1.性質(zhì)的引入方法很多,以下2種比較常用:
(1)設(shè)計(jì)問題引導(dǎo)啟發(fā):由設(shè)計(jì)的問題
1)、、各等于什么?
2)、、各等于什么?
啟發(fā)、引導(dǎo)學(xué)生猜想出
(2)從算術(shù)平方根的意義引入.
2.性質(zhì)的鞏固有兩個(gè)方面需要注意:
(1)注意與性質(zhì)進(jìn)行對比,可出幾道類型不同的題進(jìn)行比較;
(2)學(xué)生初次接觸這種形式的表示方式,在教學(xué)時(shí)要注意細(xì)分層次加以鞏固,如單個(gè)數(shù)字,單個(gè)字母,單項(xiàng)式,可進(jìn)行因式分解的多項(xiàng)式,等等.
(第1課時(shí))
1.掌握二次根式的性質(zhì)
2.能夠利用二次根式的性質(zhì)化簡二次根式
3.通過本節(jié)的學(xué)習(xí)滲透分類討論的數(shù)學(xué)思想和方法
對比、歸納、總結(jié)
1.重點(diǎn):理解并掌握二次根式的性質(zhì)
2.難點(diǎn):理解式子中的可以取任意實(shí)數(shù),并能根據(jù)字母的取值范圍正確地化簡有關(guān)的二次根式.
1課時(shí)
五、教b具學(xué)具準(zhǔn)備
投影儀、膠片、多媒體
復(fù)習(xí)對比,歸納整理,應(yīng)用提高,以學(xué)生活動為主
一、導(dǎo)入新課
我們知道,式子()表示非負(fù)數(shù)的算術(shù)平方根.
問:式子的意義是什么?被開方數(shù)中的表示的是什么數(shù)?
答:式子表示非負(fù)數(shù)的算術(shù)平方根,即,且,從而可以取任意實(shí)數(shù).
二、新課
計(jì)算下列各題,并回答以下問題:
(1);(2);(3);
1.各小題中被開方數(shù)的冪的底數(shù)都是什么數(shù)?
2.各小題的結(jié)果和相應(yīng)的被開方數(shù)的冪的底數(shù)有什么關(guān)系?
3.用字母表示被開方數(shù)的冪的底數(shù),將有怎樣的結(jié)論?并用語言敘述你的結(jié)論.
高一數(shù)學(xué)等差數(shù)列教案篇六
高中數(shù)學(xué)學(xué)習(xí)是中學(xué)階段承前啟后的關(guān)鍵時(shí)期,不少學(xué)生升入高中后,能否適應(yīng)高中數(shù)學(xué)的學(xué)習(xí),是擺在高中新生面前的一個(gè)亟待解決的問題,除了學(xué)習(xí)環(huán)境、教學(xué)內(nèi)容和教學(xué)因素等外部因素外,同學(xué)們應(yīng)該轉(zhuǎn)變觀念、提高認(rèn)識和改進(jìn)學(xué)法,本文就此問題談點(diǎn)看法。
1、認(rèn)識高中數(shù)學(xué)的特點(diǎn)。
高中數(shù)學(xué)是初中數(shù)學(xué)的提高和深化,初中數(shù)學(xué)在教材表達(dá)上采用形象通俗的語言,研究對象多是常量,側(cè)重于定量計(jì)算和形象思維,而高中數(shù)學(xué)語言表達(dá)抽象.
2、要提高自我調(diào)控的“適教”能力。
一般來說,教師經(jīng)過一段時(shí)間的教學(xué)實(shí)踐后,因自身對教學(xué)過程的不同理解和知識結(jié)構(gòu)、思維特點(diǎn)、個(gè)性傾向、能力品質(zhì)、教學(xué)觀念、職業(yè)經(jīng)歷等原因,在教學(xué)方式、方法、策略的采用上表現(xiàn)出一定的傾向性,形成自己獨(dú)特的、鮮明的、一貫的教學(xué)風(fēng)格或特點(diǎn)。作為一名學(xué)生,讓老師去適應(yīng)自己顯然不現(xiàn)實(shí),我們應(yīng)該根據(jù)教的特點(diǎn),從適應(yīng)教的目的出發(fā),立足于自身的實(shí)際,優(yōu)化學(xué)習(xí)策略,調(diào)控自己的學(xué)習(xí)行為,使自己的學(xué)法逐步適應(yīng)老師的教法,從而使自己學(xué)得好、學(xué)得快。
3、正確對待學(xué)習(xí)中遇到的新困難和新問題。
在開始學(xué)習(xí)高中數(shù)學(xué)的過程中,肯定會遇到不少困難和問題,同學(xué)們要有克服困難的勇氣和信心,勝不驕,敗不餒,有一種“初生牛犢不怕虎”的精神,愈挫愈勇,千萬不能讓問題堆積,形成惡性循環(huán),而是要在老師的引導(dǎo)下,尋求解決問題的辦法,培養(yǎng)分析問題和解決問題的能力。
4、要將“以老師為中心”轉(zhuǎn)變?yōu)椤耙宰约簽橹黧w,老師為主導(dǎo)”的學(xué)習(xí)模式。
數(shù)學(xué)不是靠老師教會的,而是在老師引導(dǎo)下,靠自己主動思維活動去獲取的,學(xué)習(xí)數(shù)學(xué)就是要積極主動地參與教學(xué)過程,并經(jīng)常發(fā)現(xiàn)和提出問題,而不能依著老師的慣性運(yùn)轉(zhuǎn),被動地接受所學(xué)知識和方法。
5、要養(yǎng)成良好的預(yù)習(xí)習(xí)慣,提高自學(xué)能力。
課前預(yù)習(xí)而“生疑”,“帶疑”聽課而“感疑”,通過老師的點(diǎn)撥、講解而“悟疑”、“解疑”,從而提高課堂聽課效果。
6、要養(yǎng)成良好的審題和解題習(xí)慣,提高閱讀能力。
審題是解題的關(guān)鍵,數(shù)學(xué)題是由文字語言、符號語言和圖形語言構(gòu)成的,拿到目要“寧停三分”,“不搶一秒”,要在已有知識和解題經(jīng)驗(yàn)基礎(chǔ)上,譯字逐句仔細(xì)審題,細(xì)心推敲,切忌題意不清,倉促上陣,審數(shù)學(xué)題有時(shí)須對題意逐句“翻譯”,將隱含條件轉(zhuǎn)化為明顯條件;有時(shí)需聯(lián)系題設(shè)與結(jié)論,前后呼應(yīng)挖掘構(gòu)建題設(shè)與目標(biāo)的橋梁,尋找突破點(diǎn),從而形成解題思路。
7、要養(yǎng)成良好的演算、驗(yàn)算習(xí)慣,提高運(yùn)算能力。
學(xué)習(xí)數(shù)學(xué)離不開運(yùn)算,初中老師往往一步一步在黑板上演算,因時(shí)間有限,運(yùn)算量大,高中老師常把計(jì)算留給學(xué)生,這就要同學(xué)們多動腦,勤動手,不僅能筆算,而且也能口算和心算,對復(fù)雜運(yùn)算,要有耐心,掌握算理,注重簡便方法。解后要反思,提高分析問題的能力。解完題目之后,要不失時(shí)機(jī)地回顧:解題過程中是如何分析聯(lián)想探索出解題途徑的?使問題獲得解決的關(guān)鍵是什么?在解決問題的過程中遇到了哪些困難?又是怎樣克服的?這樣,通過解題后的回顧與反思,就有利于發(fā)現(xiàn)解題的關(guān)鍵所在,并從中提煉出數(shù)學(xué)思想和方法,只有勤反思,才能“站得高山,看得遠(yuǎn),駕馭全局”,才能提高自己分析問題的能力。
8、要善于交流,提高表達(dá)能力,養(yǎng)成糾錯(cuò)訂正的習(xí)慣。
在數(shù)學(xué)學(xué)習(xí)過程中,對一些典型問題,同學(xué)們應(yīng)善于合作,各抒己見,互相討論,取人之長,補(bǔ)己之短,也可主動與老師交流,說出自己的見解和看法,在老師的點(diǎn)撥中,他的思想方法會對你產(chǎn)生潛移默化的影響。因此,只有不斷交流,才能相互促進(jìn)、共同發(fā)展,提高表達(dá)能力。如果固步自封,就會造成鉆牛角尖,浪費(fèi)不必要的時(shí)間。
9、要勤學(xué)善思,提高創(chuàng)新能力。
“學(xué)而不思則罔,思而不學(xué)則貽”。在學(xué)習(xí)數(shù)學(xué)的過程中,要遵循認(rèn)識規(guī)律,善于開動腦筋,積極主動去發(fā)現(xiàn)問題,進(jìn)行獨(dú)立思考,注重新舊知識的內(nèi)在聯(lián)系,把握概念的內(nèi)涵和外延,做到一題多解,一題多變,不滿足于現(xiàn)成的思路和結(jié)論,善于從多側(cè)面、多方位思考問題,挖掘問題的實(shí)質(zhì),勇于發(fā)表自己的獨(dú)特見解。因?yàn)橹挥兴妓鞑拍苌山庖?,只有思索才能透徹明悟。一個(gè)人如果長期處于無問題狀態(tài),就說明他思考不夠,學(xué)業(yè)也就提高不了。
10、要養(yǎng)成做筆記的習(xí)慣,提高理解力。
為了加深對內(nèi)容的理解和掌握,老師補(bǔ)充內(nèi)容和方法很多,如果不做筆記,一旦遺忘,無從復(fù)習(xí)鞏固,何況在做筆記和整理過程中,自己參與教學(xué)活動,加強(qiáng)了學(xué)習(xí)主動性和學(xué)習(xí)興趣,從而提高了自己的理解力,也養(yǎng)成歸納總結(jié)的習(xí)慣。
總之,要養(yǎng)成良好的學(xué)習(xí)習(xí)慣,勤奮的學(xué)習(xí)態(tài)度,科學(xué)的學(xué)習(xí)方法,充分發(fā)揮自身的主體作用,不僅學(xué)會,而且會學(xué),只有這樣,才能取得事半功倍之效。
高一數(shù)學(xué)等差數(shù)列教案篇七
數(shù)列是中、高職數(shù)學(xué)知識的重要內(nèi)容之一。我選擇的課題:《等差數(shù)列》是“數(shù)列”中的一個(gè)重點(diǎn)內(nèi)容,這部分內(nèi)容在對口單招高考中的能級要求是理解。通過對生活實(shí)例和內(nèi)容的分析,建立等差數(shù)列的模型,引導(dǎo)學(xué)生探索并掌握它們的基本性質(zhì),感受等差數(shù)列模型的廣泛應(yīng)用,并利用它解決實(shí)際問題。
二、教學(xué)對象分析。
我校對口單招學(xué)生是在接受了九年制義務(wù)教育,經(jīng)歷了中考之后分流到我們學(xué)校的,他們的數(shù)學(xué)學(xué)習(xí)基礎(chǔ)比較薄弱,學(xué)習(xí)習(xí)慣也有待進(jìn)一步改善和提高,對數(shù)學(xué)的學(xué)習(xí)興趣有待進(jìn)一步加強(qiáng),存在畏難情緒等。針對這些情況,我遵循學(xué)生的心理特點(diǎn),關(guān)注學(xué)生的直覺感受和已有經(jīng)驗(yàn),結(jié)合生活實(shí)例,精選一些典型的、適合學(xué)生的生活情境,從實(shí)際應(yīng)用的角度去講解概念和定理,調(diào)動學(xué)生的學(xué)習(xí)積極性和主觀能動性,提高教學(xué)效率。
三、教學(xué)內(nèi)容安排。
本次參賽內(nèi)容為一個(gè)單元:等差數(shù)列;在等差數(shù)列中又包括:1.等差數(shù)列的概念(1課時(shí));2.等差數(shù)列的通項(xiàng)公式(1課時(shí));3.等差中項(xiàng);4.等差數(shù)列的求和公式(1課時(shí))。所選內(nèi)容來源于教材和數(shù)學(xué)學(xué)案。
四、教學(xué)總目標(biāo)。
1.知識與技能。
(1)理解等差數(shù)列的定義,理解等差數(shù)列的通項(xiàng)公式及前n項(xiàng)和公式;
(2)理解等差中項(xiàng)的廣義概念,能靈活運(yùn)用性質(zhì)巧解相關(guān)問題;
2.過程與方法。
通過實(shí)例,了解數(shù)列在實(shí)際生活和生產(chǎn)方面的應(yīng)用,并能利用數(shù)列的有關(guān)知識解決實(shí)際問題。
3.情感、態(tài)度與價(jià)值觀。
通過建立數(shù)列模型以及應(yīng)用數(shù)列模型解決實(shí)際問題的過程,培養(yǎng)學(xué)生分析、解決問題的能力,提高學(xué)生的基本數(shù)學(xué)素養(yǎng),為后續(xù)的學(xué)習(xí)奠定良好的數(shù)學(xué)基礎(chǔ)。
五、主要教學(xué)理念。
1.任務(wù)引領(lǐng)。
任務(wù)引領(lǐng)教學(xué)法以培養(yǎng)學(xué)生專業(yè)技能為宗旨,以學(xué)生為主體,以任務(wù)為中心,把學(xué)習(xí)過程任務(wù)化,讓學(xué)生在實(shí)施任務(wù)中訓(xùn)練技能,構(gòu)建理論知識,激發(fā)學(xué)習(xí)的興趣,調(diào)動學(xué)習(xí)的積極性,發(fā)展創(chuàng)造能力及分析、解決問題的能力,并有充分的機(jī)會自行處理實(shí)施任務(wù)中出現(xiàn)的各種問題,做到“所學(xué)即所用”。
2.以生為本。
學(xué)生是個(gè)體獨(dú)立學(xué)習(xí)和小組協(xié)同學(xué)習(xí)的積極參與者,也是學(xué)習(xí)活動的評價(jià)者。以學(xué)生自主學(xué)習(xí)為主體,強(qiáng)調(diào)學(xué)生在學(xué)習(xí)過程中的自主選擇和自我設(shè)計(jì)。教師以指導(dǎo)者的身份給予適當(dāng)?shù)慕ㄗh,并適時(shí)進(jìn)行指導(dǎo),以發(fā)展性評價(jià)促進(jìn)學(xué)生的學(xué)習(xí)與能力的發(fā)展。讓學(xué)生自主探究、協(xié)作學(xué)習(xí),再通過學(xué)生交流展示,教師點(diǎn)評的方式,從而使學(xué)生真正獲得知識和提高能力。
3.小組合作。
小組合作學(xué)習(xí)是指在課堂教學(xué)過程中,作為課堂活動主要參與者的學(xué)生,在老師的指導(dǎo)下組成學(xué)習(xí)小組,小組成員或小組之間相互啟發(fā)、通力合作、共同提高的一種學(xué)習(xí)形式。小組合作學(xué)習(xí)是一種全新的教學(xué)理論與策略,是新課程改革所倡導(dǎo)的一種學(xué)習(xí)方式。這種形式有利于激發(fā)學(xué)生參與的熱情,發(fā)揮學(xué)生的主動性,培養(yǎng)學(xué)生的合作意識與合作技能。
六、主要教學(xué)策略。
1.做好課前預(yù)習(xí)溝通,讓每位學(xué)生都能信心十足的上好數(shù)學(xué)課;
2.重視課前預(yù)習(xí),使教學(xué)過程順暢進(jìn)行;
3.采用課堂教學(xué)結(jié)合梯度式任務(wù)單的形式完成教學(xué);
4.利用現(xiàn)代化的教學(xué)手段,充分調(diào)動學(xué)生的積極性,活躍課堂氣氛;
5.主要采用“任務(wù)引領(lǐng)”“自主探究”“小組合作”的教學(xué)方法;
6.采用教師評價(jià)、同學(xué)互評和自我評價(jià)相結(jié)合的激勵(lì)性評價(jià)機(jī)制,促進(jìn)學(xué)生積極進(jìn)取。
七、資源開發(fā)。
1.根據(jù)學(xué)生的認(rèn)知規(guī)律對教材內(nèi)容進(jìn)行適當(dāng)?shù)恼{(diào)整;
2.利用現(xiàn)代教學(xué)手段制作教學(xué)課件和動畫輔助教學(xué)。
教案目錄。
教案一。
教學(xué)內(nèi)容單元一等差數(shù)列任務(wù)一等差數(shù)列的概念授課學(xué)時(shí)1教學(xué)目標(biāo)知識與技能了解公差的概念,明確一個(gè)數(shù)列是等差數(shù)列的限定條件,能根據(jù)定義判斷一個(gè)數(shù)列是等差數(shù)列,會求一個(gè)給定等差數(shù)列的首項(xiàng)與公差。過程與方法經(jīng)歷等差數(shù)列的簡單產(chǎn)生過程和應(yīng)用等差數(shù)列的基本知識解決問題的過程。情感態(tài)度與價(jià)值觀通過等差數(shù)列概念的歸納概括,培養(yǎng)學(xué)生的觀察能力、分析問題的能力,積極思維,追求新知的創(chuàng)新意識。教學(xué)重點(diǎn)與難點(diǎn)等差數(shù)列的概念教法、學(xué)法情境教學(xué)法、講練結(jié)合法、任務(wù)驅(qū)動法、自主探究法、小組合作學(xué)習(xí)法教學(xué)手段多媒體教學(xué)設(shè)備、常規(guī)教學(xué)手段教學(xué)設(shè)想本課教學(xué),重點(diǎn)是等差數(shù)列的概念,在講概念時(shí),通過創(chuàng)設(shè)情境引導(dǎo)學(xué)生理解概念,進(jìn)一步引導(dǎo)學(xué)生通過概念來判斷一個(gè)數(shù)列是否是等差數(shù)列。整個(gè)過程以學(xué)生自主思考、合作探究、教師適時(shí)點(diǎn)撥為主,真正體現(xiàn)課堂教學(xué)中學(xué)生的主體作用。教學(xué)準(zhǔn)備1.教師認(rèn)真?zhèn)湔n、制作課件、布置預(yù)習(xí)單。
活動教師。
活動設(shè)計(jì)。
意圖課前。
探究單。
創(chuàng)設(shè)情境。
導(dǎo)入新課。
(5分鐘)。
美國。
6.0。
6.5。
7.0。
7.5。
10.0。
英國。
5.5。
6.0。
6.5。
7.0。
7.5。
中國。
43。
44。
45。
46。
獨(dú)立思考,并寫出這三個(gè)數(shù)列。
引導(dǎo)學(xué)生分析比較每個(gè)數(shù)列的特點(diǎn)。
通過具體問題引出等比數(shù)列的定義。
活動一。
板書定義及注意點(diǎn),用彩筆畫出關(guān)鍵詞任務(wù)驅(qū)動,引導(dǎo)學(xué)生理解概念,讓學(xué)生經(jīng)歷觀察、猜測、抽象、概括、論證的思維過程任務(wù)2:下列數(shù)列是否是等差數(shù)列?若是,寫出其首項(xiàng)及公差。
(1)2,5,8,11,14;。
(2)-2,-2,-2,-2,-2,;。
(3)1,0,-1,0,1,0,-1,0,……。
(1);(2)。
獨(dú)立思考后完成。
巡視并記錄存在的問題,然后給出指導(dǎo)。
通過這兩個(gè)具體的例子,讓學(xué)生對等差數(shù)列的概念有一個(gè)更加深刻的認(rèn)識。
活動二。
思考交流。
(4分鐘)等差數(shù)列的定義,怎樣求一個(gè)等差數(shù)列的首項(xiàng)和公差歸納總結(jié)1.歸納總結(jié);
2.引申到下一節(jié)課鞏固本堂課的內(nèi)容,培養(yǎng)學(xué)生對于問題的概括能力、語言組織能力。
課堂。
檢測單。
(10分鐘)。
1.已知下列數(shù)列都是等差數(shù)列,填出所缺的項(xiàng),并求其公差。
(1)7,3,,,,…;。
(2)5,,,,25,…。
(1)2,9,16,23,30;。
(2)。
(3)-1,-1,-1,-1,-1.
獨(dú)立思考后完成,然后小組交流各自的完成情況。
巡視并記錄學(xué)生作業(yè)中存在的問題,答疑并校對答案幫助學(xué)生鞏固本節(jié)課所學(xué)內(nèi)容課后。
鞏固單。
(1分鐘)【鞏固單】“一點(diǎn)通”p10第2、3題;
【思考單】書本p9“問題解決”
【預(yù)習(xí)單】預(yù)習(xí)“等差數(shù)列的通項(xiàng)公式”一節(jié),并完成預(yù)習(xí)單。必做。
選做。
必做。
學(xué)習(xí)評價(jià)。
自我激勵(lì)。
同伴激勵(lì)。
教師激勵(lì)。
自我評價(jià)。
觀察點(diǎn)。
優(yōu)秀。
良好。
繼續(xù)努力。
知識的掌握情況。
方法的掌握情況。
數(shù)學(xué)日志:
同伴評價(jià)(小組成員)。
觀察點(diǎn)。
優(yōu)秀。
良好。
繼續(xù)努力。
計(jì)算能力。
同伴語錄:
教師總評:
板書設(shè)計(jì)。
突出重點(diǎn)。
shapemergeformat教學(xué)反思精益求精本節(jié)課通過生活中一系列的實(shí)例讓學(xué)生觀察,從而得出等差數(shù)列的概念,并在此基礎(chǔ)上學(xué)會求等差數(shù)列的公差,培養(yǎng)了學(xué)生觀察、分析的能力。充分體現(xiàn)了學(xué)生做數(shù)學(xué)的過程,使學(xué)生對等差數(shù)列有了從感性到理性的認(rèn)識過程,也使本節(jié)課的三維目標(biāo)真正落到實(shí)處。
這節(jié)課從生活中的數(shù)列模型,各國的鞋碼問題引入,進(jìn)而提出有待探索的問題,這有助于發(fā)揮學(xué)生學(xué)習(xí)的主動性。在探索的過程中,學(xué)生通過分析、觀察,逐步抽象概括得出等差數(shù)列定義,強(qiáng)化了由具體到抽象,由特殊到一般的思維過程。
這課各環(huán)節(jié)的設(shè)計(jì)環(huán)環(huán)相扣、簡潔明了、重點(diǎn)突出,引導(dǎo)分析細(xì)致、到位、適度。如:判斷某數(shù)列是否成等差數(shù)列,這是促進(jìn)概念理解的好素材,學(xué)生在經(jīng)歷過程中,加深了對概念的理解和鞏固。
這節(jié)課教學(xué)通過任務(wù)驅(qū)動,以教師提出問題、學(xué)生探討解決問題為途徑,以相互補(bǔ)充展開教學(xué),總結(jié)科學(xué)合理的知識體系,形成師生之間的良性互動,提高課堂教學(xué)效率。教學(xué)手段和教學(xué)方法的選擇合理有效,體現(xiàn)了新課程所倡導(dǎo)的“培養(yǎng)學(xué)生積極主動,勇于探索的學(xué)習(xí)方式”。
通過一堂課的教學(xué)效果對本次教學(xué)設(shè)計(jì)做了以下幾點(diǎn)反思:
1.數(shù)學(xué)知識的特點(diǎn)之一就是具有抽象性,在以后的教學(xué)中我應(yīng)該注重將抽象具體化,幫助學(xué)生認(rèn)識并實(shí)踐。本次設(shè)計(jì)正是以學(xué)生身邊的具體例子入手,將內(nèi)容生活化從而激起學(xué)生興趣。
2.所有的學(xué)習(xí)都是為了應(yīng)用。數(shù)學(xué)也不例外。運(yùn)用學(xué)習(xí)的知識去解決生活中的實(shí)際問題,這是時(shí)代對我們的要求也是學(xué)習(xí)最終的目的。數(shù)列作為高中數(shù)學(xué)中的重要內(nèi)容之一由于具有豐富的實(shí)際應(yīng)用背景應(yīng)該好好抓住機(jī)會讓學(xué)生體會到數(shù)列的重要性。
3.針對我校學(xué)生的基礎(chǔ)差問題,只講基礎(chǔ)題型,難題少做或不做,反復(fù)練習(xí)。讓他們體會會做題的成功心情并激發(fā)他們的學(xué)習(xí)欲望。
教案二。
教學(xué)內(nèi)容單元一等差數(shù)列任務(wù)二等差數(shù)列的通項(xiàng)公式授課學(xué)時(shí)1教學(xué)目標(biāo)知識與技能熟悉和理解等差數(shù)列的通項(xiàng)公式及推導(dǎo)過程,并能運(yùn)用通項(xiàng)公式求解相關(guān)參數(shù)。過程與方法通過等差數(shù)列通項(xiàng)公式的運(yùn)用,滲透方程思想;發(fā)揮學(xué)生的主體作用,講練結(jié)合,做好探究性學(xué)習(xí);理論聯(lián)系實(shí)際,激發(fā)學(xué)生的學(xué)習(xí)積極性。情感態(tài)度與價(jià)值觀通過對等差數(shù)列的研究,使學(xué)生明確等差數(shù)列與一般數(shù)列的的內(nèi)在聯(lián)系,從而滲透特殊與一般的辯證唯物主義觀點(diǎn)教學(xué)重點(diǎn)與難點(diǎn)教學(xué)重點(diǎn):等差數(shù)列通項(xiàng)公式的理解和應(yīng)用教學(xué)難點(diǎn):靈活運(yùn)用等差數(shù)列通項(xiàng)公式解決相關(guān)問題教法、學(xué)法情境教學(xué)法、講練結(jié)合法、任務(wù)驅(qū)動法、自主探究法、小組合作學(xué)習(xí)法教學(xué)手段多媒體教學(xué)設(shè)備、常規(guī)教學(xué)手段教學(xué)設(shè)想本課教學(xué),重點(diǎn)是等差數(shù)列的通項(xiàng)公式的推導(dǎo)及應(yīng)用,由等差數(shù)列的遞推公式引導(dǎo)學(xué)生通過觀察分析式子特點(diǎn)、學(xué)生自主思考、合作探究、教師適時(shí)點(diǎn)撥等方式歸納得出等差數(shù)列的通項(xiàng)公式。真正體現(xiàn)課堂教學(xué)中學(xué)生的主體作用。教學(xué)準(zhǔn)備1.教師認(rèn)真?zhèn)湔n、制作課件、布置預(yù)習(xí)單。
活動教師。
活動設(shè)計(jì)。
意圖課前。
探究單。
創(chuàng)設(shè)情境。
導(dǎo)入新課。
(5分鐘)。
學(xué)生獨(dú)立思考并寫出相應(yīng)的數(shù)列。
教師引導(dǎo)學(xué)生從數(shù)列中歸納出每一項(xiàng)與首項(xiàng)、公差之間的關(guān)系。
活動一。
等差數(shù)列通項(xiàng)公式的推導(dǎo)。
(10分鐘)設(shè)等差數(shù)列的公差是,則,
請學(xué)生回答,并板書等差數(shù)列的通項(xiàng)公式。
引導(dǎo)學(xué)生了解等差數(shù)列通項(xiàng)公式的由來,培養(yǎng)學(xué)生的歸納猜想的能力。
活動二。
等差數(shù)列通項(xiàng)公式的運(yùn)用。
(15分鐘)任務(wù)1:已知等差數(shù)列的首項(xiàng)是1,公差為3,求其第11項(xiàng)。
任務(wù)2:求等差數(shù)列-13,-9,-5,-1,…的第56項(xiàng)。學(xué)生獨(dú)立思考后完成。
校對答案。
(4分鐘)知識層面總結(jié):等差數(shù)列的通項(xiàng)公式。
思想方法總結(jié):不完全歸納法;方程思想歸納總結(jié)1.歸納總結(jié);
2.引申到下一節(jié)課培養(yǎng)學(xué)生對于問題的概括能力、語言組織能力課堂。
檢測單。
(1)若,求;。
(2)若,求;。
鞏固單。
(1分鐘)【鞏固單】書本p13“練習(xí)”
【思考單】書本p13“問題解決”
【預(yù)習(xí)單】預(yù)習(xí)“等差數(shù)列的前n項(xiàng)和公式”一節(jié),并完成預(yù)習(xí)單。必做。
選做。
必做。
學(xué)習(xí)評價(jià)。
自我激勵(lì)。
同伴激勵(lì)。
教師激勵(lì)。
自我評價(jià)。
觀察點(diǎn)。
優(yōu)秀。
良好。
繼續(xù)努力。
知識的掌握情況。
方法的掌握情況。
數(shù)學(xué)日志:
同伴評價(jià)(小組成員)。
觀察點(diǎn)。
優(yōu)秀。
高一數(shù)學(xué)等差數(shù)列教案篇八
(3)能用邏輯聯(lián)結(jié)詞和簡單命題構(gòu)成不同形式的復(fù)合命題;
(4)能識別復(fù)合命題中所用的邏輯聯(lián)結(jié)詞及其聯(lián)結(jié)的簡單命題;
(5)會用真值表判斷相應(yīng)的復(fù)合命題的真假;
(6)在知識學(xué)習(xí)的基礎(chǔ)上,培養(yǎng)學(xué)生簡單推理的技能.。
重點(diǎn)是判斷復(fù)合命題真假的方法;難點(diǎn)是對“或”的含義的理解.。
1.新課導(dǎo)入。
初一平面幾何中曾學(xué)過命題,請同學(xué)們舉一個(gè)命題的例子.(板書:命題.)。
(從初中接觸過的“命題”入手,提出問題,進(jìn)而學(xué)習(xí)邏輯的有關(guān)知識.)。
學(xué)生舉例:平行四邊形的對角線互相平.……(1)。
兩直線平行,同位角相等.…………(2)。
教師提問:“……相等的角是對頂角”是不是命題?……(3)。
(同學(xué)議論結(jié)果,答案是肯定的.)。
教師提問:什么是命題?
(學(xué)生進(jìn)行回憶、思考.)。
概念總結(jié):對一件事情作出了判斷的語句叫做命題.。
(教師肯定了同學(xué)的回答,并作板書.)。
(教師利用投影片,和學(xué)生討論以下問題.)。
例1判斷以下各語句是不是命題,若是,判斷其真假:
2.講授新課。
(片刻后請同學(xué)舉手回答,一共講了四個(gè)問題.師生一道歸納如下.)。
(1)什么叫做命題?
可以判斷真假的語句叫做命題.。
(2)介紹邏輯聯(lián)結(jié)詞“或”、“且”、“非”.。
命題可分為簡單命題和復(fù)合命題.。
(4)命題的表示:用p,q,r,s,……來表示.。
(教師根據(jù)學(xué)生回答的情況作補(bǔ)充和強(qiáng)調(diào),特別是對復(fù)合命題的概念作出分析和展開.)。
對于給出“若p則q”形式的復(fù)合命題,應(yīng)能找到條件p和結(jié)論q.。
3.鞏固新課。
(1)5;
(2)0.5非整數(shù);
(3)內(nèi)錯(cuò)角相等,兩直線平行;
(4)菱形的對角線互相垂直且平分;
(5)平行線不相交;
(6)若ab=0,則a=0.。
(讓學(xué)生有充分的時(shí)間進(jìn)行辨析.教材中對“若…則…”不作要求,教師可以根據(jù)學(xué)生的情況作些補(bǔ)充.)。
高一數(shù)學(xué)等差數(shù)列教案篇九
解決集合元素的問題時(shí),我們一定要注意集合中的元素要滿足互異性,以免產(chǎn)生增根。
3、注意特殊集合——空集。
空集是不含任何元素的集合。我們規(guī)定空集是任何集合的子集,是任何非空集合的真子集。因而,在涉及集合之間關(guān)系的問題時(shí)要特別注意空集。
4、利用特殊工具——韋恩圖和數(shù)軸。
集合的表示方法可分為列舉法、描述法、圖示法。列舉法一般表示有限集,描述法一般表示無限集,用于書寫最終結(jié)果。在運(yùn)算過程中,一般用數(shù)軸表示連續(xù)型元素的集合,用韋恩圖表示離散型元素的集合。圖形語言可以幫我們快捷而直觀的找出答案,提高解題速度。
高一數(shù)學(xué)等差數(shù)列教案篇十
2、實(shí)際問題中的有關(guān)術(shù)語、名稱:
(1)仰角與俯角:均是指視線與水平線所成的角;
(2)方位角:是指從正北方向順時(shí)針轉(zhuǎn)到目標(biāo)方向線的夾角;
(3)方向角:常見的`如:正東方向、東南方向、北偏東、南偏西等;
3、用正弦余弦定理解實(shí)際問題的常見題型有:
測量距離、測量高度、測量角度、計(jì)算面積、航海問題、物理問題等;
2、實(shí)際問題中的有關(guān)術(shù)語、名稱:
(1)仰角與俯角:均是指視線與水平線所成的角;
(2)方位角:是指從正北方向順時(shí)針轉(zhuǎn)到目標(biāo)方向線的夾角;
(3)方向角:常見的如:正東方向、東南方向、北偏東、南偏西等;
3、用正弦余弦定理解實(shí)際問題的常見題型有:
測量距離、測量高度、測量角度、計(jì)算面積、航海問題、物理問題等;
一、知識歸納
2、實(shí)際問題中的有關(guān)術(shù)語、名稱:
(1)仰角與俯角:均是指視線與水平線所成的角;
(2)方位角:是指從正北方向順時(shí)針轉(zhuǎn)到目標(biāo)方向線的夾角;
(3)方向角:常見的如:正東方向、東南方向、北偏東、南偏西等;
3、用正弦余弦定理解實(shí)際問題的常見題型有:
測量距離、測量高度、測量角度、計(jì)算面積、航海問題、物理問題等;
二、例題討論
一)利用方向角構(gòu)造三角形
四)測量角度問題
例4、在一個(gè)特定時(shí)段內(nèi),以點(diǎn)e為中心的7海里以內(nèi)海域被設(shè)為警戒水域.點(diǎn)e正北55海里處有一個(gè)雷達(dá)觀測站a.某時(shí)刻測得一艘勻速直線行駛的船只位于點(diǎn)a北偏東。
高一數(shù)學(xué)等差數(shù)列教案篇十一
掌握等差數(shù)列與等比數(shù)列的概念,通項(xiàng)公式與前n項(xiàng)和公式,等差中項(xiàng)與等比中項(xiàng)的概念,并能運(yùn)用這些知識解決一些基本問題。
掌握等差數(shù)列與等比數(shù)列的概念,通項(xiàng)公式與前n項(xiàng)和公式,等差中項(xiàng)與等比中項(xiàng)的概念,并能運(yùn)用這些知識解決一些基本問題。
等比數(shù)列性質(zhì)請同學(xué)們類比得出。
1、通項(xiàng)公式與前n項(xiàng)和公式聯(lián)系著五個(gè)基本量,“知三求二”是一類最基本的運(yùn)算題。方程觀點(diǎn)是解決這類問題的基本數(shù)學(xué)思想和方法。
2、判斷一個(gè)數(shù)列是等差數(shù)列或等比數(shù)列,常用的方法使用定義。特別地,在判斷三個(gè)實(shí)數(shù)。
a,b,c成等差(比)數(shù)列時(shí),常用(注:若為等比數(shù)列,則a,b,c均不為0)。
3、在求等差數(shù)列前n項(xiàng)和的(小)值時(shí),常用函數(shù)的思想和方法加以解決。
例1:(1)設(shè)等差數(shù)列的前n項(xiàng)和為30,前2n項(xiàng)和為100,則前3n項(xiàng)和為。
(2)一個(gè)等比數(shù)列的前三項(xiàng)之和為26,前六項(xiàng)之和為728,則a1=,q=.
例2:四數(shù)中前三個(gè)數(shù)成等比數(shù)列,后三個(gè)數(shù)成等差數(shù)列,首末兩項(xiàng)之和為21,中間兩項(xiàng)之和為18,求此四個(gè)數(shù)。
例3:項(xiàng)數(shù)為奇數(shù)的等差數(shù)列,奇數(shù)項(xiàng)之和為44,偶數(shù)項(xiàng)之和為33,求該數(shù)列的中間項(xiàng)。
高一數(shù)學(xué)等差數(shù)列教案篇十二
所謂三維目標(biāo)是是指:“知識與技能”,“過程和方法”、“情感、態(tài)度、價(jià)值觀”。
知識與技能:既是課堂教學(xué)的出發(fā)點(diǎn),又是課堂教學(xué)的歸宿。我們在教學(xué)過程中,需要學(xué)生掌握什么,哪些些問題需要重點(diǎn)掌握,哪些只需簡單理解;技能是會與不會的問題。屬顯性范疇,具有可測性,大都采用定量分析與評價(jià)、知識與技能是傳統(tǒng)教學(xué)合理的內(nèi)核,是我國傳統(tǒng)教育教學(xué)的優(yōu)勢,應(yīng)該從傳統(tǒng)教學(xué)中繼承與發(fā)揚(yáng)。新課改不是不要雙基,而是不要過度的強(qiáng)調(diào)雙基,而舍棄弱化其它有價(jià)值的東西,導(dǎo)致非全面、不和藹的發(fā)展。
過程與方法:既是課堂教學(xué)的目標(biāo)之一,又是課堂教學(xué)的操作系統(tǒng)?!斑^程和方法”維度的目標(biāo)立足于讓學(xué)生會學(xué),新課程倡導(dǎo)對學(xué)與教的過程的體驗(yàn)、方法的選擇,是在知識與能力目標(biāo)基礎(chǔ)上對教學(xué)目標(biāo)的進(jìn)一步開發(fā)。過程與方法是一個(gè)體驗(yàn)的過程、發(fā)現(xiàn)的過程,不但可以讓學(xué)生體驗(yàn)到科學(xué)發(fā)展的過程,我們更多地要讓學(xué)生掌握過程,不一定要統(tǒng)一的結(jié)果。
情感、態(tài)度與價(jià)值觀:既是課堂教學(xué)的目標(biāo)之一,又是課堂教學(xué)的動力系統(tǒng)?!扒楦?、態(tài)度和價(jià)值觀”,目標(biāo)立足于讓學(xué)生樂學(xué),新課程倡導(dǎo)對學(xué)與教的情感體驗(yàn)、態(tài)度形成、價(jià)值觀的體現(xiàn),是在知識與能力、過程與方法目標(biāo)基礎(chǔ)上對教學(xué)目標(biāo)深層次的開拓,只有學(xué)生充分的認(rèn)識到他們肩負(fù)的責(zé)任,就能夠激發(fā)起他們的學(xué)習(xí)熱情,他們才會有濃厚的學(xué)習(xí)興趣,才能學(xué)有所成,將來回報(bào)社會。
三維目標(biāo)不是三個(gè)目標(biāo),也不是三種目標(biāo),是一個(gè)問題的三個(gè)方面。三維目標(biāo)是三位一體不可分割的,他們是相輔相成的,相互促進(jìn)的。
高一數(shù)學(xué)等差數(shù)列教案篇十三
教學(xué)重點(diǎn)是等差數(shù)列的前項(xiàng)和公式的推導(dǎo)和應(yīng)用,難點(diǎn)是獲得推導(dǎo)公式的思路.教學(xué)用具。
實(shí)物投影儀,多媒體軟件,電腦.教學(xué)方法。
講授法.教學(xué)過程一.新課引入。
問題(幻燈片):設(shè)等差數(shù)列的首項(xiàng)為,公差為,由學(xué)生討論,研究高斯算法對一般等差數(shù)列求和的指導(dǎo)意義.思路一:運(yùn)用基本量思想,將各項(xiàng)用和表示,得,有以下等式,問題是一共有多少個(gè),似乎與的奇偶有關(guān).這個(gè)思路似乎進(jìn)行不下去了.思路二:
上面的等式其實(shí)就是,為回避個(gè)數(shù)問題,做一個(gè)改寫,兩。
于是得到了兩個(gè)公式(投影片):和2公式記憶。
公式中含有四個(gè)量,運(yùn)用方程的思想,知三求一.例1.求和:(1);
(2)(結(jié)果用表示)。
解題的關(guān)鍵是數(shù)清項(xiàng)數(shù),小結(jié)數(shù)項(xiàng)數(shù)的方法.例2.等差數(shù)列中前多少項(xiàng)的和是9900?
本題實(shí)質(zhì)是反用公式,解一個(gè)的一元二次函數(shù),注意得到的項(xiàng)數(shù)必須是正整數(shù).三.小結(jié)。
2.公式的應(yīng)用中的數(shù)學(xué)思想.
高一數(shù)學(xué)等差數(shù)列教案篇十四
(5)樹立映射觀點(diǎn),正確理解三角函數(shù)是以實(shí)數(shù)為自變量的函數(shù)。
初中學(xué)過:銳角三角函數(shù)就是以銳角為自變量,以比值為函數(shù)值的函數(shù)。引導(dǎo)學(xué)生把這個(gè)定義推廣到任意角,通過單位圓和角的終邊,探討任意角的三角函數(shù)值的求法,最終得到任意角三角函數(shù)的定義。根據(jù)角終邊所在位置不同,分別探討各三角函數(shù)的定義域以及這三種函數(shù)的值在各象限的符號。最后主要是借助有向線段進(jìn)一步認(rèn)識三角函數(shù)。講解例題,總結(jié)方法,鞏固練習(xí)。
任意角的三角函數(shù)可以有不同的定義方法,而且各種定義都有自己的特點(diǎn)。過去習(xí)慣于用角的終邊上點(diǎn)的坐標(biāo)的“比值”來定義,這種定義方法能夠表現(xiàn)出從銳角三角函數(shù)到任意角的三角函數(shù)的推廣,有利于引導(dǎo)學(xué)生從自己已有認(rèn)知基礎(chǔ)出發(fā)學(xué)習(xí)三角函數(shù),但它對準(zhǔn)確把握三角函數(shù)的本質(zhì)有一定的不利影響,“從角的集合到比值的集合”的對應(yīng)關(guān)系與學(xué)生熟悉的一般函數(shù)概念中的“數(shù)集到數(shù)集”的對應(yīng)關(guān)系有沖突,而且“比值”需要通過運(yùn)算才能得到,這與函數(shù)值是一個(gè)確定的實(shí)數(shù)也有不同,這些都會影響學(xué)生對三角函數(shù)概念的理解。
本節(jié)利用單位圓上點(diǎn)的坐標(biāo)定義任意角的正弦函數(shù)、余弦函數(shù)。這個(gè)定義清楚地表明了正弦、余弦函數(shù)中從自變量到函數(shù)值之間的對應(yīng)關(guān)系,也表明了這兩個(gè)函數(shù)之間的關(guān)系。
教學(xué)重難點(diǎn)。
重點(diǎn):任意角的正弦、余弦、正切的定義(包括這三種三角函數(shù)的定義域和函數(shù)值在各象限的符號);終邊相同的角的同一三角函數(shù)值相等(公式一).
難點(diǎn):任意角的正弦、余弦、正切的定義(包括這三種三角函數(shù)的定義域和函數(shù)值在各象限的符號);三角函數(shù)線的正確理解。
高一數(shù)學(xué)等差數(shù)列教案篇十五
(4)學(xué)生掌握等差數(shù)列的特點(diǎn)與性質(zhì)?!窘虒W(xué)設(shè)計(jì)】。
教學(xué)目標(biāo)【知識與技能】能夠復(fù)述等差數(shù)列的概念,能夠?qū)W會等差數(shù)列的通項(xiàng)公式的推導(dǎo)過程及蘊(yùn)含的數(shù)學(xué)思想。
【過程與方法】在領(lǐng)會函數(shù)與數(shù)列關(guān)系的前提下,把研究函數(shù)的方法遷移來研究數(shù)列,提高知識、方法遷移能力;通過階梯性練習(xí),提高分析問題和解決問題的能力。
【情感態(tài)度與價(jià)值觀】通過對等差數(shù)列的研究,具備主動探索、勇于發(fā)現(xiàn)的求知精神;養(yǎng)成細(xì)心觀察、認(rèn)真分析、善于總結(jié)的良好思維習(xí)慣。
二、教學(xué)重難點(diǎn)【教學(xué)重點(diǎn)】。
等差數(shù)列的概念、等差數(shù)列的通項(xiàng)公式的推導(dǎo)過程及應(yīng)用?!窘虒W(xué)難點(diǎn)】。
三、教學(xué)過程環(huán)節(jié)一:導(dǎo)入新課教師ppt展示幾道題目:
1.我們經(jīng)常這樣數(shù)數(shù),從0開始,每隔5一個(gè)數(shù),可以得到數(shù)列:0,5,15,20,252.小明目前會100個(gè)單詞,他她打算從今天起不再背單詞了,結(jié)果不知不覺地每天忘掉2個(gè)單詞,那么在今后的五天內(nèi)他的單詞量逐日依次遞減為:100,98,96,94,92。
3.2000年,在澳大利亞悉尼舉行的奧運(yùn)會上,女子舉重正式列為比賽項(xiàng)目,該項(xiàng)目共設(shè)置了7個(gè)級別,其中交情的4個(gè)級別體重組成數(shù)列(單位:kg):48,53,58,63。
教師提問學(xué)生這幾組數(shù)有什么特點(diǎn)?學(xué)生回答從第二項(xiàng)開始,每一項(xiàng)與前一項(xiàng)的差都等于一個(gè)常數(shù),教師引出等差數(shù)列。
學(xué)生閱讀教材,同桌討論,類比等比數(shù)列總結(jié)出等差數(shù)列的概念。
如果一個(gè)數(shù)列,從第二項(xiàng)開始它的每一項(xiàng)與前一項(xiàng)之差都等于同一常數(shù),這個(gè)數(shù)列就叫等差數(shù)列,這個(gè)常數(shù)叫做等差數(shù)列的公差,通常用字母d來表示。
問題1:等差數(shù)列的概念中,我們應(yīng)該注意哪些細(xì)節(jié)呢?
環(huán)節(jié)三:課堂練習(xí)。
小結(jié):1.等差數(shù)列的概念及數(shù)學(xué)表達(dá)式。
關(guān)鍵字:從第二項(xiàng)開始它的每一項(xiàng)與前一項(xiàng)之差都等于同一常數(shù)。
作業(yè):現(xiàn)實(shí)生活中還有哪些等差數(shù)列的實(shí)際應(yīng)用呢?根據(jù)實(shí)際問題自己編寫兩道等差數(shù)列的題目并進(jìn)行求解。
高一數(shù)學(xué)等差數(shù)列教案篇十六
1、掌握雙曲線的范圍、對稱性、頂點(diǎn)、漸近線、離心率等幾何性質(zhì)。
2、掌握標(biāo)準(zhǔn)方程中的幾何意義。
3、能利用上述知識進(jìn)行相關(guān)的論證、計(jì)算、作雙曲線的草圖以及解決簡單的實(shí)際問題。
1、焦點(diǎn)在x軸上,虛軸長為12,離心率為的雙曲線的標(biāo)準(zhǔn)方程為、
2、頂點(diǎn)間的距離為6,漸近線方程為的雙曲線的標(biāo)準(zhǔn)方程為、
3、雙曲線的漸進(jìn)線方程為、
探究1、類比橢圓的幾何性質(zhì)寫出雙曲線的幾何性質(zhì),畫出草圖并,說出它們的不同、
探究2、雙曲線與其漸近線具有怎樣的關(guān)系、
例1根據(jù)以下條件,分別求出雙曲線的標(biāo)準(zhǔn)方程、
(1)過點(diǎn),離心率、
(2)、是雙曲線的左、右焦點(diǎn),是雙曲線上一點(diǎn),且,,離心率為、
例3(理)求離心率為,且過點(diǎn)的雙曲線標(biāo)準(zhǔn)方程、
2、橢圓的離心率為,則雙曲線的離心率為、
3、雙曲線的漸進(jìn)線方程是,則雙曲線的離心率等于=、
高一數(shù)學(xué)等差數(shù)列教案篇十七
(2)理解任意角的三角函數(shù)不同的定義方法;。
(4)掌握并能初步運(yùn)用公式一;。
(5)樹立映射觀點(diǎn),正確理解三角函數(shù)是以實(shí)數(shù)為自變量的函數(shù).
初中學(xué)過:銳角三角函數(shù)就是以銳角為自變量,以比值為函數(shù)值的函數(shù).引導(dǎo)學(xué)生把這個(gè)定義推廣到任意角,通過單位圓和角的終邊,探討任意角的三角函數(shù)值的求法,最終得到任意角三角函數(shù)的定義.根據(jù)角終邊所在位置不同,分別探討各三角函數(shù)的定義域以及這三種函數(shù)的值在各象限的符號.最后主要是借助有向線段進(jìn)一步認(rèn)識三角函數(shù).講解例題,總結(jié)方法,鞏固練習(xí).
任意角的三角函數(shù)可以有不同的定義方法,而且各種定義都有自己的特點(diǎn).過去習(xí)慣于用角的終邊上點(diǎn)的坐標(biāo)的“比值”來定義,這種定義方法能夠表現(xiàn)出從銳角三角函數(shù)到任意角的三角函數(shù)的推廣,有利于引導(dǎo)學(xué)生從自己已有認(rèn)知基礎(chǔ)出發(fā)學(xué)習(xí)三角函數(shù),但它對準(zhǔn)確把握三角函數(shù)的本質(zhì)有一定的不利影響,“從角的集合到比值的集合”的對應(yīng)關(guān)系與學(xué)生熟悉的一般函數(shù)概念中的“數(shù)集到數(shù)集”的對應(yīng)關(guān)系有沖突,而且“比值”需要通過運(yùn)算才能得到,這與函數(shù)值是一個(gè)確定的實(shí)數(shù)也有不同,這些都會影響學(xué)生對三角函數(shù)概念的理解.
本節(jié)利用單位圓上點(diǎn)的`坐標(biāo)定義任意角的正弦函數(shù)、余弦函數(shù).這個(gè)定義清楚地表明了正弦、余弦函數(shù)中從自變量到函數(shù)值之間的對應(yīng)關(guān)系,也表明了這兩個(gè)函數(shù)之間的關(guān)系.
教學(xué)重難點(diǎn)。
重點(diǎn):任意角的正弦、余弦、正切的定義(包括這三種三角函數(shù)的定義域和函數(shù)值在各象限的符號);終邊相同的角的同一三角函數(shù)值相等(公式一).
難點(diǎn):任意角的正弦、余弦、正切的定義(包括這三種三角函數(shù)的定義域和函數(shù)值在各象限的符號);三角函數(shù)線的正確理解.
高一數(shù)學(xué)等差數(shù)列教案篇十八
學(xué)習(xí)是一個(gè)潛移默化、厚積薄發(fā)的過程。編輯老師編輯了:數(shù)列,希望對您有所幫助!
1.使學(xué)生理解數(shù)列的概念,了解數(shù)列通項(xiàng)公式的意義,了解遞推公式是給出數(shù)列的一種方法,并能根據(jù)遞推公式寫出數(shù)列的前幾項(xiàng).
(1)理解數(shù)列是按一定順序排成的一列數(shù),其每一項(xiàng)是由其項(xiàng)數(shù)唯一確定的.
(2)了解數(shù)列的各種表示方法,理解通項(xiàng)公式是數(shù)列第項(xiàng)與項(xiàng)數(shù)的關(guān)系式,能根據(jù)通項(xiàng)公式寫出數(shù)列的前幾項(xiàng),并能根據(jù)給出的一個(gè)數(shù)列的前幾項(xiàng)寫出該數(shù)列的一個(gè)通項(xiàng)公式.
(3)已知一個(gè)數(shù)列的遞推公式及前若干項(xiàng),便確定了數(shù)列,能用代入法寫出數(shù)列的前幾項(xiàng).
2.通過對一列數(shù)的觀察、歸納,寫出符合條件的一個(gè)通項(xiàng)公式,培養(yǎng)學(xué)生的觀察能力和抽象概括能力.
3.通過由求的過程,培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度及良好的思維習(xí)慣.
(1)為激發(fā)學(xué)生學(xué)習(xí)數(shù)列的興趣,體會數(shù)列知識在實(shí)際生活中的作用,可由實(shí)際問題引入,從中抽象出數(shù)列要研究的問題,使學(xué)生對所要研究的內(nèi)容心中有數(shù),如書中所給的例子,還有物品堆放個(gè)數(shù)的.計(jì)算等.
(2)數(shù)列中蘊(yùn)含的函數(shù)思想是研究數(shù)列的指導(dǎo)思想,應(yīng)及早引導(dǎo)學(xué)生發(fā)現(xiàn)數(shù)列與函數(shù)的關(guān)系.在教學(xué)中強(qiáng)調(diào)數(shù)列的項(xiàng)是按一定順序排列的,“次序”便是函數(shù)的自變量,相同的數(shù)組成的數(shù)列,次序不同則就是不同的數(shù)列.函數(shù)表示法有列表法、圖象法、解析式法,類似地,數(shù)列就有列舉法、圖示法、通項(xiàng)公式法.由于數(shù)列的自變量為正整數(shù),于是就有可能相鄰的兩項(xiàng)(或幾項(xiàng))有關(guān)系,從而數(shù)列就有其特殊的表示法——遞推公式法.
(3)由數(shù)列的通項(xiàng)公式寫出數(shù)列的前幾項(xiàng)是簡單的代入法,教師應(yīng)精心設(shè)計(jì)例題,使這一例題為寫通項(xiàng)公式作一些準(zhǔn)備,尤其是對程度差的學(xué)生,應(yīng)多舉幾個(gè)例子,讓學(xué)生觀察歸納通項(xiàng)公式與各項(xiàng)的結(jié)構(gòu)關(guān)系,盡量為寫通項(xiàng)公式提供幫助.
(4)由數(shù)列的前幾項(xiàng)寫出數(shù)列的一個(gè)通項(xiàng)公式使學(xué)生學(xué)習(xí)中的一個(gè)難點(diǎn),要幫助學(xué)生分析各項(xiàng)中的結(jié)構(gòu)特征(整式,分式,遞增,遞減,擺動等),由學(xué)生歸納一些規(guī)律性的結(jié)論,如正負(fù)相間用來調(diào)整等.如果學(xué)生一時(shí)不能寫出通項(xiàng)公式,可讓學(xué)生依據(jù)前幾項(xiàng)的規(guī)律,猜想該數(shù)列的下一項(xiàng)或下幾項(xiàng)的值,以便尋求項(xiàng)與項(xiàng)數(shù)的關(guān)系.
(5)對每個(gè)數(shù)列都有求和問題,所以在本節(jié)課應(yīng)補(bǔ)充數(shù)列前項(xiàng)和的概念,用表示的問題是重點(diǎn)問題,可先提出一個(gè)具體問題讓學(xué)生分析與的關(guān)系,再由特殊到一般,研究其一般規(guī)律,并給出嚴(yán)格的推理證明(強(qiáng)調(diào)的表達(dá)式是分段的);之后再到特殊問題的解決,舉例時(shí)要兼顧結(jié)果可合并及不可合并的情況.
(6)給出一些簡單數(shù)列的通項(xiàng)公式,可以求其最大項(xiàng)或最小項(xiàng),又是函數(shù)思想與方法的體現(xiàn),對程度好的學(xué)生應(yīng)提出這一問題,學(xué)生運(yùn)用函數(shù)知識是可以解決的.
上述提供的:數(shù)列希望能夠符合大家的實(shí)際需要!
高一數(shù)學(xué)等差數(shù)列教案篇十九
3.能利用上述知識進(jìn)行相關(guān)的論證、計(jì)算、作雙曲線的草圖以及解決簡單的實(shí)際問題。
一、預(yù)習(xí)檢查。
1、焦點(diǎn)在x軸上,虛軸長為12,離心率為的雙曲線的標(biāo)準(zhǔn)方程為.
2、頂點(diǎn)間的距離為6,漸近線方程為的雙曲線的標(biāo)準(zhǔn)方程為.
3、雙曲線的漸進(jìn)線方程為.
4、設(shè)分別是雙曲線的半焦距和離心率,則雙曲線的一個(gè)頂點(diǎn)到它的一條漸近線的距離是.
二、問題探究。
探究1、類比橢圓的幾何性質(zhì)寫出雙曲線的幾何性質(zhì),畫出草圖并,說出它們的不同.
探究2、雙曲線與其漸近線具有怎樣的關(guān)系.
練習(xí):已知雙曲線經(jīng)過,且與另一雙曲線,有共同的漸近線,則此雙曲線的標(biāo)準(zhǔn)方程是.
例1根據(jù)以下條件,分別求出雙曲線的標(biāo)準(zhǔn)方程.
(1)過點(diǎn),離心率.
(2)、是雙曲線的左、右焦點(diǎn),是雙曲線上一點(diǎn),且,,離心率為.
例2已知雙曲線,直線過點(diǎn),左焦點(diǎn)到直線的距離等于該雙曲線的虛軸長的,求雙曲線的離心率.
例3(理)求離心率為,且過點(diǎn)的雙曲線標(biāo)準(zhǔn)方程.
三、思維訓(xùn)練。
1、已知雙曲線方程為,經(jīng)過它的右焦點(diǎn),作一條直線,使直線與雙曲線恰好有一個(gè)交點(diǎn),則設(shè)直線的斜率是.
2、橢圓的離心率為,則雙曲線的離心率為.
3、雙曲線的漸進(jìn)線方程是,則雙曲線的離心率等于=.
4、(理)設(shè)是雙曲線上一點(diǎn),雙曲線的一條漸近線方程為、分別是雙曲線的左、右焦點(diǎn),若,則.
四、知識鞏固。
1、已知雙曲線方程為,過一點(diǎn)(0,1),作一直線,使與雙曲線無交點(diǎn),則直線的斜率的集合是.
2、設(shè)雙曲線的一條準(zhǔn)線與兩條漸近線交于兩點(diǎn),相應(yīng)的焦點(diǎn)為,若以為直徑的圓恰好過點(diǎn),則離心率為.
3、已知雙曲線的左,右焦點(diǎn)分別為,點(diǎn)在雙曲線的右支上,且,則雙曲線的離心率的值為.
4、設(shè)雙曲線的半焦距為,直線過、兩點(diǎn),且原點(diǎn)到直線的距離為,求雙曲線的離心率.
5、(理)雙曲線的焦距為,直線過點(diǎn)和,且點(diǎn)(1,0)到直線的距離與點(diǎn)(-1,0)到直線的距離之和.求雙曲線的離心率的取值范圍.
高一數(shù)學(xué)等差數(shù)列教案篇二十
把實(shí)物圓柱放在講臺上讓學(xué)生畫。
2.學(xué)生畫完后展示自己的結(jié)果并與同學(xué)交流,比較誰畫的效果更好,思考怎樣才能畫好物體的直觀圖呢?這是我們這節(jié)主要學(xué)習(xí)的內(nèi)容。
(二)研探新知。
1.例1,用斜二測畫法畫水平放置的正六邊形的直觀圖,由學(xué)生閱讀理解,并思考斜二測畫法的關(guān)鍵步驟,學(xué)生發(fā)表自己的見解,教師及時(shí)給予點(diǎn)評。
畫水平放置的多邊形的直觀圖的關(guān)鍵是確定多邊形頂點(diǎn)的位置,因?yàn)槎噙呅雾旤c(diǎn)的位置一旦確定,依次連結(jié)這些頂點(diǎn)就可畫出多邊形來,因此平面多邊形水平放置時(shí),直觀圖的畫法可以歸結(jié)為確定點(diǎn)的位置的畫法。強(qiáng)調(diào)斜二測畫法的步驟。
練習(xí)反饋。
根據(jù)斜二測畫法,畫出水平放置的正五邊形的直觀圖,讓學(xué)生獨(dú)立完成后,教師檢查。
2.例2,用斜二測畫法畫水平放置的圓的直觀圖。
教師引導(dǎo)學(xué)生與例1進(jìn)行比較,與畫水平放置的多邊形的直觀圖一樣,畫水平放置的圓的直觀圖,也是要先畫出一些有代表性的點(diǎn),由于不能像多邊那樣直接以頂點(diǎn)為代表點(diǎn),因此需要自己構(gòu)造出一些點(diǎn)。
教師組織學(xué)生思考、討論和交流,如何構(gòu)造出需要的一些點(diǎn),與學(xué)生共同完成例2并詳細(xì)板書畫法。
3.探求空間幾何體的直觀圖的畫法。
(1)例3,用斜二測畫法畫長、寬、高分別是4cm、3cm、2cm的長方體abcd-a’b’c’d’的直觀圖。
教師引導(dǎo)學(xué)生完成,要注意對每一步驟提出嚴(yán)格要求,讓學(xué)生按部就班地畫好每一步,不能敷衍了事。
(2)投影出示幾何體的三視圖。
請說出三視圖表示的幾何體?并用斜二測畫法畫出它的直觀圖。教師組織學(xué)生思考,討論和交流完成,教師巡視幫不懂的同學(xué)解疑,引導(dǎo)學(xué)生正確把握圖形尺寸大小之間的關(guān)系。
4.平行投影與中心投影。
投影出示課本p23圖,讓學(xué)生觀察比較概括在平行投影下畫空間圖形與在中心投影下畫空間圖形的各自特點(diǎn)。
5.鞏固練習(xí),課本p25練習(xí)1,2,3。
三、歸納整理。
學(xué)生回顧斜二測畫法的關(guān)鍵與步驟。
四、作業(yè)。
1.書畫作業(yè),課本p25習(xí)題1—3a組和b組。
【本文地址:http://mlvmservice.com/zuowen/15131367.html】