三角形內角和的說課稿(優(yōu)秀8篇)

格式:DOC 上傳日期:2023-11-25 09:45:02
三角形內角和的說課稿(優(yōu)秀8篇)
時間:2023-11-25 09:45:02     小編:靈魂曲

人的記憶力會隨著歲月的流逝而衰退,寫作可以彌補記憶的不足,將曾經的人生經歷和感悟記錄下來,也便于保存一份美好的回憶。相信許多人會覺得范文很難寫?下面是小編幫大家整理的優(yōu)質范文,僅供參考,大家一起來看看吧。

三角形內角和的說課稿篇一

教學準備: 三角形、量角器

教學目標:1、通過測量撕拼、折疊等方法,探索和發(fā)現(xiàn)三角形三個內角的度數(shù)和等于180°。

2、已知三角形兩個角的度數(shù),會求出第三個角的度數(shù)。

3、經歷三角形內角和的研究方法,感受數(shù)學研究方法。

基本教學過程:

一、???????????????? 一、創(chuàng)設問題情境

大三角形說:“我的個頭大,所以我的內角和一定比你大。”小三角形很不甘心地說:“是這樣的嗎?”我們來做一回裁判。

二、自主探究,創(chuàng)建數(shù)學模型

1、分小組測量,比較。尋找不同形狀的三角形。填在書上。

2、你發(fā)現(xiàn)了什么?

3、那如果把三個角撕下來,拼在一起,應該很接近平角了?

這是三角形的一個很隱秘的特征,你記得了嗎?

三、鞏固與應用

1、那如果知道三角形三個角中的兩個角,就應該可以知道另一個角的大小了。第31頁試一試。

2、第32頁練一練1。

3、第2題。

4、實踐活動。

四、總結與拓展。

這節(jié)課你了解到了什么?

教學反思:一開始上課? 創(chuàng)設問題情境,提出疑問,引導學生自主探究,分組測量三角形內角和的度數(shù),在測量的過程中學生發(fā)現(xiàn)每個三角形的三個內角和接近180度。提醒學生注意測量時有誤差。接下來通過撕拼、折疊等方法,驗證三角形的內角和。這樣學生記憶深刻。

三角形內角和的說課稿篇二

首先,我們來了解一下三角形內角和的概念。三角形內角和指的是一個三角形內的三個角的角度之和。也就是說,無論一個三角形的大小和形狀如何,其內角和的總和是不變的。對于這個概念,我們需要進行一些證明,并從中得出一些體會。

一、首先是證明三角形內角和的公式:我們可以將一個任意的三角形劃分為兩個三角形,這樣就可以得到2個內角和相等的三角形。根據(jù)這兩個三角形的性質,它們的內角和分別為180度。因此,原先的三角形的內角和等于2個相同的三角形內角和之和,即2×180度。因此,三角形的內角和公式為:180度×(n-2),其中n為三角形的邊數(shù)。這是三角形內角和的公式,也就意味著,無論三角形的大小和形狀如何,其內角和的總和是不變的。

二、接下來,我想談談這個公式所蘊含的性質。這個公式表明了任意一個三角形內角和都是一個定值,這意味著我們在處理與三角形有關的問題時,我們可以依據(jù)這個公式來計算。同時,我們也可以通過這個定值來判斷三角形是否存在。 如果我們知道三角形的任意兩個角的度數(shù),我們就可以通過計算得出第三個角的度數(shù),如果這個度數(shù)滿足三角形內角和公式,那么這個三角形就是存在的??傊?,這個公式為我們解決與三角形相關的問題提供了一個非常有效的工具。

三、其次,我們來看一下三角形內角和的一些特殊情況。如果我們將一個三角形變形成一條直線,那么這條直線上的角的度數(shù)之和顯然是180度。這也就是說,當一個三角形的一個角的度數(shù)等于另外兩個角的度數(shù)之和時,這個三角形就成為了直角三角形。這個特殊情況提示我們,任何一個角的度數(shù)都不能超過180度,超過這個范圍就不再是三角形。

四、此外,我們還要關注三角形內角和的一個重要性質。在一個任意的三角形中,最大的內角所對應的邊是最長的,而最小的內角所對應的邊則是最短的。這提示我們,我們可以通過測量三角形的三個角的度數(shù)來判斷三角形的大小和形狀。如果一個三角形的度數(shù)都相等,那么這是一個等邊三角形。如果只有兩個角度相等,那么這是一個等腰三角形。通過這些性質,我們可以進行更復雜的三角形的處理。

五、最后,我想強調一個重點,那就是,我們需要掌握三角形內角和公式的證明過程。如果我們只是僅僅記住了這個公式,但是不理解其意義和原理,那么我們將很難理解和解決與三角形相關的問題。因此,在我們學習三角形內角和公式的過程中,我們需要認真學習其證明過程,并從中理解和掌握重要的原理和性質。只有這樣,我們才能夠真正掌握這個公式,以及它所包含的深刻含義。

三角形內角和的說課稿篇三

p.28、29

本節(jié)課的教學先通過計算三角尺的3個內角的度數(shù)的和,激發(fā)學生的好奇心,進而引發(fā)三角形內角和是180度的猜想,再通過組織操作活動驗證猜想,得出結論。

1、讓學生通過觀察、操作、比較、歸納,發(fā)現(xiàn)三角形的內角和是180。

2、讓學生學會根據(jù)三角形的內角和是180 這一知識求三角形中一個未知角的度數(shù)。

3、激發(fā)學生主動參與、自主探索的意識,鍛煉動手能力,發(fā)展空間觀念。

三角板,量角器、點子圖、自制的三種三角形紙片等。

看了這2個算式你有什么猜想?

(三角形的三個角加起來等于180度)

1、畫、量:在點子圖上,分別畫銳角三角形、直角三角形、鈍角三角形。畫好后分別量出各個角的度數(shù),再把三個角的度數(shù)相加。

老師注意巡視和指導。交流各自加得的結果,說說你的發(fā)現(xiàn)。

2、折、拼:學生用自己事先剪好的圖形,折一折。

指名介紹折的方法:比如折的是一個銳角三角形,可以先把它上面的一個角折下,頂點和下面的邊重合,再分別把左邊、右邊的角往里折,三個角的頂點要重合。發(fā)現(xiàn):三個角會正好在一直線上,說明它們合起來是一個平角,也就是180度。

繼續(xù)用該方法折鈍角三角形,得到同樣的結果。

直角三角形的折法有不同嗎?

通過交流使學生明白:除了用剛才的方法之外,直角三角形還可以用更簡便的方法折;可以直角不動,而把兩個銳角折下,正好能拼成一個直角;兩個直角的度數(shù)和也是180度。

3、撕、拼:可能有個別學生對折的方法感到有困難。那么還可以用撕的方法。

在撕之前要分別在三個角上標好角1、角2和角3。然后撕下三個角,把三個角的一條邊、頂點重合,也能清楚地看到三個角合起來就是一個平角180度。

小結:我們可以用多種方法,得到同樣的結果:三角形的內角和是180。

4、試一試

三角形中,角1=75,角2=39,角3=( )

算一算,量一量,結果相同嗎?

1、算出下面每個三角形中未知角的度數(shù)。

在交流的時候可以分別學生說說怎么算才更方便。比如第1題,可先算40加60等于100,再用180減100等于80。第2題則先算180減110等于70,再用70減55更方便。第3題是直角三角形,可不用180去減,而用90減55更好。

指出:在計算的時候,我們可根據(jù)具體的數(shù)據(jù)選擇更佳的算法。

可先猜想:兩個三角形拼在一起,會不會它的內角和變成1802=360 呢?為什么?

然后再分別算一算圖上的這三個三角形的內角和。得出結論:三角形不論大小,它的內角和都是180 。

3、用一張正方形紙折一折,填一填。

4、說理:一個直角三角形中最多有幾個直角?為什么?

一個鈍角三角形中最多有幾個直角?為什么?

第4、5題

三角形內角和的說課稿篇四

通過猜想、驗證,了解三角形的內角和是180度。在學習的過程中進一步激發(fā)學生探索數(shù)學規(guī)律的興趣,初步感知計算多邊形內角和的公式。

三角形的內角和。

課前準備:

電腦課件、學具卡片。

出示三角尺中的一個,提問:誰來說說三角尺上的三個角分別是多少度?

引導學生說出90度、60度、30度。

出示另一個三角尺,引導學生分別說出三個角的度數(shù):90度、45度、45度。

提問:請同學們任選一個三角尺,算出他們三個角一共多少度?

學生計算后指名回答。

師:三角尺三個角的和是180度。

提問:是不是任一個三角形三個角的和都是180度呢?請同學們在自備本上任畫一個三角形,量出它們三個角分別是多少度,再求出它們的和,然后小組內交流。

學生小組活動,教師了解學生情況,個別同學加以輔導。

全班交流:讓學生分別說出三個角的度數(shù)以及它們的和。

提問:你發(fā)現(xiàn)了什么?

:任何一個三角形三個角的和都是180度。利用三角形的這一性質,我們可以解決許多問題。

要求學生先計算,再用量角器量,最后比較結果是否相同?讓學生說說計算的方法。

教師說明:即使結果不完全一樣,是因為測量的結果存在誤差,我們還是以計算的結果為準。

三角形內角和的說課稿篇五

本節(jié)微課視頻是蘇教版數(shù)學教科書四年級下冊第78~79頁的教學內容。在教學之前,學生已經掌握了角的概念、角的分類和角的測量;認識了三角形,知道三角形是由三條線段首尾相接圍成的圖形,有三個頂點、三條邊和三個角。這些已經構成學生進一步學習的認知基礎?!度切蔚膬冉呛汀肥侨切蔚囊粋€重要性質。學生在學習四年級上冊“角的度量”時,通過測量三角尺三個角的度數(shù),知道三角尺三個角加起來的和是180度,再加上課前的預習,大部分的學生已經能得出結論:三角形的內角和是180度,只不過他們不清楚其中的道理,只是機械性的記憶。因此,本節(jié)課的重點不是結論,而是驗證結論的過程。教材組織學生對不同形狀、不同大小的三角形的內角和進行探索,通過轉化、推理、比較、操作和驗證,總結概括出“所有三角形的內角和都是180度”的規(guī)律,從而進一步發(fā)展學生的空間觀念,提高學生的自主學習能力和推理能力。

下面就具體談談微課的教學設計:

1、通過測量、轉化、觀察和比較等活動探索發(fā)現(xiàn)并驗證“三角形的內角和是180度”的規(guī)律,并且能利用這一結論解決求三角形中未知角的度數(shù)等實際問題。

2、通過折一折、拼一拼和剪一剪等一系列的操作活動培養(yǎng)學生的聯(lián)想意識和動手操作能力。體驗驗證結論的過程與方法,提高學生分析和解決問題的能力。

3、使學生通過操作的過程獲得發(fā)現(xiàn)規(guī)律的喜悅,獲得成就感,從而激發(fā)學生積極主動學習數(shù)學的興趣。

重點:讓學生親自驗證并總結出三角形的內角和是180度的結論

難點:對不同驗證方法的理解和掌握。

交流:不同三角尺的內角和都是一樣的嗎?三角尺的內角和有什么特征?

引導學生得出三角尺的三個內角的度數(shù)和是180度。

提問:三角尺的形狀是什么三角形?三角尺的內角和是180度,我們還可以說成是什么?(得出結論:直角三角形的內角和是180度。)

你有什么辦法驗證這一結論呢?(動手操作,尋找答案)

方法一:拿出不同的直角三角形,分別測量三個內角的度數(shù),再求和。(提示存在誤差,但三個內角的和都在180度左右)

方法二:用兩個相同的直角三角形拼成一個長方形,由于長方形的四個內角和是360度,因此能得出一個直角三角形的三個內角和是180度。

出示三個三角形:直角三角形、銳角三角形和鈍角三角形。

引導:直角三角形的內角和是180度了,由此我們聯(lián)想到銳角三角形和鈍角三角形的內角和也有可能是180度。

提問:你有什么辦法來驗證這一猜想呢?

拿出事先從課本第113頁剪下來的3個三角形,動手操作,自主探索,發(fā)現(xiàn)規(guī)律。

方法一:可以像上面那樣先測量每個三角形的三個內角的度數(shù),再計算出它們的和,看看能發(fā)現(xiàn)什么規(guī)律。學生測量計算,教師巡視指導。

引導:測量時要盡量做到準確,測量是存在誤差的,對于測量的不準的同學要重新測定和確認,計算出它們的和,發(fā)現(xiàn)其中的規(guī)律。

方法二:既然是求三角形的內角和,我們就可以想辦法把三角形的3個內角拼在一起,看看拼成了什么角。那怎樣才能把3個內角拼在一起呢?我們可以將三角形中的3個內角撕下來,再拼在一起,會發(fā)現(xiàn)拼成了一個平角,是180度。

方法三:把三角形的三個內角撕下來,雖然能將他們拼在一起,但是原有的三角形被破壞了。因此,我們還可以通過折一折的方法,把三個內角折過來拼在一起,同樣會發(fā)現(xiàn)拼成一個平角,是180度。

方法四:將銳角三角形和鈍角三角形分別分成兩個直角三角形,利用直角三角形內角和是180度進行推理。180+180=360度,360-90-90=180度。

交流:回顧以上3個三角形的內角和的探索過程,你發(fā)現(xiàn)了什么規(guī)律?

總結:通過測量計算、拼一拼和折一折的方法,我們可以消除心中的問號,肯定得說出所有三角形的內角和都是180度這一結論。

1、將一個大三角形剪成兩個小三角形,每個小三角形的內角和是多少度?

2、在一個三角形中,根據(jù)兩個內角的度數(shù),求第三個內角的度數(shù)?

三角形內角和的說課稿篇六

學習三角形內角是數(shù)學學習中的基礎知識之一,三角形是幾何學中的重點內容之一。通過學習三角形內角,可以幫助我們更好地理解三角形的性質,提高數(shù)學思維能力。在學習的過程中,我深受啟發(fā),也積累了一些心得體會。

第二段:三角形內角的定義和性質

首先,我們來了解一下三角形內角的定義和性質。三角形內角是指三角形內部的角度,任意一個三角形的三個內角相加總是等于180度。這個性質被稱為三角形內角和定理?;趦冉呛投ɡ?,我們可以進一步推導出三角形的其他性質,比如角平分線、垂直線等概念。通過理解和應用這些性質,我們可以更好地解決與三角形相關的問題。

第三段:學習方法和技巧

在學習三角形內角的過程中,我們也可以運用一些學習方法和技巧,來提高學習效果。首先,要熟練掌握三角形內角和的計算方法,包括直角三角形、等腰三角形和一般三角形的特殊情況。其次,要多做練習題,通過實際操作來鞏固知識。同時,還需要理解和運用三角函數(shù),來解決與三角形內角和相關的實際問題。最后,要注重學習的整體性,將三角形內角和與其他知識點相結合,形成知識網(wǎng)絡。

第四段:學習三角形內角的意義

學習三角形內角不僅是為了解答與三角形相關的問題,更重要的是培養(yǎng)和提高我們的數(shù)學思維能力。學習三角形內角能夠鍛煉我們的邏輯思維、推理能力和問題解決能力。三角形內角和定理不僅僅適用于三角形,還可以推廣應用到其他幾何學相關知識中。通過學習三角形內角,我們可以更深入地理解幾何學的基本概念和原理,提高我們的數(shù)學素養(yǎng)。

第五段:個人心得體會

通過學習三角形內角,我深刻地認識到數(shù)學是一門自洽、邏輯嚴密的學科。三角形內角和定理的證明過程非常復雜,需要我們嚴密的思考和理解。而且,學習三角形內角還要求我們具備良好的空間想象力和幾何直覺。通過不斷練習和思考,我漸漸地培養(yǎng)起了這些能力。此外,學習三角形內角還讓我慢慢體會到數(shù)學的美和魅力,它是一門融思考、推理和創(chuàng)造于一體的學科。通過學習三角形內角,我不僅僅掌握了一種方法,還獲得了更深刻的數(shù)學認識,對數(shù)學產生了濃厚的興趣。

總結:

學習三角形內角是數(shù)學學習中的重要內容之一,通過學習三角形內角,我們可以更好地理解三角形的性質和解決與三角形相關的問題。在學習過程中,我們可以運用一些學習方法和技巧,同時也要注重培養(yǎng)整體性的學習能力。學習三角形內角不僅僅是為了解答問題,更重要的是提高數(shù)學思維能力和數(shù)學素養(yǎng)。通過學習三角形內角,我們可以感受到數(shù)學的美和魅力,培養(yǎng)出對數(shù)學的興趣和熱愛。

三角形內角和的說課稿篇七

讓學生整體感知三角形內角和的知識,這樣的教學, 將三角形內角和置于平面圖形內角和的大背景中, 拓展了三角形內角和的數(shù)學知識背景, 滲透數(shù)學知識之間的聯(lián)系, 有效地避免了新知識的"橫空出現(xiàn)"。

提出問題:長方形內角和是360°,那么三角形內角和是多少呢?

引導學生提出合理猜測:三角形的內角和是180°。

(1)量:請學生每人畫一個自己喜歡的三角形,接著用量角器量一量,然后把這三個內角的度數(shù)加起來算一算,看看得出的三角形的內角和是多少度。

(2)撕―拼:利用平角是180°這一特點,啟發(fā)學生能否也把三角形的三個內角撕下來拼在一起,成為一個平角 請學生同桌合作,從學具中選出一個三角形,撕下來拼一拼。

(3)折—拼:把三角形的三個內角都向內折,把這三個內角拼組成一個平角,一個平角是180°,所以得出三角形的內角和是180°。

(4)畫:根據(jù)長方形的內角和來驗證三角形內角和是180°。

一個長方形有4個直角,每個直角90°,那么長方形的內角和就是360°,每個長方形都可以平均分成兩個直角三角形,每個直角三角形的內角和就是180°。從長方形的內角和聯(lián)想到直角三角形的內角和是180°。

利用已經學過的知識構建新的數(shù)學知識, 這不僅有助于學生理解新的知識, 而且是一種非常重要的學習方法。在探索三角形內角和規(guī)律的教學中,注意引導學生將三角形內角和與平角,長方形四個內角的和等知識聯(lián)系起來, 并使學生在新舊知識的連接點和新知識的生長點上把握好他們之間的內在聯(lián)系。在整個探索過程中, 學生積極思考并大膽發(fā)言, 他們的創(chuàng)造性思維得到了充分發(fā)揮。

質疑: 大小不同的三角形, 它們的內角和會是一樣嗎?

觀察:指著黑板上兩個大小不同但三個角對應相等的三角形并說明原因,三角形變大了, 但角的大小沒有變。

結論: 角的兩條邊長了, 但角的大小不變。因為角的大小與邊的長短無關。

實驗: 教師先在黑板上固定小棒, 然后用活動角與小棒組成一個三角形, 教師手拿活動角的頂點處, 往下壓, 形成一個新的三角形, 活動角在變大, 而另外兩個角在變小。這樣多次變化, 活動角越來越大, 而另外兩個角越來越小。最后, 當活動角的兩條邊與小棒重合時。

結論:活動角就是一個平角180°, 另外兩個角都是0°。

小學生由于年齡小, 容易受圖形或物體的外在形式的影響。教師主要是引導學生與角的有關知識聯(lián)系起來,通過讓學生觀察利用"角的大小與邊的長短無關"的舊知識來理解說明。

對于利用精巧的小教具的演示, 讓學生通過觀察,交流,想象, 充分感受三角形三個角之間的聯(lián)系和變化, 感悟三角形內角和不變的原因。

習題是溝通知識聯(lián)系的有效手段。在本節(jié)課的四個層次的練習中, 能充分注意溝通知識之間的內在聯(lián)系, 使學生從整體上把握知識的來龍去脈和縱橫聯(lián)系,逐步形成對知識的整體認知, 構建自己的認知結構, 從而發(fā)展思維, 提高綜合運用知識解決問題的能力。

第一題將三角形內角和知識與三角形特征結合起來,引導學生綜合運用內角和知識和直角三角形,等邊三角形等圖形特征求三角形內角的度數(shù)。

第二題將三角形內角和知識與三角形的分類知識結合起來,引導學生運用三角形內角和的知識去解釋直角三角形,鈍角三角形中角的特征, 較好地溝通了知識之間的聯(lián)系。

第三題通過兩個三角形的分與合的過程,使學生感受此過程中三角內角的 變化情況, 進一步理解三角形內角和的知識。

第四題是對三角形內角和知識的進一步拓展, 引導學生進一步研究多邊形的內角和。教學中, 學生能把這些多邊形分成幾個三角形, 將多邊形內角和與三角形內角和聯(lián)系起來,并逐步發(fā)現(xiàn)多邊形內角和的規(guī)律, 以此促進學生對多邊形內角和知識的整體構建。

三角形內角和的說課稿篇八

人教版義務教育課程標準試驗教科書數(shù)學四年級下冊第67頁。

遵循由特殊到一般的規(guī)律進行探究活動是這節(jié)課設計的主要特點之一?!稊?shù)學課程標準》指出,讓學生學習有價值的數(shù)學,讓學生帶著問題、帶著自己的思想、自己的思維進入數(shù)學課堂,對于學生的數(shù)學學習有著重要作用。因此,我嘗試著將數(shù)學文本、課外預習、課堂教學三方有機整合,在質疑、解疑、釋疑中展開教學,培養(yǎng)學生提出問題、分析問題和解決問題的探究能力。

三角形的內角和是三角形的一個重要特征。本課是安排在學習三角形的概念及分類之后進行的,它是學生以后學習多邊形的內角和及解決其它實際問題的基礎。學生在掌握知識方面:已經掌握了三角形的分類,比較熟悉平角等有關知識;能力方面:經過三年多的學習,已具備了初步的動手操作能力和主動探究能力以及合作學習的習慣。因此,教材很重視知識的探索與發(fā)現(xiàn),安排了一系列的實驗操作活動。教材呈現(xiàn)教學內容時,不但重視體現(xiàn)知識的形成過程,而且注意留給學生充分進行自主探索和交流的`空間,為教師靈活組織教學提供了清晰的思路。概念的形成沒有直接給出結論,而是通過量、算、拼等活動,讓學生探索、實驗、發(fā)現(xiàn)、討論交流、推理歸納出三角形的內角和是180。

學生已經掌握三角形特性和分類,熟悉了鈍角、銳角、平角這些角的知識,大多數(shù)學生已經在課前通過不同的途徑知道三角形的內角和是180度的結論,但不一定清楚道理,所以本課的設計意圖不在于了解,而在于驗證,讓學生在課堂上經歷研究問題的過程是本節(jié)課的重點。四年級的學生已經初步具備了動手操作的意識和能力,并形成了一定的空間觀念,能夠在探究問題的過程中,運用已有知識和經驗,通過交流、比較、評價尋找解決問題的途徑和策略。

1.使學生經歷自主探索三角形的內角和的過程,知道三角形的內角和是180°,能運用這一規(guī)律解決一些簡單的問題。

2.使學生在觀察、操作、分析、猜想、驗證、合作、交流等具體活動中,提高動手操作能力和數(shù)學思考能力。

【本文地址:http://mlvmservice.com/zuowen/14894007.html】

全文閱讀已結束,如果需要下載本文請點擊

下載此文檔