正弦定理教案(優(yōu)質(zhì)18篇)

格式:DOC 上傳日期:2023-11-24 22:58:05
正弦定理教案(優(yōu)質(zhì)18篇)
時間:2023-11-24 22:58:05     小編:薇兒

教案的編寫需要根據(jù)學生的實際情況和教學目標,確保教學過程的連貫性和針對性。在編寫教案時,教師應考慮到不同學生的差異化學習需求。這些教案范例注重了學生的主動參與和思維能力的培養(yǎng)。

正弦定理教案篇一

通過正弦定理讓我們更容易的了解數(shù)學,正弦定理的教學內(nèi)容有哪些呢?以下是本站小編為大家整理的關于《正弦定理》教案,給大家作為參考,歡迎閱讀!

一、教學內(nèi)容分析。

本節(jié)課是高一數(shù)學第五章《三角比》第三單元中正弦定理的第一課時,它既是初中“解直角三角形”內(nèi)容的直接延拓,也是坐標法等知識在三角形中的具體運用,是生產(chǎn)、生活實際問題的重要工具,正弦定理揭示了任意三角形的邊角之間的一種等量關系,它與后面的余弦定理都是解三角形的重要工具。

本節(jié)課其主要任務是引入證明正弦定理及正弦定理的基本應用,在課型上屬于“定理教學課”。因此,做好“正弦定理”的教學,不僅能復習鞏固舊知識,使學生掌握新的有用的知識,體會聯(lián)系、發(fā)展等辯證觀點,學生通過對定理證明的探究和討論,體驗到數(shù)學發(fā)現(xiàn)和創(chuàng)造的歷程,進而培養(yǎng)學生提出問題、解決問題等研究性學習的能力。

二、學情分析。

對高一的學生來說,一方面已經(jīng)學習了平面幾何,解直角三角形,任意角的三角比等知識,具有一定觀察分析、解決問題的能力;但另一方面對新舊知識間的聯(lián)系、理解、應用往往會出現(xiàn)思維障礙,思維靈活性、深刻性受到制約。根據(jù)以上特點,教師恰當引導,提高學生學習主動性,注意前后知識間的聯(lián)系,引導學生直接參與分析問題、解決問題。

三、設計思想:

培養(yǎng)學生學會學習、學會探究是全面發(fā)展學生能力的重要方面,也是高中新課程改革的主要任務。如何培養(yǎng)學生學會學習、學會探究呢?建構(gòu)主義認為:“知識不是被動吸收的,而是由認知主體主動建構(gòu)的?!边@個觀點從教學的角度來理解就是:知識不僅是通過教師傳授得到的,更重要的是學生在一定的情境中,運用已有的學習經(jīng)驗,并通過與他人(在教師指導和學習伙伴的幫助下)協(xié)作,主動建構(gòu)而獲得的,建構(gòu)主義教學模式強調(diào)以學生為中心,視學生為認知的主體,教師只對學生的意義建構(gòu)起幫助和促進作用。本節(jié)“正弦定理”的教學,將遵循這個原則而進行設計。

四、教學目標:

1、在創(chuàng)設的問題情境中,讓學生從已有的幾何知識和處理幾何圖形的常用方法出發(fā),探索和證明正弦定理,體驗坐標法將幾何問題轉(zhuǎn)化為代數(shù)問題的優(yōu)越性,感受數(shù)學論證的嚴謹性。

2、理解三角形面積公式,能運用正弦定理解決三角形的兩類基本問題,并初步認識用正弦定理解三角形時,會有一解、兩解、無解三種情況。

3、通過對實際問題的探索,培養(yǎng)學生的數(shù)學應用意識,激發(fā)學生學習的興趣,讓學生感受到數(shù)學知識既來源于生活,又服務與生活。

五、教學重點與難點。

教學重點:正弦定理的探索與證明;正弦定理的基本應用。

教學難點:正弦定理的探索與證明。

主體下給于適當?shù)奶崾竞椭笇А?/p>

一、復習引入:

結(jié)論:

證明:(向量法)過a作單位向量j垂直于ac,由ac+cb=ab邊同乘以單位向量。

正弦定理:在一個三角形中,各邊和它所對角的正弦的比相等。

本節(jié)是“正弦定理”定理的第一節(jié),在備課中有兩個問題需要精心設計。一個是問題的引入,一個是定理的證明。通過兩個實際問題引入,讓學生體會為什么要學習這節(jié)課,從學生的“最近發(fā)展區(qū)”入手進行設計,尋求解決問題的方法。具體的思路就是從解決課本的實際問題入手展開,將問題一般化導出三角形中的邊角關系——正弦定理。因此,做好“正弦定理”的教學既能復習鞏固舊知識,也能讓學生掌握新的有用的知識,有效提高學生解決問題的能力。

1.在教學過程中,我注重引導學生的思維發(fā)生,發(fā)展,讓學生體會數(shù)學問題是如何解決的,給學生解決問題的一般思路。從學生熟悉的直角三角形邊角關系,把銳角三角形和鈍角三角形的問題也轉(zhuǎn)化為直角三角形的性,從而得到解決,并滲透了分類討論思想和數(shù)形結(jié)合思想等思想。

2.在教學中我恰當?shù)乩枚嗝襟w技術,是突破教學難點的一個重要手段。利用《幾何畫板》探究比值的值,由動到靜,取得了很好的效果,加深了學生的印象。

3.由于設計的內(nèi)容比較的多,教學時間的超時,這說明我自己對學生情況的把握不夠準確到位,致使教學過程中時間的分配不夠適當,教學語言不夠精簡,今后我一定避免此類問題,爭取更大的進步。

正弦定理教案篇二

今天我說課的內(nèi)容是余弦定理,本節(jié)內(nèi)容共分3課時,今天我將就第1課時的余弦定理的證明與簡單應用進行說課。下面我分別從教材分析。教學目標的確定。教學方法的選擇和教學過程的設計這四個方面來闡述我對這節(jié)課的教學設想。

本節(jié)內(nèi)容是江蘇教育出版社出版的普通高中課程標準實驗教科書《數(shù)學》必修五的第一章第2節(jié),在此之前學生已經(jīng)學習過了勾股定理。平面向量、正弦定理等相關知識,這為過渡到本節(jié)內(nèi)容的學習起著鋪墊作用。本節(jié)內(nèi)容實質(zhì)是學生已經(jīng)學習的勾股定理的延伸和推廣,它描述了三角形重要的邊角關系,將三角形的“邊”與“角”有機的聯(lián)系起來,實現(xiàn)邊角關系的互化,為解決斜三角形中的邊角求解問題提供了一個重要的工具,同時也為在日后學習中判斷三角形形狀,證明三角形有關的等式與不等式提供了重要的依據(jù)。

在本節(jié)課中教學重點是余弦定理的內(nèi)容和公式的掌握,余弦定理在三角形邊角計算中的運用;教學難點是余弦定理的發(fā)現(xiàn)及證明;教學關鍵是余弦定理在三角形邊角計算中的運用。

基于以上對教材的認識,根據(jù)數(shù)學課程標準的“學生是數(shù)學學習的主人,教師是數(shù)學學習的組織者。引導者與合作者”這一基本理念,考慮到學生已有的認知結(jié)構(gòu)和心理特征,我認為本節(jié)課的教學目標有:

基于本節(jié)課是屬于新授課中的數(shù)學命題教學,根據(jù)《學記》中啟發(fā)誘導的思想和布魯納的發(fā)現(xiàn)學習理論,我將主要采用“啟發(fā)式教學”和“探究性教學”的教學方法即從一個實際問題出發(fā),發(fā)現(xiàn)無法使用剛學習的正弦定理解決,造成學生在認知上的沖突,產(chǎn)生疑惑,從而激發(fā)學生的探索新知的欲望,之后進一步啟發(fā)誘導學生分析,綜合,概括從而得出原理解決問題,最終形成概念,獲得方法,培養(yǎng)能力。

在教學中利用計算機多媒體來輔助教學,充分發(fā)揮其快捷、生動、形象的特點。

為達到本節(jié)課的教學目標、突出重點、突破難點,在教材分析、確定教學目標和合理選擇教法與學法的基礎上,我把教學過程設計為以下四個階段:創(chuàng)設情境、引入課題;探索研究、構(gòu)建新知;例題講解、鞏固練習;課堂小結(jié),布置作業(yè)。具體過程如下:

1、創(chuàng)設情境,引入課題

利用多媒體引出如下問題:

a地和b地之間隔著一個水塘現(xiàn)選擇一地點c,可以測得的大小及,求a、b兩地之間的距離c。

【設計意圖】由于學生剛學過正弦定理,一定會采用剛學的知識解題,但由于無法找到一組已知的邊及其所對角,從而產(chǎn)生疑惑,激發(fā)學生探索欲望。

2、探索研究、構(gòu)建新知

(1)由于初中接觸的是解直角三角形的問題,所以我將先帶領學生從特殊情況為直角三角形()時考慮。此時使用勾股定理,得。

(3)考慮到我們所作的圖為銳角三角形,討論上述結(jié)論能否推廣到在為鈍角三角形()中。

通過解決問題可以得到在任意三角形中都有,之后讓同學們類比出……這樣我就完成了對余弦定理的引入,之后總結(jié)給出余弦定理的內(nèi)容及公式表示。

在學生已學習了向量的基礎上,考慮到新課改中要求使用新工具、新方法,我會引導同學類比向量法證明正弦定理的過程嘗試使用向量的方法證明余弦定理、之后引導學生對余弦定理公式進行變形,用三邊值來表示角的余弦值,給出余弦定理的第二種表示形式,這樣就完成了新知的構(gòu)建。

根據(jù)余弦定理的兩種形式,我們可以利用余弦定理解決以下兩類解斜三角形的問題:

(1)已知三邊,求三個角;

(2)已知三角形兩邊及其夾角,求第三邊和其他兩個角。

3、例題講解、鞏固練習

本階段的教學主要是通過對例題和練習的思考交流、分析講解以及反思小結(jié),使學生初步掌握使用余弦定理解決問題的方法。其中例題先以學生自己思考解題為主,教師點評后再規(guī)范解題步驟及板書,課堂練習請同學們自主完成,并請同學上黑板板書,從而鞏固余弦定理的運用。

例題講解:

例1在中,

(1)已知,求;

(2)已知,求。

【設計意圖】例題1分別是通過已知三角形兩邊及其夾角求第三邊,已知三角形三邊求其夾角,這樣余弦定理的兩個形式分別得到了運用,進而鞏固了學生對余弦定理的運用。

例2對于例題1(2),求的大小。

【設計意圖】已經(jīng)求出了的度數(shù),學生可能會有兩種解法:運用正弦定理或運用余弦定理,比較正弦定理和余弦定理,發(fā)現(xiàn)使用余弦定理求解角的問題可以避免解的取舍問題。

例3使用余弦定理證明:在中,當為銳角時;當為鈍角時,

【設計意圖】例3通過對和的比較,體現(xiàn)了“余弦定理是勾股定理的推廣”這一思想,進一步加深了對余弦定理的認識和理解。

課堂練習:

練習1在中,

(1)已知,求;

(2)已知,求。

【設計意圖】檢驗學生是否掌握余弦定理的兩個形式,鞏固學生對余弦定理的運用。

練習2若三條線段長分別為5,6,7,則用這三條線段()。

a、能組成直角三角形

b、能組成銳角三角形

c、能組成鈍角三角形

d、不能組成三角形

【設計意圖】與例題3相呼應。

練習3在中,已知,試求的大小。

【設計意圖】要求靈活使用公式,對公式進行變形。

4、課堂小結(jié),布置作業(yè)

先請同學對本節(jié)課所學內(nèi)容進行小結(jié),教師再對以下三個方面進行總結(jié):

(1)余弦定理的內(nèi)容和公式;

(2)余弦定理實質(zhì)上是勾股定理的推廣;

(3)余弦定理的可以解決的兩類解斜三角形的問題。

通過師生的共同小結(jié),發(fā)揮學生的主體作用,有利于學生鞏固所學知識,也能培養(yǎng)學生的歸納和概括能力。

布置作業(yè)

必做題:習題1、2、1、2、3、5、6;

選做題:習題1、2、12、13。

【設計意圖】

作業(yè)分為必做題和選做題、針對學生素質(zhì)的差異進行分層訓練,既使學生掌握基礎知識,又使學有余力的學生有所提高。

各位老師,以上所說只是我預設的一種方案,但課堂是千變?nèi)f化的,會隨著學生和教師的臨時發(fā)揮而隨機生成。預設效果如何,最終還有待于課堂教學實踐的檢驗。

本說課一定存在諸多不足,懇請老師提出寶貴意見,謝謝。

正弦定理教案篇三

《正弦定理》是人教版教材必修五第一章《解三角形》的第一節(jié)內(nèi)容,也是三角形理論中的一個重要內(nèi)容,與初中學習的三角形的邊和角的基本關系有密切的聯(lián)系。在此之前,學生已經(jīng)學習過了正弦函數(shù)和余弦函數(shù),知識儲備已足夠。它是后續(xù)課程中解三角形的理論依據(jù),也是解決實際生活中許多測量問題的工具。因此熟練掌握正弦定理能為接下來學習解三角形打下堅實基礎,并能在實際應用中靈活變通。

二、教學目標。

根據(jù)上述教材內(nèi)容分析,考慮到學生已有的認知結(jié)構(gòu)心理特征及原有知識水平,制定如下教學目標:

知識目標:理解并掌握正弦定理的證明,運用正弦定理解三角形。

能力目標:探索正弦定理的證明過程,用歸納法得出結(jié)論,并能掌握多種證明方法。

情感目標:通過推導得出正弦定理,讓學生感受數(shù)學公式的整潔對稱美和數(shù)學的實際應用價值。

三、教學重難點。

教學重點:正弦定理的內(nèi)容,正弦定理的證明及基本應用。

教學難點:正弦定理的探索及證明,已知兩邊和其中一邊的對角解三角形時判斷解的個數(shù)。

四、教法分析。

依據(jù)本節(jié)課內(nèi)容的特點,學生的認識規(guī)律,本節(jié)知識遵循以教師為主導,以學生為主體的指導思想,采用與學生共同探索的教學方法,命題教學的發(fā)生型模式,以問題實際為參照對象,激發(fā)學生學習數(shù)學的好奇心和求知欲,讓學生的思維由問題開始,到猜想的得出,猜想的探究,定理的推導,并逐步得到深化,并且運用例題和習題來強化內(nèi)容的掌握,突破重難點。即指導學生掌握“觀察——猜想——證明——應用”這一思維方法。學生采用自主式、合作式、探討式的學習方法,這樣能使學生積極參與數(shù)學學習活動,培養(yǎng)學生的合作意識和探究精神。

五、教學過程。

本節(jié)知識教學采用發(fā)生型模式:

1、問題情境。

此題可運用做輔助線bc邊上的高來間接求解得出。

提問:有沒有根據(jù)已提供的數(shù)據(jù),直接一步就能解出來的方法?

2、歸納命題。

我們從特殊的三角形直角三角形中來探討邊與角的數(shù)量關系:

在如圖rt三角形abc中,根據(jù)正弦函數(shù)的定義。

正弦定理教案篇四

本節(jié)是“正弦定理”定理的第一節(jié),設計從直角三角形出發(fā),通過學生的探究活動,引導學生提出問題,通過證明、歸納、應用為線索,把問題展現(xiàn)給學生,從而引入并證明正弦定理。因此,做好“正弦定理”的教學既能復習鞏固舊知識,也能讓學生掌握新的有用的.知識,有效提高學生解決問題的能力。

本節(jié)設計注重知識建構(gòu)過程和學生主題地位的體現(xiàn),從學生熟悉的直角三角形邊角關系,到銳角三角形、鈍角三角形的討論,滲透了分類討論思想和數(shù)形結(jié)合思想。

在正弦定理的推導過程中,引導學生采用不同方法證明正弦定理,學生比較容易聯(lián)想到利用三角函數(shù)定義或三角形面積進行論證,使學生不斷發(fā)現(xiàn)規(guī)律,得出在斜三角形中邊與角的關系,多種方法的證明有利于學生思維能力的拓展,有助于加強學生解題的靈活度。

由于教學時間的超時,說明教學存在對學生情況的把握不夠準確到位,教學過程中時間的分配不夠適當,教學語言不夠精簡,今后一定避免此類問題,爭取更大的進步。

正弦定理教案篇五

掌握正弦定理及推導過程,會利用正弦定理證明簡單三角形以及求解三角形邊角問題。

【過程與方法】。

通過三角函數(shù),向量數(shù)量積等多處知識間聯(lián)系來體現(xiàn)事物之間普遍聯(lián)系與辯證統(tǒng)一。

【情感態(tài)度與價值觀】。

問題分析解決過程中,體會數(shù)學的嚴謹性。

【重點】。

【難點】。

正弦定理的證明,正弦定理在解三角形應用思路。

(一)導入新課。

提出問題:在初中已經(jīng)學習過解直角三角形,已會根據(jù)直角三角形中已知的邊與角,求出未知的邊與角,直角三角形存在如下邊角關系,在一個三角形中各邊和他所對角的正弦之比相等(畫圖展示直角三角形圖形,引導得出正弦定理公式形式),帶領學生猜測對任意三角形都成立?這就是這一節(jié)課主要研究的.課題。

(二)生成新知。

提問:驗證任意三角形成立?還需要驗證哪些三角形結(jié)論成立?

預設學生回答銳角三角形,鈍角三角形。

思考:嘗試用其他方法證明正弦定理。

提問:觀察正弦定理的結(jié)構(gòu),這個式子包含了哪些等式,每個等式有幾個量?

學生小組討論總結(jié),三個等式,每個式子有四個量,如果知道其中三個可以求出第四個。

(三)鞏固提高。

課本例一,例二,思考利用正弦定理,可以解決斜三角形哪些類型的問題。

小組討論,師生共同總結(jié)正弦定理解決的兩類斜三角形問題。

(四)小結(jié)作業(yè)。

小結(jié):提問學生本節(jié)課有什么收獲,闡述正弦定理公式,及解決的問題。

作業(yè):思考嘗試用其他方法證明正弦定理。

(略)。

正弦定理教案篇六

本節(jié)課是“正弦定理”教學的第二節(jié)課,其主要任務是通過對正弦定理的進一步理解,明確它在“已知三角形的兩邊及一邊所對的角解三角形”方面的應用和運用正弦定理的變式來求三角形中的角和判斷三角形的形狀。

在知識目標方面:通過創(chuàng)設適宜的數(shù)學情境,引導鼓勵學生大膽地提出問題、引導學生對所提的問題進行分析、整理,篩選出有價值的問題,注意啟發(fā)學生揭示問題的數(shù)學實質(zhì),將提問推向深入。通過問題的提出、解題方法的探索、到問題的解決、方法的總結(jié)、及練習題中方法的應用,都能緊抓公式及公式的變式,運用從特殊到一般、再從一般到特殊的思想方法達成知識目標。通過練習及六個變式問題調(diào)動學生的學習熱情,進而采用“正弦定理”、“大邊對大角”、“三角形內(nèi)角和定理”、“數(shù)形結(jié)合”等知識與方法有效突破本節(jié)課的教學難點。使學生明白這一類數(shù)學問題該怎樣解,讓學生做到“學會數(shù)學,會學數(shù)學”

在能力目標方面:通過例題、練習及六個變式問題,培養(yǎng)學生觀察、歸納、概括新知識的能力;通過“故意出錯”,讓學生“質(zhì)疑”、“找錯”、“改錯”,從而使學生的思維具有批判性,優(yōu)化他們的思維品質(zhì);通過課后練習及課后思考,進一步培養(yǎng)學生的數(shù)學意識,解決數(shù)學問題的能力。

在情感態(tài)度與價值觀方面:本節(jié)課也很注重對學生非智力因素的培養(yǎng),注重情感交流與情感的建立與培養(yǎng)。并在教學過程中做到:與學生真誠相處、平等交流;依據(jù)自己的個人特點采取適當?shù)?方法與技巧,注重充分發(fā)揮教師的個人人格魅力,而非千篇一律的“柔聲細語”;能借助信息技術及其它手段,營造一種氛圍,一種情境,通過“課前音樂背景”的設置,“課堂上的掌聲鼓勵”“形體語言與語言藝術”的運用等,力爭營造一種愉快、輕松的氛圍,創(chuàng)建一個有助于師生,生生思維交流的“情感場”,使數(shù)學教學更具有生命力,感染力。使學生在感悟數(shù)學的過程中感受數(shù)學的魅力,體驗數(shù)學產(chǎn)生的美感與幸福感。

通過這節(jié)課的學習,不僅復習鞏固了舊知識,使學生掌握了新的有用的知識,體會聯(lián)系、發(fā)展等辯證觀點,而且培養(yǎng)了學生的應用意識和實踐操作能力,以及提出問題、解決問題等研究性學習的能力。

正弦定理教案篇七

《余弦定理》選自人教a版高中數(shù)學必修五第一章第一節(jié)第一課時。本節(jié)課的主要教學內(nèi)容是余弦定理的內(nèi)容及證明,以及運用余弦定理解決“兩邊一夾角”“三邊”的解三角形問題。

知識與技能:1、理解并掌握余弦定理和余弦定理的推論。

2、掌握余弦定理的推導、證明過程。

3、能運用余弦定理及其推論解決“兩邊一夾角”“三邊”問題。 過程與方法:1、通過從實際問題中抽象出數(shù)學問題,培養(yǎng)學生知識的遷移能力。

2、通過直角三角形到一般三角形的過渡,培養(yǎng)學生歸納總結(jié)能力。3、通過余弦定理推導證明的過程,培養(yǎng)學生運用所學知識解決實際問題的能力。

情感態(tài)度與價值觀:1、在交流合作的過程中增強合作探究、團結(jié)協(xié)作精神,體驗 解決問題的成功喜悅。

2、感受數(shù)學一般規(guī)律的美感,培養(yǎng)數(shù)學學習的興趣。 三、教學重難點

重點:余弦定理及其推論和余弦定理的運用。

難點:余弦定理的發(fā)現(xiàn)和推導過程以及多解情況的判斷。

四、教學用具

普通教學工具、多媒體工具 (以上均為命題教學的準備)

正弦定理教案篇八

《余弦定理》選自人教a版高中數(shù)學必修五第一章第一節(jié)第一課時。本節(jié)課的主要教學內(nèi)容是余弦定理的內(nèi)容及證明,以及運用余弦定理解決“兩邊一夾角”“三邊”的解三角形問題。

余弦定理的學習有充分的基礎,初中的勾股定理、必修一中的向量知識、上一課時的正弦定理都是本節(jié)課內(nèi)容學習的知識基礎,同時又對本節(jié)課的學習提供了一定的方法指導。其次,余弦定理在高中解三角形問題中有著重要的地位,是解決各種解三角形問題的常用方法,余弦定理也經(jīng)常運用于空間幾何中,所以余弦定理是高中數(shù)學學習的一個十分重要的內(nèi)容。

1、理解并掌握余弦定理和余弦定理的推論。

2、掌握余弦定理的推導、證明過程。

3、能運用余弦定理及其推論解決“兩邊一夾角”“三邊”問題。

1、通過從實際問題中抽象出數(shù)學問題,培養(yǎng)學生知識的遷移能力。

2、通過直角三角形到一般三角形的過渡,培養(yǎng)學生歸納總結(jié)能力。

3、通過余弦定理推導證明的過程,培養(yǎng)學生運用所學知識解決實際問題的能力。

1、在交流合作的過程中增強合作探究、團結(jié)協(xié)作精神,體驗 解決問題的成功喜悅。

2、感受數(shù)學一般規(guī)律的美感,培養(yǎng)數(shù)學學習的興趣。

重點:余弦定理及其推論和余弦定理的運用。

難點:余弦定理的發(fā)現(xiàn)和推導過程以及多解情況的判斷。

普通教學工具、多媒體工具 (以上均為命題教學的準備)

正弦定理教案篇九

在備這節(jié)課時,我有兩個問題需要精心設計。一個是問題的引入,一個是定理的證明。本節(jié)課以學生為主體,“問題提出---問題解決為主線”,采用探究式課堂教學模式,即在教學過程中,在教師的啟發(fā)引導下,以學生獨立自主和合作交流為前提,以“正弦定理的發(fā)現(xiàn)”為基本探究內(nèi)容,以生活實際為參照對象,讓學生的思維由問題開始,到猜想的得出,猜想的探究,定理的推導,并逐步得到深化。

上完這節(jié)課,讓我有這樣一些體會:

1、問題是思維的起點,是學生主動探索的動力。本節(jié)課在教學過程中充分發(fā)揮學生主體作用,始終以問題的形式引導學生主動參與,在師生互動、生生互動中讓學習過程成為學生心靈愉悅的主動認知過程,做到了把握重點、突破難點。

2、在教學中恰當?shù)乩枚嗝襟w技術,是突破教學難點的一個重要手段。本節(jié)課利用《幾何畫板》探究比值,的值,由動到靜,取得了很好的效果?!?/p>

3、做練習時,有學生提出解三角形時,正弦定理可以解決哪些問題?學生有這樣歸納的意識,在課堂及時肯定,表揚,并在課后刻意留一道思考題,任務后延,自主探究,使學生發(fā)現(xiàn)用正弦定理解決兩邊一對角問題時可能會出現(xiàn)兩解,一解或無解的情況,那么自然過渡到下一節(jié)內(nèi)容,已知兩邊和其中一邊的對角解三角形時判斷解的個數(shù)問題。

4、正弦定理的證明方法很多,如利用三角形的面積公式、利用三角形的外接圓、利用向量證明等,本節(jié)課將斜三角形的邊角關系轉(zhuǎn)化為直角三角形的邊角關系導出正弦定理,采用轉(zhuǎn)化,分類討論的的數(shù)學思想,是學生們易于接受的一種證明方法。但在具體的推導時,發(fā)現(xiàn)學生可以想到對三角形進行分類討論,并將斜三角形轉(zhuǎn)化成直角三角形證明,但在轉(zhuǎn)化時,不僅可以通過作高,還可以有別的方法,比如外接圓法。但在證明時只用了作高這種方法,這種思路雖然簡單,但不是從學生的頭腦中產(chǎn)生的,而是教師強加給學生的,只注意教學的結(jié)果而沒有注意學生思維過程的發(fā)展,思路再好對學生的也沒有指導意義。所以今后要注意尊重學生思維的發(fā)展的過程,這是一種理念,也是一種能力。上好一堂課不僅有好的教學設計,還應有靈活應變的能力,要尊重學生的思路,善于發(fā)現(xiàn)學生的閃光點,并及時引導,才不會為了進度而導下,將學生強拉進自己事先設計好的軌道。

5、在教學設計和課堂教學中應充分了解學生、研究學生,備課不僅是備知識,更重要的是備學生。作為教師只有真正樹立以學生的發(fā)展為本的教學理念,才能尊重學生思維過程的發(fā)生、發(fā)展,才能從學生的知識水平和理解能力出發(fā),創(chuàng)設合理的教學情境,才能為學生提供充分的數(shù)學活動和交流的機會,使學生從單純的知識接受者轉(zhuǎn)變?yōu)閿?shù)學學習的主人。

正弦定理教案篇十

人教版《普通高中課程標準實驗教科書?必修(五)》(第2版)第一章《解三角形》第一單元第二課《余弦定理》。通過利用向量的數(shù)量積方法推導余弦定理,正確理解其結(jié)構(gòu)特征和表現(xiàn)形式,解決“邊、角、邊”和“邊、邊、邊”問題,初步體會余弦定理解決“邊、邊、角”,體會方程思想,激發(fā)學生探究數(shù)學,應用數(shù)學的潛能。

本課之前,學生已經(jīng)學習了三角函數(shù)、向量基本知識和正弦定理有關內(nèi)容,對于三角形中的邊角關系有了較進一步的認識。在此基礎上利用向量方法探求余弦定理,學生已有一定的學習基礎和學習興趣。總體上學生應用數(shù)學知識的意識不強,創(chuàng)造力較弱,看待與分析問題不深入,知識的系統(tǒng)性不完善,使得學生在余弦定理推導方法的探求上有一定的難度,在發(fā)掘出余弦定理的結(jié)構(gòu)特征、表現(xiàn)形式的數(shù)學美時,能夠激發(fā)學生熱愛數(shù)學的思想感情;從具體問題中抽象出數(shù)學的本質(zhì),應用方程的思想去審視,解決問題是學生學習的一大難點。

新課程的數(shù)學提倡學生動手實踐,自主探索,合作交流,深刻地理解基本結(jié)論的本質(zhì),體驗數(shù)學發(fā)現(xiàn)和創(chuàng)造的歷程,力求對現(xiàn)實世界蘊涵的一些數(shù)學模式進行思考,作出判斷;同時要求教師從知識的傳授者向課堂的設計者、組織者、引導者、合作者轉(zhuǎn)化,從課堂的執(zhí)行者向?qū)嵤┱?、探究開發(fā)者轉(zhuǎn)化。本課盡力追求新課程要求,利用師生的互動合作,提高學生的數(shù)學思維能力,發(fā)展學生的數(shù)學應用意識和創(chuàng)新意識,深刻地體會數(shù)學思想方法及數(shù)學的應用,激發(fā)學生探究數(shù)學、應用數(shù)學知識的潛能。

繼續(xù)探索三角形的邊長與角度間的具體量化關系、掌握余弦定理的兩種表現(xiàn)形式,體會向量方法推導余弦定理的思想;通過實踐演算運用余弦定理解決“邊、角、邊”及“邊、邊、邊”問題;深化與細化方程思想,理解余弦定理的本質(zhì)。通過相關教學知識的聯(lián)系性,理解事物間的普遍聯(lián)系性。

教學重點是余弦定理的發(fā)現(xiàn)過程及定理的應用;教學難點是用向量的數(shù)量積推導余弦定理的思路方法及余弦定理在應用求解三角形時的思路。

本課的教學應具有承上啟下的目的。因此在教學設計時既要兼顧前后知識的聯(lián)系,又要使學生明確本課學習的重點,將新舊知識逐漸地融為一體,構(gòu)建比較完整的知識系統(tǒng)。所以在余弦定理的表現(xiàn)方式、結(jié)構(gòu)特征上重加指導,只有當學生正確地理解了余弦定理的本質(zhì),才能更好地應用求解問題。本課教學設計力求在型(模型、類型),質(zhì)(實質(zhì)、本質(zhì)),思(思維、思想方法)上達到教學效果。本課之前學生已學習過三角函數(shù),平面幾何,平面向量、解析幾何、正弦定理等與本課緊密聯(lián)系的內(nèi)容,使本課有了較多的處理工具,也使余弦定理的探討有了更加簡潔的工具。因此在本課的教學設計中抓住前后知識的聯(lián)系,重視數(shù)學思想的教學,加深對數(shù)學概念本質(zhì)的理解,認識數(shù)學與實際的聯(lián)系,學會應用數(shù)學知識和方法解決一些實際問題。學生應用數(shù)學的意識不強,創(chuàng)造力不足、看待問題不深入,很大原因在于學生的知識系統(tǒng)不夠完善。因此本課運用聯(lián)系的觀點,從多角度看待問題,在提出問題、思考分析問題、解決問題等多方面對學生進行示范引導,將舊知識與新知識進行重組擬合及提高,幫助學生建立自己的良好知識結(jié)構(gòu)。

正弦定理教案篇十一

本節(jié)內(nèi)容是江蘇教育出版社出版的普通高中課程標準實驗教科書《數(shù)學》必修五的第一章第2節(jié),在此之前學生已經(jīng)學習過了勾股定理。平面向量、正弦定理等相關知識,這為過渡到本節(jié)內(nèi)容的學習起著鋪墊作用。本節(jié)內(nèi)容實質(zhì)是學生已經(jīng)學習的勾股定理的延伸和推廣,它描述了三角形重要的邊角關系,將三角形的“邊”與“角”有機的聯(lián)系起來,實現(xiàn)邊角關系的互化,為解決斜三角形中的邊角求解問題提供了一個重要的工具,同時也為在日后學習中判斷三角形形狀,證明三角形有關的等式與不等式提供了重要的依據(jù)。

在本節(jié)課中教學重點是余弦定理的內(nèi)容和公式的掌握,余弦定理在三角形邊角計算中的運用;教學難點是余弦定理的發(fā)現(xiàn)及證明;教學關鍵是余弦定理在三角形邊角計算中的運用。

基于以上對教材的認識,根據(jù)數(shù)學課程標準的“學生是數(shù)學學習的主人,教師是數(shù)學學習的組織者。引導者與合作者”這一基本理念,考慮到學生已有的認知結(jié)構(gòu)和心理特征,我認為本節(jié)課的教學目標有:

基于本節(jié)課是屬于新授課中的數(shù)學命題教學,根據(jù)《學記》中啟發(fā)誘導的思想和布魯納的發(fā)現(xiàn)學習理論,我將主要采用“啟發(fā)式教學”和“探究性教學”的教學方法即從一個實際問題出發(fā),發(fā)現(xiàn)無法使用剛學習的正弦定理解決,造成學生在認知上的沖突,產(chǎn)生疑惑,從而激發(fā)學生的探索新知的欲望,之后進一步啟發(fā)誘導學生分析,綜合,概括從而得出原理解決問題,最終形成概念,獲得方法,培養(yǎng)能力。

在教學中利用計算機多媒體來輔助教學,充分發(fā)揮其快捷、生動、形象的特點。

為達到本節(jié)課的教學目標、突出重點、突破難點,在教材分析、確定教學目標和合理選擇教法與學法的基礎上,我把教學過程設計為以下四個階段:創(chuàng)設情境、引入課題;探索研究、構(gòu)建新知;例題講解、鞏固練習;課堂小結(jié),布置作業(yè)。具體過程如下:

1、創(chuàng)設情境,引入課題

利用多媒體引出如下問題:

a地和b地之間隔著一個水塘現(xiàn)選擇一地點c,可以測得的大小及,求a、b兩地之間的距離c。

【設計意圖】由于學生剛學過正弦定理,一定會采用剛學的知識解題,但由于無法找到一組已知的邊及其所對角,從而產(chǎn)生疑惑,激發(fā)學生探索欲望。

2、探索研究、構(gòu)建新知

(1)由于初中接觸的是解直角三角形的問題,所以我將先帶領學生從特殊情況為直角三角形( )時考慮。此時使用勾股定理,得。

(3)考慮到我們所作的圖為銳角三角形,討論上述結(jié)論能否推廣到在為鈍角三角形( )中。

通過解決問題可以得到在任意三角形中都有,之后讓同學們類比出……這樣我就完成了對余弦定理的引入,之后總結(jié)給出余弦定理的內(nèi)容及公式表示。

在學生已學習了向量的基礎上,考慮到新課改中要求使用新工具、新方法,我會引導同學類比向量法證明正弦定理的過程嘗試使用向量的方法證明余弦定理、之后引導學生對余弦定理公式進行變形,用三邊值來表示角的余弦值,給出余弦定理的第二種表示形式,這樣就完成了新知的構(gòu)建。

根據(jù)余弦定理的兩種形式,我們可以利用余弦定理解決以下兩類解斜三角形的問題:

(1)已知三邊,求三個角;

(2)已知三角形兩邊及其夾角,求第三邊和其他兩個角。

3、例題講解、鞏固練習

本階段的教學主要是通過對例題和練習的思考交流、分析講解以及反思小結(jié),使學生初步掌握使用余弦定理解決問題的方法。其中例題先以學生自己思考解題為主,教師點評后再規(guī)范解題步驟及板書,課堂練習請同學們自主完成,并請同學上黑板板書,從而鞏固余弦定理的運用。

例題講解:

例1在中,

(1)已知,求;

(2)已知,求。

【設計意圖】例題1分別是通過已知三角形兩邊及其夾角求第三邊,已知三角形三邊求其夾角,這樣余弦定理的兩個形式分別得到了運用,進而鞏固了學生對余弦定理的運用。

例2對于例題1(2),求的大小。

【設計意圖】已經(jīng)求出了的度數(shù),學生可能會有兩種解法:運用正弦定理或運用余弦定理,比較正弦定理和余弦定理,發(fā)現(xiàn)使用余弦定理求解角的問題可以避免解的取舍問題。

例3使用余弦定理證明:在中,當為銳角時;當為鈍角時,

【設計意圖】例3通過對和的比較,體現(xiàn)了“余弦定理是勾股定理的推廣”這一思想,進一步加深了對余弦定理的認識和理解。

課堂練習:

練習1在中,

(1)已知,求;

(2)已知,求。

【設計意圖】檢驗學生是否掌握余弦定理的兩個形式,鞏固學生對余弦定理的運用。

練習2若三條線段長分別為5,6,7,則用這三條線段()。

a、能組成直角三角形

b、能組成銳角三角形

c、能組成鈍角三角形

d、不能組成三角形

【設計意圖】與例題3相呼應。

練習3在中,已知,試求的大小。

【設計意圖】要求靈活使用公式,對公式進行變形。

4、課堂小結(jié),布置作業(yè)

先請同學對本節(jié)課所學內(nèi)容進行小結(jié),教師再對以下三個方面進行總結(jié):

(1)余弦定理的內(nèi)容和公式;

(2)余弦定理實質(zhì)上是勾股定理的推廣;

(3)余弦定理的可以解決的兩類解斜三角形的問題。

通過師生的共同小結(jié),發(fā)揮學生的主體作用,有利于學生鞏固所學知識,也能培養(yǎng)學生的歸納和概括能力。

布置作業(yè)

必做題:習題1、2、1、2、3、5、6;

選做題:習題1、2、12、13。

作業(yè)分為必做題和選做題、針對學生素質(zhì)的差異進行分層訓練,既使學生掌握基礎知識,又使學有余力的學生有所提高。

各位老師,以上所說只是我預設的一種方案,但課堂是千變?nèi)f化的,會隨著學生和教師的臨時發(fā)揮而隨機生成。預設效果如何,最終還有待于課堂教學實踐的檢驗。

本說課一定存在諸多不足,懇請老師提出寶貴意見,謝謝。

正弦定理教案篇十二

正弦定理是初中數(shù)學中比較重要和難理解的部分,很多同學甚至老師都對其感到頭疼。但是,正弦定理不僅是數(shù)學中的重要概念,還有著豐富的實際應用。在學習正弦定理后,我從中學到了很多有益的知識和經(jīng)驗,下面我將分享我的心得體會。

正弦定理是指一個三角形中,邊長和對應的角度的關系公式。其中一個角度的正弦等于與其對邊的長度之一的比例,即sinA=a/b。正弦定理可以通過cosB,cosC的余弦公式而推出,可以方便計算三角形的邊長和角度。對于初學者來說,重要的是能夠理解公式的本質(zhì),同時也體會到了科學的推理方法。

第三段:在計算中的應用。

正弦定理在生活和學習中都有很大的應用價值。例如,在航海和導航中,我們經(jīng)常需要利用正弦定理計算船或車等運動物體的位置和角度。在建筑方面,正弦定理甚至可以計算出大樓、橋梁和塔等構(gòu)造物的高度和角度。除此之外,正弦定理在數(shù)學應用中也是非常重要的,能夠解決許多難題,如解三角函數(shù)方程、求角度等。

第四段:學習體會。

在學習正弦定理的過程中,我發(fā)現(xiàn)一個重要的問題就是需要對三角函數(shù)有清晰的認識。也就是說,在學習正弦定理之前,我們需要認真學習三角函數(shù)的其他部分,例如正切和余弦等。同時,不斷練習,多做習題對于記住和掌握公式也是非常有益的。此外,我也學會了在認真理解和熟練應用的同時,將其運用到實際問題的解決中,這不僅可以提高學習興趣,還能拓展解決問題的思路。

第五段:結(jié)論。

總體來說,正弦定理不僅是數(shù)學中的重要概念,也有廣泛而且實際應用價值。學習正弦定理可以提高數(shù)學應用能力和推理思維能力,同時也能減少發(fā)生計算錯誤的可能。在學習的過程中,我們需要認真學習和理解每一個公式,多經(jīng)過練習和應用,最后將其應用到實際問題中。相信一定可以有所收獲,提高自身的學習和應用能力。

正弦定理教案篇十三

即直角三角形兩直角的平方和等于斜邊的平方.。

因此,在運用勾股定理計算三角形的邊長時,要注意如下三點:

(2)注意分清斜邊和直角邊,避免盲目代入公式致錯;

如,利用四個如圖1所示的直角三角形三角形,拼出如圖2所示的三個圖形.。

請讀者證明.。

請同學們自己證明圖(2)、(3).。

3.在數(shù)軸上表示無理數(shù)。

二、典例精析。

132-52=144,所以另一條直角邊的長為12.。

所以這個直角三角形的面積是×12×5=30(cm2).。

例2如圖3(1),一只螞蟻沿棱長為a的正方體表面從頂點a爬到。

頂點b,則它走過的最短路程為。

a.b.c.3ad.分析:本題顯然與例2屬同種類型,思路相同.但正方體的。

各棱長相等,因此只有一種展開圖.。

解:將正方體側(cè)面展開。

正弦定理教案篇十四

教學目標1.在探索平行四邊形的判別條件中,理解并掌握用邊、對角線來判定平行四邊形的方法.

2.會綜合運用平行四邊形的判定方法和性質(zhì)來解決問題。

教學重點:平行四邊形的判定方法及應用。

教學難點:平行四邊形的判定定理與性質(zhì)定理的靈活應用。

二.探。

閱讀教材p44至p45。

利用手中的學具——硬紙板條,通過觀察、測量、猜想、驗證、探索構(gòu)成平行四邊形的條件,思考并探討:

(1)你能適當選擇手中的硬紙板條搭建一個平行四邊形嗎?

(2)你怎樣驗證你搭建的四邊形一定是平行四邊形?

(3)你能說出你的做法及其道理嗎?

(4)能否將你的探索結(jié)論作為平行四邊形的一種判別方法?你能用文字語言表述出來嗎?

(5)你還能找出其他方法嗎?

從探究中得到:

平行四邊形判定方法1兩組對邊分別相等的四邊形是平行四邊形。

平行四邊形判定方法2對角線互相平分的四邊形是平行四邊形。

證一證。

平行四邊形判定方法1兩組對邊分別相等的四邊形是平行四邊形。

證明:(畫出圖形)。

平行四邊形判定方法2一組對邊平行且相等的四邊形是平行四邊形。

證明:(畫出圖形)。

三.結(jié)。

兩組對邊分別相等的四邊形是平行四邊形。

對角線互相平分的四邊形是平行四邊形。

四.用。

正弦定理教案篇十五

“正弦定理”既是初中“解直角三角形”內(nèi)容的直接延拓,也是三角函數(shù)一般知識和平面向量知識在三角形中的具體運用,是解可轉(zhuǎn)化為三角形計算問題的其它數(shù)學問題及生產(chǎn)、生活實際問題的重要工具,因此具有廣泛的應用價值。本節(jié)課是第七章的第一課時:“正弦定理”教學的第一節(jié)課,其主要任務是證明正弦定理并準確應用正弦定理。在備課中有兩個問題需要精心設計.一個是定理的證明,一個是正弦定理的應用的問題串。

課本通過一個實際問題引入,但沒有深入展開下去,只是點出繼續(xù)學習“解三角形”問題的`意義;正弦定理的證明方法很多,如利用三角形的面積公式、利用三角形的外接圓、利用向量證明等。

從中職學生的認知出發(fā),設計從直角三角形出發(fā),通過學生的探究活動,引導學生提出問題,通過證明、歸納、應用為線索,把問題展現(xiàn)給學生,從而引入并證明正弦定理。因此,做好“正弦定理”的教學既能復習鞏固舊知識,也能讓學生掌握新的有用的知識,有效提高學生解決問題的能力。本節(jié)設計注重知識建構(gòu)過程和學生主題地位的體現(xiàn),從學生熟悉的直角三角形邊角關系,到銳角三角形、鈍角三角形的討論,滲透了分類討論思想和數(shù)形結(jié)合思想。從學生的“最近發(fā)展區(qū)”入手去設計問題,從特殊到一般,從歸納猜想到實驗證明,培養(yǎng)學生的探究問題的科學方法,思路自然,是學生們易于接受的一種證明方法。但在具體的推導時,要注意尊重學生思維的發(fā)展的過程,這是一種理念,也是一種能力.

問題是思維的起點,是學生主動探索的動力.本節(jié)課通過對課本引例的解決、展開,引導學生在問題解決中發(fā)現(xiàn)結(jié)論.符合認識問題的思維規(guī)律,對激發(fā)學生探究問題興趣是非常有益的.傳統(tǒng)式的課傳授完新知識后,一般教師都會馬上以“舉一反三”的模式來鞏固新知識。但在此我進行了小小的設計,讓學生分析正弦定理的特點和幾種變形;涉及了三角形哪些元素?可以解決哪類數(shù)學問題?讓學生做到“學會數(shù)學,會學數(shù)學”。新的環(huán)節(jié)引起了學生濃厚的興趣,教室內(nèi)學生熱烈的討論,爭論也出現(xiàn)了,特別是已知二邊一角的問題,哪種能直接應用,哪種不能直接應用,學生有一個系統(tǒng)的認知。這又為后續(xù)課程—余弦定理打下了伏筆。

本節(jié)課雖然在教師的引導下,基本完成了教學任務,由于教學時間的超時,說明教學存在對學生情況的把握不夠準確到位,教學設計的是否恰當?教學過程中時間的分配不夠適當,師生配合的程度是否默契?教學語言不夠精簡,今后一定避免此類問題,爭取更大的進步。

正弦定理教案篇十六

《動能和動能定理》是高中物理必修2第五章《機械能及其守恒定律》第七節(jié)的內(nèi)容,我從:教材分析、目標分析、教法學法、教學過程、板書設計和教學反思六個緯度作如下匯報:

一、教材分析。

1.內(nèi)容分析。

《動能和動能定理》主要學習一個物理概念:動能;一個物理規(guī)律:動能定理。從知識與技能上要掌握動能表達式及其相關決定因素,動能定理的物理意義和實際的應用。

通過例題2的探究,理解正負功的物理意義,初步從能量守恒與轉(zhuǎn)化的角度認識功。在態(tài)度情感與價值觀上,在嘗試解決程序性問題的過程中,體驗物理學科既是基于實驗探究的一門實驗性學科,同時也是嚴密數(shù)學語言邏輯的學科,只有兩種方法體系并重,才能有效地認識自然,揭示客觀世界存在的物理規(guī)律。

2.內(nèi)容地位。

通過初中的學習,對功和動能概念已經(jīng)有了相關的認識,通過第六節(jié)的實驗探究,認識到做功與物體速度變化的關系。將本節(jié)課設計成一堂理論探究課有著積極的意義。因為通過“動能定理”的學習,深入理解“功是能量轉(zhuǎn)化的量度”,并在解釋功能關系上有著深遠的意義。為此設計如下目標:

二、目標分析。

1、三維教學目標。

(一)、知識與技能。

1.理解動能的'概念,并能進行相關計算;

(二)、過程與方法。

1.掌握恒力作用下動能定理的推導;

2.體會變力作用下動能定理解決問題的優(yōu)越性;

(三)、情感態(tài)度與價值觀。

體會“狀態(tài)的變化量量度復雜過程量”這一物理思想;感受數(shù)學語言對物理過程描述的。

簡潔美;

2.教學重點、難點:

重點:對動能公式和動能定理的理解與應用。

難點:通過對動能定理的理解,加深對功、能關系的認識。

三、教法和學法。

學生的學法采?。喝蝿镇?qū)動和合作探究;

選取多媒體展示、嘗試練習題和“任務驅(qū)動問題”本節(jié)課為一課時。

四、教學過程。

設計成6個教學環(huán)節(jié):提出問題,導入新課;任務驅(qū)動,感知教材;合作探究,分享交流;精講點撥,釋疑解惑;典例引領,內(nèi)化反思;課堂總結(jié),布置作業(yè)。

將本文的word文檔下載到電腦,方便收藏和打印。

正弦定理教案篇十七

大家好,今天我向大家說課的題目是《正弦定理》。下面我將從以下幾個方面介紹我這堂課的教學設計。

一、教材分析。

本節(jié)知識是必修五第一章《解三角形》的第一節(jié)內(nèi)容,與初中學習的三角形的邊和角的基本關系有密切的聯(lián)系與判定三角形的全等也有密切聯(lián)系,在日常生活和工業(yè)生產(chǎn)中也時常有解三角形的問題,而且解三角形和三角函數(shù)聯(lián)系在高考當中也時??家恍┙獯痤}。因此,正弦定理和余弦定理的知識非常重要。

根據(jù)上述教材內(nèi)容分析,考慮到學生已有的認知結(jié)構(gòu)心理特征及原有知識水平,制定如下教學目標:

認知目標:在創(chuàng)設的問題情境中,引導學生發(fā)現(xiàn)正弦定理的內(nèi)容,推證正弦定理及簡單運用正弦定理與三角形的內(nèi)角和定理解斜三角形的兩類問題。

能力目標:引導學生通過觀察,推導,比較,由特殊到一般歸納出正弦定理,培養(yǎng)學生的創(chuàng)新意識和觀察與邏輯思維能力,能體會用向量作為數(shù)形結(jié)合的工具,將幾何問題轉(zhuǎn)化為代數(shù)問題。

情感目標:面向全體學生,創(chuàng)造平等的教學氛圍,通過學生之間、師生之間的交流、合作和評價,調(diào)動學生的主動性和積極性,給學生成功的體驗,激發(fā)學生學習的`興趣。

教學重點:正弦定理的內(nèi)容,正弦定理的證明及基本應用。

教學難點:正弦定理的探索及證明,已知兩邊和其中一邊的對角解三角形時判斷解的個數(shù)。

二、教法。

正弦定理教案篇十八

本節(jié)課是高一數(shù)學第五章《三角比》第三單元中正弦定理的第一課時,它既是初中“解直角三角形”內(nèi)容的直接延拓,也是坐標法等知識在三角形中的具體運用,是生產(chǎn)、生活實際問題的重要工具,正弦定理揭示了任意三角形的邊角之間的一種等量關系,它與后面的余弦定理都是解三角形的重要工具。

本節(jié)課其主要任務是引入證明正弦定理及正弦定理的基本應用,在課型上屬于“定理教學課”。因此,做好“正弦定理”的教學,不僅能復習鞏固舊知識,使學生掌握新的有用的知識,體會聯(lián)系、發(fā)展等辯證觀點,學生通過對定理證明的探究和討論,體驗到數(shù)學發(fā)現(xiàn)和創(chuàng)造的歷程,進而培養(yǎng)學生提出問題、解決問題等研究性學習的能力。

二、學情分析。

對高一的學生來說,一方面已經(jīng)學習了平面幾何,解直角三角形,任意角的三角比等知識,具有一定觀察分析、解決問題的能力;但另一方面對新舊知識間的聯(lián)系、理解、應用往往會出現(xiàn)思維障礙,思維靈活性、深刻性受到制約。根據(jù)以上特點,教師恰當引導,提高學生學習主動性,注意前后知識間的聯(lián)系,引導學生直接參與分析問題、解決問題。

三、設計思想:

培養(yǎng)學生學會學習、學會探究是全面發(fā)展學生能力的重要方面,也是高中新課程改革的主要任務。如何培養(yǎng)學生學會學習、學會探究呢?建構(gòu)主義認為:“知識不是被動吸收的,而是由認知主體主動建構(gòu)的。”這個觀點從教學的角度來理解就是:知識不僅是通過教師傳授得到的,更重要的是學生在一定的情境中,運用已有的學習經(jīng)驗,并通過與他人(在教師指導和學習伙伴的幫助下)協(xié)作,主動建構(gòu)而獲得的,建構(gòu)主義教學模式強調(diào)以學生為中心,視學生為認知的主體,教師只對學生的意義建構(gòu)起幫助和促進作用。本節(jié)“正弦定理”的教學,將遵循這個原則而進行設計。

四、教學目標:

1、在創(chuàng)設的問題情境中,讓學生從已有的幾何知識和處理幾何圖形的常用方法出發(fā),探索和證明正弦定理,體驗坐標法將幾何問題轉(zhuǎn)化為代數(shù)問題的優(yōu)越性,感受數(shù)學論證的嚴謹性。

2、理解三角形面積公式,能運用正弦定理解決三角形的兩類基本問題,并初步認識用正弦定理解三角形時,會有一解、兩解、無解三種情況。

3、通過對實際問題的探索,培養(yǎng)學生的數(shù)學應用意識,激發(fā)學生學習的興趣,讓學生感受到數(shù)學知識既來源于生活,又服務與生活。

五、教學重點與難點。

教學重點:正弦定理的探索與證明;正弦定理的基本應用。

教學難點:正弦定理的探索與證明。

突破難點的手段:抓知識選擇的切入點,從學生原有的認知水平和所需的知識特點入手,教師在學生主體下給于適當?shù)奶崾竞椭笇А?/p>

六、復習引入:

結(jié)論:

證明:(向量法)過a作單位向量j垂直于ac,由ac+cb=ab邊同乘以單位向量。

正弦定理:在一個三角形中,各邊和它所對角的正弦的比相等。

七、教學反思。

本節(jié)是“正弦定理”定理的第一節(jié),在備課中有兩個問題需要精心設計。一個是問題的引入,一個是定理的證明。通過兩個實際問題引入,讓學生體會為什么要學習這節(jié)課,從學生的“最近發(fā)展區(qū)”入手進行設計,尋求解決問題的方法。具體的思路就是從解決課本的實際問題入手展開,將問題一般化導出三角形中的邊角關系——正弦定理。因此,做好“正弦定理”的教學既能復習鞏固舊知識,也能讓學生掌握新的有用的知識,有效提高學生解決問題的能力。

1、在教學過程中,我注重引導學生的思維發(fā)生,發(fā)展,讓學生體會數(shù)學問題是如何解決的,給學生解決問題的一般思路。從學生熟悉的直角三角形邊角關系,把銳角三角形和鈍角三角形的問題也轉(zhuǎn)化為直角三角形的性,從而得到解決,并滲透了分類討論思想和數(shù)形結(jié)合思想等思想。

2、在教學中我恰當?shù)乩枚嗝襟w技術,是突破教學難點的一個重要手段。利用《幾何畫板》探究比值的值,由動到靜,取得了很好的效果,加深了學生的印象。

3、由于設計的內(nèi)容比較的多,教學時間的超時,這說明我自己對學生情況的把握不夠準確到位,致使教學過程中時間的分配不夠適當,教學語言不夠精簡,今后我一定避免此類問題,爭取更大的進步。

【本文地址:http://mlvmservice.com/zuowen/14792863.html】

全文閱讀已結(jié)束,如果需要下載本文請點擊

下載此文檔