三角形的內(nèi)角和教學(xué)設(shè)計(優(yōu)秀14篇)

格式:DOC 上傳日期:2023-11-24 09:39:15
三角形的內(nèi)角和教學(xué)設(shè)計(優(yōu)秀14篇)
時間:2023-11-24 09:39:15     小編:琴心月

總結(jié)是一種有效的自我反饋方式,幫助我們提高自我認(rèn)知和自我適應(yīng)能力。總結(jié)應(yīng)該突出最重要的成果和體會,提供清晰的邏輯框架。下面是一些高質(zhì)量的總結(jié)范文,希望對大家有所幫助。

三角形的內(nèi)角和教學(xué)設(shè)計篇一

教材第67頁例6、“做一做”及教材第69頁練習(xí)十六第1~3題。

3、培養(yǎng)學(xué)生動手動腦及分析推理能力。

一、復(fù)習(xí)。

1、什么是平角?平角是多少度?

2、計算角的度數(shù)。

3、回憶三角形的相關(guān)知識。(出示直角三角形、銳角三角形、鈍角三角形)。

二、新知。

(設(shè)計意圖:讓學(xué)生經(jīng)歷質(zhì)疑驗(yàn)證結(jié)論這樣的思維過程,真正整體感知三角形內(nèi)角和的知識,真正驗(yàn)證了“實(shí)踐出真知”的道理,這樣的教學(xué),將三角形內(nèi)角和置于平面圖形內(nèi)角和的大背景中,拓展了三角形內(nèi)角和的數(shù)學(xué)知識背景,滲透數(shù)學(xué)知識之間的聯(lián)系,有效地避免了新知識的“橫空出現(xiàn)”。同時,培養(yǎng)學(xué)生的綜合素養(yǎng))。

1、讀學(xué)卡的學(xué)習(xí)目標(biāo)、任務(wù)目標(biāo),做到心里有數(shù)。

4、驗(yàn)證:

(2)質(zhì)疑:三角板是特殊的直角三角形,不具有普遍性,不能代表所有三角形。

(3)再證:請按學(xué)卡提示,拿出學(xué)具,選擇自己喜歡的方式驗(yàn)證三角形的內(nèi)角和是180°(師巡視)。

(4)匯報結(jié)論(清楚明白的給小組加優(yōu)秀10分)。

5、結(jié)論:修改板書,把“?”去掉,寫“是”。

6、追問:把兩塊三角板拼在一起,拼成的大三角形的內(nèi)角和是多少?說明三角形無論大小它的內(nèi)角和都是180°(課件演示)。

7、看微課感知“偉大的發(fā)現(xiàn)”(設(shè)計意圖:讓學(xué)生感受自己所做的和帕斯卡發(fā)現(xiàn)三角形內(nèi)角和是180°的過程是一樣的,從而培養(yǎng)孩子的自信心和創(chuàng)造力。)。

三、知識運(yùn)用(課件出示練習(xí)題,生解答)。

1、填空。

(1)一個三角形,它的兩個內(nèi)角度數(shù)之和是110,第三個內(nèi)角是()、

(2)一個直角三角形的一個銳角是50,則另一個銳角是()。

(4)一個等腰三角形,它的一個底角是50,那么它的頂角是()。

(5)一個等腰三角形的頂角是60,這個三角形也是()三角形。

2、判斷。

(1)一個三角形中最多有兩個直角。()。

(3)有一個角是60的等腰三角形不一定是等邊三角形。()。

(4)三角形任意兩個內(nèi)角的和都大于第三個內(nèi)角。()。

(5)直角三角形中的兩個銳角的和等于90。()。

四、拓展探究。

根據(jù)所學(xué)的知識,你能想辦法求出四邊形、五邊形的內(nèi)角和嗎?

1、小組討論。

2、匯報結(jié)果。

3、課件提示幫助理解。

五、自我評價根據(jù)學(xué)卡要求給自己評出“優(yōu)”“良好”“合格”。

六、談?wù)勛约罕竟?jié)課的收獲。

今天我講了《三角形內(nèi)角和》這部分內(nèi)容,學(xué)生其實(shí)通過不同途徑已經(jīng)知道三角形內(nèi)角和是180°,是不是說這節(jié)課的重難點(diǎn)就已經(jīng)突破了,只要學(xué)生能應(yīng)用知識解決問題就算是達(dá)到這節(jié)課的教學(xué)目標(biāo)了呢?我想應(yīng)該好好思考教材背后要傳遞的東西。

任何規(guī)律的發(fā)現(xiàn)都要經(jīng)過一個猜測、驗(yàn)證的過程,不經(jīng)歷這個探究的過程,學(xué)生對于這一內(nèi)容的認(rèn)識就不深刻,聰明的孩子還會懷疑三角形內(nèi)角和是180°嗎?。因此這個結(jié)論必須由實(shí)踐操作得出結(jié)論。所以最終我把本課定為一個實(shí)踐探究課。

如何開篇點(diǎn)題,是我這次要解決的第一個問題。怎樣才能讓學(xué)生由已知順利轉(zhuǎn)向?qū)ξ粗奶角?,怎樣直接轉(zhuǎn)向研究三個角的“和”的問題呢?因此我只設(shè)計了三個簡單的問題然學(xué)生快速進(jìn)入主題。

如何驗(yàn)證內(nèi)角和是180°,是我一直比較糾結(jié)的環(huán)節(jié)。由于小學(xué)生的知識背景有限,無法利用證明給予嚴(yán)格的驗(yàn)證。只能通過動手操作、空間想象來讓孩子體會,這些都有“實(shí)驗(yàn)”的特點(diǎn),那么就都會有誤差,其實(shí)都無法嚴(yán)格的證明。但是這節(jié)課我們除了要尊重知識的嚴(yán)謹(jǐn)還應(yīng)該尊重孩子的認(rèn)知。如果通過剪拼、折疊、想象后,還有的孩子認(rèn)為三角形內(nèi)角和是180°值得懷疑的話,這無非也是件好事,說明孩子體會到了這些方法的不嚴(yán)謹(jǐn),同時對知識有一種尊重,對自己的操作結(jié)果充滿自信,否則拼個差不多也可以簡單的認(rèn)同了內(nèi)角和是180°。

本節(jié)課的練習(xí)的設(shè)置也是努力做到有梯度、有趣味、有拓展。從開始的搶答內(nèi)角和體會三角形內(nèi)角和跟大小無關(guān)、跟形狀無關(guān),到已知兩個角的度數(shù)求第三個角,這些都是鞏固。之后的,求拼接兩個完全一樣的直角三角形后,得到的圖形的內(nèi)角和是多少度,求被剪開的三角形,形成的新圖形的內(nèi)角和是多少度,這些都是對三角形內(nèi)角和的一次拓展。讓學(xué)生的認(rèn)知發(fā)生沖突,提出挑戰(zhàn)。

給學(xué)生一個平臺,她會給你一片精彩。通過動手操作來驗(yàn)證內(nèi)角和是否是180°,學(xué)生最容易出現(xiàn)的就是把3個角剪下來拼一拼,個別人可能會想到折的方法。而這節(jié)課上有個小姑娘研究的是直角三角形,她的折法很巧妙,將兩個銳角折過來,剛好拼成一個直角,這個直角和原來三角形已有的直角就重疊在了一起,兩個直角就180°。雖然我知道這樣的方法,但是通過試講,孩子們沒有這樣的表現(xiàn),我就沒有奢求什么。但是今天的課堂太豐富多元了。這樣的方法都出現(xiàn)了讓我覺得特別值得肯定。為什么會這樣呢?我想還是因?yàn)槲医o了他們足夠的時間去思考。當(dāng)有了空間,孩子才會施展他們的才華。這是我的一大收獲。

前邊驗(yàn)證時間過多,到練習(xí)時間就有些少,特別是求四邊形和六邊形內(nèi)角和時,給的時間過短,學(xué)生沒有充分思維。

總而言之,這次的公開課,給了我一次學(xué)習(xí)和鍛煉的機(jī)會。在教案設(shè)計時,該怎么樣把每一個環(huán)節(jié)落實(shí)到位,怎么樣說好每一句話,預(yù)設(shè)好每一個環(huán)節(jié),在教研中聽取各位教師的點(diǎn)評,讓我有了茅塞頓開的感覺。在此,我衷心感謝數(shù)學(xué)團(tuán)隊教師對我中肯的評價,感謝他們對我的直言不諱,無私奉獻(xiàn)自己的想法,讓我在教學(xué)中,能夠在一個輕松和諧的教學(xué)氛圍中與學(xué)生共同去探討,去發(fā)現(xiàn),去學(xué)習(xí)。

三角形的內(nèi)角和教學(xué)設(shè)計篇二

本節(jié)微課視頻是蘇教版數(shù)學(xué)教科書四年級下冊第78~79頁的教學(xué)內(nèi)容。在教學(xué)之前,學(xué)生已經(jīng)掌握了角的概念、角的分類和角的測量;認(rèn)識了三角形,知道三角形是由三條線段首尾相接圍成的圖形,有三個頂點(diǎn)、三條邊和三個角。這些已經(jīng)構(gòu)成學(xué)生進(jìn)一步學(xué)習(xí)的認(rèn)知基礎(chǔ)。《三角形的內(nèi)角和》是三角形的一個重要性質(zhì)。學(xué)生在學(xué)習(xí)四年級上冊“角的度量”時,通過測量三角尺三個角的度數(shù),知道三角尺三個角加起來的和是180度,再加上課前的預(yù)習(xí),大部分的學(xué)生已經(jīng)能得出結(jié)論:三角形的內(nèi)角和是180度,只不過他們不清楚其中的道理,只是機(jī)械性的記憶。因此,本節(jié)課的重點(diǎn)不是結(jié)論,而是驗(yàn)證結(jié)論的過程。教材組織學(xué)生對不同形狀、不同大小的三角形的內(nèi)角和進(jìn)行探索,通過轉(zhuǎn)化、推理、比較、操作和驗(yàn)證,總結(jié)概括出“所有三角形的內(nèi)角和都是180度”的規(guī)律,從而進(jìn)一步發(fā)展學(xué)生的空間觀念,提高學(xué)生的自主學(xué)習(xí)能力和推理能力。

一、教學(xué)目標(biāo)。

1、通過測量、轉(zhuǎn)化、觀察和比較等活動探索發(fā)現(xiàn)并驗(yàn)證“三角形的內(nèi)角和是180度”的規(guī)律,并且能利用這一結(jié)論解決求三角形中未知角的度數(shù)等實(shí)際問題。

2、通過折一折、拼一拼和剪一剪等一系列的操作活動培養(yǎng)學(xué)生的'聯(lián)想意識和動手操作能力。體驗(yàn)驗(yàn)證結(jié)論的過程與方法,提高學(xué)生分析和解決問題的能力。

3、使學(xué)生通過操作的過程獲得發(fā)現(xiàn)規(guī)律的喜悅,獲得成就感,從而激發(fā)學(xué)生積極主動學(xué)習(xí)數(shù)學(xué)的興趣。

二、教學(xué)重點(diǎn)和難點(diǎn)。

難點(diǎn):對不同驗(yàn)證方法的理解和掌握。

三、教學(xué)過程。

(一)質(zhì)疑――發(fā)現(xiàn)問題,提出問題。

交流:不同三角尺的內(nèi)角和都是一樣的嗎?三角尺的內(nèi)角和有什么特征?

提問:三角尺的形狀是什么三角形?三角尺的內(nèi)角和是180度,我們還可以說成是什么?(得出結(jié)論:直角三角形的內(nèi)角和是180度。)。

你有什么辦法驗(yàn)證這一結(jié)論呢?(動手操作,尋找答案)。

方法一:拿出不同的直角三角形,分別測量三個內(nèi)角的度數(shù),再求和。(提示存在誤差,但三個內(nèi)角的和都在180度左右)。

方法二:用兩個相同的直角三角形拼成一個長方形,由于長方形的四個內(nèi)角和是360度,因此能得出一個直角三角形的三個內(nèi)角和是180度。

(二)探究――分析問題,解決問題。

出示三個三角形:直角三角形、銳角三角形和鈍角三角形。

引導(dǎo):直角三角形的內(nèi)角和是180度了,由此我們聯(lián)想到銳角三角形和鈍角三角形的內(nèi)角和也有可能是180度。

提問:你有什么辦法來驗(yàn)證這一猜想呢?

拿出事先從課本第113頁剪下來的3個三角形,動手操作,自主探索,發(fā)現(xiàn)規(guī)律。

方法一:可以像上面那樣先測量每個三角形的三個內(nèi)角的度數(shù),再計算出它們的和,看看能發(fā)現(xiàn)什么規(guī)律。學(xué)生測量計算,教師巡視指導(dǎo)。

引導(dǎo):測量時要盡量做到準(zhǔn)確,測量是存在誤差的,對于測量的不準(zhǔn)的同學(xué)要重新測定和確認(rèn),計算出它們的和,發(fā)現(xiàn)其中的規(guī)律。

方法二:既然是求三角形的內(nèi)角和,我們就可以想辦法把三角形的3個內(nèi)角拼在一起,看看拼成了什么角。那怎樣才能把3個內(nèi)角拼在一起呢?我們可以將三角形中的3個內(nèi)角撕下來,再拼在一起,會發(fā)現(xiàn)拼成了一個平角,是180度。

方法三:把三角形的三個內(nèi)角撕下來,雖然能將他們拼在一起,但是原有的三角形被破壞了。因此,我們還可以通過折一折的方法,把三個內(nèi)角折過來拼在一起,同樣會發(fā)現(xiàn)拼成一個平角,是180度。

方法四:將銳角三角形和鈍角三角形分別分成兩個直角三角形,利用直角三角形內(nèi)角和是180度進(jìn)行推理。180+180=360度,360-90-90=180度。

(三)歸納――獲得結(jié)論。

交流:回顧以上3個三角形的內(nèi)角和的探索過程,你發(fā)現(xiàn)了什么規(guī)律?

總結(jié):通過測量計算、拼一拼和折一折的方法,我們可以消除心中的問號,肯定得說出所有三角形的內(nèi)角和都是180度這一結(jié)論。

(四)拓展――鞏固練習(xí)。

1、將一個大三角形剪成兩個小三角形,每個小三角形的內(nèi)角和是多少度?

2、在一個三角形中,根據(jù)兩個內(nèi)角的度數(shù),求第三個內(nèi)角的度數(shù)?

三角形的內(nèi)角和教學(xué)設(shè)計篇三

探索三角形內(nèi)角和的度數(shù)以及已知兩個角度數(shù)求第三個角度數(shù)。

教學(xué)目標(biāo):

1、通過測量、撕拼、折疊等探索活動,使學(xué)生發(fā)現(xiàn)三角形內(nèi)角和的度數(shù)是180?

2、已知三角形兩個角的度數(shù),會求第三個角的度數(shù)。

3、培養(yǎng)學(xué)生動手實(shí)踐,動腦思考的習(xí)慣。

教學(xué)重點(diǎn):

教學(xué)難點(diǎn):

教具學(xué)具準(zhǔn)備:

教材與學(xué)生。

教材創(chuàng)設(shè)了一個有趣的問題情境,通過對大小兩個三角形內(nèi)角和的大小比較來激發(fā)學(xué)生探索的興趣。教材為了得到三角形內(nèi)角和是180的結(jié)論安排了兩個活動,通過學(xué)生測量,折疊,撕拼來找到答案。

學(xué)生在已有的會用量角器來度量一個角的度數(shù)的基礎(chǔ)上,會首先想到這種方法。但測量的誤差會導(dǎo)致測量不同,因此,學(xué)生會想到采取其他更好的辦法,通過親手實(shí)踐,得出結(jié)論。

教學(xué)過程:

一、呈現(xiàn)真實(shí)狀態(tài)。

學(xué)生各抒己見。

二、提出問題:

師;剛才我們觀察三角形哪個內(nèi)角和大,同學(xué)們有兩種不同的猜想,可以肯定,必定有錯下面我們來測量驗(yàn)證。

(1)以小組為單位請同學(xué)們拿出量角器,量一量,算一算圖中大小兩個三角形內(nèi)角和度數(shù),并做好記錄,記錄每個內(nèi)角的度數(shù)。

(2)組內(nèi)交流。

(3)全班交流。由小組匯報測出結(jié)果(三角形內(nèi)角和)。

(4)師小結(jié):我們通過測量發(fā)現(xiàn),每個三角形的內(nèi)角和測出結(jié)果接近180。

三。自主探索、研究問題、歸納總結(jié):

(一)組內(nèi)探索:

(1)以小組為單位探索更好的辦法。

(2)以小組為單位邊展示邊匯報探索的過程與發(fā)現(xiàn)的結(jié)果。

(有的小組想不出來,可以安排小組和小組之間進(jìn)行交流,目的是讓學(xué)生通過實(shí)踐發(fā)現(xiàn)結(jié)果,在探索中發(fā)現(xiàn)問題,在討論中解決問題,是學(xué)生學(xué)習(xí)到良好的學(xué)習(xí)方法)。

(3)把你沒有想到的方法動手做一次。

(4)根據(jù)學(xué)生的反饋情況教師進(jìn)行操作演示。

(二)教師演示。

撕拼法1。教師取出三角形教具,把三個角撕下來,拼在一起,如圖所示。

2.師:這三個內(nèi)角放在一起你有什么發(fā)現(xiàn)?

生:發(fā)現(xiàn)三個內(nèi)角拼成一個平角。

師:平角是多少度呢?說明什么?

生:180?說明三個內(nèi)角和剛好等于180。

師:這種方法是不是適用各種三角形呢?

進(jìn)行實(shí)驗(yàn)后,結(jié)果發(fā)現(xiàn)同樣存在這一規(guī)律,三角形三個內(nèi)角和是180。

折疊法:師:剛才我們通過測量發(fā)現(xiàn)三角形內(nèi)角和接近180,那是因?yàn)闇y量的不那么精確,所以說“接近”,又通過撕拼方法發(fā)現(xiàn)三角形的三個內(nèi)角剛好拼成一個平角,進(jìn)一步說明三個內(nèi)角和是180,現(xiàn)在再來演示另一種實(shí)驗(yàn),再次證明我們的發(fā)現(xiàn)。

你們也來試一試好嗎?

在學(xué)生完成這一實(shí)踐后肯定這一發(fā)現(xiàn)。

四。鞏固練習(xí),知識升華。

1.完成課本第28頁的“試一試”第三題。

2.想一想:鈍角三角形最多有幾個鈍角?為什么?

3.有一個四邊形,你能不用量角器而算出它的四個內(nèi)角和嗎?

試一試,看誰算得快。

師:誰來說說自己的計算過程?

[回答可能有二]:

(一種全部說是:)。

師:請問,你們是怎么想的,為什么這么認(rèn)為?

生:……。

師:看來,大家是通過這兩個三角形猜想的,是嗎?想不想驗(yàn)證一下你們的猜想,(生:想)好,咱們一起走進(jìn)三角形王國,一起去研究它們內(nèi)角和的秘密吧?。◣熢谡n題“內(nèi)角和”下面劃上橫線,打上問號)。

(一種有一部分同學(xué)說是,有一部分同學(xué)說不是:)。

師:看來,大家的意見不一致,想不想驗(yàn)證一下你們的猜想,(生:想)好,咱們一起走進(jìn)三角形王國,一起去研究它們內(nèi)角和的秘密吧?。◣熢谡n題“內(nèi)角和”下面劃上橫線,打上問號)。

(二)動手操作,探究新知。

師:老師看你們有答案了,哪位同學(xué)愿意說一說你的奇思妙想?

生:我準(zhǔn)備用量的方法。

師:然后呢?

生:然后把它們?nèi)齻€內(nèi)角的度數(shù)相加起來,就知道了三角形的內(nèi)角和是多少?

師:說的真不錯,還有沒有其它的方法?

生:我是把三角形的三個角剪下來,拼在一起(師鼓勵:你的想法很有創(chuàng)意,等一會兒用你的行動來驗(yàn)證你的猜想吧?。?。

生:……。

(如生一時想不到,師可引導(dǎo):他是把三個內(nèi)角的度數(shù)相加在一起,我們能不能想辦法把三個內(nèi)角放在一起進(jìn)行觀察,看看能不能發(fā)現(xiàn)些什么呢?)。

師:好啦,老師相信咱們班的同學(xué)個個都是小數(shù)學(xué)家,一定能找出更多的方法的,請你們在研究之前,也像老師一樣,在三個內(nèi)角上編上序號,角一、角二、角三,現(xiàn)在就請同學(xué)們對銳角三角形、直角三角形和鈍角三角形等各種類型的三角形進(jìn)行研究,看看它們的內(nèi)角和各有什么特點(diǎn)。咱們比一比,看一看,哪個小組的方法多,方法好!

開始吧!(學(xué)生研究,師巡回指導(dǎo))預(yù)設(shè)時間:5分鐘。

師:老師看各小組已經(jīng)研究好了,哪位同學(xué)愿意上來交流一下?

師:請你告訴大家,你是怎么研究的,最后發(fā)現(xiàn)了什么結(jié)果?

(預(yù)設(shè):如果第一類同學(xué)說的是量的方法)。

師:你是用什么來研究的?

生:量角器。

師:那請你說一下你度量的結(jié)果好嗎?

(生匯報度量結(jié)果)。

生:180度。

師:那到底三角形的內(nèi)角和是不是180度呢?還有哪位同學(xué)有其它的方法進(jìn)行驗(yàn)證嗎?

生:我是先把三角形的三個角剪掉以后粘在一起,然后在量出它們?nèi)齻€角組成的度數(shù)。

師:他演示的真好,你們聽明白了嗎?李老師把他的過程給大家在大屏幕上演示一下。

(師邊講解邊點(diǎn)擊flash:把三角形按照三個內(nèi)角撕成三塊,先把角一放在右邊,再把角二放在左邊,最后把角三調(diào)個頭,插在角一角二的中間,這樣它們?nèi)齻€內(nèi)角就形成了一個大角,角一的這條邊,角二這條邊看起來在一條直線上,那到底是不是在一條直線上呢,我們一起用直尺來量一下,師演示后問學(xué)生:是不是在一條直線上,那這個大角是個什么角呢?通過剛才拼的過程,你有什么發(fā)現(xiàn)?)。

生:我們還用了折的方法(生介紹方法)。

師:你們聽明白了嗎?李老師把他的過程給大家在大屏幕上演示一下。

(師邊講解邊點(diǎn)擊flash:先找到兩條邊的中點(diǎn),把它連起來,把角一沿著中間的這條線向?qū)厡φ郏侔呀嵌蚶飳φ?,使它的頂點(diǎn)與角一對齊,最后把角三也用同樣的方法對折,這樣它們?nèi)齻€內(nèi)角就形成了一個大角,這個大角是個什么角呢?)。

生:是個平角。180度。

師:請這位同學(xué)來說給大家聽聽吧!

生:我把兩個相同的直角三角形拼成了一個長方形,因?yàn)殚L方形里面有四個直角,所以它的內(nèi)角和是360度,那么一個三角形的內(nèi)角和就是180度。

生1:量的不準(zhǔn)。

生2:有的量角器有誤差。

師:對,這就是測量的誤差,如果測量儀器再精密一些,我們的方法再準(zhǔn)確一些,那么任意一個三角形的內(nèi)角和也將是180度。

師:把你們偉大的發(fā)現(xiàn)讀一讀吧!

(三)拓展應(yīng)用,深化認(rèn)識。

師:請看老師手上的這兩個三角形,左邊這個內(nèi)角和是多少度?(生:180度)右邊呢(生:也是180度)。

師:現(xiàn)在老師把它們拼在一起,這個大三角形的內(nèi)角和又是多少度呢?

(生答后師引導(dǎo)歸納得出:三角形的內(nèi)角和與形狀大小無關(guān),組成的大三角形的內(nèi)角和依然是180度。)。

師:剛才我們在討論學(xué)習(xí)三角形知識的時候,三角形中的兩個好朋友卻爭執(zhí)了起來,想知道怎么回事嗎?讓我們一起去看看吧?。ǔ鍪菊n件,課件內(nèi)容:一個大一些的直角三角形說:“我的個頭比你大,我的內(nèi)角和一定比你大”。另一個稍小的銳角三角形說:“是這樣嗎”?)。

師:到底誰說的對呢?今天我們就用我們今天學(xué)到的知識來為它們解決解決吧!

師:好,請看大屏幕!

(出示基礎(chǔ)練習(xí))在一個三角形中角一是140度,角三是25度,求角二的度數(shù)。

生答后,師提問:你是怎樣想的?

生陳述后,師鼓勵:說的真好!

出示自行車、等邊三角形的路標(biāo)牌、告訴頂角求底角的房頂、直角三角形的電線桿架進(jìn)行練習(xí)。

師:同學(xué)們,今天我們一起學(xué)習(xí)了三角形的內(nèi)角和,你有哪些收獲呢?

師:嗯,真不錯,你們知道嗎?三角形的內(nèi)角和等于180度是法國著名的數(shù)學(xué)家帕斯卡在1635年他12歲時獨(dú)自發(fā)現(xiàn)的,今天憑著同學(xué)們的聰明智慧也研究出了三角形的內(nèi)角和是180度,老師為你們感到驕傲,老師相信在你們的勤奮學(xué)習(xí)和刻苦鉆研下,你們就是下一個“帕斯卡”!

師:好,下課!同學(xué)們再見!

三角形的內(nèi)角和教學(xué)設(shè)計篇四

教材第67頁例6、“做一做”及教材第69頁練習(xí)十六第1~3題。

1.通過動手操作,使學(xué)生理解并掌握三角形的內(nèi)角和是180°的結(jié)論。

2.能運(yùn)用三角形的內(nèi)角和是180°這一結(jié)論,求三角形中未知角的度數(shù)。

3.培養(yǎng)學(xué)生動手動腦及分析推理能力。

導(dǎo)學(xué)過程。

1、什么是平角?平角是多少度?

2、計算角的度數(shù)。

3、回憶三角形的相關(guān)知識。(出示直角三角形、銳角三角形、鈍角三角形)。

(設(shè)計意圖:讓學(xué)生經(jīng)歷質(zhì)疑驗(yàn)證結(jié)論這樣的思維過程,真正整體感知三角形內(nèi)角和的知識,真正驗(yàn)證了“實(shí)踐出真知”的道理,這樣的教學(xué),將三角形內(nèi)角和置于平面圖形內(nèi)角和的大背景中,拓展了三角形內(nèi)角和的數(shù)學(xué)知識背景,滲透數(shù)學(xué)知識之間的聯(lián)系,有效地避免了新知識的“橫空出現(xiàn)”。同時,培養(yǎng)學(xué)生的綜合素養(yǎng))。

1、讀學(xué)卡的學(xué)習(xí)目標(biāo)、任務(wù)目標(biāo),做到心里有數(shù)。

4、驗(yàn)證:

(1)初證:用一副三角板說明直角三角形的內(nèi)角和是180°。

(2)質(zhì)疑:三角板是特殊的直角三角形,不具有普遍性,不能代表所有三角形。

(3)再證:請按學(xué)卡提示,拿出學(xué)具,選擇自己喜歡的方式驗(yàn)證三角形的內(nèi)角和是180°(師巡視)。

(4)匯報結(jié)論(清楚明白的給小組加優(yōu)秀10分)。

5、結(jié)論:修改板書,把“?”去掉,寫“是”。

6、追問:把兩塊三角板拼在一起,拼成的大三角形的內(nèi)角和是多少?說明三角形無論大小它的內(nèi)角和都是180°(課件演示)。

7、看微課感知“偉大的發(fā)現(xiàn)”(設(shè)計意圖:讓學(xué)生感受自己所做的和帕斯卡發(fā)現(xiàn)三角形內(nèi)角和是180°的過程是一樣的,從而培養(yǎng)孩子的自信心和創(chuàng)造力。)。

1、填空。

(1)一個三角形,它的兩個內(nèi)角度數(shù)之和是110,第三個內(nèi)角是().

(2)一個直角三角形的一個銳角是50,則另一個銳角是()。

(3)等邊三角形的3個內(nèi)角都是()。

(4)一個等腰三角形,它的一個底角是50,那么它的頂角是()。

(5)一個等腰三角形的頂角是60,這個三角形也是()三角形。

2、判斷。

(1)一個三角形中最多有兩個直角。()。

(2)銳角三角形任意兩個內(nèi)角的和大于90。()。

(3)有一個角是60的等腰三角形不一定是等邊三角形。()。

(4)三角形任意兩個內(nèi)角的和都大于第三個內(nèi)角。()。

(5)直角三角形中的兩個銳角的和等于90。()。

根據(jù)所學(xué)的知識,你能想辦法求出四邊形、五邊形的內(nèi)角和嗎?

1、小組討論。

2、匯報結(jié)果。

3、課件提示幫助理解。

教學(xué)反思。

今天我講了《三角形內(nèi)角和》這部分內(nèi)容,學(xué)生其實(shí)通過不同途徑已經(jīng)知道三角形內(nèi)角和是180°,是不是說這節(jié)課的重難點(diǎn)就已經(jīng)突破了,只要學(xué)生能應(yīng)用知識解決問題就算是達(dá)到這節(jié)課的教學(xué)目標(biāo)了呢?我想應(yīng)該好好思考教材背后要傳遞的東西。

任何規(guī)律的發(fā)現(xiàn)都要經(jīng)過一個猜測、驗(yàn)證的過程,不經(jīng)歷這個探究的過程,學(xué)生對于這一內(nèi)容的認(rèn)識就不深刻,聰明的孩子還會懷疑三角形內(nèi)角和是180°嗎?。因此這個結(jié)論必須由實(shí)踐操作得出結(jié)論。所以最終我把本課定為一個實(shí)踐探究課。

如何開篇點(diǎn)題,是我這次要解決的第一個問題。怎樣才能讓學(xué)生由已知順利轉(zhuǎn)向?qū)ξ粗奶角?,怎樣直接轉(zhuǎn)向研究三個角的“和”的問題呢?因此我只設(shè)計了三個簡單的問題然學(xué)生快速進(jìn)入主題。

如何驗(yàn)證內(nèi)角和是180°,是我一直比較糾結(jié)的環(huán)節(jié)。由于小學(xué)生的知識背景有限,無法利用證明給予嚴(yán)格的驗(yàn)證。只能通過動手操作、空間想象來讓孩子體會,這些都有“實(shí)驗(yàn)”的特點(diǎn),那么就都會有誤差,其實(shí)都無法嚴(yán)格的證明。但是這節(jié)課我們除了要尊重知識的嚴(yán)謹(jǐn)還應(yīng)該尊重孩子的認(rèn)知。如果通過剪拼、折疊、想象后,還有的孩子認(rèn)為三角形內(nèi)角和是180°值得懷疑的話,這無非也是件好事,說明孩子體會到了這些方法的不嚴(yán)謹(jǐn),同時對知識有一種尊重,對自己的操作結(jié)果充滿自信,否則拼個差不多也可以簡單的認(rèn)同了內(nèi)角和是180°。

本節(jié)課的練習(xí)的設(shè)置也是努力做到有梯度、有趣味、有拓展。從開始的搶答內(nèi)角和體會三角形內(nèi)角和跟大小無關(guān)、跟形狀無關(guān),到已知兩個角的度數(shù)求第三個角,這些都是鞏固。之后的,求拼接兩個完全一樣的直角三角形后,得到的圖形的內(nèi)角和是多少度,求被剪開的三角形,形成的新圖形的內(nèi)角和是多少度,這些都是對三角形內(nèi)角和的一次拓展。讓學(xué)生的認(rèn)知發(fā)生沖突,提出挑戰(zhàn)。

給學(xué)生一個平臺,她會給你一片精彩。通過動手操作來驗(yàn)證內(nèi)角和是否是180°,學(xué)生最容易出現(xiàn)的就是把3個角剪下來拼一拼,個別人可能會想到折的方法。而這節(jié)課上有個小姑娘研究的是直角三角形,她的折法很巧妙,將兩個銳角折過來,剛好拼成一個直角,這個直角和原來三角形已有的直角就重疊在了一起,兩個直角就180°。雖然我知道這樣的方法,但是通過試講,孩子們沒有這樣的表現(xiàn),我就沒有奢求什么。但是今天的課堂太豐富多元了。這樣的方法都出現(xiàn)了讓我覺得特別值得肯定。為什么會這樣呢?我想還是因?yàn)槲医o了他們足夠的時間去思考。當(dāng)有了空間,孩子才會施展他們的才華。這是我的一大收獲。

前邊驗(yàn)證時間過多,到練習(xí)時間就有些少,特別是求四邊形和六邊形內(nèi)角和時,給的時間過短,學(xué)生沒有充分思維。

總而言之,這次的公開課,給了我一次學(xué)習(xí)和鍛煉的機(jī)會。在教案設(shè)計時,該怎么樣把每一個環(huán)節(jié)落實(shí)到位,怎么樣說好每一句話,預(yù)設(shè)好每一個環(huán)節(jié),在教研中聽取各位教師的點(diǎn)評,讓我有了茅塞頓開的感覺。在此,我衷心感謝數(shù)學(xué)團(tuán)隊教師對我中肯的評價,感謝他們對我的直言不諱,無私奉獻(xiàn)自己的想法,讓我在教學(xué)中,能夠在一個輕松和諧的教學(xué)氛圍中與學(xué)生共同去探討,去發(fā)現(xiàn),去學(xué)習(xí)。

三角形的內(nèi)角和教學(xué)設(shè)計篇五

(一)知識與技能:掌握“三角形內(nèi)角和定理”的證明及其簡單應(yīng)用,讓學(xué)生探索發(fā)現(xiàn)三角形的內(nèi)角和是180。

(二)過程與方法:通過量算、撕拼、折拼等活動培養(yǎng)學(xué)生觀察、操作、探究、歸納、概括、反思等能力和初步的空間想象力,感受數(shù)學(xué)的轉(zhuǎn)化思想;發(fā)展學(xué)生的空間觀念和初步的邏輯思維能力;能運(yùn)用所學(xué)知識解決簡單的問題,訓(xùn)練學(xué)生對所學(xué)知識的運(yùn)用能力。

(三)情感態(tài)度與價值觀:

1、滲透轉(zhuǎn)化遷移思想,培養(yǎng)學(xué)生大膽質(zhì)疑的勇氣和嚴(yán)謹(jǐn)科學(xué)的精神,及與他人合作交流的意識。

2、讓學(xué)生切實(shí)感受到從實(shí)驗(yàn)中得到的現(xiàn)象,經(jīng)過簡單的推理證明以后可以成為我們的一般公理,初步感受從個別到一般的思維過程。

教學(xué)重點(diǎn):

讓學(xué)生經(jīng)歷“三角形內(nèi)角和是180度”這一知識的形成、發(fā)展和應(yīng)用的全過程;知道三角形的內(nèi)角和是180度并且能應(yīng)用。

教學(xué)難點(diǎn):

教學(xué)過程:

一、激趣引入。

1、畫三角形。

2、畫有兩個直角的三角形。

二、探究新知。

60°+30°+90°=180°。

45°+45°+90°=180°。

1、小組合作完成。

2、匯報。

第一種:通過度量完成。

第二種:通過撕拼或者折拼完成。

第三類:通過長方形推算得出。

其他類。

3、小結(jié):

(課件演示)剛才同學(xué)們用量、折、剪、拼、計算、推理等這么多巧妙的方法得出,無論是什么樣的三角形的內(nèi)角和都是180°,你們真不錯,讓我們帶著自豪的語氣大聲地讀出“三角形的內(nèi)角和是180°”

4、知識升華:

三、實(shí)踐檢驗(yàn)。

2、老師不小心把墨水倒在了三角形上,你知道它的度數(shù)嗎?

3、數(shù)學(xué)日記。

四、評價樹。

你對自己的評價。

結(jié)束語:

數(shù)學(xué)是一棵大樹,三角形只是它的一片葉子;

生活是一棵大樹,數(shù)學(xué)只是它的一片葉子,

讓我們欣賞著、享受著三角形為生活添得美!

三角形的內(nèi)角和教學(xué)設(shè)計篇六

遵循由特殊到一般的規(guī)律進(jìn)行探究活動是這節(jié)課設(shè)計的主要特點(diǎn)之一。學(xué)生對三角尺上每個角的度數(shù)比較熟悉,就從這里入手。先讓學(xué)生算出每塊三角尺三個內(nèi)角的和是180°,引發(fā)學(xué)生的猜想:其它三角形的內(nèi)角和也是180°嗎?接著,引導(dǎo)學(xué)生小組合作,任意畫出不同類型的三角形,用通過量一量、算一算,得出三角形的內(nèi)角和是180°或接近180°(測量誤差),再引導(dǎo)學(xué)生通過剪拼的方法發(fā)現(xiàn):各類三角形的三個內(nèi)角都可以拼成一個平角。再利用課件演示進(jìn)一步驗(yàn)證,由此獲得三角形的內(nèi)角和是180°的結(jié)論。這一系列活動潛移默化地向?qū)W生滲透了“轉(zhuǎn)化”數(shù)學(xué)思想,為后繼學(xué)習(xí)奠定了必要的基礎(chǔ)。

最后讓學(xué)生運(yùn)用結(jié)論解決實(shí)際問題,練習(xí)的安排上,注意練習(xí)層次,共安排三個層次,逐步加深。練習(xí)形式具有趣味性,激發(fā)了學(xué)生主動解題的積極性。第一個練習(xí)從知識的直接應(yīng)用到間接應(yīng)用,數(shù)學(xué)信息的出現(xiàn)從比較顯現(xiàn)到較為隱藏。這些題檢測不同層次的學(xué)生是否掌握所學(xué)知識應(yīng)該達(dá)到的基本要求,顧及到智力水平發(fā)展較慢和中等的同學(xué),第3個練習(xí)設(shè)計了開放性的練習(xí),在小組內(nèi)完成。由一個同學(xué)出題,其它三個同學(xué)回答。先給出三角形兩個內(nèi)角的度數(shù),說出另外一個內(nèi)角。有唯一的答案。訓(xùn)練多次后,只給出三角形一個內(nèi)角,說出其它兩個內(nèi)角,答案不唯一,可以得出無數(shù)個答案。讓學(xué)生在游戲中消除疲倦激發(fā)興趣,拓展學(xué)生思維。兼顧到智力水平發(fā)展較快的同學(xué)。在整個教學(xué)設(shè)計中,本著“學(xué)貴在思,思源于疑”的思想,不斷創(chuàng)設(shè)問題情境,讓學(xué)生去實(shí)驗(yàn)、去發(fā)現(xiàn)新知識的奧妙,從而讓學(xué)生在動手操作、積極探索的活動中掌握知識,積累數(shù)學(xué)活動經(jīng)驗(yàn),發(fā)展空間觀念和推理能力。

1、讓學(xué)生親自動手,通過量、剪、拼等活動發(fā)現(xiàn)、證實(shí)三角形內(nèi)角和是180°,并會應(yīng)用這一知識解決生活中簡單的實(shí)際問題。

2、讓學(xué)生在動手獲取知識的過程中,培養(yǎng)學(xué)生的創(chuàng)新意識、探索精神和實(shí)踐能力。并通過動手操作把三角形內(nèi)角和轉(zhuǎn)化為平角的探究活動,向?qū)W生滲透“轉(zhuǎn)化”數(shù)學(xué)思想。

3、使學(xué)生體驗(yàn)成功的喜悅,激發(fā)學(xué)生主動學(xué)習(xí)數(shù)學(xué)的興趣。

三角形的內(nèi)角和是三角形的一個重要特征。本課是安排在學(xué)習(xí)三角形的概念及分類之后進(jìn)行的,它是學(xué)生以后學(xué)習(xí)多邊形的內(nèi)角和及解決其它實(shí)際問題的基礎(chǔ)。學(xué)生在掌握知識方面:已經(jīng)掌握了三角形的分類,比較熟悉平角等有關(guān)知識;能力方面:經(jīng)過三年多的學(xué)習(xí),已具備了初步的動手操作能力和主動探究能力以及合作學(xué)習(xí)的習(xí)慣。

因此,教材很重視知識的探索與發(fā)現(xiàn),安排了一系列的實(shí)驗(yàn)操作活動。教材呈現(xiàn)教學(xué)內(nèi)容時,不但重視體現(xiàn)知識的形成過程,而且注意留給學(xué)生充分進(jìn)行自主探索和交流的空間,為教師靈活組織教學(xué)提供了清晰的思路。概念的形成沒有直接給出結(jié)論,而是通過量、算、拼等活動,讓學(xué)生探索、實(shí)驗(yàn)、發(fā)現(xiàn)、討論交流、推理歸納出三角形的內(nèi)角和是180°。

讓學(xué)生經(jīng)歷“三角形內(nèi)角和是180°”這一知識的形成、發(fā)展和應(yīng)用的全過程。

多媒體課件、學(xué)具。

師:我們已經(jīng)認(rèn)識了什么是三角形,誰能說出三角形有什么特點(diǎn)?

生1:三角形是由三條線段圍成的圖形。

生2:三角形有三個角,……。

師:請看屏幕(課件演示三條線段圍成三角形的過程)。

師:三條線段圍成三角形后,在三角形內(nèi)形成了三個角,(課件分別閃爍三個角及的弧線),我們把三角形里面的這三個角分別叫做三角形的內(nèi)角。(這里,有必要向?qū)W生直觀介紹“內(nèi)角”。)。

(二)設(shè)疑,激發(fā)學(xué)生探究新知的心理。

師:請同學(xué)們幫老師畫一個三角形,能做到嗎?(激發(fā)學(xué)生主動學(xué)習(xí)的心理)。

生:能。

師:請聽要求,畫一個有兩個內(nèi)角是直角的三角形,開始。(設(shè)置矛盾,使學(xué)生在矛盾中去發(fā)現(xiàn)問題、探究問題。)。

師:有誰畫出來啦?

生1:不能畫。

生2:只能畫兩個直角。

生3:只能畫長方形。

師(課件演示):是不是畫成這個樣子了?哦,只能畫兩個直角。

師:問題出現(xiàn)在哪兒呢?這一定有什么奧秘?想不想知道?

生:想。

師:那就讓我們一起來研究吧!

(揭示矛盾,巧妙引入新知的探究)。

師:請看屏幕。(播放課件)熟悉這副三角板嗎?請拿出形狀與這塊一樣的三角板,并同桌互相指一指各個角的度數(shù)。(課件閃動其中的一塊三角板)。

生:90°、60°、30°。(課件演示:由三角板抽象出三角形)。

師:也就是這個三角形各角的度數(shù)。它們的和怎樣?

生:是180°。

師:你是怎樣知道的?

生:90°+60°+30°=180°。

師:對,把三角形三個內(nèi)角的度數(shù)合起來就叫三角形的內(nèi)角和。

師:(課件演示另一塊三角板的各角的度數(shù)。)這個呢?它的內(nèi)角和是多少度呢?

生:90°+45°+45°=180°。

師:從剛才兩個三角形內(nèi)角和的計算中,你發(fā)現(xiàn)什么?

生2:這兩個三角形都是直角三角形,并且是特殊的三角形。

1、猜一猜。

師:猜一猜其它三角形的內(nèi)角和是多少度呢?同桌互相說說自己的看法。

生1:180°。

生2:不一定。

……。

(1)小組合作、進(jìn)行探究。

師:所有三角形的內(nèi)角和究竟是不是180°,你能用什么辦法來證明,使別人相信呢?

生:可以先量出每個內(nèi)角的度數(shù),再加起來。

師:哦,也就是測量計算,是嗎?那就請四人小組共同研究吧!

師:每個小組都有不同類型的三角形。每種類型的三角形都需要驗(yàn)證,先討論一下,怎樣才能很快完成這個任務(wù)。(課前每個小組都發(fā)有銳角三角形、直角三角形、鈍角三角形,指導(dǎo)學(xué)生選擇解決問題的策略,進(jìn)行合理分工,提高效率。)。

(2)小組匯報結(jié)果。

師:請各小組匯報探究結(jié)果。

生1:180°。

生2:175°。

生3:182°。

師:沒有得到統(tǒng)一的結(jié)果。這個辦法不能使人很信服,怎么辦?還有其它辦法嗎?

生1:有。

生2:用拼合的辦法,就是把三角形的三個內(nèi)角放在一起,可以拼成一個平角。

師:怎樣才能把三個內(nèi)角放在一起呢?

生:把它們剪下來放在一起。

1、用拼合的方法驗(yàn)證。

師:很好,請用不同的三角形來驗(yàn)證。

師:小組內(nèi)完成,仍然先分工怎樣才能很快完成任務(wù),開始吧。

2、匯報驗(yàn)證結(jié)果。

師:先驗(yàn)證銳角三角形,我們得出什么結(jié)論?

生1:銳角三角形的內(nèi)角拼在一起是一個平角,所以銳角三角形的內(nèi)角和是180°。

3、課件演示驗(yàn)證結(jié)果。

師:請看屏幕,老師也來驗(yàn)證一下,是不是跟你們得到的結(jié)果一樣?(播放課件)。

師:我們可以得出一個怎樣的結(jié)論?

師:為什么用測量計算的方法不能得到統(tǒng)一的結(jié)果呢?

生1:量的不準(zhǔn)。

生2:有的量角器有誤差。

師:對,這就是測量的誤差。

三角形的內(nèi)角和教學(xué)設(shè)計篇七

一、構(gòu)建新的課堂教學(xué)模式。

傳統(tǒng)的教學(xué)往往只重視對結(jié)論的記憶和模仿,而這節(jié)課老師把學(xué)生的學(xué)習(xí)定位在自主建構(gòu)知識的基礎(chǔ)上,建立了“猜想——驗(yàn)證——?dú)w納——運(yùn)用”的教學(xué)模式。

二、培養(yǎng)學(xué)生勇于猜想,大膽創(chuàng)新的精神。

教學(xué)中老師遵循的基本教學(xué)原則是激勵學(xué)生展開積極的思維活動。先創(chuàng)設(shè)猜角的游戲情景,讓學(xué)生對三角形的三個角的度數(shù)關(guān)系產(chǎn)生好奇,引發(fā)學(xué)生的探究欲望。

三、為學(xué)生提供了大量數(shù)學(xué)活動的機(jī)會,讓學(xué)生真正成為學(xué)習(xí)的主人。

“給學(xué)生一些權(quán)利,讓他們自己選擇;讓他們自己去鍛煉;給學(xué)生一些問題,讓他們自己去探索;給學(xué)生一片空間,讓學(xué)生自己飛翔?!边@正是課堂教學(xué)改革中學(xué)生的主體性的表現(xiàn)。所以在這節(jié)課中老師樹立了數(shù)學(xué)教學(xué)為學(xué)生服務(wù),創(chuàng)設(shè)有助于學(xué)生自主學(xué)習(xí),合作交流的機(jī)會,通過想辦法求三角形的內(nèi)角和這一核心問題,引發(fā)學(xué)生去思考,去探究。這樣學(xué)生的潛能的以激活,思維展開了想象,能力得以發(fā)展。

四、給學(xué)生一個開放探究的學(xué)習(xí)空間。

培養(yǎng)學(xué)生的問題意識是數(shù)學(xué)課堂教學(xué)的核心問題,所以課堂上學(xué)生的學(xué)習(xí)過程就是解決問題的過程,當(dāng)一個問題解決完后又引發(fā)出新的問題,使學(xué)生體會到成功的喜悅,使數(shù)學(xué)課堂充滿挑戰(zhàn)。所以課堂上老師沒有因?qū)W生發(fā)現(xiàn)三角形內(nèi)角和是180度而罷休,然后用一個大的三角形剪成兩個小的,用兩個小的拼成大的內(nèi)角和延伸,使學(xué)生悟出規(guī)律,這樣學(xué)生帶著問題在課后向更高的學(xué)習(xí)目標(biāo)繼續(xù)探索,一追求更大的成功。

一堂好課不應(yīng)是自始至終的高潮和精彩,也不必是高科技現(xiàn)代教育技術(shù)的集中展示。一堂好課不是看它的熱鬧程度,而在于學(xué)生從中得到了什么,它留給人們的應(yīng)是思考、啟示和回味。

將本文的word文檔下載到電腦,方便收藏和打印。

三角形的內(nèi)角和教學(xué)設(shè)計篇八

在整個教學(xué)設(shè)計上謝老師充分體現(xiàn)“以學(xué)生發(fā)展為本”教育理念,將教學(xué)思路擬定為“談話激趣設(shè)疑導(dǎo)入——猜想——驗(yàn)證{自主探究}——鞏固內(nèi)化——拓展延伸”,努力構(gòu)建探索型的課堂教學(xué)模式。具體體現(xiàn)在以下幾點(diǎn):

1、善用激趣設(shè)疑導(dǎo)入:教學(xué)的藝術(shù)不在于傳授知識,而在于喚醒、激發(fā)和鼓勵。剛開始上課,謝老師用選王大會設(shè)懸念,三種類型的角在激烈的爭執(zhí),到的誰的內(nèi)角和大呢?這樣,在很短的時間內(nèi)最大限度的激發(fā)學(xué)生探究數(shù)學(xué)的愿望和興趣,而且也很自然地揭示了課題。

2、巧用猜想:學(xué)生有了探索的愿望和興趣,可是不能沒有目標(biāo)的去探索,那樣只會事倍功半,甚至沒有結(jié)果,這時謝老師就提到到底三角形的內(nèi)角和是不是180度呢,我們總不能口說無憑吧?使后邊的探索和驗(yàn)證活動有了明確的目標(biāo)。

3、善用驗(yàn)證{自主探索}:學(xué)生形成統(tǒng)一的猜想{即三角形的內(nèi)角和等于180度}后,謝老師就把課堂大量的時間和空間留給學(xué)生,讓他們開展有針對性的數(shù)學(xué)探究活動{即驗(yàn)證三角形的內(nèi)角和是否是180度?},在活動中,把放和引有機(jī)的結(jié)合,鼓勵學(xué)生積極開動腦筋,從不同的途徑探索解決問題的方法。不但讓每個學(xué)生自主參與驗(yàn)證活動,而且使學(xué)生在經(jīng)歷觀察、操作、分析、推理和想象活動過程中解決問題,發(fā)展空間觀念和論證推理能力。具體過程為:量一量——拼一拼——看一看。

4、善于引導(dǎo)鞏固內(nèi)化:俗話說的好:“熟能生巧”。數(shù)學(xué)離不開練習(xí),要掌握知識,形成技能技巧,一定要通過練習(xí)。養(yǎng)成良好的思維品質(zhì)也要通過一定的思考練習(xí),課程標(biāo)準(zhǔn)提倡練習(xí)的有效性。對此,謝老師非常注意將數(shù)學(xué)的思考融入不同層次的練習(xí)之中,很好的發(fā)揮練習(xí)的作用,如第一關(guān)牛刀小試:給出一個三角形的兩個角度,學(xué)生求第三個角,從中培養(yǎng)學(xué)生應(yīng)用意識和解決問題的能力;第三關(guān)過關(guān)斬將:讓學(xué)生判斷有兩個小三角形拼成的三角形的內(nèi)角和的度數(shù),使學(xué)生在圖形變化的過程中掌握知識,培養(yǎng)思維的靈活性,從中發(fā)展學(xué)生的空間觀念和空間想象能力。這些練習(xí)設(shè)計目的明確,針對性強(qiáng),使學(xué)生不但鞏固了知識,更重要的是數(shù)學(xué)思維得到不斷的發(fā)展。

5、有一定的拓展創(chuàng)新:數(shù)學(xué)具有嚴(yán)密的邏輯性和抽象性。而學(xué)生學(xué)習(xí)內(nèi)容的呈現(xiàn)是從簡單到復(fù)雜,思維方式是從具體到抽象的一個循序漸進(jìn)的過程,前面學(xué)習(xí)的知識往往是后面進(jìn)一步學(xué)習(xí)的基礎(chǔ)。要培養(yǎng)學(xué)生思維的靈活性,可以先讓學(xué)生學(xué)會對知識的遷移。本課最后,謝老師設(shè)計了這樣一道題目:學(xué)了三角形的內(nèi)角和后,你知道四邊形的內(nèi)角和是多少度嗎?這道題通過對本節(jié)課所學(xué)知識的遷移就可以完成,既能對學(xué)生進(jìn)行思維訓(xùn)練,又能培養(yǎng)學(xué)生應(yīng)用知識的能力,更能培養(yǎng)學(xué)生的創(chuàng)新意識和創(chuàng)新精神。

總之,本節(jié)課教學(xué)活動中謝老師充分體現(xiàn)以下特點(diǎn):以學(xué)生發(fā)展為本,以學(xué)生為主體,思維為主線的思想;充分關(guān)注學(xué)生的自主探究與合作交流;練習(xí)體現(xiàn)了層次性,知識技能得于落實(shí)和發(fā)展。是一節(jié)非常成功的課。

三角形的內(nèi)角和教學(xué)設(shè)計篇九

課程標(biāo)準(zhǔn)這樣描述:通過觀察、操作了解三角形內(nèi)角和是180。

分析教材內(nèi)容,在上學(xué)期的學(xué)習(xí)中學(xué)生已經(jīng)掌握了角的`分類及度量的知識。在本課之前,學(xué)生又研究了三角形的特性、三邊間的關(guān)系及三角形的分類等知識。積累了一些有關(guān)三角形的知識和經(jīng)驗(yàn),形成了一定的空間觀念,可以在比較抽象的水平上進(jìn)一步認(rèn)識三角形,探索新知。教材中安排了學(xué)生對不同形狀的、大小的三角形進(jìn)行度量,再運(yùn)用拼、折、剪等方法發(fā)現(xiàn)三角形的內(nèi)角和是180°,學(xué)好它有助于學(xué)生理解三角形的三個內(nèi)角之間的關(guān)系,也是進(jìn)一步學(xué)習(xí)其他圖形內(nèi)角和的基礎(chǔ),同時為初中進(jìn)一步論證做好準(zhǔn)備。

課前我對學(xué)情進(jìn)行了分析:

1、學(xué)生在學(xué)習(xí)本課前已經(jīng)掌握了銳角、直角、鈍角、平角和周角的度數(shù),認(rèn)識了三角形的基本特征及其分類,由于學(xué)生的數(shù)學(xué)知識、能力和思考問題的角度有一定的差異,因此比較容易出現(xiàn)解決問題策略的多樣化。

2、已經(jīng)有不少學(xué)生知道了三角形內(nèi)角和是180度的結(jié)論,但是很可能都知其然不知其所以然。

通過對課程標(biāo)準(zhǔn)的認(rèn)識,以及內(nèi)容分析和學(xué)情分析,我制定了這樣的學(xué)習(xí)目標(biāo):

1、通過量、拼、折、剪等方法探索和發(fā)現(xiàn)三角形的內(nèi)角和等于180°并會應(yīng)用這一規(guī)律解決實(shí)際的問題。

2、通過研究直角三角形進(jìn)而研究銳角三角形、鈍角三角形,初步認(rèn)識、理解由特殊到一般的邏輯思辨方法。

針對這一目標(biāo)的完成,我設(shè)計了一下評價方式:

1、交流式評價:通過師生、生生對話交流,在交流中對學(xué)生進(jìn)行評價。

2、表現(xiàn)性評價:通過小組討論表現(xiàn)、學(xué)生回答問題情況,適當(dāng)對學(xué)生進(jìn)行點(diǎn)撥。

1、通過3個練習(xí)題(1、做一做。2、說一說.3、拼一拼、想一想。)。

檢測學(xué)習(xí)目標(biāo)1的掌握情況。

2、通過小組、同桌合作、匯報,教師引導(dǎo)學(xué)生理解本節(jié)課所蘊(yùn)含的學(xué)習(xí)方法,檢測學(xué)習(xí)目標(biāo)2的掌握情況。

教具準(zhǔn)備:課件、3個直角三角形,2個銳角三角形、2個鈍角三角形、一張表格。

學(xué)具準(zhǔn)備:三角板、量角器。

這節(jié)課的教學(xué)我通過一下四個環(huán)節(jié)完成。

1、觀察猜測,引入新知;

2、動手操作,探索新知;

3、鞏固新知,拓展應(yīng)用;

4、總結(jié)評價、延伸知識。

第一環(huán)節(jié),觀察猜測,引入新知。

由圖形引入,讓學(xué)生指出銳角三角形,直角三角形,鈍角三角形的三個內(nèi)角,發(fā)現(xiàn)在這些三角形中最大的內(nèi)角是鈍角。問:想看鈍角三角形72變嗎?我們一起來看一看。課件演示:

(1)鈍角變小,另外兩個角怎樣變?

(2)鈍角變大,另外兩個角怎樣變?

(3)鈍角變大、變大、變大再變大,還能再大嗎?發(fā)現(xiàn)再大就成平角了。平角多少度?這時把三角形三個內(nèi)角的加起來,和可能多少呢?猜測:180度。

第二環(huán)節(jié),動手操作,探索新知。

先讓學(xué)生觀察一副三角板的內(nèi)角和,發(fā)現(xiàn)都是180度,和猜測是一樣的,是不是所有的直角三角形內(nèi)角和都是180度呢?課件出示一些直角三角形,讓學(xué)生用手中的工具驗(yàn)證你的猜測。

四人小組合作,拿出學(xué)具袋里三個紅色的直角三角形和表格,用不同的方法驗(yàn)證猜測。學(xué)生可以“量一量”,也可以“剪一剪”,還可以“折一折”。匯報時要讓學(xué)生說一說方法,同時在課件上展示。

這個環(huán)節(jié)引導(dǎo)學(xué)生通過量、拼、推理等實(shí)踐操作活動,自主探究直角三角形的內(nèi)角和是180度,體驗(yàn)解決問題策略的多樣化。通過這些過程使學(xué)生明白:探究問題有不同的方法、途徑,并且方法之間可以互為驗(yàn)證,達(dá)到結(jié)論的統(tǒng)一,從而使學(xué)生明白獲得探究問題的方法比獲得結(jié)論更為重要。

課件出示將銳角三角形、鈍角三角形,問:你能利用我們剛才學(xué)到的知識來研究它們的內(nèi)角和嗎?動手試一試,可以同桌討論。(學(xué)生操作,匯報,課件演示)讓學(xué)生模仿老師操作說理。由此得到了銳角三角形和鈍角三角形的內(nèi)角和也是180度。我們就可以說所有三角形的內(nèi)角和都是180度。這是三角形的一個特性。

這樣引導(dǎo)學(xué)生通過直角三角形的內(nèi)角和是180度來推導(dǎo)出銳角和鈍角三角形的內(nèi)角和是180度,使學(xué)生初步掌握由特殊到一般的邏輯思辨方法。

第三環(huán)節(jié)、鞏固新知,拓展應(yīng)用。

用三角形的這一特性來解決一些問題。

1、基本練習(xí)。

通過做一做和說一說這兩個練習(xí)來強(qiáng)化學(xué)生認(rèn)知。

2、拓展練習(xí)。

拼一拼、想一想。

(1)兩個三角形拼成大三角形,說出大三角形的內(nèi)角和。

(2)一個三角形去掉一部分。

引導(dǎo)學(xué)生發(fā)現(xiàn),無論三角形的形狀或大小如何改變,內(nèi)角和都是180度,看來三角形的內(nèi)角和度數(shù)和他的大小形狀都無關(guān)。

(3)再把這個三角形剪去一部分剪成一個四邊形,它的內(nèi)角和是多少度?

(4)如果變成五邊形,你還能求出他的度數(shù)嗎?

充分利用多媒體資源幫助學(xué)生理解、消化、新的知識,能夠靈活的運(yùn)用三角形的內(nèi)角和等于180度。在此基礎(chǔ)上滲透數(shù)學(xué)的“轉(zhuǎn)化”思想和“分割”思想提高學(xué)生靈活運(yùn)用和推理等各方面的能力。

第四環(huán)節(jié)、總結(jié)評價、延伸知識。

通過這個環(huán)節(jié)讓學(xué)生談一談自己的收獲或感受,對本節(jié)課的知識進(jìn)行拓展升華。

猜測(180度)。

驗(yàn)證:測量、撕拼、折疊結(jié)論。

我的板書簡明扼要,體現(xiàn)了本節(jié)課的重點(diǎn),而且是對本節(jié)課學(xué)習(xí)方法的一個回顧。

三角形的內(nèi)角和教學(xué)設(shè)計篇十

教學(xué)內(nèi)容:。

教材第67頁例6、“做一做”及教材第69頁練習(xí)十六第1~3題。

教學(xué)目標(biāo):。

1.通過動手操作,使學(xué)生理解并掌握三角形的內(nèi)角和是180°的結(jié)論。

2.能運(yùn)用三角形的內(nèi)角和是180°這一結(jié)論,求三角形中未知角的度數(shù)。

3.培養(yǎng)學(xué)生動手動腦及分析推理能力。

重點(diǎn)難點(diǎn):。

教學(xué)準(zhǔn)備:。

導(dǎo)學(xué)過程。

1、什么是平角?平角是多少度?

2、計算角的度數(shù)。

3、回憶三角形的相關(guān)知識。(出示直角三角形、銳角三角形、鈍角三角形)。

(設(shè)計意圖:讓學(xué)生經(jīng)歷質(zhì)疑驗(yàn)證結(jié)論這樣的思維過程,真正整體感知三角形內(nèi)角和的知識,真正驗(yàn)證了“實(shí)踐出真知”的道理,這樣的教學(xué),將三角形內(nèi)角和置于平面圖形內(nèi)角和的大背景中,拓展了三角形內(nèi)角和的數(shù)學(xué)知識背景,滲透數(shù)學(xué)知識之間的聯(lián)系,有效地避免了新知識的“橫空出現(xiàn)”。同時,培養(yǎng)學(xué)生的綜合素養(yǎng))。

1、讀學(xué)卡的學(xué)習(xí)目標(biāo)、任務(wù)目標(biāo),做到心里有數(shù)。

4、驗(yàn)證:

(1)初證:用一副三角板說明直角三角形的內(nèi)角和是180°。

(2)質(zhì)疑:三角板是特殊的直角三角形,不具有普遍性,不能代表所有三角形。

(3)再證:請按學(xué)卡提示,拿出學(xué)具,選擇自己喜歡的方式驗(yàn)證三角形的內(nèi)角和是180°(師巡視)。

(4)匯報結(jié)論(清楚明白的給小組加優(yōu)秀10分)。

5、結(jié)論:修改板書,把“?”去掉,寫“是”。

6、追問:把兩塊三角板拼在一起,拼成的大三角形的內(nèi)角和是多少?說明三角形無論大小它的內(nèi)角和都是180°(課件演示)。

7、看微課感知“偉大的發(fā)現(xiàn)”(設(shè)計意圖:讓學(xué)生感受自己所做的和帕斯卡發(fā)現(xiàn)三角形內(nèi)角和是180°的過程是一樣的,從而培養(yǎng)孩子的自信心和創(chuàng)造力。)。

1、填空。

(1)一個三角形,它的兩個內(nèi)角度數(shù)之和是110,第三個內(nèi)角是().

(2)一個直角三角形的一個銳角是50,則另一個銳角是()。

(4)一個等腰三角形,它的一個底角是50,那么它的頂角是()。

(5)一個等腰三角形的頂角是60,這個三角形也是()三角形。

2、判斷。

(1)一個三角形中最多有兩個直角。()。

(3)有一個角是60的等腰三角形不一定是等邊三角形。()。

(4)三角形任意兩個內(nèi)角的和都大于第三個內(nèi)角。()。

(5)直角三角形中的兩個銳角的和等于90。()。

根據(jù)所學(xué)的知識,你能想辦法求出四邊形、五邊形的內(nèi)角和嗎?

1、小組討論。2、匯報結(jié)果。3、課件提示幫助理解。

教學(xué)反思。

今天我講了《三角形內(nèi)角和》這部分內(nèi)容,學(xué)生其實(shí)通過不同途徑已經(jīng)知道三角形內(nèi)角和是180°,是不是說這節(jié)課的重難點(diǎn)就已經(jīng)突破了,只要學(xué)生能應(yīng)用知識解決問題就算是達(dá)到這節(jié)課的教學(xué)目標(biāo)了呢?我想應(yīng)該好好思考教材背后要傳遞的東西。

任何規(guī)律的發(fā)現(xiàn)都要經(jīng)過一個猜測、驗(yàn)證的過程,不經(jīng)歷這個探究的過程,學(xué)生對于這一內(nèi)容的認(rèn)識就不深刻,聰明的孩子還會懷疑三角形內(nèi)角和是180°嗎?。因此這個結(jié)論必須由實(shí)踐操作得出結(jié)論。所以最終我把本課定為一個實(shí)踐探究課。

如何開篇點(diǎn)題,是我這次要解決的第一個問題。怎樣才能讓學(xué)生由已知順利轉(zhuǎn)向?qū)ξ粗奶角?,怎樣直接轉(zhuǎn)向研究三個角的“和”的問題呢?因此我只設(shè)計了三個簡單的問題然學(xué)生快速進(jìn)入主題。

如何驗(yàn)證內(nèi)角和是180°,是我一直比較糾結(jié)的環(huán)節(jié)。由于小學(xué)生的知識背景有限,無法利用證明給予嚴(yán)格的驗(yàn)證。只能通過動手操作、空間想象來讓孩子體會,這些都有“實(shí)驗(yàn)”的特點(diǎn),那么就都會有誤差,其實(shí)都無法嚴(yán)格的證明。但是這節(jié)課我們除了要尊重知識的嚴(yán)謹(jǐn)還應(yīng)該尊重孩子的認(rèn)知。如果通過剪拼、折疊、想象后,還有的孩子認(rèn)為三角形內(nèi)角和是180°值得懷疑的話,這無非也是件好事,說明孩子體會到了這些方法的不嚴(yán)謹(jǐn),同時對知識有一種尊重,對自己的操作結(jié)果充滿自信,否則拼個差不多也可以簡單的認(rèn)同了內(nèi)角和是180°。

本節(jié)課的練習(xí)的設(shè)置也是努力做到有梯度、有趣味、有拓展。從開始的搶答內(nèi)角和體會三角形內(nèi)角和跟大小無關(guān)、跟形狀無關(guān),到已知兩個角的度數(shù)求第三個角,這些都是鞏固。之后的,求拼接兩個完全一樣的直角三角形后,得到的圖形的內(nèi)角和是多少度,求被剪開的三角形,形成的新圖形的內(nèi)角和是多少度,這些都是對三角形內(nèi)角和的一次拓展。讓學(xué)生的認(rèn)知發(fā)生沖突,提出挑戰(zhàn)。

給學(xué)生一個平臺,她會給你一片精彩。通過動手操作來驗(yàn)證內(nèi)角和是否是180°,學(xué)生最容易出現(xiàn)的就是把3個角剪下來拼一拼,個別人可能會想到折的方法。而這節(jié)課上有個小姑娘研究的是直角三角形,她的折法很巧妙,將兩個銳角折過來,剛好拼成一個直角,這個直角和原來三角形已有的直角就重疊在了一起,兩個直角就180°。雖然我知道這樣的方法,但是通過試講,孩子們沒有這樣的表現(xiàn),我就沒有奢求什么。但是今天的課堂太豐富多元了。這樣的方法都出現(xiàn)了讓我覺得特別值得肯定。為什么會這樣呢?我想還是因?yàn)槲医o了他們足夠的時間去思考。當(dāng)有了空間,孩子才會施展他們的才華。這是我的一大收獲。

前邊驗(yàn)證時間過多,到練習(xí)時間就有些少,特別是求四邊形和六邊形內(nèi)角和時,給的時間過短,學(xué)生沒有充分思維。

總而言之,這次的公開課,給了我一次學(xué)習(xí)和鍛煉的機(jī)會。在教案設(shè)計時,該怎么樣把每一個環(huán)節(jié)落實(shí)到位,怎么樣說好每一句話,預(yù)設(shè)好每一個環(huán)節(jié),在教研中聽取各位教師的點(diǎn)評,讓我有了茅塞頓開的感覺。在此,我衷心感謝數(shù)學(xué)團(tuán)隊教師對我中肯的評價,感謝他們對我的直言不諱,無私奉獻(xiàn)自己的想法,讓我在教學(xué)中,能夠在一個輕松和諧的教學(xué)氛圍中與學(xué)生共同去探討,去發(fā)現(xiàn),去學(xué)習(xí)。

三角形的內(nèi)角和教學(xué)設(shè)計篇十一

課程標(biāo)準(zhǔn)這樣描述:通過觀察、操作了解三角形內(nèi)角和是180。

分析教材內(nèi)容,在上學(xué)期的學(xué)習(xí)中學(xué)生已經(jīng)掌握了角的分類及度量的知識。在本課之前,學(xué)生又研究了三角形的特性、三邊間的關(guān)系及三角形的分類等知識。積累了一些有關(guān)三角形的知識和經(jīng)驗(yàn),形成了一定的空間觀念,可以在比較抽象的水平上進(jìn)一步認(rèn)識三角形,探索新知。教材中安排了學(xué)生對不同形狀的、大小的三角形進(jìn)行度量,再運(yùn)用拼、折、剪等方法發(fā)現(xiàn)三角形的內(nèi)角和是180°,學(xué)好它有助于學(xué)生理解三角形的三個內(nèi)角之間的關(guān)系,也是進(jìn)一步學(xué)習(xí)其他圖形內(nèi)角和的基礎(chǔ),同時為初中進(jìn)一步論證做好準(zhǔn)備。

課前我對學(xué)情進(jìn)行了分析:

1、學(xué)生在學(xué)習(xí)本課前已經(jīng)掌握了銳角、直角、鈍角、平角和周角的度數(shù),認(rèn)識了三角形的基本特征及其分類,由于學(xué)生的數(shù)學(xué)知識、能力和思考問題的角度有一定的差異,因此比較容易出現(xiàn)解決問題策略的多樣化。

2、已經(jīng)有不少學(xué)生知道了三角形內(nèi)角和是180度的結(jié)論,但是很可能都知其然不知其所以然。

通過對課程標(biāo)準(zhǔn)的認(rèn)識,以及內(nèi)容分析和學(xué)情分析,我制定了這樣的學(xué)習(xí)目標(biāo):

1、通過量、拼、折、剪等方法探索和發(fā)現(xiàn)三角形的內(nèi)角和等于180°并會應(yīng)用這一規(guī)律解決實(shí)際的問題。

2、通過研究直角三角形進(jìn)而研究銳角三角形、鈍角三角形,初步認(rèn)識、理解由特殊到一般的邏輯思辨方法。

針對這一目標(biāo)的完成,我設(shè)計了一下評價方式:

1、交流式評價:通過師生、生生對話交流,在交流中對學(xué)生進(jìn)行評價。

2、表現(xiàn)性評價:通過小組討論表現(xiàn)、學(xué)生回答問題情況,適當(dāng)對學(xué)生進(jìn)行點(diǎn)撥。

1、通過3個練習(xí)題(1、做一做。2、說一說3、拼一拼、想一想)

檢測學(xué)習(xí)目標(biāo)1的掌握情況。

教具準(zhǔn)備:課件、3個直角三角形,2個銳角三角形、2個鈍角三角形、一張表格

學(xué)具準(zhǔn)備:三角板、量角器.

這節(jié)課的教學(xué)我通過一下四個環(huán)節(jié)完成。

1、觀察猜測,引入新知;

2、動手操作,探索新知;

3、鞏固新知,拓展應(yīng)用;

4、總結(jié)評價、延伸知識。

第一環(huán)節(jié),觀察猜測,引入新知。

由圖形引入,讓學(xué)生指出銳角三角形,直角三角形,鈍角三角形的三個內(nèi)角,發(fā)現(xiàn)在這些三角形中最大的內(nèi)角是鈍角。問:想看鈍角三角形72變嗎?我們一起來看一看。課件演示:

(1)鈍角變小,另外兩個角怎樣變?

(2)鈍角變大,另外兩個角怎樣變?

(3)鈍角變大、變大、變大再變大,還能再大嗎?發(fā)現(xiàn)再大就成平角了。平角多少度?這時把三角形三個內(nèi)角的加起來,和可能多少呢?猜測:180度。

第二環(huán)節(jié),動手操作,探索新知。

1、直角三角形的內(nèi)角和。

(一)直角三角形內(nèi)角和

先讓學(xué)生觀察一副三角板的內(nèi)角和,發(fā)現(xiàn)都是180度,和猜測是一樣的,是不是所有的直角三角形內(nèi)角和都是180度呢?課件出示一些直角三角形,讓學(xué)生用手中的工具驗(yàn)證你的猜測。

四人小組合作,拿出學(xué)具袋里三個紅色的直角三角形和表格,用不同的方法驗(yàn)證猜測。學(xué)生可以“量一量”,也可以“剪一剪”,還可以“折一折”。匯報時要讓學(xué)生說一說方法,同時在課件上展示。

這個環(huán)節(jié)引導(dǎo)學(xué)生通過量、拼、推理等實(shí)踐操作活動,自主探究直角三角形的內(nèi)角和是180度,體驗(yàn)解決問題策略的多樣化。通過這些過程使學(xué)生明白:探究問題有不同的方法、途徑,并且方法之間可以互為驗(yàn)證,達(dá)到結(jié)論的統(tǒng)一,從而使學(xué)生明白獲得探究問題的方法比獲得結(jié)論更為重要。

(二)、銳角三角形、鈍角三角形的內(nèi)角和

課件出示將銳角三角形、鈍角三角形,問:你能利用我們剛才學(xué)到的知識來研究它們的內(nèi)角和嗎?動手試一試,可以同桌討論。(學(xué)生操作,匯報,課件演示)讓學(xué)生模仿老師操作說理。由此得到了銳角三角形和鈍角三角形的內(nèi)角和也是180度。我們就可以說所有三角形的內(nèi)角和都是180度。這是三角形的一個特性。

這樣引導(dǎo)學(xué)生通過直角三角形的內(nèi)角和是180度來推導(dǎo)出銳角和鈍角三角形的內(nèi)角和是180度,使學(xué)生初步掌握由特殊到一般的邏輯思辨方法。

第三環(huán)節(jié)、鞏固新知,拓展應(yīng)用

用三角形的這一特性來解決一些問題

1、基本練習(xí)

通過做一做和說一說這兩個練習(xí)來強(qiáng)化學(xué)生認(rèn)知。

2、拓展練習(xí)

拼一拼、想一想

(1)兩個三角形拼成大三角形,說出大三角形的內(nèi)角和

(2)一個三角形去掉一部分

引導(dǎo)學(xué)生發(fā)現(xiàn),無論三角形的形狀或大小如何改變,內(nèi)角和都是180度,看來三角形的內(nèi)角和度數(shù)和他的大小形狀都無關(guān)。

(3)再把這個三角形剪去一部分剪成一個四邊形,它的內(nèi)角和是多少度?

(4)如果變成五邊形,你還能求出他的度數(shù)嗎?

充分利用多媒體資源幫助學(xué)生理解、消化、新的知識,能夠靈活的運(yùn)用三角形的內(nèi)角和等于180度。在此基礎(chǔ)上滲透數(shù)學(xué)的“轉(zhuǎn)化”思想和“分割”思想提高學(xué)生靈活運(yùn)用和推理等各方面的能力。

第四環(huán)節(jié)、總結(jié)評價、延伸知識

通過這個環(huán)節(jié)讓學(xué)生談一談自己的收獲或感受,對本節(jié)課的知識進(jìn)行拓展升華。

三角形的內(nèi)角和

猜測(180度)

驗(yàn)證:測量、撕拼、折疊結(jié)論

三角形的內(nèi)角和是180度

我的板書簡明扼要,體現(xiàn)了本節(jié)課的重點(diǎn),而且是對本節(jié)課學(xué)習(xí)方法的一個回顧。

三角形的內(nèi)角和教學(xué)設(shè)計篇十二

《三角形的內(nèi)角和》是九年制義務(wù)教育人教版四年級下冊第五章《三角形》的第二節(jié)內(nèi)容,本節(jié)課是在學(xué)生學(xué)習(xí)了與三角形有關(guān)的概念、邊、角之間的關(guān)系的基礎(chǔ)上,讓學(xué)生動手操作,通過一些活動得出“三角形的內(nèi)角和等于180°”成立的理由,由淺入深,循序漸進(jìn),引導(dǎo)學(xué)生觀察、猜測、實(shí)驗(yàn),總結(jié)。逐步培養(yǎng)學(xué)生的邏輯推理能力。

“問題的提出往往比解答問題更重要”,其實(shí)三角形內(nèi)角和是多少?大部分的學(xué)生已經(jīng)知道了這一知識,所以很輕松地就可以答出。但是只是“知其然而不知其所以然”,所以我特別重視問題的提出,再讓學(xué)生各抒已見,暢所欲言,鼓勵學(xué)生傾聽他人的方法。

本課的重點(diǎn)就是要讓學(xué)生知道“知其然還要知其所以然”,所以在第二環(huán)節(jié)里。鼓勵學(xué)生親自動手操作驗(yàn)證猜想。為此,我設(shè)計了大量的操作活動:畫一畫、量一量、剪一剪、折一折、拼一拼、撕一撕等,我沒有限定了具體的操作環(huán)節(jié),但為了節(jié)省時間,讓學(xué)生分組活動,感覺更利于我的目標(biāo)落實(shí)。但在分組活動中,我更注意解決學(xué)生活動中遇到了問題的解決,比如說畫,老師走入學(xué)生中指導(dǎo)要領(lǐng),因此學(xué)生交上來畫的作品也非常的漂亮。學(xué)生觀察能力得到了培養(yǎng)。再比如說折,有的學(xué)生就是折不好,因?yàn)槟堑谝徽塾幸欢ǖ碾y度,它不僅要頂點(diǎn)和邊的重合,其實(shí)還要折痕和邊的平行,這個認(rèn)識并不是每個學(xué)生都能達(dá)到的。教師也要走上前去點(diǎn)撥一下。再比如撕,如果事先沒有標(biāo)好具體的角,撕后就找不到要拼的角了……所以在限定的操作活動中,既體現(xiàn)了老師的“扶”又體現(xiàn)了老師的“放”。做到了“扶”而不死,“伴”而有度,“放”而不亂。我還制作了動畫課件,更直觀的展示了活動過程,生動又形象,吸引學(xué)生的注意力。使學(xué)生感受到每種活動的特點(diǎn),這對他認(rèn)識能力的提高是有幫助的。在此環(huán)節(jié)增加了學(xué)生的合作探究精神培養(yǎng)。

在歸納總結(jié)環(huán)節(jié),有意識地培養(yǎng)學(xué)生的說理能力,邏輯推理能力,增強(qiáng)了語言表達(dá)能力。

最后通過習(xí)題鞏固三角形內(nèi)角和知識,培養(yǎng)學(xué)生思維的廣闊性,為了強(qiáng)化學(xué)生對這節(jié)課的掌握,我除了設(shè)計了一些基本的已知三角形二個內(nèi)角求第三個角的練習(xí)題外,還設(shè)計了幾道習(xí)題,第一道是已知一個三角形有二個銳角,你能判斷出是什么三角形嗎?通過這一問題的思考,使學(xué)生明白,任意三角形都有二個銳角,因此直角三角形的定義是有一個角是直角的三角形叫直角三角形;鈍角三角形的定義是有一個鈍角的三角形叫鈍角三角形;而銳角三角形則必須是三個角都是銳角的三角形才是銳角三角形的道理。這道題有助于幫助學(xué)生解決三角形按角分的定義的理解。第二道題是一個三角形最大角是60°,它是什么三角形?通過對此題的研究,使學(xué)生發(fā)現(xiàn)判斷是什么三角形主要看最大角的大小,如果最大角是銳角,也可以判斷是銳角三角形。同時加深了學(xué)生對等邊三角形的特點(diǎn)的認(rèn)識和理解。第三題我拓展延伸到三角形外角,第四題我設(shè)計了多邊形的內(nèi)角和的探究。

三角形的內(nèi)角和教學(xué)設(shè)計篇十三

傳統(tǒng)的課堂教學(xué)是教師講、學(xué)生聽,依據(jù)教材給的例子,通過觀察,發(fā)現(xiàn)規(guī)律,再進(jìn)行模仿練習(xí),課堂沉悶乏味。而好的教育一定要致力于學(xué)生用自己的眼睛去觀察,用自己的心靈去感悟,用自己的頭腦去判別,用自己的語言去表達(dá),本節(jié)課中我充分體現(xiàn)了這一觀點(diǎn)。

首先,通過學(xué)生生活中的例子從小明家到學(xué)校走哪條路近,呈現(xiàn)教學(xué)內(nèi)容,學(xué)生在感性認(rèn)識上獲得了基礎(chǔ),從而為發(fā)現(xiàn)三角形三邊關(guān)系律奠定了基礎(chǔ)。

其次,為學(xué)生提供足夠的學(xué)習(xí)時間和空間,教師啟發(fā)學(xué)生用不同長度的三根小棒分別來圍三角形,引導(dǎo)學(xué)生進(jìn)行小組合作探究,師生、生生多向互動,人人體驗(yàn)探索規(guī)律的過程。

第三,改變了學(xué)生被動接受的學(xué)習(xí)方式,讓學(xué)生根據(jù)自己對知識的理解和課堂中獲得的信息進(jìn)行判斷和辨析,提出自己的見解和疑問。因此,課堂上體現(xiàn)學(xué)生在主動參與中思維的靈活性和開拓性,出現(xiàn)了許多令教師意外而驚喜的資源。如有的學(xué)生提出:判斷三條線段能否圍成三角形,只需要把最短的兩條邊相加大于第三邊就可以了。

通過這節(jié)課的教學(xué),我深深體會到:一個真實(shí)的教學(xué)過程是不可預(yù)設(shè)的,而是一個師生等多種因素間動態(tài)的相互作用的過程。教師應(yīng)多關(guān)注學(xué)生,要為學(xué)生提供必要的資源,要善于開發(fā)和利用學(xué)生資源,使課堂成為一個資源生成和動態(tài)生成的過程,成為促進(jìn)師生生命共同發(fā)展的場所。

三角形的邊一課是在學(xué)生知道了三角形有三條邊、三個角、三個頂點(diǎn)以及三角形具有穩(wěn)定性的基礎(chǔ)上學(xué)習(xí)的,通過前面的學(xué)習(xí),學(xué)生雖然知道了三角形有三條邊,但三角形“邊”的研究卻是學(xué)生首次接觸。因此,教學(xué)中,我讓學(xué)生在觀察、感知的基礎(chǔ)上,動手操作,擺一擺,比一比,看一看,想一想,分組討論、合作學(xué)習(xí),運(yùn)用多媒體課件輔助教學(xué),老師恰當(dāng)點(diǎn)撥,適時引導(dǎo)。

本節(jié)課的一個突出特點(diǎn)就在于學(xué)生的實(shí)際動手操作上,具體體現(xiàn)在以下兩個環(huán)節(jié):一是導(dǎo)入部分:學(xué)生從4根小棒中任意拿出3根,擺一擺,可能出現(xiàn)什么情況?結(jié)果有的學(xué)生擺成了三角形,而有的學(xué)生沒有擺成三角形,此時,老師接過話題:能否擺成三角形估計與三角形的“邊的長度”有關(guān)系,它們之間有著怎樣的關(guān)系呢?這樣很自然地就導(dǎo)入了新課,為后面的新課做了鋪墊。二是新授部分:學(xué)生用手中的小棒按老師的要求來擺三角形,并且做好記錄。這個過程必須得每個學(xué)生親自動手,在此基礎(chǔ)上觀察、發(fā)現(xiàn)、比較,從而得出結(jié)論。教學(xué)中,我設(shè)置這些實(shí)際動手操作、共同探討的活動,既滿足了學(xué)生的精神需要,又讓學(xué)生在濃烈的學(xué)習(xí)興趣中學(xué)到了知識,體驗(yàn)到了成功的快樂。

評價一節(jié)數(shù)學(xué)課,最直接有效的方式就是通過練習(xí)得到的反饋。而學(xué)生之間參差不齊,為了能兼顧全班學(xué)生的整體水平,我在練習(xí)設(shè)計上主要采用了層層深入的原則,先是基礎(chǔ)知識的練習(xí);然后用三角形的知識解決問題。新授課中的小組合作“擺三角形”,學(xué)生分工明確,參與性強(qiáng),而練習(xí)中的小組合作卻能集眾人智慧,全面考慮,在有限的時間內(nèi)完成學(xué)習(xí)任務(wù)。

對這堂課的教學(xué),我也有不少遺憾之處。

1、教學(xué)設(shè)計不夠精巧,沒有波瀾,對學(xué)生積極性的調(diào)動還是不夠。對教材內(nèi)容的把握是過分拘泥于教材。

2、學(xué)習(xí)小組內(nèi)的合作較好,但是組間競爭意識不強(qiáng),小組加分過于機(jī)械,沒有充分調(diào)動學(xué)生競爭的積極性。

改進(jìn):在適當(dāng)?shù)恼n中多多運(yùn)用小組學(xué)習(xí),不要機(jī)械的運(yùn)用小組,為了應(yīng)用而應(yīng)用。在有的課堂上如果運(yùn)用小組確實(shí)能達(dá)到很好的效果就用,如果效果不明顯時就可以不用,對于小組要靈活運(yùn)用。

三角形的內(nèi)角和教學(xué)設(shè)計篇十四

北師大版四年級數(shù)學(xué)下冊。

1、探索與發(fā)現(xiàn)三角形的內(nèi)角和是180°,已知三角形的兩個角度,會求出第三個角度。

2、培養(yǎng)學(xué)生動手操作和合作交流的能力,促進(jìn)掌握學(xué)習(xí)數(shù)學(xué)的方法。

3、培養(yǎng)學(xué)生自主學(xué)習(xí)、積極探索的好習(xí)慣,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)應(yīng)用數(shù)學(xué)的興趣。

重點(diǎn)掌握三角形的內(nèi)角和是180°,會應(yīng)用三角形的內(nèi)角和解決實(shí)際問題;難點(diǎn)是探索性質(zhì)的過程。

《三角形內(nèi)角和》屬于空間與圖形的范疇,是在學(xué)生已經(jīng)接觸了三角形的穩(wěn)定性和三角形的分類相關(guān)知識后對三角形的進(jìn)一步研究,探索三個內(nèi)角的和。教材中安排了學(xué)生對不同形狀的、大小的三角形進(jìn)行進(jìn)行度量,運(yùn)用折疊、拼湊等方法發(fā)現(xiàn)三角形的內(nèi)角和是180°。擴(kuò)充了學(xué)生認(rèn)識圖形的一般規(guī)律從直觀感性的認(rèn)識到具體的性質(zhì)探索,更加深入的培養(yǎng)了學(xué)生的空間觀念。

一、創(chuàng)設(shè)情境,激發(fā)興趣。

出示課件,提出兩個兩個疑問:

1、兩個大小不一樣的兩個三角形的對話我比你大,所以我的內(nèi)角和比你大,是這樣的嗎?

二、初建模型,實(shí)際驗(yàn)證自己的猜想。

在第一步的基礎(chǔ)上學(xué)生自然想到要量出三角形每個角的度數(shù)就能夠求出三角形的內(nèi)角和,從而證明三角形的內(nèi)角和與三角形的大小和形狀沒有關(guān)系都接近180度。這時教師要組織學(xué)生進(jìn)行小組合作,每人用量角器量出一種三角形(銳角三角形、鈍角三角形、直角三角形、等腰三角形、等邊三角形)的三個內(nèi)角,并計算出它們的總和是多少?把小組的測量結(jié)果和討論結(jié)果記錄下來以便全班進(jìn)行交流。

三、再建模型,徹底的得出正確的結(jié)論。

因?yàn)樵谏弦画h(huán)節(jié)學(xué)生已經(jīng)得出三角形的內(nèi)角和大約都是或接近180度。因?yàn)槲覀冊跍y量時由于測量人不同、測量工具不同可能產(chǎn)生一些誤差。有的同學(xué)難免可能猜想三角形的內(nèi)角和就是180度呢?我們繼續(xù)研究和探索。除了測量外我們是否可以利用我們手中的三角形通過拼一拼、折一折、畫一畫的方法來證明三角形的內(nèi)角和都是180度呢?教師放手讓學(xué)生去思考、去動手操作,對有困難和有疑問的同學(xué)進(jìn)行提示和指導(dǎo)。然后讓學(xué)生到前面演示驗(yàn)證的方法,教師借助多媒體進(jìn)行演示。

四、應(yīng)用新知,鞏固練習(xí)。

1、算一算,對于不同形狀的三角形給出其中的兩個角求第三個角的度數(shù)。(1小題屬于基本練習(xí))。

2、試一試,在直角三角形中已知其中的一個角求另一個角的度數(shù)。

3、想一想,已知等腰三角形的頂角如何算出它的兩個底角;已知等腰三角形的一個底角的度數(shù)求三角形的頂角。

五、拓展與延伸。

通過三角形的內(nèi)角和是180度的事實(shí)來探討四邊形、五邊行的內(nèi)角和。

【本文地址:http://mlvmservice.com/zuowen/14572645.html】

全文閱讀已結(jié)束,如果需要下載本文請點(diǎn)擊

下載此文檔