八年級數(shù)學教案華師大版大全(17篇)

格式:DOC 上傳日期:2023-11-21 08:01:22
八年級數(shù)學教案華師大版大全(17篇)
時間:2023-11-21 08:01:22     小編:MJ筆神

教案的編寫需要教師具備一定的教學理論知識和實踐經(jīng)驗,同時還需要根據(jù)學生的特點和需求進行靈活調(diào)整。教案的編寫應當合理安排教學時間,保證每個環(huán)節(jié)的充分展開。在這里,大家可以找到一些優(yōu)秀的教案樣本,幫助大家提高備課質(zhì)量。

八年級數(shù)學教案華師大版篇一

1.了解算術平方根的概念,會用根號表示正數(shù)的算術平方根,并了解算術平方根的非負性。

2.了解開方與乘方互為逆運算,會用平方運算求某些非負數(shù)的算術平方根。

算術平方根的概念。

根據(jù)算術平方根的概念正確求出非負數(shù)的算術平方根。

這就要用到平方根的概念,也就是本章的主要學習內(nèi)容.這節(jié)課我們先學習有關算術平方根的概念.

1、提出問題:(書p68頁的問題)

你是怎樣算出畫框的邊長等于5dm的呢?(學生思考并交流解法)

這個問題相當于在等式擴=25中求出正數(shù)x的值.

一般地,如果一個正數(shù)x的平方等于a,即=a,那么這個正數(shù)x叫做a的算術平方根.a的算術平方根記為,讀作根號a,a叫做被開方數(shù).規(guī)定:0的算術平方根是0.

也就是,在等式=a (x0)中,規(guī)定x = .

2、試一試:你能根據(jù)等式:=144說出144的算術平方根是多少嗎?并用等式表示出來.

3、想一想:下列式子表示什么意思?你能求出它們的值嗎?

建議:求值時,要按照算術平方根的意義,寫出應該滿足的關系式,然后按照算術平方根的記法寫出對應的值.例如表示25的算術平方根。

4、例1求下列各數(shù)的算術平方根:

(1)100;(2)1;(3) ;(4)0.0001

p69練習1、2

怎樣用兩個面積為1的小正方形拼成一個面積為2的大正方形?

方法1:課本中的方法,略;

方法2:

可還有其他方法,鼓勵學生探究。

問題:這個大正方形的邊長應該是多少呢?

大正方形的邊長是,表示2的算術平方根,它到底是個多大的數(shù)?你能求出它的值嗎?

建議學生觀察圖形感受的大小.小正方形的對角線的長是多少呢?(用刻度尺測量它與大正方形的邊長的大小)它的近似值我們將在下節(jié)課探究.

1、這節(jié)課學習了什么呢?

2、算術平方根的具體意義是怎么樣的?

3、怎樣求一個正數(shù)的算術平方根

p75習題13.1活動第1、2、3題

八年級數(shù)學教案華師大版篇二

《基礎教育課程改革綱要(試行)》指出:“大力推進多媒體信息技術在教學過程中的普遍應用,促進信息技術與學科課程的整合,逐步實現(xiàn)教學內(nèi)容的呈現(xiàn)方式、學生的學習方式、教師的教學方式和師生互動方式的變革,充分發(fā)揮信息技術的優(yōu)勢,為學生的學習和發(fā)展提供豐富多彩的教育環(huán)境和有力的學習工具?!苯處熯\用現(xiàn)代多媒體信息技術對教學活動進行創(chuàng)造性設計,發(fā)揮計算機輔助教學的特有功能,把信息技術和數(shù)學教學的學科特點結(jié)合起來,可以使教學的表現(xiàn)形式更加形象化、多樣化、視覺化,有利于充分揭示數(shù)學概念的形成與發(fā)展,數(shù)學思維的過程和實質(zhì),展示數(shù)學思維的形成過程,使數(shù)學課堂教學收到事半功倍的效果。

本節(jié)課內(nèi)容是學生在小學階段初步了解特殊四邊形以及學過《三角形》這章的基礎上進行的,在知識結(jié)構(gòu)上打破了教材的編寫順序,從整體的角度探究特殊四邊形性質(zhì)。運用多媒體教學體現(xiàn)出直觀、課容量大、容易接受的特點,為進一步的理論證明及應用起著提供數(shù)據(jù)和宏觀指導作用,使學生學習本章具體內(nèi)容時知道身在何處,使知識體系更加系統(tǒng)。本節(jié)課內(nèi)容是四邊形這章的理論基礎,在該章占有非常重要的地位。

本班經(jīng)歷了一年多課改實踐,學生對運用現(xiàn)代多媒體信息技術的教學方式有濃厚的興趣,能運用《幾何畫板》這一工具進行簡單的操作,形成自主探索和合作交流的學風,從而樂于在教師的指導下主動與同學探索、發(fā)現(xiàn)、歸納、經(jīng)歷數(shù)學知識于實踐的過程。

本節(jié)課充分利用現(xiàn)有的先進教學設備(兩名學生一臺電腦),利用筆者自制,借助《幾何畫板》把學生帶入數(shù)學模擬實驗室,以研究電動門的機械原理為切入點,從學生已有的生活經(jīng)驗出發(fā),讓學生親身經(jīng)歷數(shù)學知識的形成并進行解釋與應用過程。組員相互配合分別測量、搜集、分析、整理特殊四邊形的邊長、角度、對角線長度等數(shù)據(jù),并總結(jié)其性質(zhì),通過人機對話方式把靜態(tài)、抽象的幾何圖形變?yōu)閯討B(tài)、直觀地演示出來。在此過程中教師當好課堂教學的組織者、決策者、創(chuàng)造者和參與者,教給學生自覺主動地探究新知識的方法,激發(fā)學生的思維,培養(yǎng)學生的科學精神和創(chuàng)新思維習慣,使學生獲得對數(shù)學理解的同時,在思維能力、情感態(tài)度與價值觀等多方面得到發(fā)展。

1、初步理解特殊四邊形性質(zhì);

2、培養(yǎng)學生自主收集、描述和分析數(shù)據(jù)的能力;

1、了解特殊四邊形性質(zhì)的形成過程;

2、初步了解探究新知識的一些方法;

1、了解特殊四邊形在日常生活中的應用;

2、學生在觀察、歸納、類比及實驗教學活動中,體會成功后的喜悅;

3、初步具有感性認識上升到理性認識的辯證唯物主義思想。

教學環(huán)境:

多媒體計算機網(wǎng)絡教室。

教學課型:

試驗探究式。

教學重點:

特殊四邊形性質(zhì)。

教學難點:

特殊四邊形性質(zhì)的發(fā)現(xiàn)。

一、設置情景,提出問題。

提出問題:

1、電動門的網(wǎng)格和結(jié)點能組成哪些四邊形?

2、在開(關)門過程中這些四邊形是如何變化的?

3、你還發(fā)現(xiàn)了什么?

解決問題:

學生猜想:包括平行四邊形、矩形、菱形、等腰梯形、直角梯形……;

當我們學習完本節(jié)知識后,其他問題就容易解決了。

(意圖:用《幾何畫板》的動態(tài)演示生活事例,充分展示了數(shù)學的美妙,可以使學生容易進入情境和保持積極學習狀態(tài),激起學生探究解決問題的求知欲望。)。

二、整體了解,形成系統(tǒng)。

本節(jié)課從整體角度研究特殊四邊形性質(zhì),為今后的個體研究打下良好的基礎。我們先研究四邊形中的特殊與一般的關系。

提出問題:

1、本章主要研究哪些特殊四邊形?

2、從哪幾方面研究這些特殊四邊形?

解決問題:

學生操作電腦(用幾何畫板),了解本章研究的主要圖形;教師個別指導。

1、包括:平行四邊形、矩形、菱形、梯形、等腰梯形、直角梯形。

3、等腰梯形和直角梯形后面應該是矩形,但不符合梯形定義,所以沒有圖形。

(意圖:學生自主觀察、分組討論了解本章知識結(jié)構(gòu),從而形成系統(tǒng);通過假設、猜想、推理、論證、否定假設獲得新知識)。

三、個體研究、總結(jié)性質(zhì)。

1、平行四邊形性質(zhì)。

提出問題:

在平行四邊形的形狀、位置、大小變化過程中,請觀察數(shù)據(jù)并找出邊長、角度、對角線長度相對不變的性質(zhì)。

解決問題:

教師引導學生拖動b點(學生操作電腦),改變平行四邊形的形狀、位置、大小,并觀察數(shù)據(jù)的變化,從中找出相對不變的要素。

在圖形變化過程中,

(1)對邊相等;

(2)對角相等;

(3)通過ao=co、bo=do,可得對角線互相平分;

(4)通過鄰角互補,可得對邊平行;

(5)內(nèi)外角和都等于360度;

(6)鄰角互補;

……。

指導學生填表:

平行四邊形性質(zhì)矩形性質(zhì)正方形性質(zhì)。

菱形性質(zhì)。

梯形性質(zhì)等腰梯形性質(zhì)。

直角梯形性質(zhì)。

(既屬于平行四邊形性質(zhì)又屬于矩形性質(zhì)可以畫箭頭)。

按照平行四邊形性質(zhì)的探索思路,分別研究:

2、矩形性質(zhì);

3、菱形性質(zhì);

4、正方形性質(zhì);

5、梯形性質(zhì);

6、等腰梯形性質(zhì);

7、直角梯形的性質(zhì)。

(意圖:學生運用電腦自主收集、描述、分析數(shù)據(jù),把抽象的性質(zhì)變?yōu)橹庇^化、形象化,培養(yǎng)獨立探究,自主自信,使學生體驗到科學探索的樂趣。)。

教師總結(jié):

(意圖:掌握畫箭頭的方法,使學生了解事物個體既有該事物一般性質(zhì),又有自己的特點。既清楚地表達,又節(jié)省時間。)。

四、聯(lián)系生活,解決問題。

解決問題:

學生操作電腦,觀察圖形、分組討論,教師個別指導。

學生在分別演示開(關)門過程中,觀察數(shù)據(jù)并總結(jié):邊長、角度、對角線長度的變化引起四邊形的形狀、大小、位置的變化。

四邊形具有不穩(wěn)定性,而三角形沒有這個特點……。

(意圖:使學生體會到數(shù)學于生活、又服務于生活,更重要的是培養(yǎng)學生應用知識解決實際問題的能力,體會成功后的喜悅。)。

五、小結(jié)。

1.研究問題從整體到局部的方法;

2.主要從邊長、角度、對角線長度三方面研究特殊四邊形性質(zhì)。

六、作業(yè)。

1.平行四邊形內(nèi)角中,既有兩個相鄰的角相等,又有一組鄰邊相等,試判斷它是什么圖形。

2.觀察實際生活中的電動門,在開(關)門過程中特殊四邊形的變化。

針對教學內(nèi)容、學生特點及設計方案,預計下列學習效果:

利用多媒體信息技術圖文并茂、形象直觀的特點,通過學生自主測量、分析、整理數(shù)據(jù)并總結(jié)其性質(zhì),培養(yǎng)學生收集、描述和分析數(shù)據(jù)的能力,并達到初步理解特殊四邊形性質(zhì)的目標。

在問題引入、了解整體、測量個體、總結(jié)性質(zhì)的過程中,符合事物的認識規(guī)律及探究新知識的一般方法,初步形成感性認識上升到理性認識的辯證唯物主義思想。

由于個體差異,針對教學目標難以達到的個別學生,根據(jù)教學的進展,通過師生之間、學生之間的對話交流及時指導,使教學目標得以實現(xiàn)。

八年級數(shù)學教案華師大版篇三

調(diào)查中,所要考察對象的全體稱為總體,而組成總體的每一個考察對象稱為個體。

例如,某班10名女生的考試成績是總體,每一名女生的考試成績是個體。

從總體中抽取部分個體進行調(diào)查,這種調(diào)查稱為抽樣調(diào)查,其中從總體中抽取的一部分個體叫做總體的一個樣本。

例如,要調(diào)查全縣農(nóng)村中學生學生平均每周每人的零花錢數(shù),由于人數(shù)較多(一般涉及幾萬人),我們從中抽取500名學生進行調(diào)查,就是抽樣調(diào)查,這500名學生平均每周每人的零花錢數(shù),就是總體的一個樣本。

將一組數(shù)據(jù)按照由小到大(或由大到?。┑捻樞蚺帕?,如果數(shù)據(jù)的個數(shù)是奇數(shù),則處于中間位置的數(shù)稱為這組數(shù)據(jù)的中位數(shù);如果數(shù)據(jù)的個數(shù)是偶數(shù),則中間兩個數(shù)據(jù)的平均數(shù)稱為這組數(shù)據(jù)的中位數(shù)。

一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)就是這組數(shù)據(jù)的眾數(shù)。

例如:求一組數(shù)據(jù)3,2,3,5,3,1的眾數(shù)。

解:這組數(shù)據(jù)中3出現(xiàn)3次,2,5,1均出現(xiàn)1次。所以3是這組數(shù)據(jù)的眾數(shù)。

又如:求一組數(shù)據(jù)2,3,5,2,3,6的眾數(shù)。

解:這組數(shù)據(jù)中2出現(xiàn)2次,3出現(xiàn)2次,5,6各出現(xiàn)1次。

所以這組數(shù)據(jù)的眾數(shù)是2和3。

【規(guī)律方法小結(jié)】。

(1)平均數(shù)、中位數(shù)、眾數(shù)都是描述一組數(shù)據(jù)集中趨勢的量。

(2)平均數(shù)反映一組數(shù)據(jù)的平均水平,與這組數(shù)據(jù)中的每個數(shù)據(jù)都有關,是最為重要的量。

(3)中位數(shù)不受個別偏大或偏小數(shù)據(jù)的影響,當一組數(shù)據(jù)中的個別數(shù)據(jù)變動較大時,一般用它來描述集中趨勢。

(4)眾數(shù)只與數(shù)據(jù)出現(xiàn)的頻數(shù)有關,不受個別數(shù)據(jù)影響,有時是我們最為關心的統(tǒng)計數(shù)據(jù)。

探究交流。

1、一組數(shù)據(jù)的中位數(shù)一定是這組數(shù)據(jù)中的一個,這句話對嗎?為什么?

解析:不對,一組數(shù)據(jù)的中位數(shù)不一定是這組數(shù)據(jù)中的一個,當這組數(shù)據(jù)有偶數(shù)個時,中位數(shù)由中間兩個數(shù)的平均數(shù)決定,若中間兩數(shù)相等,則這組數(shù)據(jù)的中位數(shù)在這組數(shù)據(jù)之中,反之,中位數(shù)不在這組數(shù)據(jù)之中。

總結(jié):

(1)中位數(shù)在一組數(shù)據(jù)中是唯一的,可能是這組數(shù)據(jù)中的一個,也可能不是這組數(shù)據(jù)中的數(shù)據(jù)。

(2)求中位數(shù)時,先將數(shù)據(jù)按由小到大的順序排列(或按由大到小的順序排列)。若這組數(shù)據(jù)是奇數(shù)個,則最中間的數(shù)據(jù)是中位數(shù);若這組數(shù)據(jù)是偶數(shù)個,則最中間的兩個數(shù)據(jù)的平均數(shù)是中位數(shù)。

(3)中位數(shù)的單位與數(shù)據(jù)的單位相同。

(4)中位數(shù)與數(shù)據(jù)排序有關。當一組數(shù)據(jù)中的個別數(shù)據(jù)變動較大時,可用中位數(shù)來描述這組數(shù)據(jù)的集中趨勢。

課堂檢測。

基本概念題。

1、填空題。

(1)數(shù)據(jù)15,23,17,18,22的平均數(shù)是;

(4)為了考察某公園一年中每天進園的人數(shù),在其中的30天里,對進園的人數(shù)進行了統(tǒng)計,這個問題中的總體是________,樣本是________,個體是________。

基礎知識應用題。

2、某公交線路總站設在一居民小區(qū)附近,為了了解高峰時段從總站乘車出行的人數(shù),隨機抽查了10個班次的乘車人數(shù),結(jié)果如下:20,23,26,25,29,28,30,25,21,23。

(1)計算這10個班次乘車人數(shù)的平均數(shù);

(2)如果在高峰時段從總站共發(fā)車60個班次,根據(jù)前面的計算結(jié)果,估計在高峰時段從總站乘該路車出行的乘客共有多少。

八年級數(shù)學教案華師大版篇四

一.教學目標:

1.了解方差的定義和計算公式。

2.理解方差概念的產(chǎn)生和形成的過程。

3.會用方差計算公式來比較兩組數(shù)據(jù)的波動大小。

二.重點、難點和難點的突破方法:

1.重點:方差產(chǎn)生的必要性和應用方差公式解決實際問題。

2.難點:理解方差公式。

3.難點的突破方法:

方差公式:s=[(-)+(-)+…+(-)]比較復雜,學生理解和記憶這個公式都會有一定困難,以致應用時常常出現(xiàn)計算的錯誤,為突破這一難點,我安排了幾個環(huán)節(jié),將難點化解。

(1)首先應使學生知道為什么要學習方差和方差公式,目的不明確學生很難對本節(jié)課內(nèi)容產(chǎn)生興趣和求知欲望。教師在授課過程中可以多舉幾個生活中的小例子,不如選擇儀仗隊隊員、選擇運動員、選擇質(zhì)量穩(wěn)定的電器等。學生從中可以體會到生活中為了更好的做出選擇判斷經(jīng)常要去了解一組數(shù)據(jù)的波動程度,僅僅知道平均數(shù)是不夠的。

(2)波動性可以通過什么方式表現(xiàn)出來?第一環(huán)節(jié)中點明了為什么去了解數(shù)據(jù)的波動性,第二環(huán)節(jié)則主要使學生知道描述數(shù)據(jù),波動性的方法??梢援嬚劬€圖方法來反映這種波動大小,可是當波動大小區(qū)別不大時,僅用畫折線圖方法去描述恐怕不會準確,這自然希望可以出現(xiàn)一種數(shù)量來描述數(shù)據(jù)波動大小,這就引出方差產(chǎn)生的必要性。

(3)第三環(huán)節(jié)教師可以直接對方差公式作分析和解釋,波動大小指的是與平均數(shù)之間差異,那么用每個數(shù)據(jù)與平均值的差完全平方后便可以反映出每個數(shù)據(jù)的波動大小,整體的波動大小可以通過對每個數(shù)據(jù)的波動大小求平均值得到。所以方差公式是能夠反映一組數(shù)據(jù)的波動大小的一個統(tǒng)計量,教師也可以根據(jù)學生程度和課堂時間決定是否介紹平均差等可以反映數(shù)據(jù)波動大小的其他統(tǒng)計量。

三.例習題的意圖分析:

1.教材p125的討論問題的意圖:

(1).創(chuàng)設問題情境,引起學生的學習興趣和好奇心。

(2).為引入方差概念和方差計算公式作鋪墊。

(3).介紹了一種比較直觀的衡量數(shù)據(jù)波動大小的方法——畫折線法。

(4).客觀上反映了在解決某些實際問題時,求平均數(shù)或求極差等方法的局限性,使學生體會到學習方差的意義和目的。

2.教材p154例1的設計意圖:

(1).例1放在方差計算公式和利用方差衡量數(shù)據(jù)波動大小的規(guī)律之后,不言而喻其主要目的是及時復習,鞏固對方差公式的掌握。

(2).例1的解題步驟也為學生做了一個示范,學生以后可以模仿例1的格式解決其他類似的實際問題。

四.課堂引入:

除采用教材中的引例外,可以選擇一些更時代氣息、更有現(xiàn)實意義的引例。例如,通過學生觀看奧運會劉翔勇奪110米欄冠軍的錄像,進而引導教練員根據(jù)平時比賽成績選擇參賽隊員這樣的實際問題上,這樣引入自然而又真實,學生也更感興趣一些。

五.例題的分析:

教材p154例1在分析過程中應抓住以下幾點:

1.題目中“整齊”的含義是什么?說明在這個問題中要研究一組數(shù)據(jù)的什么?學生通過思考可以回答出整齊即波動小,所以要研究兩組數(shù)據(jù)波動大小,這一環(huán)節(jié)是明確題意。

2.在求方差之前先要求哪個統(tǒng)計量,為什么?學生也可以得出先求平均數(shù),因為公式中需要平均值,這個問題可以使學生明確利用方差計算步驟。

3.方差怎樣去體現(xiàn)波動大小?

這一問題的提出主要復習鞏固方差,反映數(shù)據(jù)波動大小的規(guī)律。

六.隨堂練習:

1.從甲、乙兩種農(nóng)作物中各抽取1株苗,分別測得它的苗高如下:(單位:cm)。

甲:9、10、11、12、7、13、10、8、12、8;。

乙:8、13、12、11、10、12、7、7、9、11;。

問:(1)哪種農(nóng)作物的苗長的比較高?

(2)哪種農(nóng)作物的苗長得比較整齊?

測試次數(shù)12345。

段巍1314131213。

金志強1013161412。

參考答案:1.(1)甲、乙兩種農(nóng)作物的苗平均高度相同;(2)甲整齊。

2.段巍的成績比金志強的成績要穩(wěn)定。

七.課后練習:

1.已知一組數(shù)據(jù)為2、0、-1、3、-4,則這組數(shù)據(jù)的方差為。

2.甲、乙兩名學生在相同的條件下各射靶10次,命中的環(huán)數(shù)如下:

甲:7、8、6、8、6、5、9、10、7、4。

乙:9、5、7、8、7、6、8、6、7、7。

經(jīng)過計算,兩人射擊環(huán)數(shù)的平均數(shù)相同,但ss,所以確定去參加比賽。

3.甲、乙兩臺機床生產(chǎn)同種零件,10天出的次品分別是()。

甲:0、1、0、2、2、0、3、1、2、4。

乙:2、3、1、2、0、2、1、1、2、1。

分別計算出兩個樣本的平均數(shù)和方差,根據(jù)你的計算判斷哪臺機床的性能較好?

4.小爽和小兵在10次百米跑步練習中成績?nèi)绫硭荆?單位:秒)。

如果根據(jù)這幾次成績選拔一人參加比賽,你會選誰呢?

4.=10.9、s=0.02;。

=10.9、s=0.008。

選擇小兵參加比賽。

八年級數(shù)學教案華師大版篇五

《正方形》這節(jié)課是九年義務教育人教版數(shù)學教材八年級下冊第十九章第二節(jié)的內(nèi)容??v觀整個初中教材,《正方形》是在學生掌握了平行線、三角形、平行四邊形、矩形、菱形等有關知識及簡單圖形的平移和旋轉(zhuǎn)等平面幾何知識,并且具備有初步的觀察、操作等活動經(jīng)驗的基礎上出現(xiàn)的。既是前面所學知識的延續(xù),又是對平行四邊形、菱形、矩形進行綜合的不可缺少的重要環(huán)節(jié)。

本節(jié)課的重點是正方形的概念和性質(zhì),難點是理解正方形與平行四邊形、矩形、菱形之間的內(nèi)在聯(lián)系。根據(jù)大綱要求,本節(jié)課制定了知識、能力、情感三方面的目標。

(一)知識目標:

1、要求學生掌握正方形的概念及性質(zhì);

2、能正確運用正方形的性質(zhì)進行簡單的計算、推理、論證;

(二)能力目標:

1、通過本節(jié)課培養(yǎng)學生觀察、動手、探究、分析、歸納、總結(jié)等能力;

2、發(fā)展學生合情推理意識,主動探究的習慣,逐步掌握說理的基本方法;

(三)情感目標:

1、讓學生樹立科學、嚴謹、理論聯(lián)系實際的良好學風;

2、培養(yǎng)學生互相幫助、團結(jié)協(xié)作、相互討論的團隊精神;

3、通過正方形圖形的完美性,培養(yǎng)學生品格的完美性。

該段學生具有一定的獨立思考和探究的能力,但語言表達能力方面稍有欠缺,所以在本節(jié)課的教學過程中,特意設計了讓學生自己組織語言培養(yǎng)說理能力,讓學生們能逐步提高。

針對本節(jié)課的特點,采用"實踐--觀察--總結(jié)歸納--運用"為主線的教學方法。

通過學生動手,采取幾種不同的方法構(gòu)造出正方形,然后引導學生探究正方形的概念。通過觀察、討論、歸納、總結(jié)出正方形性質(zhì)定理,最后以課堂練習加以鞏固定理,并通過一道拔高題對定義、性質(zhì)理解、鞏固加以升華。

本節(jié)課重點是從培養(yǎng)學生探索精神和分析歸納總結(jié)能力為出發(fā)點,著重指導學生動手、觀察、思考、分析、總結(jié)得出結(jié)論。在小組討論中通過互相學習,讓學生體驗合作學習的樂趣。

第一環(huán)節(jié):相關知識回顧。

以提問的形式復習平行四邊形、矩形、菱形的定義及性質(zhì)之后,引導學生發(fā)現(xiàn)矩形、菱形的實質(zhì)是由平行四邊形角度、邊長的變化得到的。并啟發(fā)學生考慮,若這兩種變化同時發(fā)生在平行四邊形上,則會得到什么樣的圖形?讓學生們通過手上的學具演示以上兩種變化,從而得出結(jié)論。

第二環(huán)節(jié):新課講解通過學生們的發(fā)現(xiàn)引出課題“正方形”

1、正方形的定義:引導學生說出自己變化出正方形的過程,并再次利用課件形象演示出由平行四邊形的邊、角的變化演變出正方形的過程。請同學們舉手發(fā)言,歸納總結(jié)出正方形定義:一組鄰邊相等,且一個角是直角的平行四邊形是正方形。再由此定義啟發(fā)學生們發(fā)現(xiàn)正方形的三個必要條件,并且由這三個條件通過重新組合即一組鄰邊相等與平行四邊形組成菱形再加上一個角是直角可得到正方形的另兩個定義:一個角是直角的菱形是正方形;一組鄰邊相等的矩形是正方形。此內(nèi)容借助課件演示其變化過程,進一步啟發(fā)學生發(fā)現(xiàn),正方形既是特殊的菱形,又是特殊的矩形,從而總結(jié)出正方形的性質(zhì)。

2、正方形的性質(zhì)定理1:正方形的四個角都是直角,四條邊都相等;

定理2:正方形的兩條對角線相等,并且互相垂直、平分,每條對角線平分一組對角。

以上是對正方形定義和性質(zhì)的學習,之后是進行例題講解。

4、課堂練習:第一部分采用三道有關正方形的周長、面積、對角線、邊長計算的填空題,目的是對正方形性質(zhì)的進一步理解,并考察學生掌握的情況。

第二部分是選擇題,通過體現(xiàn)生活中實際問題,來提升學生所學的知識,并加以綜合練習,提高他們的綜合素質(zhì),使他們充分認識到數(shù)學實質(zhì)是來源于生活并要服務于生活。

5、課堂小結(jié):此環(huán)節(jié)我是通過圖框的形式小結(jié)正方形和前階段所學特殊四邊形之間的內(nèi)在聯(lián)系,通過對所學幾種四邊形內(nèi)在聯(lián)系體現(xiàn)正方形完美的本質(zhì),渲染學生們應追求象正方形一樣方正的品質(zhì),從而要努力學習以豐富的知識充實自己,達到理想中的完美。

6、作業(yè)設計:作業(yè)是教材159頁,第12、14兩小道證明題,通過此作業(yè)讓同學們進一步鞏固有關正方形的知識。

八年級數(shù)學教案華師大版篇六

1、了解方差的定義和計算公式。

2、理解方差概念產(chǎn)生和形成過程。

3、會用方差計算公式比較兩組數(shù)據(jù)波動大小。

重點:掌握方差產(chǎn)生的必要性和應用方差公式解決實際問題。

難點:理解方差公式。

(一)知識詳解:

方差:設有n個數(shù)據(jù),各數(shù)據(jù)與它們的平均數(shù)的差的平方分別為。

用它們的平均數(shù)表示這組數(shù)據(jù)的方差,即。

給力小貼士:方差越小說明這組數(shù)據(jù)越穩(wěn)定,波動性越低。

(二)自主檢測小練習:

1、已知一組數(shù)據(jù)為2.0、-1.3、-4,則這組數(shù)據(jù)的方差為。

2、甲、乙兩組數(shù)據(jù)如下:

甲組:1091181213107;

乙組:7891011121112。

分別計算出這兩組數(shù)據(jù)的極差和方差,并說明哪一組數(shù)據(jù)波動較小。

引例:問題:從甲、乙兩種農(nóng)作物中各抽取10株苗,分別測得它的苗高如下(單位:cm):

甲:9.10.10.13.7.13.10.8.11.8;

乙:8.13.12.11.10.12.7.7.10.10;

問:(1)哪種農(nóng)作物的苗長較高(可以計算它們的平均數(shù):=)?

(2)哪種農(nóng)作物的苗長較整齊?(可以計算它們的極差,你可以發(fā)現(xiàn))。

歸納:方差:設有n個數(shù)據(jù),各數(shù)據(jù)與它們的平均數(shù)的差的平方分別為。

用它們的平均數(shù)表示這組數(shù)據(jù)的方差,即用來表示。

(一)例題講解:

金志強1013161412。

提示:先求平均數(shù),然后使用公式計算方差。

(二)小試身手。

1、甲、乙兩名學生在相同條件下各射擊靶10次,命中的環(huán)數(shù)如下:

甲:7.8.6.8.6.5.9.10.7.4。

乙:9.5.7.8.7.6.8.6.7.7。

經(jīng)過計算,兩人射擊環(huán)數(shù)的平均數(shù)是,但s=,s=,則ss,所以確定去參加比賽。

1、求下列數(shù)據(jù)的眾數(shù):

(1)3.2.5.3.1.2.3(2)5.2.1.5.3.5.2.2。

方差公式:

提示:方差越小,說明這組數(shù)據(jù)越集中。波動性越小。

每課一首詩:求方差,有公式;先平均,再求差;求平方,再平均;所得數(shù),是方差。

1、小爽和小兵在10次百米跑步練習中的成績?nèi)缦卤硭荆?單位:秒)。

如果根據(jù)這些成績選拔一人參加比賽,你會選誰呢?

必做題:教材141頁練習1.2;選做題:練習冊對應部分習題。

寫下你的收獲,交流你的經(jīng)驗,分享你的成果,你會感到無比的快樂!

八年級數(shù)學教案華師大版篇七

認知基礎:學生在七年級下冊第四章已學習了《變量之間的關系》,對變量間互相依存的關系有了一定的認識,但對于變量間的變化規(guī)律尚不明確,理解的很膚淺,也缺乏理論高度,另外本章在認知方式和思維深度上對學生有較高的要求,學生在理解和運用時會有一定的難度。

活動經(jīng)驗基礎:在七年級下冊《變量之間的關系》一章中,學生接觸了大量的生活實例額,體會了變量之間相互依賴關系的普遍性,感受到了學習變量關系的必要性,初步具備了一定的識圖能力和主動參與、合作的意識和初步的觀察、分析、抽象概括的能力。

知識與技能目標:

(1)初步掌握函數(shù)概念,能判斷兩個變量之間的關系是否可以看作函數(shù)。

(2)根據(jù)兩個變量之間的關系式,給定其中一個變量的值相應的會求出另一個變量的值。

(3)會對一個具體實例進行概括抽象成為函數(shù)問題。

過程與方法目標:

(1)通過函數(shù)概念初步形成利用函數(shù)的觀點認識現(xiàn)實世界的意識和能力。

(2)經(jīng)歷具體實例的抽象概括過程,進一步發(fā)展學生的抽象思維能力。

情感態(tài)度與價值觀目標:

(1)經(jīng)歷函數(shù)概念的抽象概括過程,體會函數(shù)的模型思想。

(2)能主動從事觀察、操作、交流、歸納等探索活動,形成自己對數(shù)學知識的理解和有效的學習模式。

八年級數(shù)學教案華師大版篇八

1.經(jīng)歷分式方程的概念,能將實際問題中的等量關系用分式方程 表示,體會分式方程的模型作用.

2.經(jīng)歷實際問題-分式方程方程模型的過程,發(fā)展學生分析問題、解決問題的能力,滲透數(shù)學的轉(zhuǎn)化思想人體,培養(yǎng)學生的應用意識。

3.在活動中培養(yǎng)學生樂于探究、合作學習的習慣,培養(yǎng)學 生努力尋找 解決問題的進取心,體會數(shù)學的應用價值.

將實際問題中的等量 關系用分式方程表示

找實際問題中的等量關系

有兩塊面積相同的小麥試驗田,第一塊使用原品種,第二 塊使用新品種,分別收獲小麥9000 kg和15000 kg。已知第一塊試驗田每公頃的產(chǎn)量比第二塊少3000 kg,分別求這兩塊試驗田每 公頃 的產(chǎn)量。你能找出這一問題中的所有等量關系嗎?(分組交流)

如果設第一塊試驗田 每公頃的產(chǎn)量為 kg,那么第二塊試驗田每公頃的產(chǎn)量是________kg。

根據(jù)題意,可得方程___________________

從甲地到乙地有兩條公路:一條是全長600 km的普通 公路,另一條是全長480 km的高速公路。某客 車在 高速公路上行駛的平均速度比在普通公路上快45 km/h,由高速 公路從甲地到乙地所需的時間 是由普通公路從甲地到乙地所需時間的一半。求該客車由高速公路從 甲地到乙地所需的時間。

這 一問題中有哪些等量關系?

如果設客車由高速公路從甲地到乙地 所需的時間為 h,那么它由普通公路從甲地到乙地所需的時間為_________h。

根據(jù)題意,可得方程_ _____________________。

學生分組探討、交流,列出方程.

上面所得到的方程有什么共同特點?

分母中含有未知數(shù)的方程叫做分式方程

分式方程與整式方程有什么區(qū)別?

(3)根據(jù)分式方程 編一道應用題,然后同組交流,看誰編得好

本節(jié)課你學到了哪些知識?有什么感想?

八年級數(shù)學教案華師大版篇九

(一)、知識與技能:

(1)使學生了解因式分解的意義,理解因式分解的概念。

(2)認識因式分解與整式乘法的相互關系——互逆關系,并能運用這種關系尋求因式分解的方法。

(二)、過程與方法:

(1)由學生自主探索解題途徑,在此過程中,通過觀察、類比等手段,尋求因式分解與因數(shù)分解之間的關系,培養(yǎng)學生的觀察能力,進一步發(fā)展學生的類比思想。

(2)由整式乘法的逆運算過渡到因式分解,發(fā)展學生的逆向思維能力。

(3)通過對分解因式與整式的乘法的觀察與比較,培養(yǎng)學生的分析問題能力與綜合應用能力。

(三)、情感態(tài)度與價值觀:讓學生初步感受對立統(tǒng)一的辨證觀點以及實事求是的科學態(tài)度。

二、教學重點和難點。

重點:因式分解的概念及提公因式法。

難點:正確找出多項式各項的公因式及分解因式與整式乘法的區(qū)別和聯(lián)系。

三、教學過程。

教學環(huán)節(jié):

活動1:復習引入。

看誰算得快:用簡便方法計算:

(1)7/9×13-7/9×6+7/9×2=;

(2)-2.67×132+25×2.67+7×2.67=;

(3)992–1=。

設計意圖:

注意事項:學生對于(1)(2)兩小題逆向利用乘法的分配律進行運算的方法是很熟悉,對于第(3)小題的逆向利用平方差公式的運算則有一定的困難,因此,有必要引導學生復習七年級所學過的整式的乘法運算中的平方差公式,幫助他們順利地逆向運用平方差公式。

活動2:導入課題。

p165的探究(略);

2.看誰想得快:993–99能被哪些數(shù)整除?你是怎么得出來的?

設計意圖:

引導學生把這個式子分解成幾個數(shù)的積的形式,繼續(xù)強化學生對因數(shù)分解的理解,為學生類比因式分解提供必要的精神準備。

活動3:探究新知。

看誰算得準:

計算下列式子:

(1)3x(x-1)=;

(2)(a+b+c)=;

(3)(+4)(-4)=;

(4)(-3)2=;

(5)a(a+1)(a-1)=;

根據(jù)上面的算式填空:

(1)a+b+c=;

(2)3x2-3x=;

(3)2-16=;

(4)a3-a=;

(5)2-6+9=。

在第一組的整式乘法的計算上,學生通過對第一組式子的觀察得出第二組式子的結(jié)果,然后通過對這兩組式子的結(jié)果的比較,使學生對因式分解有一個初步的意識,由整式乘法的逆運算逐步過渡到因式分解,發(fā)展學生的逆向思維能力。

活動4:歸納、得出新知。

比較以下兩種運算的聯(lián)系與區(qū)別:

a(a+1)(a-1)=a3-a。

a3-a=a(a+1)(a-1)。

在第三環(huán)節(jié)的運算中還有其它類似的例子嗎?除此之外,你還能找到類似的例子嗎?

八年級數(shù)學教案華師大版篇十

多媒體投影一組圖片,讓同學們從中抽象出平面圖形,從而引出課題。

二、自主學習,指向目標。

學習至此:請完成《學生用書》相應部分。

三、合作探究,達成目標。

多邊形的定義及有關概念。

活動一:閱讀教材p19。

小組討論:結(jié)合具體圖形說出多邊形的邊、內(nèi)角、外角?

反思小結(jié):多邊形的定義及相關概念。

針對訓練:見《學生用書》相應部分。

多邊形的對角線。

活動二:(1)十邊形的對角線有35條。

(2)如果經(jīng)過多邊形的一個頂點有36條對角線,這個多邊形是39邊形。

反思小結(jié):當n為已知時,可以直接代入求得對角線的條數(shù),當對角線條數(shù)已知時,可以化為方程來求多邊形的邊數(shù)。

小組討論:如何靈活運用多邊形對角線條數(shù)的規(guī)律解題?

針對訓練:見《學生用書》相應部分。

正多邊形的有關概念。

活動二:閱讀教材p20。

小組討論:判斷一個多邊形是否是正多邊形的條件?

反思小結(jié):由正多邊形的概念知:滿足各邊、各角分別相等的多邊形是正多邊形。

針對訓練:見《學生用書》相應部分。

四、總結(jié)梳理,內(nèi)化目標。

本節(jié)學習的數(shù)學知識是:

1、多邊形、多邊形的外角,多邊形的對角線。

2、凸凹多邊形的概念。

五、達標檢測,反思目標。

1、下列敘述正確的是(d)。

a、每條邊都相等的多邊形是正多邊形。

c、每個角都相等的多邊形叫正多邊形。

d、每條邊、每個角都相等的多邊形叫正多邊形。

2、小學學過的下列圖形中不可能是正多邊形的是(d)。

a、三角形b。正方形c。四邊形d。梯形。

3、多邊形的內(nèi)角是指多邊形相鄰兩邊組成的角;多邊形的外角是指多邊形的邊與它的鄰邊的延長線組成的角;多邊形的內(nèi)角和它相鄰的外角是鄰補角關系。

4、已知一個四邊形的四個內(nèi)角的比為1∶2∶3∶4,求這個四邊形的各個內(nèi)角的度數(shù)。

八年級數(shù)學教案華師大版篇十一

一、教學目標:

1、知識識記:林則徐虎門銷煙。

鴉片戰(zhàn)爭的爆發(fā)。

中英《南京條約》。

英法聯(lián)軍火燒圓明園。

沙俄侵占中國北方大片領土。

太平軍抗擊洋槍隊。

2、能力培養(yǎng)。

(1)歸納分析:歸納鴉片戰(zhàn)爭前夕中英簡況,分析鴉片戰(zhàn)爭爆發(fā)的主要原因及其與虎門銷煙的關系;歸納《南京條約》的主要內(nèi)容,分析鴉片戰(zhàn)爭對中國近代社會的影響。

(2)陳述表達:講述虎門銷煙的故事;描述英法聯(lián)軍火燒圓明園的史實以及關天培為國捐軀的英勇事跡。

3、情感教育與價值觀。

(1)通過學習林則徐以及其他愛國將士義無反顧地反抗侵略的英雄壯舉,培養(yǎng)愛國主義情感及正確的人生價值觀。

(2)反思鴉片戰(zhàn)爭中腐敗、衰弱、落伍的清政府難以抵御外國侵略的史實,樹立國民對國家的歷史責任感,逐步理解“落后挨打、御侮必先自強”的道理,進而確立積極進取的人生態(tài)度。

二、教學要點重點、難點分析。

1、重點:鴉片戰(zhàn)爭對中國近代社會的影響。

2、難點:

正確理解虎門銷煙與鴉片戰(zhàn)爭爆發(fā)的關系。這一問題既涉及鴉片戰(zhàn)爭爆發(fā)的根本原因,也涉及如何正確評價林則徐主持的虎門銷煙。

(2)鴉片戰(zhàn)爭后,中國社會發(fā)生了許多“變化”,如何抓住“變化”深入淺出地引導學生理解鴉片戰(zhàn)爭后中國社會性質(zhì)的變化,是本課的又一難點。(3)對《南京條約》中“協(xié)定關稅”、“領事裁判權(quán)”、“最惠國待遇”等概念的理解。

三、教學工具:課件《兩次鴉片戰(zhàn)爭》。

http://億庫教育網(wǎng)。

http://教學設計:

導入:設問:北京人民英雄紀念碑上有28幅浮雕,第一幅就是“鴉片戰(zhàn)爭”,知道這是為什么嗎?導入。

一、虎門銷煙。

1、假設:沒有發(fā)生虎門銷煙事件,鴉片戰(zhàn)爭是否會爆發(fā)?

19世紀,率先完成工業(yè)革命的英國迅速發(fā)展,成為資本主義頭號強國,積極海外殖民地和市場,急需改變對華貿(mào)易入超的局面,扣開中國的大門。古老不變的中華帝國,仍沉睡在“天朝、閉關”的迷夢中,清王朝此時已呈現(xiàn)出衰敗的景象,必然成為英國掠奪的目標。

英國用可恥的鴉片走私來改變對華貿(mào)易入超的局面,鴉片走私給英國帶來巨大的利益,卻給中國帶來嚴重危害。

即使沒有林則徐的虎門銷煙,只要英國的侵略行為受到抵御,英國同樣會尋找其他理由發(fā)動戰(zhàn)爭。

2、我們應該如何評價林則徐?(結(jié)合練習冊第2頁第8題當堂完成)林則徐是近代“睜眼看世界的第一人”;林則徐領導的虎門銷煙是中國禁煙運動的偉大勝利,是維護民族尊嚴的正義舉動,它顯示中華民族反抗外國侵略的堅強決心,是近代中國人民反侵略斗爭的偉大起點。

二、南京條約。

1、結(jié)合flash《第一次鴉片戰(zhàn)爭形勢示意圖》,讓學生了解鴉片戰(zhàn)爭的經(jīng)過,補充關天培可歌可泣的反抗侵略的事跡。

http://億庫教育網(wǎng)。

http://不定,軍事指揮失當?shù)?。引導學生了解,要避免戰(zhàn)爭唯有自強,增強綜合國力,趕超世界先進潮流。

3、說明在侵略者炮火的威逼下,清政府俯首求和,被迫簽訂中英《南京條約》,由此開始了列強用條約形式“合法”侵奪中國的先例。突出條約的不平等性和掠奪性。把條約概括為:(幫助學生記憶)。

割地。

賠款。

開口岸。

喪主權(quán):協(xié)定關稅、領事裁判權(quán)(附約)、最惠國待遇(附約)。

4、鴉片戰(zhàn)爭對中國產(chǎn)生什么樣的影響?(引導學生根據(jù)條約內(nèi)容來分析,并進行歸納總結(jié))(1)破壞中國領土完整。

(2)破壞中國主權(quán)(關稅自主權(quán)、司法權(quán)等)(3)加重人民負擔。

(4)便利資本主義國家侵略中國。

總之,鴉片戰(zhàn)爭是中國歷史的轉(zhuǎn)折點,是中國近代史的開端,中國開始淪為半殖民地半封建社會。

三、火燒圓明園。

清政府腐敗無能;英、法想進一步打開中國市場,擴大侵略權(quán)益,借口“修約”,制造事端,挑起第二次鴉片戰(zhàn)爭。

2、“火燒圓明園”的歷史說明了什么?

資本主義列強對中國的掠奪;清政府的腐敗無能。

四、沙俄趁火打劫。

(結(jié)合第18頁“算一算”,進一步加深學生對沙俄侵占150多萬平方千米的中國領土的印象)說明:沙俄是近代侵吞中國領土最多的國家。

http://億庫教育網(wǎng)。

http://。

五、第二次鴉片戰(zhàn)爭給中國帶來哪些影響?

簽訂不平等條約;圓明園被毀;沙俄趁機侵吞中國領土說明中國半殖民地化進一步加深。

五、太平軍抗擊洋槍隊。

簡述:洪秀全發(fā)動金田起義,建號太平天國。1853年太平軍攻下南京,以南京為都城。

提問:太平軍為什么要抗擊洋槍隊?

中華民族是不甘落后的,是不會屈服于列強侵略勢力的,先進的中國人將努力尋求真理,探索救國之路。小結(jié):

英國為開新市場,走私鴉片危害廣。民族英雄林則徐,虎門銷煙為國強。一八四零鴉戰(zhàn)起,《南京條約》喪權(quán)益。賠款通商又割地,半殖半封近代始。

六、作業(yè):

填充圖冊:2-3頁;練習冊:1-2頁。

http://。

八年級數(shù)學教案華師大版篇十二

正比例函數(shù)的概念。

2、內(nèi)容解析。

一次函數(shù)是最基本的初等函數(shù),是初中函數(shù)學習的重要內(nèi)容,正比例函數(shù)是特殊的一次函數(shù),也是初中學生接觸到的第一種函數(shù),要通過對正比例函數(shù)內(nèi)容的學習,為后續(xù)類比學習一般一次函數(shù)打好基礎,了解研究函數(shù)的基本套路和方法,積累研究一般一次函數(shù)乃至其他各種函數(shù)的基本經(jīng)驗。

對正比例函數(shù)概念的學習,既要借助具體的函數(shù)進一步加深對函數(shù)概念的理解,即實際問題的兩個變量中,當一個變量變化時,另一個變量隨著它的變化而變化,而且對于這個變量的每一個確定的值,另一個變量都有唯一確定的值與之對應,這是理解正比例函數(shù)的核心;也要加強對正比例函數(shù)基本特征的認識,即根據(jù)實際問題構(gòu)建的函數(shù)模型中,函數(shù)和自變量每一對對應值的比值是一定的,等于比例系數(shù),反映在函數(shù)解析式上,這些函數(shù)都是常數(shù)與自變量的積的形式,這是正比例函數(shù)的基本特征。

本節(jié)課主要是通過對生活中大量實際問題的分析,寫出變量間的函數(shù)關系式,觀察比較概括出這些函數(shù)關系式具有的共同特征,根據(jù)共同特征抽象出正比例函數(shù)的基本模型,歸納得出正比例函數(shù)的概念,再用正比例函數(shù)的概念對具體函數(shù)進行辨析,對實際事例進行分析,根據(jù)已知條件寫出正比例函數(shù)的解析式。

基于以上分析,確定本節(jié)課的教學重點:正比例函數(shù)的概念。

1、目標。

(1)經(jīng)歷正比例函數(shù)概念的形成過程,理解正比例函數(shù)的概念;

(2)能根據(jù)已知條件確定正比例函數(shù)的解析式,體會函數(shù)建模思想。

2、目標解析。

達成目標(1)的標志是:通過對實際問題的分析,知道自變量和對應函數(shù)成正比例的特征,能概括抽象出正比例函數(shù)的概念。

達成目標(2)的標志是:能根據(jù)實際問題中的已知條件確定變量間的正比例函數(shù)關系式,將實際問題抽象為函數(shù)模型,體會函數(shù)建模思想。

正比例函數(shù)是是初中學生接觸到的第一種初等函數(shù),由于函數(shù)概念比較抽象,學生對函數(shù)基本概念理解未必深刻,在對實際問題進行分析過程中,需進一步強化對函數(shù)概念的理解:即實際問題的兩個變量中,當一個變量變化時,另一個變量隨著它的變化而變化,而且對于這個變量的`每一個確定的值,另一個變量都有唯一確定的值與之對應;對正比例函數(shù)概念的理解關鍵是對正比例函數(shù)基本特征的認識,要通過大量實例分析,寫出變量間的函數(shù)關系式,觀察比較發(fā)現(xiàn)這些函數(shù)具有的共同特征,即函數(shù)與自變量的每一對對應值的比值一定,都等于自變量前的常數(shù),這些函數(shù)都是常數(shù)與自變量的積的形式,再根據(jù)共同特征抽象出正比例函數(shù)的基本模型,歸納得出正比例函數(shù)的概念。對正比例函數(shù)基本特征的認識和正比例函數(shù)概念的抽象歸納過程學生有一定難度。

因此本節(jié)課的教學難點是:對正比例函數(shù)基本特征的認識和正比例函數(shù)概念的抽象歸納過程。

八年級數(shù)學教案華師大版篇十三

活動目標:

1、認知目標:理解二等分的含義,學習二等分的方法。

2、操作目標:通過操作探索出不同的方法給圖形二等分,體驗等分中的包含關系、等量關系。

3、能力目標:探索對不同圖形進行二等分。

發(fā)散點:

運用不同的等分線對圖形進行等分。

活動準備:

正方形彩色紙片若干、多項操作學具、棋盤若干,記錄單,剪刀,鉛筆、手偶。

活動過程:

(一)等分圖形。

1、以情景引入。結(jié)合大班幼兒的年齡特點,創(chuàng)設了這個問題情境,吸引幼兒參與活動的同時,也能夠更加生活化地展現(xiàn)生活的數(shù)學,更加易于幼兒的理解。

(1)出示手偶:“你們看誰來了?”幼兒:“是平平姐姐?!?/p>

(2)以手偶表演,教師問:“平平姐姐今天怎么不高興了,有什么煩惱嗎?”平平(教師扮):“今天早上吃早點,我發(fā)現(xiàn)只有一片面包片了,可是我要和盈盈一起來分享,小朋友,你們快幫我想想我該怎么辦呢?”

(3)師:“誰想到好辦法了?”幼兒:“把面包片分成兩份不就行了嗎!”

(4)平平(教師扮):“可是分完了會有大有小,怎么辦?”

(5)教師出示正方形的彩色紙片,提問:“面包片是什么形狀的?”幼兒:“正方形的?!苯處煟骸澳俏覀兙陀谜叫蔚募垇泶婷姘瑤推狡浇憬銇矸殖蓛蓧K一樣大的!”

2、提供幼兒正方形紙和剪刀,請幼兒操作。提供給幼兒嘗試的機會,驗證自己的想法,并可以不受限制地嘗試各種二等分的方法,用剪刀將其剪開的方法便于幼兒驗證兩部分是否相等。

3、小結(jié):

(1)師:“你把正方形分成了幾塊什么形狀,你是怎樣分的?”

(2)師:“有幾種分的方法”(對角和對邊折)。

(3)師:“怎樣證明這兩塊一樣大呢?”(比一比)。

(4)師:“怎樣分才能一樣大呢?”

(5)教師于幼兒共同總結(jié):只要找到了中心線,就可以將一個分成兩個一樣大的。進一步引導幼兒掌握二等分的關鍵要點。

(二)運用學具進一步探索。只用紙來等分,以現(xiàn)階段幼兒的年齡特點所致,比較精確的二等分方法只有對角和對邊折兩種,運用學具,抓住學具有洞洞點的特點,可以讓幼兒進一步嘗試以各種折線為中心線進行正方形的二等分,并且能夠保證精確性。促進幼兒發(fā)散性思維的發(fā)展,是幼兒在明確等分要求的.基礎上自由地嘗試二等分的多種方法。此環(huán)節(jié)更加注重幼兒的創(chuàng)造性和獨特性,同時滲透了做一件事情可以有多種方法解決的道理。

1、師:“你們用了兩種辦法,還有沒有更多的方法呢?”

2、請幼兒運用學具進行嘗試,并準確找到不同形狀的中心線,探索檢驗的方法。檢驗能夠證明所分的兩部分是一樣大的,檢驗的方法并不是單一的,為幼兒投放了與一塊學具板相同的作業(yè)單的目的就是能夠在記錄等分方法的同時,還可以剪開記錄后的作業(yè)單進行比較證明。除此方法還可以比較等分線兩側(cè)的洞洞子每排數(shù)量是否相同等方法。

3、幼兒分組操作,教師針對尋找不同的中心線以及檢查的辦法進行指導,并引導幼兒記錄、檢驗。

4、小結(jié):展示幼兒作業(yè)單,誰來說一說你用了什么方法進行了等分,你是怎樣指導它們是一樣大的。請幼兒將有創(chuàng)新的分法介紹給其他的幼兒,并展示不同檢驗相等的方法。讓幼兒能夠有交流展示的機會,并且結(jié)合大班幼兒集體學習的特點,鼓勵幼兒創(chuàng)新。

八年級數(shù)學教案華師大版篇十四

1.理解分式的基本性質(zhì).

2.會用分式的基本性質(zhì)將分式變形.

二、重點、難點。

1.重點:理解分式的基本性質(zhì).

2.難點:靈活應用分式的基本性質(zhì)將分式變形.

3.認知難點與突破方法。

教學難點是靈活應用分式的基本性質(zhì)將分式變形.突破的方法是通過復習分數(shù)的通分、約分總結(jié)出分數(shù)的基本性質(zhì),再用類比的方法得出分式的基本性質(zhì).應用分式的基本性質(zhì)導出通分、約分的概念,使學生在理解的基礎上靈活地將分式變形。

三、例、習題的意圖分析。

1.p7的例2是使學生觀察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后應用分式的基本性質(zhì),相應地把分子(或分母)乘以或除以了這個整式,填到括號里作為答案,使分式的值不變。

2.p9的例3、例4地目的是進一步運用分式的基本性質(zhì)進行約分、通分.值得注意的是:約分是要找準分子和分母的公因式,最后的結(jié)果要是最簡分式;通分是要正確地確定各個分母的最簡公分母,一般的取系數(shù)的最小公倍數(shù),以及所有因式的次冪的積,作為最簡公分母。

教師要講清方法,還要及時地糾正學生做題時出現(xiàn)的錯誤,使學生在做提示加深對相應概念及方法的理解。

3.p11習題16.1的第5題是:不改變分式的值,使下列分式的分子和分母都不含“-”號.這一類題教材里沒有例題,但它也是由分式的基本性質(zhì)得出分子、分母和分式本身的符號,改變其中任何兩個,分式的值不變。

“不改變分式的值,使分式的分子和分母都不含‘-’號”是分式的基本性質(zhì)的應用之一,所以補充例5。

四、課堂引入。

1.請同學們考慮:與相等嗎?與相等嗎?為什么?

2.說出與之間變形的過程,與之間變形的過程,并說出變形依據(jù)?

3.提問分數(shù)的基本性質(zhì),讓學生類比猜想出分式的基本性質(zhì).

五、例題講解。

p7例2.填空:

[分析]應用分式的基本性質(zhì)把已知的分子、分母同乘以或除以同一個整式,使分式的值不變.

p11例3.約分:

[分析]約分是應用分式的基本性質(zhì)把分式的分子、分母同除以同一個整式,使分式的值不變.所以要找準分子和分母的公因式,約分的結(jié)果要是最簡分式.

p11例4.通分:

[分析]通分要想確定各分式的公分母,一般的取系數(shù)的最小公倍數(shù),以及所有因式的次冪的積,作為最簡公分母.

(補充)例5.不改變分式的值,使下列分式的分子和分母都不含“-”號.

[分析]每個分式的分子、分母和分式本身都有自己的符號,其中兩個符號同時改變,分式的值不變.

解:=,=,=,=,=。

六、隨堂練習。

1.填空:

(1)=(2)=。

(3)=(4)=。

2.約分:

3.通分:

(1)和(2)和。

(3)和(4)和。

4.不改變分式的值,使下列分式的分子和分母都不含“-”號.

七、課后練習。

1.判斷下列約分是否正確:

(1)=(2)=。

(3)=0。

2.通分:

(1)和(2)和。

3.不改變分式的值,使分子第一項系數(shù)為正,分式本身不帶“-”號.

八、答案:

六、1.(1)2x(2)4b(3)bn+n(4)x+y。

2.(1)(2)(3)(4)-2(x-y)2。

3.通分:

(1)=,=。

(2)=,=。

(3)==。

(4)==。

八年級數(shù)學教案華師大版篇十五

教學目標:

1、知道一次函數(shù)與正比例函數(shù)的意義.

2、能寫出實際問題中正比例關系與一次函數(shù)關系的解析式.

3、滲透數(shù)學建模的思想,使學生體會到數(shù)學的抽象性和廣泛的應用性.

4、激發(fā)學生學習數(shù)學的興趣,培養(yǎng)學生分析問題、解決問題的能力.

教學重點:對于一次函數(shù)與正比例函數(shù)概念的理解.

教學難點:根據(jù)具體條件求一次函數(shù)與正比例函數(shù)的解析式.

教學方法:結(jié)構(gòu)教學法、以學生“再創(chuàng)造”為主的教學方法。

教學過程:

1、復習舊課。

前面我們學習了函數(shù)的相關知識,(教師在黑板上畫出本章結(jié)構(gòu)并讓學生說出前三。

2、引入新課。

就象以前我們學習方程、一元一次方程;不等式、一元一次不等式的內(nèi)容時一樣,我們在學習了函數(shù)這個概念以后,要學習一些具體的函數(shù),今天我們要學習的是一次函數(shù).顧名思義,誰能根據(jù)一次函數(shù)這個名字,類比一元一次方程、一元一次不等式的概念能舉出一些一次函數(shù)的例子?(學生完全具備這種類比的能力,所以要快、不要耽誤太多時間叫幾個同學回答就可以了.教師將學生的正確的例子寫在黑板上)。

這些函數(shù)有什么共同特點呢?(注意根據(jù)學生情況適當引導,看能否歸納出一般結(jié)果.)不難看出函數(shù)都是用自變量的一次式表示的,可以寫成()的形式.一般地,如果(是常數(shù),)(括號內(nèi)用紅字強調(diào))那么y叫做x的一次函數(shù).特別地,當b=0時,一次函數(shù)就成為(是常數(shù),)。

3、例題講解。

例1、某油管因地震破裂,導致每分鐘漏出原油30公升。

(1)如果x分鐘共漏出y公升,寫出y與x之間的函數(shù)關系式。

(2)破裂3.5小時后,共漏出原油多少公升。

分析:y與x成正比例。

解:(1)(2)(升)。

例2、小丸子的存折上已經(jīng)有500元存款了,從現(xiàn)在開始她每個月可以得到150元的零用錢,小丸子計劃每月將零用錢的60%存入銀行,用以購買她期盼已久的cd隨身聽(價值1680元)。

(1)列出小丸子的銀行存款(不計利息)y與月數(shù)x的函數(shù)關系式;。

(2)多長時間以后,小丸子的銀行存款才能買隨身聽?

分析:銀行存款數(shù)由兩部分構(gòu)成:原有的存款500元,后存入的零用錢。

例3、已知函數(shù)是正比例函數(shù),求的值。

分析:本題考察的是正比例函數(shù)的概念。

解:

4、小結(jié)。

由學生對本節(jié)課知識進行總結(jié),教師板書即可.

5、布置作業(yè)。

書面作業(yè):1、書后習題2、自己寫出一個實際中的一次函數(shù)的例子并進行討論。

八年級數(shù)學教案華師大版篇十六

教學目標:

〔知識與技能〕。

1.在生活實例中認識軸對稱圖.

2.分析軸對稱圖形,理解軸對稱的概念.軸對稱圖形的概念。

〔過程與方法〕。

2、在靈活運用知識解決有關問題的過程中,體驗并掌握探索、歸納圖形性質(zhì)的推理方法,進一步培說理和進行簡單推理的能力。

〔情感、態(tài)度與價值觀〕。

辯證唯物主義觀點。

教學重點:.

理解軸對稱的概念。

教學難點。

能夠識別軸對稱圖形并找出它的對稱軸.

教具準備:三角尺。

教學過程。

一.創(chuàng)設情境,引入新課。

1.舉實例說明對稱的重要性和生活充滿著對稱。

2.對稱給我們帶來多少美的感受!初步掌握對稱的奧秒,不僅可以幫助我們發(fā)現(xiàn)一些圖形的特征,還可以使我們感受到自然界的美與和諧.

3.軸對稱是對稱中重要的一種,讓我們一起走進軸對稱世界,探索它的秘密吧!

二.導入新課。

1.觀察:幾幅圖片(出示圖片),觀察它們都有些什么共同特征.

強調(diào):對稱現(xiàn)象無處不在,從自然景觀到分子結(jié)構(gòu),從建筑物到藝術作品,?甚至日常生活用品,人們都可以找到對稱的例子.

練習:從學生生活周圍的事物中來找一些具有對稱特征的例子.

3.如果一個圖形沿一直線折疊,直線兩旁的部分能夠互相重合,這個圖形就叫做軸對稱圖形,這條直線就是它的對稱軸.我們也說這個圖形關于這條直線(成軸)?對稱.

4.動手操作:取一張質(zhì)地較硬的紙,將紙對折,并用小刀在紙的中央隨意。

刻出一個圖案,將紙打開后鋪平,你得到兩個成軸對稱的圖案了嗎?

歸納小結(jié):由此我們進一步了解了軸對稱圖形的特征:一個圖形沿一條直線折疊后,折痕兩側(cè)的圖形完全重合.

5.練習:你能找出它們的對稱軸嗎?分小組討論.

思考:大家想一想,你發(fā)現(xiàn)了什么?

小結(jié)得出:.像這樣,?把一個圖形沿著某一條直線折疊,如果它能夠與另一個圖形重合,那么就說這兩個圖形關于這條直線對稱,?這條直線叫做對稱軸,折疊后重合的點是對應點,叫做對稱點.

三.隨堂練習。

1、課本60練習1、2。

四.課時小結(jié)。

分了軸對稱圖形和兩個圖形成軸對稱.

五.課后作業(yè)。

習題13.1.1、2、6題.

六.教后記。

八年級數(shù)學教案華師大版篇十七

一、教材分析:

《正方形》這節(jié)課是九年義務教育人教版數(shù)學教材八年級下冊第十九章第二節(jié)的內(nèi)容。縱觀整個初中教材,《正方形》是在學生掌握了平行線、三角形、平行四邊形、矩形、菱形等有關知識及簡單圖形的平移和旋轉(zhuǎn)等平面幾何知識,并且具備有初步的觀察、操作等活動經(jīng)驗的基礎上出現(xiàn)的。既是前面所學知識的延續(xù),又是對平行四邊形、菱形、矩形進行綜合的不可缺少的重要環(huán)節(jié)。

本節(jié)課的重點是正方形的概念和性質(zhì),難點是理解正方形與平行四邊形、矩形、菱形之間的內(nèi)在聯(lián)系。根據(jù)大綱要求,本節(jié)課制定了知識、能力、情感三方面的目標。

(一)知識目標:

1、要求學生掌握正方形的概念及性質(zhì);

2、能正確運用正方形的性質(zhì)進行簡單的計算、推理、論證;

(二)能力目標:

1、通過本節(jié)課培養(yǎng)學生觀察、動手、探究、分析、歸納、總結(jié)等能力;

2、發(fā)展學生合情推理意識,主動探究的習慣,逐步掌握說理的基本方法;

(三)情感目標:

1、讓學生樹立科學、嚴謹、理論聯(lián)系實際的良好學風;

2、培養(yǎng)學生互相幫助、團結(jié)協(xié)作、相互討論的團隊精神;

3、通過正方形圖形的完美性,培養(yǎng)學生品格的完美性。

二、學生分析:

該段學生具有一定的獨立思考和探究的能力,但語言表達能力方面稍有欠缺,所以在本節(jié)課的教學過程中,特意設計了讓學生自己組織語言培養(yǎng)說理能力,讓學生們能逐步提高。

三、教法分析:

針對本節(jié)課的特點,采用"實踐--觀察--總結(jié)歸納--運用"為主線的教學方法。

通過學生動手,采取幾種不同的方法構(gòu)造出正方形,然后引導學生探究正方形的概念。通過觀察、討論、歸納、總結(jié)出正方形性質(zhì)定理,最后以課堂練習加以鞏固定理,并通過一道拔高題對定義、性質(zhì)理解、鞏固加以升華。

四、學法分析:

本節(jié)課重點是從培養(yǎng)學生探索精神和分析歸納總結(jié)能力為出發(fā)點,著重指導學生動手、觀察、思考、分析、總結(jié)得出結(jié)論。在小組討論中通過互相學習,讓學生體驗合作學習的樂趣。

五、教學程序:

第一環(huán)節(jié):相關知識回顧。

以提問的形式復習的平行四邊形、矩形、菱形的定義及性質(zhì)之后,引導學生發(fā)現(xiàn)矩形、菱形的實質(zhì)是由平行四邊形角度、邊長的變化得到的。并啟發(fā)學生考慮,若這兩種變化同時發(fā)生在平行四邊形上,則會得到什么樣的圖形?讓學生們通過手上的學具演示以上兩種變化,從而得出結(jié)論。

第二環(huán)節(jié):新課講解通過學生們的發(fā)現(xiàn)引出課題“正方形”

1、正方形的定義:引導學生說出自己變化出正方形的過程,并再次利用課件形象演示出由平行四邊形的邊、角的變化演變出正方形的過程。請同學們舉手發(fā)言,歸納總結(jié)出正方形定義:一組鄰邊相等,且一個角是直角的平行四邊形是正方形。再由此定義啟發(fā)學生們發(fā)現(xiàn)正方形的三個必要條件,并且由這三個條件通過重新組合即一組鄰邊相等與平行四邊形組成菱形再加上一個角是直角可得到正方形的另兩個定義:一個角是直角的菱形是正方形;一組鄰邊相等的矩形是正方形。此內(nèi)容借助課件演示其變化過程,進一步啟發(fā)學生發(fā)現(xiàn),正方形既是特殊的菱形,又是特殊的矩形,從而總結(jié)出正方形的性質(zhì)。

2、正方形的性質(zhì)。

定理1:正方形的四個角都是直角,四條邊都相等;

定理2:正方形的兩條對角線相等,并且互相垂直、平分,每條對角線平分一組對角。

以上是對正方形定義和性質(zhì)的學習,之后是進行例題講解。

4、課堂練習:第一部分采用三道有關正方形的周長、面積、對角線、邊長計算的填空題,目的是對正方形性質(zhì)的進一步理解,并考察學生掌握的情況。

第二部分是選擇題,通過體現(xiàn)生活中實際問題,來提升學生所學的知識,并加以綜合練習,提高他們的綜合素質(zhì),使他們充分認識到數(shù)學實質(zhì)是來源于生活并要服務于生活。

5、課堂小結(jié):此環(huán)節(jié)我是通過圖框的形式小結(jié)正方形和前階段所學特殊四邊形之間的內(nèi)在聯(lián)系,通過對所學幾種四邊形內(nèi)在聯(lián)系體現(xiàn)正方形完美的本質(zhì),渲染學生們應追求象正方形一樣方正的品質(zhì),從而要努力學習以豐富的知識充實自己,達到理想中的完美。

6、作業(yè)設計:作業(yè)是教材159頁,第12、14兩小道證明題,通過此作業(yè)讓同學們進一步鞏固有關正方形的知識。

【本文地址:http://mlvmservice.com/zuowen/14003180.html】

全文閱讀已結(jié)束,如果需要下載本文請點擊

下載此文檔