學習和工作生活中的表現(xiàn)是我們進步和成長的重要標志。總結的內容要有條理,邏輯清晰,讓人一目了然。這是小編為大家準備的一些總結范文,希望能幫到你。
抽屜原理教學設計優(yōu)缺點篇一
《義務教育課程標準實驗教科書·數(shù)學》六年級下冊第68頁。
1.經歷“抽屜原理”的探究過程,初步了解“抽屜原理”,會用“抽屜原理”解決簡單的實際問題。
2. 通過操作發(fā)展學生的類推能力,形成比較抽象的數(shù)學思維。
3. 通過“抽屜原理”的靈活應用感受數(shù)學的魅力。
經歷“抽屜原理”的探究過程,初步了解“抽屜原理”。
理解“抽屜原理”,并對一些簡單實際問題加以“模型化”。
每組都有相應數(shù)量的盒子、鉛筆、書。
抽屜原理教學設計優(yōu)缺點篇二
桌上有十個蘋果,要把這十個蘋果放到九個抽屜里,無論怎樣放,我們會發(fā)現(xiàn)至少會有一個抽屜里面至少放兩個蘋果。這一現(xiàn)象就是我們所說的“抽屜原理”。
激趣是新課導入的抓手,喜歡和好奇心比什么都重要,以“搶椅子”,讓學生置身游戲中開始學習,為理解抽屜原理埋下伏筆。通過小組合作,動手操作的探究性學習把抽屜原理較為抽象難懂的內容變?yōu)閷W生感興趣又易于理解的內容。特別是對教材中的結論“總有、至少”等字詞作了充分的闡釋,幫助學生進行較好的“建模”,使復雜問題簡單化,簡單問題模型化,充分體現(xiàn)了新課標要求。
1、經歷“抽屜原理”的探究過程,初步了解“抽屜原理”,會用“抽屜原理”解決簡單的實際問題。
2、通過操作發(fā)展學生的類推能力,形成比較抽象的數(shù)學思維。
3、通過“抽屜原理”的靈活應用感受數(shù)學的魅力。
重點:經歷“抽屜原理”的探究過程,初步了解“抽屜原理”。
難點:理解“抽屜原理”,并對一些簡單實際問題加以“模型化”。
師:同學們在我們上課之前,先做個小游戲:老師這里準備了4把椅子,請5個同學上來,誰愿來?(學生上來后)。
師:聽清要求,老師說開始以后,請你們5個都坐在椅子上,每個人必須都坐下,好嗎?(好)。這時教師面向全體,背對那5個人。
師:開始。
師:都坐下了嗎?
生:坐下了。
生:對!
師:老師為什么能做出準確的判斷呢?道理是什么?這其中蘊含著一個有趣的數(shù)學原理,這節(jié)課我們就一起來研究這個原理。(抽屜原理)。
1、研究3枝鉛筆放進2個文具盒。
(1)要把3枝鉛筆放進2個文具盒,有幾種放法?請同學們想一想,擺一擺,寫一寫,再把你的想法在小組內交流。
(2)反饋:兩種放法:(3,0)和(2,1)。
(3)從兩種放法,同學們會有什么發(fā)現(xiàn)呢?(總有一個文具盒至少放進2枝鉛筆)你是怎么發(fā)現(xiàn)的?(說得真有道理)。
(4)“總有”什么意思?(一定有)。
(5)“至少”有2枝什么意思?(不少于2枝)。
小結:在研究3枝鉛筆放進2個文具盒時,同學們表現(xiàn)得很積極,發(fā)現(xiàn)了“不管怎么放,總有一個文具盒放進2枝鉛筆)。
2、研究4枝鉛筆放進3個文具盒。
(1)要把4枝鉛筆放進3個文具盒里,有幾種放法?請同學們動手擺一擺,再把你的想法在小組內交流。
(2)反饋:四種放法:(4,0,0)、(3,1,0)、(2,2,0)、(2,1,1)。
(3)從四種放法,同學們會有什么發(fā)現(xiàn)呢?(總有一個筆盒至少有2枝鉛筆)。
(4)你是怎么發(fā)現(xiàn)的?
(5)大家通過枚舉出四種放法,能清楚地發(fā)現(xiàn)“總有一個文具盒放進2枝鉛筆”。如果要讓每個文具盒里放的筆盡可能的少,你覺得應該要怎樣放?(每個文具盒都先放進一枝,還剩一枝不管放進哪個文具盒,總會有一個文具盒至少有2枝筆)(你真是一個善于思想的孩子。)。
(6)這位同學運用了假設法來說明問題,你是假設先在每個文具盒里放1枝鉛筆,這種放法其實也就是怎樣分?(平均分)那剩下的1枝怎么處理?(放入任意一個文具盒,那么這個文具盒就有2枝鉛筆了)。
3、類推:把5枝鉛筆放進4個文具盒,是不是總有一個筆盒至少有2枝鉛筆?為什么?
把6枝鉛筆放進5個文具盒,是不是總有一個筆盒至少有2枝鉛筆?為什么?
把7枝鉛筆放進6個文具盒,是不是總有一個筆盒至少有2枝鉛筆?為什么?
把100枝鉛筆放進99個文具盒,是不是總有一個筆盒至少有2枝鉛筆?為什么?
4、從剛才我們的探究活動中,你有什么發(fā)現(xiàn)?(只要放的鉛筆比文具盒的數(shù)量多1,總有一個文具盒里至少放進2枝鉛筆。)。
5、如果鉛筆數(shù)比文具盒數(shù)多2呢?多3呢?是不是也能得到結論:“總有一個筆盒至少有2枝鉛筆?!?/p>
6、小結:剛才我們分析了把鉛筆放進文具盒的情況,只要鉛筆數(shù)量多于文具盒數(shù)量時,總有一個文具盒至少放進2枝鉛筆。
這就是今天我們要學習的抽屜原理。既然叫“抽屜原理”是不是應該和抽屜有聯(lián)系吧?鉛筆相當于我們要準備放進抽屜的物體,那么文具盒就相當于抽屜了。如果物體數(shù)多于抽屜數(shù),我們就能得出結論“總有一個抽屜里放進了2個物體?!?/p>
過渡:同學們非常了不起,善于運用觀察、分析、思考、推理、證明的方法研究問題,得出結論。同學們的思維也在不知不覺中提升了許多,那么讓我們再來研究這樣一組問題。
1、研究把5本書放進2個抽屜。
(1)把5本書放進2個抽屜會有幾種情況?(5,0)、(4,1)和(3,2)。
(2)從三種情況中,我們可以得到怎樣的結論呢?(總有一個抽屜至少放進了3本書)。
(3)還可以怎樣理解這個結論?先在每個抽屜里放進2本,剩下的1本放進任何一個抽屜,這個抽屜就有3本書了。
2、類推:如果把7本書放進2個抽屜中,至少有一個抽屜放進4本書。
如果把9本書放進2個抽屜中。至少有一個抽屜放進5本書。
3、小結:從以上的學習中,你有什么發(fā)現(xiàn)?(在解決抽屜原理時,我們可以運用假設法,把物體盡可量多地“平均分”給各個抽屜,總有一個抽屜比平均分得的物體數(shù)多1。)。
4、經過剛才的探索研究,我們經歷了一個很不簡單的思維過程,個個都是了不起的數(shù)學家。“抽屜原理”最先是由19世紀的德國數(shù)學家狄利克雷提出來的,所以又稱“狄里克雷原理”,也稱為“鴿巢原理”。這一原理在解決實際問題中有著廣泛的應用?!俺閷显怼钡膽檬乔ё內f化的,用它可以解決許多有趣的問題,并且常常能得到一些令人驚異的結果。
5、做一做:
7只鴿子飛回5個鴿舍,至少有2只鴿子要飛進同一個佶舍里。為什么?
8只鴿子飛回3個鴿舍,至少有3只鴿子要飛時同一個鴿舍里。為什么?
(先讓學生獨立思考,在小組里討論,再全班反饋)。
下面我們一起來放松一下,做個小游戲。
這節(jié)課,你有什么收獲?
抽屜原理教學設計優(yōu)缺點篇三
桌上有十個蘋果,要把這十個蘋果放到九個抽屜里,無論怎樣放,我們會發(fā)現(xiàn)至少會有一個抽屜里面至少放兩個蘋果。這一現(xiàn)象就是我們所說的“抽屜原理”。
教學理念:
激趣是新課導入的抓手,喜歡和好奇心比什么都重要,以“搶椅子”,讓學生置身游戲中開始學習,為理解抽屜原理埋下伏筆。通過小組合作,動手操作的探究性學習把抽屜原理較為抽象難懂的內容變?yōu)閷W生感興趣又易于理解的內容。特別是對教材中的結論“總有、至少”等字詞作了充分的闡釋,幫助學生進行較好的“建?!?,使復雜問題簡單化,簡單問題模型化,充分體現(xiàn)了新課標要求。
教學目標:
1.經歷“抽屜原理”的探究過程,初步了解“抽屜原理”,會用“抽屜原理”解決簡單的實際問題。
2.通過操作發(fā)展學生的類推能力,形成比較抽象的數(shù)學思維。
3.通過“抽屜原理”的靈活應用感受數(shù)學的魅力。
教學重難點:
重點:經歷“抽屜原理”的探究過程,初步了解“抽屜原理”。
難點:理解“抽屜原理”,并對一些簡單實際問題加以“模型化”。
教學過程:
一、課前游戲引入。
師:同學們在我們上課之前,先做個小游戲:老師這里準備了4把椅子,請5個同學上來,誰愿來?(學生上來后)。
師:聽清要求,老師說開始以后,請你們5個都坐在椅子上,每個人必須都坐下,好嗎?(好)。這時教師面向全體,背對那5個人。
師:開始。
師:都坐下了嗎?
生:坐下了。
生:對!
師:老師為什么能做出準確的判斷呢?道理是什么?這其中蘊含著一個有趣的數(shù)學原理,這節(jié)課我們就一起來研究這個原理。(抽屜原理)。
二、通過操作,探究新知。
(一)探究例1。
1、研究3枝鉛筆放進2個文具盒。
(1)要把3枝鉛筆放進2個文具盒,有幾種放法?請同學們想一想,擺一擺,寫一寫,再把你的想法在小組內交流。
(2)反饋:兩種放法:(3,0)和(2,1)。
(3)從兩種放法,同學們會有什么發(fā)現(xiàn)呢?(總有一個文具盒至少放進2枝鉛筆)你是怎么發(fā)現(xiàn)的?(說得真有道理)。
(4)“總有”什么意思?(一定有)。
(5)“至少”有2枝什么意思?(不少于2枝)。
小結:在研究3枝鉛筆放進2個文具盒時,同學們表現(xiàn)得很積極,發(fā)現(xiàn)了“不管怎么放,總有一個文具盒放進2枝鉛筆)。
2、研究4枝鉛筆放進3個文具盒。
(1)要把4枝鉛筆放進3個文具盒里,有幾種放法?請同學們動手擺一擺,再把你的想法在小組內交流。
(2)反饋:四種放法:(4,0,0)、(3,1,0)、(2,2,0)、(2,1,1)。
(3)從四種放法,同學們會有什么發(fā)現(xiàn)呢?(總有一個筆盒至少有2枝鉛筆)。
(4)你是怎么發(fā)現(xiàn)的?
(5)大家通過枚舉出四種放法,能清楚地發(fā)現(xiàn)“總有一個文具盒放進2枝鉛筆”。如果要讓每個文具盒里放的筆盡可能的少,你覺得應該要怎樣放?(每個文具盒都先放進一枝,還剩一枝不管放進哪個文具盒,總會有一個文具盒至少有2枝筆)(你真是一個善于思想的孩子。)。
(6)這位同學運用了假設法來說明問題,你是假設先在每個文具盒里放1枝鉛筆,這種放法其實也就是怎樣分?(平均分)那剩下的1枝怎么處理?(放入任意一個文具盒,那么這個文具盒就有2枝鉛筆了)。
3、類推:把5枝鉛筆放進4個文具盒,是不是總有一個筆盒至少有2枝鉛筆?為什么?
把6枝鉛筆放進5個文具盒,是不是總有一個筆盒至少有2枝鉛筆?為什么?
把7枝鉛筆放進6個文具盒,是不是總有一個筆盒至少有2枝鉛筆?為什么?
把100枝鉛筆放進99個文具盒,是不是總有一個筆盒至少有2枝鉛筆?為什么?
4、從剛才我們的探究活動中,你有什么發(fā)現(xiàn)?(只要放的鉛筆比文具盒的數(shù)量多1,總有一個文具盒里至少放進2枝鉛筆。)。
5、如果鉛筆數(shù)比文具盒數(shù)多2呢?多3呢?是不是也能得到結論:“總有一個筆盒至少有2枝鉛筆?!?/p>
6、小結:剛才我們分析了把鉛筆放進文具盒的情況,只要鉛筆數(shù)量多于文具盒數(shù)量時,總有一個文具盒至少放進2枝鉛筆。
這就是今天我們要學習的抽屜原理。既然叫“抽屜原理”是不是應該和抽屜有聯(lián)系吧?鉛筆相當于我們要準備放進抽屜的物體,那么文具盒就相當于抽屜了。如果物體數(shù)多于抽屜數(shù),我們就能得出結論“總有一個抽屜里放進了2個物體?!?/p>
過渡:同學們非常了不起,善于運用觀察、分析、思考、推理、證明的方法研究問題,得出結論。同學們的思維也在不知不覺中提升了許多,那么讓我們再來研究這樣一組問題。
(二)探究例2。
1、研究把5本書放進2個抽屜。
(1)把5本書放進2個抽屜會有幾種情況?(5,0)、(4,1)和(3,2)。
(2)從三種情況中,我們可以得到怎樣的結論呢?(總有一個抽屜至少放進了3本書)。
(3)還可以怎樣理解這個結論?先在每個抽屜里放進2本,剩下的1本放進任何一個抽屜,這個抽屜就有3本書了。
2、類推:如果把7本書放進2個抽屜中,至少有一個抽屜放進4本書。
如果把9本書放進2個抽屜中。至少有一個抽屜放進5本書。
3、小結:從以上的學習中,你有什么發(fā)現(xiàn)?(在解決抽屜原理時,我們可以運用假設法,把物體盡可量多地“平均分”給各個抽屜,總有一個抽屜比平均分得的物體數(shù)多1。)。
4、經過剛才的探索研究,我們經歷了一個很不簡單的思維過程,個個都是了不起的數(shù)學家?!俺閷显怼弊钕仁怯?9世紀的德國數(shù)學家狄利克雷提出來的,所以又稱“狄里克雷原理”,也稱為“鴿巢原理”。這一原理在解決實際問題中有著廣泛的應用。“抽屜原理”的應用是千變萬化的,用它可以解決許多有趣的問題,并且常常能得到一些令人驚異的結果。
5、做一做:
7只鴿子飛回5個鴿舍,至少有2只鴿子要飛進同一個佶舍里。為什么?
8只鴿子飛回3個鴿舍,至少有3只鴿子要飛時同一個鴿舍里。為什么?
(先讓學生獨立思考,在小組里討論,再全班反饋)。
三、遷移與拓展。
下面我們一起來放松一下,做個小游戲。
四、總結全課。
這節(jié)課,你有什么收獲?
將本文的word文檔下載到電腦,方便收藏和打印。
抽屜原理教學設計優(yōu)缺點篇四
1.經歷“抽屜原理”的探究過程,初步了解“抽屜原理”,會用“抽屜原理”解決簡單的實際問題。
2.通過操作發(fā)展學生的類推能力,形成比較抽象的數(shù)學思維。
3.通過“抽屜原理”的靈活應用感受數(shù)學的魅力。
經歷“抽屜原理”的探究過程,理解“抽屜原理”,并對一些簡單實際問題加以“模型化”。
一、問題引入。
1.游戲要求:開始以后,請你們5個都坐在椅子上,每個人必須都坐下。
2.討論:“不管怎么坐,總有一把椅子上至少坐兩個同學”這句話說得對嗎?
游戲開始,讓學生初步體驗不管怎么坐,總有一把椅子上至少坐兩個同學,使學生明確這是現(xiàn)實生活中存在著的一種現(xiàn)象。
引入:不管怎么坐,總有一把椅子上至少坐兩個同學?你知道這是什么道理嗎?這其中蘊含著一個有趣的數(shù)學原理,這節(jié)課我們就一起來研究這個原理。
二、探究新知。
(一)教學例1。
師:請同學們實際放放看,誰來展示一下你擺放的情況?(指名擺)根據(jù)學生擺的情況,師出示各種情況。
板書:(4,0,0)(3,1,0)(2,2,0)(2,1,1),
引導學生得出:不管怎么放,總有一個盒子里至少有2枝筆。
問題:
(1)“總有”是什么意思?(一定有)。
(2)“至少”有2枝什么意思?(不少于兩只,可能是2枝,也可能是多于2枝?)。
學生思考并進行組內交流,教師選代表進行總結:如果每個盒子里放1枝鉛筆,最多放3枝,剩下的.1枝不管放進哪一個盒子里,總有一個盒子里至少有2枝鉛筆。首先通過平均分,余下1枝,不管放在那個盒子里,一定會出現(xiàn)“總有一個盒子里一定至少有2枝”。
問題:把6枝筆放進5個盒子里呢?還用擺嗎?把7枝筆放進6個盒子里呢?把8枝筆放進7個盒子里呢?把9枝筆放進8個盒子里呢?……你發(fā)現(xiàn)什么?(筆的枝數(shù)比盒子數(shù)多1,不管怎么放,總有一個盒子里至少有2枝鉛筆。)。
總結:只要放的鉛筆數(shù)盒數(shù)多1,總有一個盒里至少放進2支。
2.完成課下“做一做”,學習解決問題。
問題:6只鴿子飛回5個鴿籠,至少有2只鴿子要飛進同一個鴿籠里,為什么?
(1)學生活動—獨立思考自主探究。
(2)交流、說理活動。
引導學生分析:如果一個鴿籠里飛進一只鴿子,最多飛進4只鴿子,還剩一只,要飛進其中的一個鴿籠里。不管怎么飛,至少有2只鴿子要飛進同一個鴿籠里。所以,“至少有2只鴿子飛進同一個籠里”的結論是正確的。
總結:用平均分的方法,就能說明存在“總有一個鴿籠至少有2只鴿子飛進一個個籠里”。
(二)教學例2。
(留給學生思考的空間,師巡視了解各種情況)。
2.學生匯報,教師給予表揚后并總結:
總結1:把5本書放進2個抽屜里,如果每個抽屜里先放2本,還剩1本,這本書不管放到哪個抽屜里,總有一個抽屜里至少有3本書。
總結2:“總有一個抽屜里的至少有2本”只要用“商+1”就可以得到。
問題:如果把5本書放進3個抽屜里,不管怎么放,總有一個抽屜里至少有幾本書?用“商+2”可以嗎?(學生討論)。
引導學生思考:到底是“商+1”還是“商+余數(shù)”呢?誰的結論對呢?(學生小組里進行研究、討論。)。
總結:用書的本數(shù)除以抽屜數(shù),再用所得的商加1,就會發(fā)現(xiàn)“總有一個抽屜里至少有商加1本書”了。
師:同學們的這一發(fā)現(xiàn),稱為“抽屜原理”,“抽屜原理”又稱“鴿籠原理”,最先是由19世紀的德國數(shù)學家狄利克雷提出來的,所以又稱“狄里克雷原理”,也稱為“鴿巢原理”。這一原理在解決實際問題中有著廣泛的應用?!俺閷显怼钡膽檬乔ё內f化的,用它可以解決許多有趣的問題,并且常常能得到一些令人驚異的結果。下面我們應用這一原理解決問題。
(三)學生自學例題3并進行自主交流,試著用手中的用具模擬演示場景。
三、解決問題。
四、全課小結。
將本文的word文檔下載到電腦,方便收藏和打印。
抽屜原理教學設計優(yōu)缺點篇五
桌上有十個蘋果,要把這十個蘋果放到九個抽屜里,無論怎樣放,我們會發(fā)現(xiàn)至少會有一個抽屜里面至少放兩個蘋果。這一現(xiàn)象就是我們所說的“抽屜原理”。
激趣是新課導入的抓手,喜歡和好奇心比什么都重要,以“搶椅子”,讓學生置身游戲中開始學習,為理解抽屜原理埋下伏筆。通過小組合作,動手操作的探究性學習把抽屜原理較為抽象難懂的內容變?yōu)閷W生感興趣又易于理解的內容。特別是對教材中的結論“總有、至少”等字詞作了充分的闡釋,幫助學生進行較好的“建?!保箯碗s問題簡單化,簡單問題模型化,充分體現(xiàn)了新課標要求。
1.經歷“抽屜原理”的探究過程,初步了解“抽屜原理”,會用“抽屜原理”解決簡單的實際問題。
2.通過操作發(fā)展學生的類推能力,形成比較抽象的數(shù)學思維。
3.通過“抽屜原理”的靈活應用感受數(shù)學的魅力。
重點:經歷“抽屜原理”的探究過程,初步了解“抽屜原理”。
難點:理解“抽屜原理”,并對一些簡單實際問題加以“模型化”。
師:同學們在我們上課之前,先做個小游戲:老師這里準備了4把椅子,請5個同學上來,誰愿來?(學生上來后)。
師:聽清要求,老師說開始以后,請你們5個都坐在椅子上,每個人必須都坐下,好嗎?(好)。這時教師面向全體,背對那5個人。
師:開始。
師:都坐下了嗎?
生:坐下了。
生:對!
師:老師為什么能做出準確的判斷呢?道理是什么?這其中蘊含著一個有趣的數(shù)學原理,這節(jié)課我們就一起來研究這個原理。(抽屜原理)。
1、研究3枝鉛筆放進2個文具盒。
(1)要把3枝鉛筆放進2個文具盒,有幾種放法?請同學們想一想,擺一擺,寫一寫,再把你的想法在小組內交流。
(2)反饋:兩種放法:(3,0)和(2,1)。
(3)從兩種放法,同學們會有什么發(fā)現(xiàn)呢?(總有一個文具盒至少放進2枝鉛筆)你是怎么發(fā)現(xiàn)的?(說得真有道理)。
(4)“總有”什么意思?(一定有)。
(5)“至少”有2枝什么意思?(不少于2枝)。
小結:在研究3枝鉛筆放進2個文具盒時,同學們表現(xiàn)得很積極,發(fā)現(xiàn)了“不管怎么放,總有一個文具盒放進2枝鉛筆)。
2、研究4枝鉛筆放進3個文具盒。
(1)要把4枝鉛筆放進3個文具盒里,有幾種放法?請同學們動手擺一擺,再把你的想法在小組內交流。
(2)反饋:四種放法:(4,0,0)、(3,1,0)、(2,2,0)、(2,1,1)。
(3)從四種放法,同學們會有什么發(fā)現(xiàn)呢?(總有一個筆盒至少有2枝鉛筆)。
(4)你是怎么發(fā)現(xiàn)的?
(5)大家通過枚舉出四種放法,能清楚地發(fā)現(xiàn)“總有一個文具盒放進2枝鉛筆”。如果要讓每個文具盒里放的筆盡可能的少,你覺得應該要怎樣放?(每個文具盒都先放進一枝,還剩一枝不管放進哪個文具盒,總會有一個文具盒至少有2枝筆)(你真是一個善于思想的孩子。)。
(6)這位同學運用了假設法來說明問題,你是假設先在每個文具盒里放1枝鉛筆,這種放法其實也就是怎樣分?(平均分)那剩下的1枝怎么處理?(放入任意一個文具盒,那么這個文具盒就有2枝鉛筆了)。
3、類推:把5枝鉛筆放進4個文具盒,是不是總有一個筆盒至少有2枝鉛筆?為什么?
把6枝鉛筆放進5個文具盒,是不是總有一個筆盒至少有2枝鉛筆?為什么?
把7枝鉛筆放進6個文具盒,是不是總有一個筆盒至少有2枝鉛筆?為什么?
把100枝鉛筆放進99個文具盒,是不是總有一個筆盒至少有2枝鉛筆?為什么?
4、從剛才我們的探究活動中,你有什么發(fā)現(xiàn)?(只要放的鉛筆比文具盒的數(shù)量多1,總有一個文具盒里至少放進2枝鉛筆。)。
5、如果鉛筆數(shù)比文具盒數(shù)多2呢?多3呢?是不是也能得到結論:“總有一個筆盒至少有2枝鉛筆?!?/p>
6、小結:剛才我們分析了把鉛筆放進文具盒的`情況,只要鉛筆數(shù)量多于文具盒數(shù)量時,總有一個文具盒至少放進2枝鉛筆。
這就是今天我們要學習的抽屜原理。既然叫“抽屜原理”是不是應該和抽屜有聯(lián)系吧?鉛筆相當于我們要準備放進抽屜的物體,那么文具盒就相當于抽屜了。如果物體數(shù)多于抽屜數(shù),我們就能得出結論“總有一個抽屜里放進了2個物體?!?/p>
過渡:同學們非常了不起,善于運用觀察、分析、思考、推理、證明的方法研究問題,得出結論。同學們的思維也在不知不覺中提升了許多,那么讓我們再來研究這樣一組問題。
1、研究把5本書放進2個抽屜。
(1)把5本書放進2個抽屜會有幾種情況?(5,0)、(4,1)和(3,2)。
(2)從三種情況中,我們可以得到怎樣的結論呢?(總有一個抽屜至少放進了3本書)。
(3)還可以怎樣理解這個結論?先在每個抽屜里放進2本,剩下的1本放進任何一個抽屜,這個抽屜就有3本書了。
2、類推:如果把7本書放進2個抽屜中,至少有一個抽屜放進4本書。
如果把9本書放進2個抽屜中。至少有一個抽屜放進5本書。
3、小結:從以上的學習中,你有什么發(fā)現(xiàn)?(在解決抽屜原理時,我們可以運用假設法,把物體盡可量多地“平均分”給各個抽屜,總有一個抽屜比平均分得的物體數(shù)多1。)。
4、經過剛才的探索研究,我們經歷了一個很不簡單的思維過程,個個都是了不起的數(shù)學家。“抽屜原理”最先是由19世紀的德國數(shù)學家狄利克雷提出來的,所以又稱“狄里克雷原理”,也稱為“鴿巢原理”。這一原理在解決實際問題中有著廣泛的應用?!俺閷显怼钡膽檬乔ё內f化的,用它可以解決許多有趣的問題,并且常常能得到一些令人驚異的結果。
5、做一做:
7只鴿子飛回5個鴿舍,至少有2只鴿子要飛進同一個佶舍里。為什么?
8只鴿子飛回3個鴿舍,至少有3只鴿子要飛時同一個鴿舍里。為什么?
(先讓學生獨立思考,在小組里討論,再全班反饋)。
下面我們一起來放松一下,做個小游戲。
這節(jié)課,你有什么收獲?
抽屜原理教學設計優(yōu)缺點篇六
(留給學生思考的空間,師巡視了解各種情況)。
2.學生匯報,教師給予表揚后并總結:
總結1:把5本書放進2個抽屜里,如果每個抽屜里先放2本,還剩1本,這本書不管放到哪個抽屜里,總有一個抽屜里至少有3本書。
總結2:“總有一個抽屜里的至少有2本”只要用“商+1”就可以得到。
問題:如果把5本書放進3個抽屜里,不管怎么放,總有一個抽屜里至少有幾本書?用“商+2”可以嗎?(學生討論)。
引導學生思考:到底是“商+1”還是“商+余數(shù)”呢?誰的結論對呢?(學生小組里進行研究、討論。)。
總結:用書的本數(shù)除以抽屜數(shù),再用所得的商加1,就會發(fā)現(xiàn)“總有一個抽屜里至少有商加1本書”了。
師:同學們的這一發(fā)現(xiàn),稱為“抽屜原理”,“抽屜原理”又稱“鴿籠原理”,最先是由19世紀的德國數(shù)學家狄利克雷提出來的,所以又稱“狄里克雷原理”,也稱為“鴿巢原理”。這一原理在解決實際問題中有著廣泛的`應用?!俺閷显怼钡膽檬乔ё內f化的,用它可以解決許多有趣的問題,并且常常能得到一些令人驚異的結果。下面我們應用這一原理解決問題。
抽屜原理教學設計優(yōu)缺點篇七
《義務教育課程標準實驗教科書·數(shù)學》六年級下冊。
讓學生初步了解簡單“抽屜原理”,教材借助把4枝鉛筆放進3個文具盒中的操作情景,介紹了較簡單的“抽屜原理”,通過用“抽屜原理”解決簡單的實際問題,初步感受數(shù)學的魅力。主要培養(yǎng)學生的思考和推理能力,讓學生初步經歷“數(shù)學原理”的過程,提高學生數(shù)學應用意識。
教材借助把4枝鉛筆放進3個文具盒中的操作情景,介紹了較簡單的“抽屜原理”。學生在操作實物的過程中可以發(fā)現(xiàn)一個現(xiàn)象:不管怎么放,總有一個文具盒里至少放進2枝鉛筆,從而產生疑問,激起尋求答案的欲望。為了解釋這一現(xiàn)象,教材呈現(xiàn)了枚舉。
1.經歷“抽屜原理”的探究過程,初步了解“抽屜原理”,會用“抽屜原理”解決簡單的實際問題。
2.通過操作發(fā)展學生的類推能力,形成比較抽象的數(shù)學思維。
經歷“抽屜原理”的探究過程,初步了解“抽屜原理”。
理解“抽屜原理”,并對一些簡單實際問題加以“模型化”。
每組都有3個文具盒和4枝鉛筆。
教師:同學們,你們在電腦上玩過“電腦算命”嗎?“電腦算命”看起來很深奧,只要報出你的出生的年、月、日和性別,一按鍵,屏幕上就會出現(xiàn)所謂性格、命運、財運等。通過今天的學習,我們掌握了“抽屜原理”之后,你就不難證明這種“電腦算命”是非??尚突奶频?,是不能信的鬼把戲。
教師:通過學習,你想解決那些問題?
師:請同學們實際放放看,誰來展示一下你擺放的情況?(指名擺)根據(jù)學生擺的情況,師板書各種情況(3,0)(2,1)。
生:不管怎么放,總有一個盒子里至少有2枝筆?
師:是這樣嗎?誰還有這樣的發(fā)現(xiàn),再說一說。
師:那么,把4枝鉛筆放進3個盒子里,怎么放?有幾種不同的放法?請同學們實際放放看。(師巡視,了解情況,個別指導)。
師:誰來展示一下你擺放的情況?(指名擺)根據(jù)學生擺的情況,師板書各種情況。
(4,0,0)(3,1,0)(2,2,0)(2,1,1),
師:還有不同的放法嗎?
生:沒有了。
師:你能發(fā)現(xiàn)什么?
生:不管怎么放,總有一個盒子里至少有2枝鉛筆。
師:“總有”是什么意思?
生:一定有。
師:“至少”有2枝什么意思?
生:不少于兩只,可能是2枝,也可能是多于2枝?
師:就是不能少于2枝。(通過操作讓學生充分體驗感受)。
學生思考——組內交流——匯報。
師:哪一組同學能把你們的想法匯報一下?
組1生:我們發(fā)現(xiàn)如果每個盒子里放1枝鉛筆,最多放3枝,剩下的1枝不管放進哪一個盒子里,總有一個盒子里至少有2枝鉛筆。
師:你能結合操作給大家演示一遍嗎?(學生操作演示)。
師:同學們自己說說看,同位之間邊演示邊說一說好嗎?
師:這種分法,實際就是先怎么分的?
生眾:平均分。
師:為什么要先平均分?(組織學生討論)。
生1:要想發(fā)現(xiàn)存在著“總有一個盒子里一定至少有2枝”,先平均分,余下1枝,不管放在那個盒子里,一定會出現(xiàn)“總有一個盒子里一定至少有2枝”。
生2:這樣分,只分一次就能確定總有一個盒子至少有幾枝筆了?
師:同意嗎?那么把5枝筆放進4個盒子里呢?(可以結合操作,說一說)。
師:哪位同學能把你的想法匯報一下,
生:(一邊演示一邊說)5枝鉛筆放在4個盒子里,不管怎么放,總有一個盒子里至少有2枝鉛筆。
師:把6枝筆放進5個盒子里呢?還用擺嗎?
生:6枝鉛筆放在5個盒子里,不管怎么放,總有一個盒子里至少有2枝鉛筆。
師:把7枝筆放進6個盒子里呢?
把8枝筆放進7個盒子里呢?
把9枝筆放進8個盒子里呢?……。
你發(fā)現(xiàn)什么?
生1:筆的枝數(shù)比盒子數(shù)多1,不管怎么放,總有一個盒子里至少有2枝鉛筆。
師:你的發(fā)現(xiàn)和他一樣嗎?(一樣)你們太了不起了!同桌互相說一遍。
1.出示題目:把5本書放進2個抽屜里,不管怎么放,總有一個抽屜里至少有幾本書?
把7本書放進2個抽屜里,不管怎么放,總有一個抽屜里至少有幾本書?
把9本書放進2個抽屜里,不管怎么放,總有一個抽屜里至少有幾本書?
(留給學生思考的空間,師巡視了解各種情況)。
2.學生匯報。
生1:把5本書放進2個抽屜里,如果每個抽屜里先放2本,還剩1本,這本書不管放到哪個抽屜里,總有一個抽屜里至少有3本書。
板書:5本2個2本……余1本(總有一個抽屜里至有3本書)。
7本2個3本……余1本(總有一個抽屜里至有4本書)。
9本2個4本……余1本(總有一個抽屜里至有5本書)。
師:2本、3本、4本是怎么得到的?生答完成除法算式。
5÷2=2本……1本(商加1)。
7÷2=3本……1本(商加1)。
9÷2=4本……1本(商加1)。
師:觀察板書你能發(fā)現(xiàn)什么?
生1:“總有一個抽屜里的至少有2本”只要用“商+1”就可以得到。
師:如果把5本書放進3個抽屜里,不管怎么放,總有一個抽屜里至少有幾本書?
生:“總有一個抽屜里的至少有3本”只要用5÷3=1本……2本,用“商+2”就可以了。
生:不同意!先把5本書平均分放到3個抽屜里,每個抽屜里先放1本,還剩2本,這2本書再平均分,不管分到哪兩個抽屜里,總有一個抽屜里至少有2本書,不是3本書。
師:到底是“商+1”還是“商+余數(shù)”呢?誰的結論對呢?在小組里進行研究、討論。
交流、說理活動:
生1:我們組通過討論并且實際分了分,結論是總有一個抽屜里至少有2本書,不是3本書。
生2:把5本書平均分放到3個抽屜里,每個抽屜里先放1本,余下的2本可以在2個抽屜里再各放1本,結論是“總有一個抽屜里至少有2本書”。
生3我們組的結論是5本書平均分放到3個抽屜里,“總有一個抽屜里至少有2本書”用“商加1”就可以了,不是“商加2”。
師:現(xiàn)在大家都明白了吧?那么怎樣才能夠確定總有一個抽屜里至少有幾個物體呢?
生4:如果書的本數(shù)是奇數(shù),用書的本數(shù)除以抽屜數(shù),再用所得的商加1,就會發(fā)現(xiàn)“總有一個抽屜里至少有商加1本書”了。
師:同學們同意吧?
師:同學們的這一發(fā)現(xiàn),稱為“抽屜原理”,“抽屜原理”又稱“鴿籠原理”,最先是由19世紀的德國數(shù)學家狄利克雷提出來的,所以又稱“狄里克雷原理”,也稱為“鴿巢原理”。這一原理在解決實際問題中有著廣泛的應用?!俺閷显怼钡膽檬乔ё內f化的,用它可以解決許多有趣的問題,并且常常能得到一些令人驚異的結果。下面我們應用這一原理解決問題。
3.解決問題。71頁第3題。(獨立完成,交流反饋)。
小結:經過剛才的探索研究,我們經歷了一個很不簡單的思維過程,我們獲得了解決這類問題的好辦法,下面讓我們輕松一下做個小游戲。
生:2張/因為5÷4=1…1。
師:先驗證一下你們的猜測:舉牌驗證。
師:如有3張同花色的,符合你們的猜測嗎?
師:如果9個人每一個人抽一張呢?
生:至少有3張牌是同一花色,因為9÷4=2…1。
上面我們所證明的數(shù)學原理就是最簡單的“抽屜原理”,可以概括為:把m個物體任意放到m-1個抽屜里,那么總有一個抽屜中放進了至少2個物體。
1.從街上隨便找來13人,就可以斷定他們中至少有兩個人屬相(指鼠、牛、虎、兔……十二種生肖)相同。說明理由。
2.任意367名學生中,一定存在兩名學生,他們在同一天過生日。說明理由。
1、小組活動很容易抓住學生的注意力,讓學生覺得這節(jié)課要探究的問題即好玩又有意義。
3、部分學生很難判斷誰是物體,誰是抽屜。
抽屜原理教學設計優(yōu)缺點篇八
《義務教育課程標準實驗教科書數(shù)學》六年級下冊第68頁。
1.經歷抽屜原理的探究過程,初步了解抽屜原理,會用抽屜原理解決簡單的實際問題。
2.通過操作發(fā)展學生的類推能力,形成比較抽象的數(shù)學思維。
【教學重點】。
經歷抽屜原理的探究過程,初步了解抽屜原理。
理解抽屜原理,并對一些簡單實際問題加以模型化。
【教具、學具準備】。
每組都有相應數(shù)量的盒子、鉛筆、書。
一、課前游戲引入。
師:同學們在我們上課之前,先做個小游戲:老師這里準備了4把椅子,請5個同學上來,誰愿來?(學生上來后)。
師:聽清要求,老師說開始以后,請你們5個都坐在椅子上,每個人必須都坐下,好嗎?(好)。這時教師面向全體,背對那5個人。
師:開始。
師:都坐下了嗎?
生:坐下了。
生:對!
【點評】教師從學生熟悉的搶椅子游戲開始,讓學生初步體驗不管怎么坐,總有一把椅子上至少坐兩個同學,使學生明確這是現(xiàn)實生活中存在著的一種現(xiàn)象,激發(fā)了學生的學習興趣,為后面開展教與學的活動做了鋪墊。
二、通過操作,探究新知。
(一)教學例1。
師:請同學們實際放放看,誰來展示一下你擺放的情況?(指名擺)根據(jù)學生擺的情況,師板書各種情況(3,0)(2,1)。
【點評】此處設計教師注意了從最簡單的數(shù)據(jù)開始擺放,有利于學生觀察、理解,有利于調動所有的學生積極參與進來。
生:不管怎么放,總有一個盒子里至少有2枝筆?
是:是這樣嗎?誰還有這樣的.發(fā)現(xiàn),再說一說。
師:那么,把4枝鉛筆放進3個盒子里,怎么放?有幾種不同的放法?請同學們實際放放看。(師巡視,了解情況,個別指導)。
師:誰來展示一下你擺放的情況?(指名擺)根據(jù)學生擺的情況,師板書各種情況。
(4,0,0)。
(3,1,0)。
(2,2,0)。
(2,1,1),
師:還有不同的放法嗎?
生:沒有了。
師:你能發(fā)現(xiàn)什么?
生:不管怎么放,總有一個盒子里至少有2枝鉛筆。
師:總有是什么意思?
生:一定有。
師:至少有2枝什么意思?
生:不少于兩只,可能是2枝,也可能是多于2枝?
師:就是不能少于2枝。(通過操作讓學生充分體驗感受)。
學生思考組內交流匯報。
師:哪一組同學能把你們的想法匯報一下?
組1生:我們發(fā)現(xiàn)如果每個盒子里放1枝鉛筆,最多放3枝,剩下的1枝不管放進哪一個盒子里,總有一個盒子里至少有2枝鉛筆。
師:你能結合操作給大家演示一遍嗎?(學生操作演示)。
師:同學們自己說說看,同位之間邊演示邊說一說好嗎?
師:這種分法,實際就是先怎么分的?
生眾:平均分。
師:為什么要先平均分?(組織學生討論)。
生1:要想發(fā)現(xiàn)存在著總有一個盒子里一定至少有2枝,先平均分,余下1枝,不管放在那個盒子里,一定會出現(xiàn)總有一個盒子里一定至少有2枝。
生2:這樣分,只分一次就能確定總有一個盒子至少有幾枝筆了?
師:同意嗎?那么把5枝筆放進4個盒子里呢?(可以結合操作,說一說)。
師:哪位同學能把你的想法匯報一下,
生:(一邊演示一邊說)5枝鉛筆放在4個盒子里,不管怎么放,總有一個盒子里至少有2枝鉛筆。
師:把6枝筆放進5個盒子里呢?還用擺嗎?
生:6枝鉛筆放在5個盒子里,不管怎么放,總有一個盒子里至少有2枝鉛筆。
師:把7枝筆放進6個盒子里呢?
把8枝筆放進7個盒子里呢?
把9枝筆放進8個盒子里呢?
你發(fā)現(xiàn)什么?
生1:筆的枝數(shù)比盒子數(shù)多1,不管怎么放,總有一個盒子里至少有2枝鉛筆。
師:你的發(fā)現(xiàn)和他一樣嗎?(一樣)你們太了不起了!同桌互相說一遍。
【點評】教師關注了抽屜原理的最基本原理,物體個數(shù)必須要多于抽屜個數(shù),化繁為簡,此處確實有必要提領出來進行教學。在學生自主探索的基礎上,教師注意引導學生得出一般性的結論:只要放的鉛筆數(shù)盒數(shù)多1,總有一個盒里至少放進2支。通過教師組織開展的扎實有效的教學活動,學生學的有興趣,發(fā)展了學生的類推能力,形成比較抽象的數(shù)學思維。
2.解決問題。
(1)課件出示:5只鴿子飛回4個鴿籠,至少有2只鴿子要飛進同一個鴿籠里,為什么?
(學生活動獨立思考自主探究)。
(2)交流、說理活動。
師:誰能說說為什么?
生1:如果一個鴿籠里飛進一只鴿子,最多飛進4只鴿子,還剩一只,要飛進其中的一個鴿籠里。不管怎么飛,至少有2只鴿子要飛進同一個鴿籠里。
生2:我們也是這樣想的。
生3:把5只鴿子平均分到4個籠子里,每個籠子1只,剩下1只,放到任何一個籠子里,就能保證至少有2只鴿子飛進同一個籠里。
生4:可以用54=11,余下的1只,飛到任何一個鴿籠里都能保證至少有2只鴿子飛進一個個籠里,所以,至少有2只鴿子飛進同一個籠里的結論是正確的。
師:許多同學沒有再擺學具,證明這個結論是正確的,用的什么方法?
生:用平均分的方法,就能說明存在總有一個鴿籠至少有2只鴿子飛進一個個籠里。
師:同意嗎?(生:同意)老師把這位同學說的算式寫下來,(板書:54=11)。
師:同位之間再說一說,對這種方法的理解。
師:現(xiàn)在誰能說說你對總有一個鴿籠里至少飛進2只鴿子的理解。
生:我們發(fā)現(xiàn)這是必然存在的一個現(xiàn)象,不管鴿子怎樣飛回鴿籠,一定會有一個鴿籠里至少有2只鴿子。
師:同學們都有這個發(fā)現(xiàn)嗎?
生眾:發(fā)現(xiàn)了。
師:同學們非常了不起,善于運用觀察、分析、思考、推理、證明的方法研究問題,得出結論。同學們的思維也在不知不覺中提升了許多,那么讓我們再來看這樣一組問題。
(二)教學例2。
1.出示題目:把5本書放進2個抽屜里,不管怎么放,總有一個抽屜里至少有幾本書?
把7本書放進2個抽屜里,不管怎么放,總有一個抽屜里至少有幾本書?
把9本書放進2個抽屜里,不管怎么放,總有一個抽屜里至少有幾本書?
(留給學生思考的空間,師巡視了解各種情況)。
2.學生匯報。
生1:把5本書放進2個抽屜里,如果每個抽屜里先放2本,還剩1本,這本書不管放到哪個抽屜里,總有一個抽屜里至少有3本書。
板書:5本2個2本余1本(總有一個抽屜里至有3本書)。
7本2個3本余1本(總有一個抽屜里至有4本書)。
9本2個4本余1本(總有一個抽屜里至有5本書)。
師:2本、3本、4本是怎么得到的?生答完成除法算式。
52=2本1本(商加1)。
72=3本1本(商加1)。
92=4本1本(商加1)。
師:觀察板書你能發(fā)現(xiàn)什么?
生1:總有一個抽屜里的至少有2本只要用商+1就可以得到。
師:如果把5本書放進3個抽屜里,不管怎么放,總有一個抽屜里至少有幾本書?
生:總有一個抽屜里的至少有3本只要用53=1本2本,用商+2就可以了。
生:不同意!先把5本書平均分放到3個抽屜里,每個抽屜里先放1本,還剩2本,這2本書再平均分,不管分到哪兩個抽屜里,總有一個抽屜里至少有2本書,不是3本書。
師:到底是商+1還是商+余數(shù)呢?誰的結論對呢?在小組里進行研究、討論。
交流、說理活動:
生1:我們組通過討論并且實際分了分,結論是總有一個抽屜里至少有2本書,不是3本書。
生2:把5本書平均分放到3個抽屜里,每個抽屜里先放1本,余下的2本可以在2個抽屜里再各放1本,結論是總有一個抽屜里至少有2本書。
生3∶我們組的結論是5本書平均分放到3個抽屜里,總有一個抽屜里至少有2本書用商加1就可以了,不是商加2。
師:現(xiàn)在大家都明白了吧?那么怎樣才能夠確定總有一個抽屜里至少有幾個物體呢?
生4:如果書的本數(shù)是奇數(shù),用書的本數(shù)除以抽屜數(shù),再用所得的商加1,就會發(fā)現(xiàn)總有一個抽屜里至少有商加1本書了。
師:同學們同意吧?
師:同學們的這一發(fā)現(xiàn),稱為抽屜原理,抽屜原理又稱鴿籠原理,最先是由19世紀的德國數(shù)學家狄利克雷提出來的,所以又稱狄里克雷原理,也稱為鴿巢原理。這一原理在解決實際問題中有著廣泛的應用。抽屜原理的應用是千變萬化的,用它可以解決許多有趣的問題,并且常常能得到一些令人驚異的結果。下面我們應用這一原理解決問題。
3.解決問題。71頁第3題。(獨立完成,交流反饋)。
小結:經過剛才的探索研究,我們經歷了一個很不簡單的思維過程,我們獲得了解決這類問題的好辦法,下面讓我們輕松一下做個小游戲。
【點評】在這一環(huán)節(jié)的教學中教師抓住了假設法最核心的思路就是用有余數(shù)除法形式表示出來,使學生學生借助直觀,很好的理解了如果把書盡量多地平均分給各個抽屜里,看每個抽屜里能分到多少本書,余下的書不管放到哪個抽屜里,總有一個抽屜里比平均分得的書的本數(shù)多1本。特別是對某個抽屜至少有書的本數(shù)是除法算式中的商加1,而不是商加余數(shù),教師適時挑出針對性問題進行交流、討論,使學生從本質上理解了抽屜原理。
三、應用原理解決問題。
生:2張/因為54=11。
師:先驗證一下你們的猜測:舉牌驗證。
師:如有3張同花色的,符合你們的猜測嗎?
師:如果9個人每一個人抽一張呢?
生:至少有3張牌是同一花色,因為94=21。
四、全課小結。
【點評】當學生利用有余數(shù)除法解決了具體問題后,教師引導學生總結歸納這一類抽屜問題的一般規(guī)律,使學生進一步理解掌握了抽屜原理。
抽屜原理教學設計優(yōu)缺點篇九
1、經歷“抽屜原理”的探究過程,初步了解“抽屜原理”,會用“抽屜原理”解決簡單的實際問題。
2、通過操作發(fā)展學生的類推能力,形成比較抽象的數(shù)學思維。
3、通過“抽屜原理”的靈活應用感受數(shù)學的魅力。
經歷“抽屜原理”的探究過程,理解“抽屜原理”,并對一些簡單實際問題加以“模型化”。
一、問題引入。
1、游戲要求:開始以后,請你們5個都坐在椅子上,每個人必須都坐下。
2、討論:“不管怎么坐,總有一把椅子上至少坐兩個同學”這句話說得對嗎?
游戲開始,讓學生初步體驗不管怎么坐,總有一把椅子上至少坐兩個同學,使學生明確這是現(xiàn)實生活中存在著的一種現(xiàn)象。
引入:不管怎么坐,總有一把椅子上至少坐兩個同學?你知道這是什么道理嗎?這其中蘊含著一個有趣的數(shù)學原理,這節(jié)課我們就一起來研究這個原理。
二、探究新知。
(一)教學例1。
師:請同學們實際放放看,誰來展示一下你擺放的情況?(指名擺)根據(jù)學生擺的情況,師出示各種情況。
板書:(4,0,0)(3,1,0)(2,2,0)(2,1,1),
引導學生得出:不管怎么放,總有一個盒子里至少有2枝筆。
問題:
(1)“總有”是什么意思?(一定有)。
(2)“至少”有2枝什么意思?(不少于兩只,可能是2枝,也可能是多于2枝?)。
學生思考并進行組內交流,教師選代表進行總結:如果每個盒子里放1枝鉛筆,最多放3枝,剩下的1枝不管放進哪一個盒子里,總有一個盒子里至少有2枝鉛筆。首先通過平均分,余下1枝,不管放在那個盒子里,一定會出現(xiàn)“總有一個盒子里一定至少有2枝”。
問題:把6枝筆放進5個盒子里呢?還用擺嗎?把7枝筆放進6個盒子里呢?把8枝筆放進7個盒子里呢?把9枝筆放進8個盒子里呢?……你發(fā)現(xiàn)什么?(筆的枝數(shù)比盒子數(shù)多1,不管怎么放,總有一個盒子里至少有2枝鉛筆。)。
總結:只要放的鉛筆數(shù)盒數(shù)多1,總有一個盒里至少放進2支。
2、完成課下“做一做”,學習解決問題。
問題:6只鴿子飛回5個鴿籠,至少有2只鴿子要飛進同一個鴿籠里,為什么?
(1)學生活動—獨立思考自主探究。
(2)交流、說理活動。
引導學生分析:如果一個鴿籠里飛進一只鴿子,最多飛進4只鴿子,還剩一只,要飛進其中的一個鴿籠里。不管怎么飛,至少有2只鴿子要飛進同一個鴿籠里。所以,“至少有2只鴿子飛進同一個籠里”的結論是正確的。
總結:用平均分的方法,就能說明存在“總有一個鴿籠至少有2只鴿子飛進一個個籠里”。
(二)教學例2。
(留給學生思考的空間,師巡視了解各種情況)。
2、學生匯報,教師給予表揚后并總結:
總結1:把5本書放進2個抽屜里,如果每個抽屜里先放2本,還剩1本,這本書不管放到哪個抽屜里,總有一個抽屜里至少有3本書。
總結2:“總有一個抽屜里的至少有2本”只要用“商+1”就可以得到。
問題:如果把5本書放進3個抽屜里,不管怎么放,總有一個抽屜里至少有幾本書?用“商+2”可以嗎?(學生討論)。
引導學生思考:到底是“商+1”還是“商+余數(shù)”呢?誰的'結論對呢?(學生小組里進行研究、討論。)。
總結:用書的本數(shù)除以抽屜數(shù),再用所得的商加1,就會發(fā)現(xiàn)“總有一個抽屜里至少有商加1本書”了。
師:同學們的這一發(fā)現(xiàn),稱為“抽屜原理”,“抽屜原理”又稱“鴿籠原理”,最先是由19世紀的德國數(shù)學家狄利克雷提出來的,所以又稱“狄里克雷原理”,也稱為“鴿巢原理”。這一原理在解決實際問題中有著廣泛的應用?!俺閷显怼钡膽檬乔ё內f化的,用它可以解決許多有趣的問題,并且常常能得到一些令人驚異的結果。下面我們應用這一原理解決問題。
(三)學生自學例題3并進行自主交流,試著用手中的用具模擬演示場景。
三、解決問題。
四、全課小結。
抽屜原理教學設計優(yōu)缺點篇十
1.經歷“抽屜原理”的探究過程,初步了解“抽屜原理”,會用“抽屜原理”解決簡單的實際問題。
2.通過操作發(fā)展學生的類推能力,形成比較抽象的數(shù)學思維。
3.通過“抽屜原理”的靈活應用感受數(shù)學的魅力。
經歷“抽屜原理”的探究過程,理解“抽屜原理”,并對一些簡單實際問題加以“模型化”。
一、問題引入。
1.游戲要求:開始以后,請你們5個都坐在椅子上,每個人必須都坐下。
2.討論:“不管怎么坐,總有一把椅子上至少坐兩個同學”這句話說得對嗎?
游戲開始,讓學生初步體驗不管怎么坐,總有一把椅子上至少坐兩個同學,使學生明確這是現(xiàn)實生活中存在著的一種現(xiàn)象。
引入:不管怎么坐,總有一把椅子上至少坐兩個同學?你知道這是什么道理嗎?這其中蘊含著一個有趣的數(shù)學原理,這節(jié)課我們就一起來研究這個原理。
二、探究新知。
(一)教學例1。
師:請同學們實際放放看,誰來展示一下你擺放的情況?(指名擺)根據(jù)學生擺的情況,師出示各種情況。
板書:(4,0,0)(3,1,0)(2,2,0)(2,1,1),
引導學生得出:不管怎么放,總有一個盒子里至少有2枝筆。
問題:
(1)“總有”是什么意思?(一定有)。
(2)“至少”有2枝什么意思?(不少于兩只,可能是2枝,也可能是多于2枝?)。
學生思考并進行組內交流,教師選代表進行總結:如果每個盒子里放1枝鉛筆,最多放3枝,剩下的1枝不管放進哪一個盒子里,總有一個盒子里至少有2枝鉛筆。首先通過平均分,余下1枝,不管放在那個盒子里,一定會出現(xiàn)“總有一個盒子里一定至少有2枝”。
問題:把6枝筆放進5個盒子里呢?還用擺嗎?把7枝筆放進6個盒子里呢?把8枝筆放進7個盒子里呢?把9枝筆放進8個盒子里呢?……你發(fā)現(xiàn)什么?(筆的枝數(shù)比盒子數(shù)多1,不管怎么放,總有一個盒子里至少有2枝鉛筆。)。
總結:只要放的鉛筆數(shù)盒數(shù)多1,總有一個盒里至少放進2支。
2.完成課下“做一做”,學習解決問題。
問題:6只鴿子飛回5個鴿籠,至少有2只鴿子要飛進同一個鴿籠里,為什么?
(1)學生活動—獨立思考自主探究。
(2)交流、說理活動。
引導學生分析:如果一個鴿籠里飛進一只鴿子,最多飛進4只鴿子,還剩一只,要飛進其中的一個鴿籠里。不管怎么飛,至少有2只鴿子要飛進同一個鴿籠里。所以,“至少有2只鴿子飛進同一個籠里”的結論是正確的。
總結:用平均分的`方法,就能說明存在“總有一個鴿籠至少有2只鴿子飛進一個個籠里”。
(二)教學例2。
(留給學生思考的空間,師巡視了解各種情況)。
2.學生匯報,教師給予表揚后并總結:
總結1:把5本書放進2個抽屜里,如果每個抽屜里先放2本,還剩1本,這本書不管放到哪個抽屜里,總有一個抽屜里至少有3本書。
總結2:“總有一個抽屜里的至少有2本”只要用“商+1”就可以得到。
問題:如果把5本書放進3個抽屜里,不管怎么放,總有一個抽屜里至少有幾本書?用“商+2”可以嗎?(學生討論)。
引導學生思考:到底是“商+1”還是“商+余數(shù)”呢?誰的結論對呢?(學生小組里進行研究、討論。)。
總結:用書的本數(shù)除以抽屜數(shù),再用所得的商加1,就會發(fā)現(xiàn)“總有一個抽屜里至少有商加1本書”了。
師:同學們的這一發(fā)現(xiàn),稱為“抽屜原理”,“抽屜原理”又稱“鴿籠原理”,最先是由19世紀的德國數(shù)學家狄利克雷提出來的,所以又稱“狄里克雷原理”,也稱為“鴿巢原理”。這一原理在解決實際問題中有著廣泛的應用?!俺閷显怼钡膽檬乔ё內f化的,用它可以解決許多有趣的問題,并且常常能得到一些令人驚異的結果。下面我們應用這一原理解決問題。
(三)學生自學例題3并進行自主交流,試著用手中的用具模擬演示場景。
三、解決問題。
四、全課小結。
抽屜原理教學設計優(yōu)缺點篇十一
本課通過創(chuàng)設情境、直觀和實際操作,使學生進一步經歷“抽屜原理”的探究過程,并對一些簡單的實際問題“模型化”,從而在用“抽屜原理”加以解決的過程中,促進邏輯推理能力的發(fā)展,培養(yǎng)分析、推理、解決問題的能力以及探索數(shù)學問題的興趣,同時也使學生感受到數(shù)學思想方法的奇妙與作用,在數(shù)學思維的訓練中,逐步形成有序地、嚴密地思考問題的意識。
《義務教育課程標準實驗教科書數(shù)學》六年級下冊第70--71頁的內容。
1.經歷“抽屜原理”的探究過程,初步了解“抽屜原理”,會用“抽屜原理”解決簡單的實際問題。
2.通過操作發(fā)展學生的類推能力,形成比較抽象的數(shù)學思維。
【教學重點】經歷“抽屜原理”的探究過程,了解掌握“抽屜原理”。
【教學難點】理解“抽屜原理”,并對一些簡單實際問題加以“模型化”。
【教學準備】多媒體課件、每組準備13枚“金幣”和5個杯子。
【教學課時】一課時。
在研究新課之前得先請同學們見見自己的老朋友,看看誰還認識他?
出示圖片——魯濱遜畫像。
一).探索比抽屜數(shù)多1的至少數(shù)。
話說魯賓遜完全不顧父愿,甚至違抗父命,也全然不聽母親的懇求和朋友們的勸阻,一意孤行開始了他的冒險之旅。一天拂曉,當他所乘坐的正駛向加那利群島時,被一艘土耳其海盜船襲擊,所有船員全部被俘。魯賓遜被海盜船長作為自己的戰(zhàn)利品留了下來,成了船長的奴隸。這一日,海盜們沒有出海,懶洋洋的在岸上休息,船長命令魯賓遜給海盜們傳授些文明人的知識,讓海盜們變得像魯賓遜一樣富有智慧??粗雷由祥W閃發(fā)光的金幣,魯賓遜想到了一個辦法,他找來兩個盒子:
出示例一:
1.把3枚金幣放入2個盒子里,有幾種放法?
學生拿起自己手中的學具做實驗,小組討論后發(fā)言,其他同學可以補充。
2.師:把4枚金幣都放進3個盒子里,有幾種不同的放法?請同學們實際放放看。(師巡視,了解情況,個別指導)。
師:誰來展示一下你擺放的情況?這種分法,實際就是先怎么分的?為什么要先平均分?(組織學生討論)。
小結:用最不利原則設想,如果我們先讓每個筆筒里放1枚金幣,最多放3枚。剩下的1枚還要放進其中的一個筆筒。所以不管怎么放,總有一個筆筒里至少放進2枚金幣。
二).探索比抽屜數(shù)多幾的至少數(shù)。
師:那么把13枚金幣放進3個盒子里呢?
(可以結合操作說一說)。
師:把13枚金幣放進5個盒子里呢?
(留給學生思考的空間,師巡視了解各種情況)。
師:這是我們通過實際操作現(xiàn)了這個結論。那么,我們能不能找到一種更為直接的方法,得到這個結論呢?請同學們觀察板書,小組研究、討論。找一找其中的規(guī)律。
小結:至少數(shù)等于數(shù)的本數(shù)除以抽屜數(shù),再用所得的商加1。
(板書:至少數(shù)=商+1)。
三).解析原理,加深認識。
師:同學們的這一發(fā)現(xiàn),稱為“抽屜原理”。抽屜原理”又稱“鴿籠原理”,最先是由19世紀的德國數(shù)學家狄利克雷提出來的,所以又稱“狄里克雷原理”,也稱作“鴿巢原理”。
出示:7只鴿子飛回5個鴿舍,至少有兩只鴿子飛進同一個鴿舍?學生回答后觀看演示。
一).鞏固應用一——撲克牌游戲。
16世紀的海盜們哪能摸得清什么抽屜原理呢?一聽原理二字便昏頭漲腦,不知什么時候早在下面玩起了撲克牌。這時,魯賓遜靈機一動,將大家正玩的撲克牌中的大小王拿掉,說:每人抽五張牌,不管怎么抽取,至少有兩張是同一花色的牌,你們相信嗎?說著,給坐在旁邊的海盜甲海盜乙每人任意抽取了5張牌?!叭绻幸粋€人手里的牌都不是同一花色,任由船長處置;如果每個人手里最少有2張花色相同的牌,請船長允許我回故鄉(xiāng)赫爾去吧。”船長眼珠一轉,同意了魯賓遜的要求。
那么,事實是不是這樣呢?同學們相信魯賓遜的話嗎?
教師發(fā)撲克牌,學生回答。
二).鞏固應用二——分寶1。
魯賓遜雖然證實了自己是正確的,可是狡猾的船長并沒有答應他的要求,放他回家。魯賓遜只好跟著海盜首領到處掠奪殺戮。
有一次,他們獲得了很多寶貝,海盜首領非常高興,對手下8個小海盜說,這些寶貝都給你們了,你們自己處理吧,沒想到小海盜平時都搶慣了,一擁而上,有人拿得很多,有人很少,甚至有人一件寶貝也沒拿到,看到小海盜們亂哄哄的樣子,海盜首領非常生氣,就想懲罰一下那些貪婪的海盜,機會終于來了!有一次:海盜們又獲得了73件寶貝,海盜首領又叫8個小海盜自己分。且規(guī)定:1、必須分完。2、若某人拿10件或10件以上的寶貝,說明他是個過分貪婪的人,就把他扔進大海喂鯊魚。
海盜們是否都能逃過這一劫呢?小組討論后派代表說說想法,其他同學可以補充。無論怎樣分,總有一個海盜至少會拿到10件,這個海盜怎么辦呢?學生自由談看法。
師:正在海盜們擔心的時候,事情有了轉機,聰明的魯賓遜趁著天黑偷偷地把一件寶貝扔進大海,現(xiàn)在只剩下72件寶貝,大家都平安無事。
三).鞏固應用三——分寶2。
師:海盜們終于逃過一劫,海盜首領回到自己屋里,悶悶不樂,夫人問他為什么不開心,海盜首領如實相告,夫人說是不是有人把一件寶貝扔到海里去了,海盜首領如夢方醒,決心下一次不再上當,又是在一個風急天黑的夜晚:海盜們獲得了79件寶貝,首領還是要8個小海盜自己分,規(guī)則不變,還警告,79件寶貝已數(shù)得清清楚楚,誰要是作弊,也要受到懲罰。
師:小海盜們大驚失色,心想這下可能真的逃不過去了,只有聰明的魯賓遜鎮(zhèn)定自若,站出來對海盜首領說,既然寶貝比上次增加了6件,能不能把限定的10件提高1件?海盜首領心想,寶貝增加這么多,而限定只提高1件,還是肯定有人會受到懲罰,就同意了小海盜的請求。你認為首領的想法對嗎?說說你是怎樣想的。
學生先小組討論,然后再叫幾個學生來說說是怎樣想的。老師再對學生的思路進行梳理。
師:靠著魯賓遜的聰明才智,事情終于風平浪靜,在以后的日子里魯賓遜自己的智慧贏得了海盜首領的信任,有了獨自駕駛小艇的權利,借著海盜首領拜訪朋友的機會,魯賓遜駕著小艇逃到了一個無人的荒島,并搭救了一個野蠻人,起名“星期五”,有一天,他們倆無所事事,玩起了游戲。
讓學生講講思路,老師再對學生的思路進行梳理。
四.拓展延伸。
魯賓遜的故事今天先講到這里,通過今天的學習你有什么收獲?
五.布置作業(yè)。
每人編2道抽屜類問題作為今天的作業(yè),讓自己的同桌來證明或解答。
抽屜原理教學設計優(yōu)缺點篇十二
1.使學生能理解抽取問題中的一些基本原理,并能解決有關簡單的問題。
2.體會數(shù)學與日常生活的聯(lián)系,了解數(shù)學的價值,增強應用數(shù)學的意識。
一、創(chuàng)設情境,復習舊知。
1、出示復習題:
師:老師這兒有一個問題,不知道哪位同學能幫助解答一下?
2、課件出示:把3個蘋果放進2個抽屜里,總有一個抽屜至少放2個蘋果,為什么?
3、學生自由回答。
二、教學例2。
(1)組織學生讀題,理解題意。
教師:你們能猜出結果嗎?
組織學生猜一猜,并相互交流。
指名學生匯報。
學生匯報時可能會答出:只摸4個球就可以了,至少要摸出5個球……。
教師:能驗證嗎?
教師拿出準備好的紅球及藍球,組織學生到講臺前來動手摸一摸,驗證匯報結果的正確性。
2、組織學生議一議,并相互交流。再指名學生匯報。
教師:上面的問題是一個抽屜問題,請同學們找一找:“抽屜”是什么?“抽屜”有幾個?
組織學生議一議,并相互交流。
指名學生匯報,使學生明確:抽屜就是顏色數(shù)。(板書)。
教師:能用例1的知識來解答嗎?
組織學生議一議,并相互交流。
指名學生匯報。
使學生明確:只要分的物體比抽屜多,就能保證總有一個抽屜至少放蕩2個球,因此要保證摸出兩個同色的球,摸出球的數(shù)量至少要比顏色的種數(shù)多一。
(3)組織學生對例題的解答過程議一議,相互交流,理解解決問題的方法。
學生不難發(fā)現(xiàn):只要摸出的'球比它們的顏色種數(shù)多1,就能保證有兩個球同色。
3、做一做。
第1題。
1、獨立思考,判斷正誤。
2、同學交流,說明理由。其中“370名學生中一定有兩人的生日是同一天”與例1中的“抽屜原理”是一類,“49名學生中一定有5人的出生月份相同”則與例2的類型相同。教師要引導學生把“生日問題”轉化成“抽屜問題”。因為一年中最多有366天,如果把這366天看作366個抽屜,把370個學生放進366個抽屜,人數(shù)大于抽屜數(shù),因此總有一個抽屜里至少有兩個人,即他們的生日是同一天。而一年中有12個月,如果把這12個月看作12個抽屜,把49個學生放進12個抽屜,49÷12=4……1,因此,總有一個抽屜里至少有5(即4+1)個人,也就是他們的生日在同一個月。
三鞏固練習。
完成課文練習十二第1、3題。
四、總結評價。
1、師:這節(jié)課你有哪些收獲或感想?
五、布置作業(yè)。
3、拓展練習(選做)。
抽屜原理教學設計優(yōu)缺點篇十三
《抽屜原理》是義務教育課程標準實驗教科書數(shù)學六年級下冊第五單元數(shù)學廣角的教學內容。這部分教材通過幾個直觀例子,借助實際操作,向學生介紹“抽屜原理”,使學生在理解“抽屜原理”這一數(shù)學方法的基礎上,對一些簡單的實際問題加以“模型化”,會用“抽屜原理”加以解決。
2.學情分析。
“抽屜原理”在生活中運用廣泛,學生在生活中常常能遇到實例,但并不能有意識地從數(shù)學的角度來理解和運用“抽屜原理”。教學中應有意識地讓學生理解“抽屜原理”的“一般化模型”。六年級學生的邏輯思維能力、小組合作能力和動手操作能力都有了較大的提高,加上已有的生活經驗,很容易感受到用“抽屜原理”解決問題帶來的樂趣。
3.教學理念。
激趣是新課導入的抓手,喜歡和好奇心比什么都重要,以“搶椅子”,讓學生置身游戲中開始學習,為理解抽屜原理埋下伏筆。通過小組合作,動手操作的探究性學習把抽屜原理較為抽象難懂的內容變?yōu)閷W生感興趣又易于理解的內容。特別是對教材中的結論“總有、至少”等字詞作了充分的闡釋,幫助學生進行較好的“建模”,使復雜問題簡單化,簡單問題模型化,充分體現(xiàn)了新課標要求。
4.教學目標。
1.經歷“抽屜原理”的探究過程,初步了解“抽屜原理”,會用“抽屜原理”解決簡單的實際問題。
2.通過操作發(fā)展學生的類推能力,形成比較抽象的數(shù)學思維。
3.通過“抽屜原理”的靈活應用感受數(shù)學的魅力。
5.教學重難點。
重點:經歷“抽屜原理”的探究過程,初步了解“抽屜原理”。
難點:理解“抽屜原理”,并對一些簡單實際問題加以“模型化”。
6.教學過程。
一、課前游戲引入。
上課前,我們先來熱身一下,一起來玩搶椅子的游戲。
游戲規(guī)則是:在老師說開始時,3位同學繞著椅子走,當老師說停的,三位同學都要坐在椅子上。
為什么總有一張椅子至少坐兩個同學?
在這個游戲中蘊含著一個有趣的數(shù)學原理叫做抽屜理原,這節(jié)課我們就一起來研究抽屜理原。(板書課題)。
二、通過操作,探究新知。
(一)探究例1。
抽屜原理教學設計優(yōu)缺點篇十四
《義務教育課程標準實驗教科書·數(shù)學》六年級下冊。
【教材分析】。
讓學生初步了解簡單“抽屜原理”,教材借助把4枝鉛筆放進3個文具盒中的操作情景,介紹了較簡單的“抽屜原理”,通過用“抽屜原理”解決簡單的實際問題,初步感受數(shù)學的魅力。主要培養(yǎng)學生的思考和推理能力,讓學生初步經歷“數(shù)學原理”的過程,提高學生數(shù)學應用意識。
【學情分析】。
教材借助把4枝鉛筆放進3個文具盒中的操作情景,介紹了較簡單的“抽屜原理”。學生在操作實物的過程中可以發(fā)現(xiàn)一個現(xiàn)象:不管怎么放,總有一個文具盒里至少放進2枝鉛筆,從而產生疑問,激起尋求答案的欲望。為了解釋這一現(xiàn)象,教材呈現(xiàn)了枚舉。
【教學目標】。
1.經歷“抽屜原理”的探究過程,初步了解“抽屜原理”,會用“抽屜原理”解決簡單的實際問題。
2.通過操作發(fā)展學生的類推能力,形成比較抽象的數(shù)學思維。
3.通過“抽屜原理”的靈活應用感受數(shù)學的魅力。
【教學重點】。
經歷“抽屜原理”的探究過程,初步了解“抽屜原理”。
【教學難點】。
理解“抽屜原理”,并對一些簡單實際問題加以“模型化”。
【教具、學具準備】。
每組都有3個文具盒和4枝鉛筆。
【教學過程】。
一、談話導入。
教師:同學們,你們在電腦上玩過“電腦算命”嗎?“電腦算命”看起來很深奧,只要報出你的出生的年、月、日和性別,一按鍵,屏幕上就會出現(xiàn)所謂性格、命運、財運等。通過今天的學習,我們掌握了“抽屜原理”之后,你就不難證明這種“電腦算命”是非??尚突奶频?,是不能信的鬼把戲。
教師:通過學習,你想解決那些問題?
二、通過操作,探究新知。
(一)認識“抽屜原理”
師:請同學們實際放放看,誰來展示一下你擺放的情況?(指名擺)根據(jù)學生擺的情況,師板書各種情況(3,0)(2,1)。
【點評】此處設計教師注意了從最簡單的數(shù)據(jù)開始擺放,有利于學生觀察、理解,有利于調動所有的學生積極參與進來。)。
生:不管怎么放,總有一個盒子里至少有2枝筆?
師:是這樣嗎?誰還有這樣的發(fā)現(xiàn),再說一說。
師:那么,把4枝鉛筆放進3個盒子里,怎么放?有幾種不同的放法?請同學們實際放放看。(師巡視,了解情況,個別指導)。
師:誰來展示一下你擺放的情況?(指名擺)根據(jù)學生擺的情況,師板書各種情況。
(4,0,0)(3,1,0)(2,2,0)(2,1,1),
師:還有不同的放法嗎?
生:沒有了。
師:你能發(fā)現(xiàn)什么?
生:不管怎么放,總有一個盒子里至少有2枝鉛筆。
師:“總有”是什么意思?
生:一定有。
師:“至少”有2枝什么意思?
生:不少于兩只,可能是2枝,也可能是多于2枝?
師:就是不能少于2枝。(通過操作讓學生充分體驗感受)。
學生思考——組內交流——匯報。
師:哪一組同學能把你們的想法匯報一下?
組1生:我們發(fā)現(xiàn)如果每個盒子里放1枝鉛筆,最多放3枝,剩下的1枝不管放進哪一個盒子里,總有一個盒子里至少有2枝鉛筆。
師:你能結合操作給大家演示一遍嗎?(學生操作演示)。
師:同學們自己說說看,同位之間邊演示邊說一說好嗎?
師:這種分法,實際就是先怎么分的?
生眾:平均分。
師:為什么要先平均分?(組織學生討論)。
生1:要想發(fā)現(xiàn)存在著“總有一個盒子里一定至少有2枝”,先平均分,余下1枝,不管放在那個盒子里,一定會出現(xiàn)“總有一個盒子里一定至少有2枝”。
生2:這樣分,只分一次就能確定總有一個盒子至少有幾枝筆了?
師:同意嗎?那么把5枝筆放進4個盒子里呢?(可以結合操作,說一說)。
師:哪位同學能把你的想法匯報一下,
生:(一邊演示一邊說)5枝鉛筆放在4個盒子里,不管怎么放,總有一個盒子里至少有2枝鉛筆。
師:把6枝筆放進5個盒子里呢?還用擺嗎?
生:6枝鉛筆放在5個盒子里,不管怎么放,總有一個盒子里至少有2枝鉛筆。
師:把7枝筆放進6個盒子里呢?
把8枝筆放進7個盒子里呢?
把9枝筆放進8個盒子里呢?……。
你發(fā)現(xiàn)什么?
生1:筆的枝數(shù)比盒子數(shù)多1,不管怎么放,總有一個盒子里至少有2枝鉛筆。
師:你的發(fā)現(xiàn)和他一樣嗎?(一樣)你們太了不起了!同桌互相說一遍。
【點評】教師關注了“抽屜原理”的最基本原理,物體個數(shù)必須要多于抽屜個數(shù),化繁為簡,此處確實有必要提領出來進行教學。在學生自主探索的基礎上,教師注意引導學生得出一般性的結論:只要放的鉛筆數(shù)盒數(shù)多1,總有一個盒里至少放進2支。通過教師組織開展的扎實有效的教學活動,學生學的有興趣,發(fā)展了學生的類推能力,形成比較抽象的數(shù)學思維。
(二)探究新知。
1.出示題目:把5本書放進2個抽屜里,不管怎么放,總有一個抽屜里至少有幾本書?
把7本書放進2個抽屜里,不管怎么放,總有一個抽屜里至少有幾本書?
把9本書放進2個抽屜里,不管怎么放,總有一個抽屜里至少有幾本書?
(留給學生思考的空間,師巡視了解各種情況)。
2.學生匯報。
生1:把5本書放進2個抽屜里,如果每個抽屜里先放2本,還剩1本,這本書不管放到哪個抽屜里,總有一個抽屜里至少有3本書。
板書:5本2個2本……余1本(總有一個抽屜里至有3本書)。
7本2個3本……余1本(總有一個抽屜里至有4本書)。
9本2個4本……余1本(總有一個抽屜里至有5本書)。
師:2本、3本、4本是怎么得到的?生答完成除法算式。
5÷2=2本……1本(商加1)。
7÷2=3本……1本(商加1)。
9÷2=4本……1本(商加1)。
師:觀察板書你能發(fā)現(xiàn)什么?
生1:“總有一個抽屜里的至少有2本”只要用“商+1”就可以得到。
師:如果把5本書放進3個抽屜里,不管怎么放,總有一個抽屜里至少有幾本書?
生:“總有一個抽屜里的至少有3本”只要用5÷3=1本……2本,用“商+2”就可以了。
生:不同意!先把5本書平均分放到3個抽屜里,每個抽屜里先放1本,還剩2本,這2本書再平均分,不管分到哪兩個抽屜里,總有一個抽屜里至少有2本書,不是3本書。
師:到底是“商+1”還是“商+余數(shù)”呢?誰的結論對呢?在小組里進行研究、討論。
交流、說理活動:
生1:我們組通過討論并且實際分了分,結論是總有一個抽屜里至少有2本書,不是3本書。
生2:把5本書平均分放到3個抽屜里,每個抽屜里先放1本,余下的.2本可以在2個抽屜里再各放1本,結論是“總有一個抽屜里至少有2本書”。
生3我們組的結論是5本書平均分放到3個抽屜里,“總有一個抽屜里至少有2本書”用“商加1”就可以了,不是“商加2”。
師:現(xiàn)在大家都明白了吧?那么怎樣才能夠確定總有一個抽屜里至少有幾個物體呢?
生4:如果書的本數(shù)是奇數(shù),用書的本數(shù)除以抽屜數(shù),再用所得的商加1,就會發(fā)現(xiàn)“總有一個抽屜里至少有商加1本書”了。
師:同學們同意吧?
師:同學們的這一發(fā)現(xiàn),稱為“抽屜原理”,“抽屜原理”又稱“鴿籠原理”,最先是由19世紀的德國數(shù)學家狄利克雷提出來的,所以又稱“狄里克雷原理”,也稱為“鴿巢原理”。這一原理在解決實際問題中有著廣泛的應用?!俺閷显怼钡膽檬乔ё內f化的,用它可以解決許多有趣的問題,并且常常能得到一些令人驚異的結果。下面我們應用這一原理解決問題。
3.解決問題。71頁第3題。(獨立完成,交流反饋)。
小結:經過剛才的探索研究,我們經歷了一個很不簡單的思維過程,我們獲得了解決這類問題的好辦法,下面讓我們輕松一下做個小游戲。
【點評】在這一環(huán)節(jié)的教學中教師抓住了假設法最核心的思路就是用“有余數(shù)除法”形式表示出來,使學生學生借助直觀,很好的理解了如果把書盡量多地“平均分”給各個抽屜里,看每個抽屜里能分到多少本書,余下的書不管放到哪個抽屜里,總有一個抽屜里比平均分得的書的本數(shù)多1本。特別是對“某個抽屜至少有書的本數(shù)”是除法算式中的商加“1”,而不是商加“余數(shù)”,教師適時挑出針對性問題進行交流、討論,使學生從本質上理解了“抽屜原理”。
三、應用原理解決問題。
生:2張/因為5÷4=1…1。
師:先驗證一下你們的猜測:舉牌驗證。
師:如有3張同花色的,符合你們的猜測嗎?
師:如果9個人每一個人抽一張呢?
生:至少有3張牌是同一花色,因為9÷4=2…1。
四、全課小結。
上面我們所證明的數(shù)學原理就是最簡單的“抽屜原理”,可以概括為:把m個物體任意放到m-1個抽屜里,那么總有一個抽屜中放進了至少2個物體。
五、思維訓練。
1.從街上隨便找來13人,就可以斷定他們中至少有兩個人屬相(指鼠、牛、虎、兔……十二種生肖)相同。說明理由。
2.任意367名學生中,一定存在兩名學生,他們在同一天過生日。說明理由。
【教學反思】。
1、小組活動很容易抓住學生的注意力,讓學生覺得這節(jié)課要探究的問題即好玩又有意義。
2、理解“抽屜原理”對于學生來說有著一定的難度。
3、部分學生很難判斷誰是物體,誰是抽屜。
抽屜原理教學設計優(yōu)缺點篇十五
1.理解最簡單的抽屜原理及抽屜原理的一般形式。
2.引導學生采用操作的方法進行枚舉及假設法探究。
【過程方法】。
經歷抽屜原理的探究過程,初步了解抽屜原理。
【情感態(tài)度價值觀】。
體會數(shù)學知識在日常生活中的廣泛應用,培養(yǎng)學生的探究意識和能力。
【教學重、難點】經歷“抽屜原理”的探究過程,理解“抽屜原理”,并對一些簡單實際問題加以“模型化”。
【教學過程】。
一、問題引入。
1.游戲要求:開始以后,請你們5個都坐在椅子上,每個人必須都坐下。
2.討論:“不管怎么坐,總有一把椅子上至少坐兩個同學”這句話說得對嗎?
游戲開始,讓學生初步體驗不管怎么坐,總有一把椅子上至少坐兩個同學,使學生明確這是現(xiàn)實生活中存在著的一種現(xiàn)象。
引入:不管怎么坐,總有一把椅子上至少坐兩個同學?你知道這是什么道理嗎?這其中蘊含著一個有趣的數(shù)學原理,這節(jié)課我們就一起來研究這個原理。
二、探究新知。
(一)教學例1。
師:請同學們實際放放看,誰來展示一下你擺放的情況?(指名擺)根據(jù)學生擺的情況,師出示各種情況。
板書:(4,0,0)(3,1,0)(2,2,0)(2,1,1),
引導學生得出:不管怎么放,總有一個盒子里至少有2枝筆。
問題:
(1)“總有”是什么意思?(一定有)。
(2)“至少”有2枝什么意思?(不少于兩只,可能是2枝,也可能是多于2枝?)。
學生思考并進行組內交流,教師選代表進行總結:如果每個盒子里放1枝鉛筆,最多放3枝,剩下的1枝不管放進哪一個盒子里,總有一個盒子里至少有2枝鉛筆。首先通過平均分,余下1枝,不管放在那個盒子里,一定會出現(xiàn)“總有一個盒子里一定至少有2枝”。
問題:把6枝筆放進5個盒子里呢?還用擺嗎?把7枝筆放進6個盒子里呢?把8枝筆放進7個盒子里呢?把9枝筆放進8個盒子里呢?……你發(fā)現(xiàn)什么?(筆的枝數(shù)比盒子數(shù)多1,不管怎么放,總有一個盒子里至少有2枝鉛筆。)。
抽屜原理教學設計優(yōu)缺點篇十六
師:請同學們實際放放看,誰來展示一下你擺放的情況?(指名擺)根據(jù)學生擺的情況,師出示各種情況。
板書:(4,0,0)(3,1,0)(2,2,0)(2,1,1),
引導學生得出:不管怎么放,總有一個盒子里至少有2枝筆。
問題:
(1)“總有”是什么意思?(一定有)。
(2)“至少”有2枝什么意思?(不少于兩只,可能是2枝,也可能是多于2枝?)。
學生思考并進行組內交流,教師選代表進行總結:如果每個盒子里放1枝鉛筆,最多放3枝,剩下的1枝不管放進哪一個盒子里,總有一個盒子里至少有2枝鉛筆。首先通過平均分,余下1枝,不管放在那個盒子里,一定會出現(xiàn)“總有一個盒子里一定至少有2枝”。
問題:把6枝筆放進5個盒子里呢?還用擺嗎?把7枝筆放進6個盒子里呢?把8枝筆放進7個盒子里呢?把9枝筆放進8個盒子里呢?……你發(fā)現(xiàn)什么?(筆的'枝數(shù)比盒子數(shù)多1,不管怎么放,總有一個盒子里至少有2枝鉛筆。)。
總結:只要放的鉛筆數(shù)盒數(shù)多1,總有一個盒里至少放進2支。
問題:6只鴿子飛回5個鴿籠,至少有2只鴿子要飛進同一個鴿籠里,為什么?
(1)學生活動—獨立思考自主探究。
(2)交流、說理活動。
引導學生分析:如果一個鴿籠里飛進一只鴿子,最多飛進4只鴿子,還剩一只,要飛進其中的一個鴿籠里。不管怎么飛,至少有2只鴿子要飛進同一個鴿籠里。所以,“至少有2只鴿子飛進同一個籠里”的結論是正確的。
總結:用平均分的方法,就能說明存在“總有一個鴿籠至少有2只鴿子飛進一個個籠里”。
抽屜原理教學設計優(yōu)缺點篇十七
抽屜原理是研究數(shù)學問題中關于一類與“存在性”有關的問題。這部分內容教材通過幾個直觀例子,借助實際操作,向學生介紹“抽屜原理”,使學生在理解“抽屜原理”這一數(shù)學方法的基礎上,對一些簡單的實際問題加以“模型化”,會用“抽屜原理”加以解決。
成功之處:
立足教材,深入挖掘,整合教材。在本節(jié)課中,介紹“抽屜原理”的兩種形式。例題1描述的是最簡單的“抽屜原理”:把m個物體任意分放進n個空抽屜里(mn,n是非0自然數(shù)),那么一定有一個抽屜中放進了至少2個物體,也就是當物體的數(shù)量比抽屜的數(shù)量多1時,不管怎么放,總有一個抽屜至少放進了2個物體。例題2描述了“抽屜原理”更為一般的形式:把多于kn個物體任意分放進n個空抽屜里(k是正整數(shù)),那么一定有一個抽屜中放進了至少(k+1)個物體,也就是說當物體的數(shù)量比抽屜的數(shù)量多2,多3,多4,甚至更多時,不管怎么放,至少有(k+1)個物體放進了同一個抽屜里。根據(jù)這兩種抽屜原理的形式,例題1采取了讓學生通過動手操作,把4個球放進3個盒子里,有四種不同的分法:在第一種放法(4,0,0)中,讓學生明確不管怎么放,總有一個盒子里有4個球,接著依次第二種、第三種、第四種放法中,讓學生更清晰的理解“不管怎么放”“總有”這兩個詞語的意義。然后通過在每種放法中,在放得最多的球的盒子里,讓學生明白其中存在著這樣一種現(xiàn)象:不管怎么放,在放得最多的盒子里至少有2個球放進同一個盒子里。接著通過把5個球放進4個盒子里,把6個球放進5個盒子里,讓學生體會當球的數(shù)量比盒子的數(shù)量多1時,不管怎么放,至少有2個球放進了同一個盒子里。
不足之處:
個別學生對于把誰作為抽屜數(shù),把誰作為物體數(shù)不是特別清晰。
在總結時注意明確作為抽屜數(shù)和物體數(shù)的判斷方法,然后根據(jù)具體的數(shù)量關系式就可以輕松解決問題。
抽屜原理教學設計優(yōu)缺點篇十八
1.理解最簡單的抽屜原理及抽屜原理的一般形式。
2.引導學生采用操作的方法進行枚舉及假設法探究。
經歷抽屜原理的探究過程,初步了解抽屜原理。
體會數(shù)學知識在日常生活中的廣泛應用,培養(yǎng)學生的探究意識和能力。
經歷“抽屜原理”的探究過程,理解“抽屜原理”,并對一些簡單實際問題加以“模型化”。
1.游戲要求:開始以后,請你們5個都坐在椅子上,每個人必須都坐下。
2.討論:“不管怎么坐,總有一把椅子上至少坐兩個同學”這句話說得對嗎?
游戲開始,讓學生初步體驗不管怎么坐,總有一把椅子上至少坐兩個同學,使學生明確這是現(xiàn)實生活中存在著的一種現(xiàn)象。
引入:不管怎么坐,總有一把椅子上至少坐兩個同學?你知道這是什么道理嗎?這其中蘊含著一個有趣的數(shù)學原理,這節(jié)課我們就一起來研究這個原理。
(一)教學例1。
師:請同學們實際放放看,誰來展示一下你擺放的情況?(指名擺)根據(jù)學生擺的情況,師出示各種情況。
板書:(4,0,0)(3,1,0)(2,2,0)(2,1,1),
引導學生得出:不管怎么放,總有一個盒子里至少有2枝筆。
問題:
(1)“總有”是什么意思?(一定有)。
(2)“至少”有2枝什么意思?(不少于兩只,可能是2枝,也可能是多于2枝?)。
學生思考并進行組內交流,教師選代表進行總結:如果每個盒子里放1枝鉛筆,最多放3枝,剩下的1枝不管放進哪一個盒子里,總有一個盒子里至少有2枝鉛筆。首先通過平均分,余下1枝,不管放在那個盒子里,一定會出現(xiàn)“總有一個盒子里一定至少有2枝”。
問題:把6枝筆放進5個盒子里呢?還用擺嗎?把7枝筆放進6個盒子里呢?把8枝筆放進7個盒子里呢?把9枝筆放進8個盒子里呢?你發(fā)現(xiàn)什么?(筆的枝數(shù)比盒子數(shù)多1,不管怎么放,總有一個盒子里至少有2枝鉛筆。)。
【本文地址:http://mlvmservice.com/zuowen/13602883.html】