5.創(chuàng)新是指通過獨(dú)特的思考和富有創(chuàng)造性的行動(dòng)來(lái)創(chuàng)造新的想法、方法和解決方案??偨Y(jié)要包含自己的思考和感悟,不應(yīng)只是簡(jiǎn)單羅列事實(shí)和經(jīng)驗(yàn)。以下是小編為大家整理的一些勵(lì)志故事,希望能給大家?guī)?lái)積極的能量和信心。
三角形的內(nèi)角和教學(xué)設(shè)計(jì)博客篇一
(一)知識(shí)與技能:掌握“三角形內(nèi)角和定理”的證明及其簡(jiǎn)單應(yīng)用,讓學(xué)生探索發(fā)現(xiàn)三角形的內(nèi)角和是180。
(二)過程與方法:通過量算、撕拼、折拼等活動(dòng)培養(yǎng)學(xué)生觀察、操作、探究、歸納、概括、反思等能力和初步的空間想象力,感受數(shù)學(xué)的轉(zhuǎn)化思想;發(fā)展學(xué)生的空間觀念和初步的邏輯思維能力;能運(yùn)用所學(xué)知識(shí)解決簡(jiǎn)單的問題,訓(xùn)練學(xué)生對(duì)所學(xué)知識(shí)的運(yùn)用能力。
(三)情感態(tài)度與價(jià)值觀:
1、滲透轉(zhuǎn)化遷移思想,培養(yǎng)學(xué)生大膽質(zhì)疑的勇氣和嚴(yán)謹(jǐn)科學(xué)的精神,及與他人合作交流的意識(shí)。
2、讓學(xué)生切實(shí)感受到從實(shí)驗(yàn)中得到的現(xiàn)象,經(jīng)過簡(jiǎn)單的推理證明以后可以成為我們的一般公理,初步感受從個(gè)別到一般的思維過程。
教學(xué)重點(diǎn):
讓學(xué)生經(jīng)歷“三角形內(nèi)角和是180度”這一知識(shí)的形成、發(fā)展和應(yīng)用的全過程;知道三角形的內(nèi)角和是180度并且能應(yīng)用。
教學(xué)難點(diǎn):
教學(xué)過程:
一、激趣引入。
1、畫三角形。
2、畫有兩個(gè)直角的三角形。
二、探究新知。
60°+30°+90°=180°。
45°+45°+90°=180°。
1、小組合作完成。
2、匯報(bào)。
第一種:通過度量完成。
第二種:通過撕拼或者折拼完成。
第三類:通過長(zhǎng)方形推算得出。
其他類。
3、小結(jié):
(課件演示)剛才同學(xué)們用量、折、剪、拼、計(jì)算、推理等這么多巧妙的方法得出,無(wú)論是什么樣的三角形的內(nèi)角和都是180°,你們真不錯(cuò),讓我們帶著自豪的語(yǔ)氣大聲地讀出“三角形的內(nèi)角和是180°”
4、知識(shí)升華:
三、實(shí)踐檢驗(yàn)。
2、老師不小心把墨水倒在了三角形上,你知道它的度數(shù)嗎?
3、數(shù)學(xué)日記。
四、評(píng)價(jià)樹。
你對(duì)自己的評(píng)價(jià)。
結(jié)束語(yǔ):
數(shù)學(xué)是一棵大樹,三角形只是它的一片葉子;
生活是一棵大樹,數(shù)學(xué)只是它的一片葉子,
讓我們欣賞著、享受著三角形為生活添得美!
三角形的內(nèi)角和教學(xué)設(shè)計(jì)博客篇二
教材第67頁(yè)例6、“做一做”及教材第69頁(yè)練習(xí)十六第1~3題。
3、培養(yǎng)學(xué)生動(dòng)手動(dòng)腦及分析推理能力。
一、復(fù)習(xí)。
1、什么是平角?平角是多少度?
2、計(jì)算角的度數(shù)。
3、回憶三角形的相關(guān)知識(shí)。(出示直角三角形、銳角三角形、鈍角三角形)。
二、新知。
(設(shè)計(jì)意圖:讓學(xué)生經(jīng)歷質(zhì)疑驗(yàn)證結(jié)論這樣的思維過程,真正整體感知三角形內(nèi)角和的知識(shí),真正驗(yàn)證了“實(shí)踐出真知”的道理,這樣的教學(xué),將三角形內(nèi)角和置于平面圖形內(nèi)角和的大背景中,拓展了三角形內(nèi)角和的數(shù)學(xué)知識(shí)背景,滲透數(shù)學(xué)知識(shí)之間的聯(lián)系,有效地避免了新知識(shí)的“橫空出現(xiàn)”。同時(shí),培養(yǎng)學(xué)生的綜合素養(yǎng))。
1、讀學(xué)卡的學(xué)習(xí)目標(biāo)、任務(wù)目標(biāo),做到心里有數(shù)。
4、驗(yàn)證:
(2)質(zhì)疑:三角板是特殊的直角三角形,不具有普遍性,不能代表所有三角形。
(3)再證:請(qǐng)按學(xué)卡提示,拿出學(xué)具,選擇自己喜歡的方式驗(yàn)證三角形的內(nèi)角和是180°(師巡視)。
(4)匯報(bào)結(jié)論(清楚明白的給小組加優(yōu)秀10分)。
5、結(jié)論:修改板書,把“?”去掉,寫“是”。
6、追問:把兩塊三角板拼在一起,拼成的大三角形的內(nèi)角和是多少?說(shuō)明三角形無(wú)論大小它的內(nèi)角和都是180°(課件演示)。
7、看微課感知“偉大的發(fā)現(xiàn)”(設(shè)計(jì)意圖:讓學(xué)生感受自己所做的和帕斯卡發(fā)現(xiàn)三角形內(nèi)角和是180°的過程是一樣的,從而培養(yǎng)孩子的自信心和創(chuàng)造力。)。
三、知識(shí)運(yùn)用(課件出示練習(xí)題,生解答)。
1、填空。
(1)一個(gè)三角形,它的兩個(gè)內(nèi)角度數(shù)之和是110,第三個(gè)內(nèi)角是()、
(2)一個(gè)直角三角形的一個(gè)銳角是50,則另一個(gè)銳角是()。
(4)一個(gè)等腰三角形,它的一個(gè)底角是50,那么它的頂角是()。
(5)一個(gè)等腰三角形的頂角是60,這個(gè)三角形也是()三角形。
2、判斷。
(1)一個(gè)三角形中最多有兩個(gè)直角。()。
(3)有一個(gè)角是60的等腰三角形不一定是等邊三角形。()。
(4)三角形任意兩個(gè)內(nèi)角的和都大于第三個(gè)內(nèi)角。()。
(5)直角三角形中的兩個(gè)銳角的和等于90。()。
四、拓展探究。
根據(jù)所學(xué)的知識(shí),你能想辦法求出四邊形、五邊形的內(nèi)角和嗎?
1、小組討論。
2、匯報(bào)結(jié)果。
3、課件提示幫助理解。
五、自我評(píng)價(jià)根據(jù)學(xué)卡要求給自己評(píng)出“優(yōu)”“良好”“合格”。
六、談?wù)勛约罕竟?jié)課的收獲。
今天我講了《三角形內(nèi)角和》這部分內(nèi)容,學(xué)生其實(shí)通過不同途徑已經(jīng)知道三角形內(nèi)角和是180°,是不是說(shuō)這節(jié)課的重難點(diǎn)就已經(jīng)突破了,只要學(xué)生能應(yīng)用知識(shí)解決問題就算是達(dá)到這節(jié)課的教學(xué)目標(biāo)了呢?我想應(yīng)該好好思考教材背后要傳遞的東西。
任何規(guī)律的發(fā)現(xiàn)都要經(jīng)過一個(gè)猜測(cè)、驗(yàn)證的過程,不經(jīng)歷這個(gè)探究的過程,學(xué)生對(duì)于這一內(nèi)容的認(rèn)識(shí)就不深刻,聰明的孩子還會(huì)懷疑三角形內(nèi)角和是180°嗎?。因此這個(gè)結(jié)論必須由實(shí)踐操作得出結(jié)論。所以最終我把本課定為一個(gè)實(shí)踐探究課。
如何開篇點(diǎn)題,是我這次要解決的第一個(gè)問題。怎樣才能讓學(xué)生由已知順利轉(zhuǎn)向?qū)ξ粗奶角?,怎樣直接轉(zhuǎn)向研究三個(gè)角的“和”的問題呢?因此我只設(shè)計(jì)了三個(gè)簡(jiǎn)單的問題然學(xué)生快速進(jìn)入主題。
如何驗(yàn)證內(nèi)角和是180°,是我一直比較糾結(jié)的環(huán)節(jié)。由于小學(xué)生的知識(shí)背景有限,無(wú)法利用證明給予嚴(yán)格的驗(yàn)證。只能通過動(dòng)手操作、空間想象來(lái)讓孩子體會(huì),這些都有“實(shí)驗(yàn)”的特點(diǎn),那么就都會(huì)有誤差,其實(shí)都無(wú)法嚴(yán)格的證明。但是這節(jié)課我們除了要尊重知識(shí)的嚴(yán)謹(jǐn)還應(yīng)該尊重孩子的認(rèn)知。如果通過剪拼、折疊、想象后,還有的孩子認(rèn)為三角形內(nèi)角和是180°值得懷疑的話,這無(wú)非也是件好事,說(shuō)明孩子體會(huì)到了這些方法的不嚴(yán)謹(jǐn),同時(shí)對(duì)知識(shí)有一種尊重,對(duì)自己的操作結(jié)果充滿自信,否則拼個(gè)差不多也可以簡(jiǎn)單的認(rèn)同了內(nèi)角和是180°。
本節(jié)課的練習(xí)的設(shè)置也是努力做到有梯度、有趣味、有拓展。從開始的搶答內(nèi)角和體會(huì)三角形內(nèi)角和跟大小無(wú)關(guān)、跟形狀無(wú)關(guān),到已知兩個(gè)角的度數(shù)求第三個(gè)角,這些都是鞏固。之后的,求拼接兩個(gè)完全一樣的直角三角形后,得到的圖形的內(nèi)角和是多少度,求被剪開的三角形,形成的新圖形的內(nèi)角和是多少度,這些都是對(duì)三角形內(nèi)角和的一次拓展。讓學(xué)生的認(rèn)知發(fā)生沖突,提出挑戰(zhàn)。
給學(xué)生一個(gè)平臺(tái),她會(huì)給你一片精彩。通過動(dòng)手操作來(lái)驗(yàn)證內(nèi)角和是否是180°,學(xué)生最容易出現(xiàn)的就是把3個(gè)角剪下來(lái)拼一拼,個(gè)別人可能會(huì)想到折的方法。而這節(jié)課上有個(gè)小姑娘研究的是直角三角形,她的折法很巧妙,將兩個(gè)銳角折過來(lái),剛好拼成一個(gè)直角,這個(gè)直角和原來(lái)三角形已有的直角就重疊在了一起,兩個(gè)直角就180°。雖然我知道這樣的方法,但是通過試講,孩子們沒有這樣的表現(xiàn),我就沒有奢求什么。但是今天的課堂太豐富多元了。這樣的方法都出現(xiàn)了讓我覺得特別值得肯定。為什么會(huì)這樣呢?我想還是因?yàn)槲医o了他們足夠的時(shí)間去思考。當(dāng)有了空間,孩子才會(huì)施展他們的才華。這是我的一大收獲。
前邊驗(yàn)證時(shí)間過多,到練習(xí)時(shí)間就有些少,特別是求四邊形和六邊形內(nèi)角和時(shí),給的時(shí)間過短,學(xué)生沒有充分思維。
總而言之,這次的公開課,給了我一次學(xué)習(xí)和鍛煉的機(jī)會(huì)。在教案設(shè)計(jì)時(shí),該怎么樣把每一個(gè)環(huán)節(jié)落實(shí)到位,怎么樣說(shuō)好每一句話,預(yù)設(shè)好每一個(gè)環(huán)節(jié),在教研中聽取各位教師的點(diǎn)評(píng),讓我有了茅塞頓開的感覺。在此,我衷心感謝數(shù)學(xué)團(tuán)隊(duì)教師對(duì)我中肯的評(píng)價(jià),感謝他們對(duì)我的直言不諱,無(wú)私奉獻(xiàn)自己的想法,讓我在教學(xué)中,能夠在一個(gè)輕松和諧的教學(xué)氛圍中與學(xué)生共同去探討,去發(fā)現(xiàn),去學(xué)習(xí)。
三角形的內(nèi)角和教學(xué)設(shè)計(jì)博客篇三
遵循由特殊到一般的規(guī)律進(jìn)行探究活動(dòng)是這節(jié)課設(shè)計(jì)的主要特點(diǎn)之一。學(xué)生對(duì)三角尺上每個(gè)角的度數(shù)比較熟悉,就從這里入手。先讓學(xué)生算出每塊三角尺三個(gè)內(nèi)角的和是180°,引發(fā)學(xué)生的猜想:其它三角形的內(nèi)角和也是180°嗎?接著,引導(dǎo)學(xué)生小組合作,任意畫出不同類型的三角形,用通過量一量、算一算,得出三角形的內(nèi)角和是180°或接近180°(測(cè)量誤差),再引導(dǎo)學(xué)生通過剪拼的方法發(fā)現(xiàn):各類三角形的三個(gè)內(nèi)角都可以拼成一個(gè)平角。再利用課件演示進(jìn)一步驗(yàn)證,由此獲得三角形的內(nèi)角和是180°的結(jié)論。這一系列活動(dòng)潛移默化地向?qū)W生滲透了“轉(zhuǎn)化”數(shù)學(xué)思想,為后繼學(xué)習(xí)奠定了必要的基礎(chǔ)。
最后讓學(xué)生運(yùn)用結(jié)論解決實(shí)際問題,練習(xí)的安排上,注意練習(xí)層次,共安排三個(gè)層次,逐步加深。練習(xí)形式具有趣味性,激發(fā)了學(xué)生主動(dòng)解題的積極性。第一個(gè)練習(xí)從知識(shí)的直接應(yīng)用到間接應(yīng)用,數(shù)學(xué)信息的出現(xiàn)從比較顯現(xiàn)到較為隱藏。這些題檢測(cè)不同層次的學(xué)生是否掌握所學(xué)知識(shí)應(yīng)該達(dá)到的基本要求,顧及到智力水平發(fā)展較慢和中等的同學(xué),第3個(gè)練習(xí)設(shè)計(jì)了開放性的練習(xí),在小組內(nèi)完成。由一個(gè)同學(xué)出題,其它三個(gè)同學(xué)回答。先給出三角形兩個(gè)內(nèi)角的度數(shù),說(shuō)出另外一個(gè)內(nèi)角。有唯一的答案。訓(xùn)練多次后,只給出三角形一個(gè)內(nèi)角,說(shuō)出其它兩個(gè)內(nèi)角,答案不唯一,可以得出無(wú)數(shù)個(gè)答案。讓學(xué)生在游戲中消除疲倦激發(fā)興趣,拓展學(xué)生思維。兼顧到智力水平發(fā)展較快的同學(xué)。在整個(gè)教學(xué)設(shè)計(jì)中,本著“學(xué)貴在思,思源于疑”的思想,不斷創(chuàng)設(shè)問題情境,讓學(xué)生去實(shí)驗(yàn)、去發(fā)現(xiàn)新知識(shí)的奧妙,從而讓學(xué)生在動(dòng)手操作、積極探索的活動(dòng)中掌握知識(shí),積累數(shù)學(xué)活動(dòng)經(jīng)驗(yàn),發(fā)展空間觀念和推理能力。
1、讓學(xué)生親自動(dòng)手,通過量、剪、拼等活動(dòng)發(fā)現(xiàn)、證實(shí)三角形內(nèi)角和是180°,并會(huì)應(yīng)用這一知識(shí)解決生活中簡(jiǎn)單的實(shí)際問題。
2、讓學(xué)生在動(dòng)手獲取知識(shí)的過程中,培養(yǎng)學(xué)生的創(chuàng)新意識(shí)、探索精神和實(shí)踐能力。并通過動(dòng)手操作把三角形內(nèi)角和轉(zhuǎn)化為平角的探究活動(dòng),向?qū)W生滲透“轉(zhuǎn)化”數(shù)學(xué)思想。
3、使學(xué)生體驗(yàn)成功的喜悅,激發(fā)學(xué)生主動(dòng)學(xué)習(xí)數(shù)學(xué)的興趣。
三角形的內(nèi)角和是三角形的一個(gè)重要特征。本課是安排在學(xué)習(xí)三角形的概念及分類之后進(jìn)行的,它是學(xué)生以后學(xué)習(xí)多邊形的內(nèi)角和及解決其它實(shí)際問題的基礎(chǔ)。學(xué)生在掌握知識(shí)方面:已經(jīng)掌握了三角形的分類,比較熟悉平角等有關(guān)知識(shí);能力方面:經(jīng)過三年多的學(xué)習(xí),已具備了初步的動(dòng)手操作能力和主動(dòng)探究能力以及合作學(xué)習(xí)的習(xí)慣。
因此,教材很重視知識(shí)的探索與發(fā)現(xiàn),安排了一系列的實(shí)驗(yàn)操作活動(dòng)。教材呈現(xiàn)教學(xué)內(nèi)容時(shí),不但重視體現(xiàn)知識(shí)的形成過程,而且注意留給學(xué)生充分進(jìn)行自主探索和交流的空間,為教師靈活組織教學(xué)提供了清晰的思路。概念的形成沒有直接給出結(jié)論,而是通過量、算、拼等活動(dòng),讓學(xué)生探索、實(shí)驗(yàn)、發(fā)現(xiàn)、討論交流、推理歸納出三角形的內(nèi)角和是180°。
讓學(xué)生經(jīng)歷“三角形內(nèi)角和是180°”這一知識(shí)的形成、發(fā)展和應(yīng)用的全過程。
多媒體課件、學(xué)具。
師:我們已經(jīng)認(rèn)識(shí)了什么是三角形,誰(shuí)能說(shuō)出三角形有什么特點(diǎn)?
生1:三角形是由三條線段圍成的圖形。
生2:三角形有三個(gè)角,……。
師:請(qǐng)看屏幕(課件演示三條線段圍成三角形的過程)。
師:三條線段圍成三角形后,在三角形內(nèi)形成了三個(gè)角,(課件分別閃爍三個(gè)角及的弧線),我們把三角形里面的這三個(gè)角分別叫做三角形的內(nèi)角。(這里,有必要向?qū)W生直觀介紹“內(nèi)角”。)。
(二)設(shè)疑,激發(fā)學(xué)生探究新知的心理。
師:請(qǐng)同學(xué)們幫老師畫一個(gè)三角形,能做到嗎?(激發(fā)學(xué)生主動(dòng)學(xué)習(xí)的心理)。
生:能。
師:請(qǐng)聽要求,畫一個(gè)有兩個(gè)內(nèi)角是直角的三角形,開始。(設(shè)置矛盾,使學(xué)生在矛盾中去發(fā)現(xiàn)問題、探究問題。)。
師:有誰(shuí)畫出來(lái)啦?
生1:不能畫。
生2:只能畫兩個(gè)直角。
生3:只能畫長(zhǎng)方形。
師(課件演示):是不是畫成這個(gè)樣子了?哦,只能畫兩個(gè)直角。
師:?jiǎn)栴}出現(xiàn)在哪兒呢?這一定有什么奧秘?想不想知道?
生:想。
師:那就讓我們一起來(lái)研究吧!
(揭示矛盾,巧妙引入新知的探究)。
師:請(qǐng)看屏幕。(播放課件)熟悉這副三角板嗎?請(qǐng)拿出形狀與這塊一樣的三角板,并同桌互相指一指各個(gè)角的度數(shù)。(課件閃動(dòng)其中的一塊三角板)。
生:90°、60°、30°。(課件演示:由三角板抽象出三角形)。
師:也就是這個(gè)三角形各角的度數(shù)。它們的和怎樣?
生:是180°。
師:你是怎樣知道的?
生:90°+60°+30°=180°。
師:對(duì),把三角形三個(gè)內(nèi)角的度數(shù)合起來(lái)就叫三角形的內(nèi)角和。
師:(課件演示另一塊三角板的各角的度數(shù)。)這個(gè)呢?它的內(nèi)角和是多少度呢?
生:90°+45°+45°=180°。
師:從剛才兩個(gè)三角形內(nèi)角和的計(jì)算中,你發(fā)現(xiàn)什么?
生2:這兩個(gè)三角形都是直角三角形,并且是特殊的三角形。
1、猜一猜。
師:猜一猜其它三角形的內(nèi)角和是多少度呢?同桌互相說(shuō)說(shuō)自己的看法。
生1:180°。
生2:不一定。
……。
(1)小組合作、進(jìn)行探究。
師:所有三角形的內(nèi)角和究竟是不是180°,你能用什么辦法來(lái)證明,使別人相信呢?
生:可以先量出每個(gè)內(nèi)角的度數(shù),再加起來(lái)。
師:哦,也就是測(cè)量計(jì)算,是嗎?那就請(qǐng)四人小組共同研究吧!
師:每個(gè)小組都有不同類型的三角形。每種類型的三角形都需要驗(yàn)證,先討論一下,怎樣才能很快完成這個(gè)任務(wù)。(課前每個(gè)小組都發(fā)有銳角三角形、直角三角形、鈍角三角形,指導(dǎo)學(xué)生選擇解決問題的策略,進(jìn)行合理分工,提高效率。)。
(2)小組匯報(bào)結(jié)果。
師:請(qǐng)各小組匯報(bào)探究結(jié)果。
生1:180°。
生2:175°。
生3:182°。
師:沒有得到統(tǒng)一的結(jié)果。這個(gè)辦法不能使人很信服,怎么辦?還有其它辦法嗎?
生1:有。
生2:用拼合的辦法,就是把三角形的三個(gè)內(nèi)角放在一起,可以拼成一個(gè)平角。
師:怎樣才能把三個(gè)內(nèi)角放在一起呢?
生:把它們剪下來(lái)放在一起。
1、用拼合的方法驗(yàn)證。
師:很好,請(qǐng)用不同的三角形來(lái)驗(yàn)證。
師:小組內(nèi)完成,仍然先分工怎樣才能很快完成任務(wù),開始吧。
2、匯報(bào)驗(yàn)證結(jié)果。
師:先驗(yàn)證銳角三角形,我們得出什么結(jié)論?
生1:銳角三角形的內(nèi)角拼在一起是一個(gè)平角,所以銳角三角形的內(nèi)角和是180°。
3、課件演示驗(yàn)證結(jié)果。
師:請(qǐng)看屏幕,老師也來(lái)驗(yàn)證一下,是不是跟你們得到的結(jié)果一樣?(播放課件)。
師:我們可以得出一個(gè)怎樣的結(jié)論?
師:為什么用測(cè)量計(jì)算的方法不能得到統(tǒng)一的結(jié)果呢?
生1:量的不準(zhǔn)。
生2:有的量角器有誤差。
師:對(duì),這就是測(cè)量的誤差。
三角形的內(nèi)角和教學(xué)設(shè)計(jì)博客篇四
1、通過量、剪、拼、擺等直觀操作的方法,讓學(xué)生探索并發(fā)現(xiàn)三角形內(nèi)角和等于180度。
2、在活動(dòng)交流中培養(yǎng)學(xué)生合作學(xué)習(xí)的意識(shí)和能力,讓學(xué)生經(jīng)歷猜測(cè)探索總結(jié)的數(shù)學(xué)學(xué)習(xí)過程,在實(shí)驗(yàn)活動(dòng)中體驗(yàn)探索的過程和方法。
3、通過運(yùn)用三角形內(nèi)角和的性質(zhì)解決一些簡(jiǎn)單的問題,使學(xué)生體會(huì)數(shù)學(xué)與現(xiàn)實(shí)生活的聯(lián)系,體會(huì)到數(shù)學(xué)的價(jià)值,增加學(xué)生學(xué)數(shù)學(xué)的信心和興趣。
探索發(fā)現(xiàn)三角形內(nèi)角和等于180并能應(yīng)用。
三角形內(nèi)角和是180的探索和驗(yàn)證。
師:大家喜歡猜謎語(yǔ)嗎?
生:喜歡。
師:下面請(qǐng)大家猜一個(gè)謎語(yǔ)(大屏幕出示形狀似座山,穩(wěn)定性能堅(jiān)。三竿首尾連,學(xué)問不簡(jiǎn)單。
(打一幾何圖形))
生:三角形。
師:三角形中都有哪些學(xué)問?
生:三角形有三條邊,三個(gè)角,具有穩(wěn)定性。
生:三角形按角分,可以分成銳角三角形、直角三角形、鈍角三角形。
生:三角形按邊分,可以分成等腰三角形,不等邊三角形,其中等腰三角形又包含了兩條邊相等的三角形和等邊三角形。
生:一個(gè)三角形中最多只能有一個(gè)直角,最多只能有一個(gè)鈍角,最少有兩個(gè)銳角。
生:三角形的內(nèi)有和是180。
生:(一臉疑惑)
師:(板書:三角形的內(nèi)角和是180),你有什么疑惑? 生:什么是內(nèi)角?
生:每個(gè)三角形的內(nèi)角和都是180嗎?
(根據(jù)學(xué)生的問題,在三角形的內(nèi)角和是180后面加上一個(gè)?)
1、理解內(nèi)角 師:什么是內(nèi)角?
生:我認(rèn)為三角形的內(nèi)角就是指三角形的三個(gè)角。
師:三角形的每個(gè)角都是三角形的內(nèi)角,每個(gè)三角形都有三個(gè)內(nèi)角。
2、理解內(nèi)角和。
師:那三角形的內(nèi)角和又是指什么?
生:我認(rèn)為三角形的內(nèi)角和就是把三角形的三個(gè)內(nèi)角的度數(shù)加起來(lái)的和。
師:為了方便,我們將三角形的每個(gè)內(nèi)角編上序號(hào)1、2、3、我們叫它1、2、3,這三個(gè)角的度數(shù)和,就是這個(gè)三角形的內(nèi)角和。
3、實(shí)踐驗(yàn)證
師:每個(gè)三角形的內(nèi)角和都是180嗎?用什么方法來(lái)驗(yàn)證呢?
生:量一量每個(gè)角的度數(shù),然后加起來(lái)看看是不是180。
師:請(qǐng)大家拿出課前準(zhǔn)備的三角形,親自量一量,算一算。(學(xué)生動(dòng)手量一量)
師:誰(shuí)愿意把你的勞動(dòng)成果和大家分享一下?
生:我量的這個(gè)三角形的三個(gè)內(nèi)角的度數(shù)分別是60、60、60,加起來(lái)一共是180。
師:這位同學(xué)量的是一個(gè)銳角三角形,并且是比較特殊的三角形等邊三角形。
生:我量這個(gè)三角形的三個(gè)內(nèi)角的度數(shù)分別是45、45、90,加起來(lái)一共是180。
師:這是我們?nèi)浅咧械囊粋€(gè),也比較特殊,是一個(gè)等腰直角三角形。
生:我量的是三角尺中的另一個(gè),三個(gè)內(nèi)角的度數(shù)分別是60、30、90,加起來(lái)一共是180 生:我量的是鈍角三角形,三個(gè)內(nèi)角的度數(shù)分別是85、60、38,加起來(lái)一共是183。
師:你發(fā)現(xiàn)了什么?
生:有的三角形的內(nèi)角和是180,而有的三角形的內(nèi)角和卻不是180。
師:看來(lái)三角形的內(nèi)角和不一定是180。
生:老師,測(cè)量會(huì)有誤差,量出來(lái)的不是很精確,那么求出來(lái)的結(jié)果也不夠精確。雖然不都是三個(gè)內(nèi)角加起來(lái)不都是180,但都接近180。
生:都接近180就能說(shuō)一定是180嗎?
師:科學(xué)來(lái)不得半點(diǎn)虛假,看來(lái)這個(gè)是不能讓大家信服的。那還可以用什么方法來(lái)驗(yàn)證呢?下面請(qǐng)同學(xué)們小組合作,發(fā)揮小組成員的智慧,充分利用大家的學(xué)具進(jìn)行驗(yàn)證,比一比哪些組的方法富有新意,開始!
(學(xué)生在小組內(nèi)進(jìn)行探索驗(yàn)證。教師巡視,參與到學(xué)生的研究中)
師:請(qǐng)每個(gè)小組選擇一個(gè)代言人,和大家分享一下你們的智慧。
生:(邊展示邊交流)我們小組運(yùn)用了折一折的方法,把三角形的三個(gè)內(nèi)角都向內(nèi)折,三個(gè)內(nèi)角就拼成了一個(gè)平角,也就是180,所以我們小組得出三角形的內(nèi)角和是180。
生:我們小組也有折的直角三角形,鈍角三角形。
(其它的成員展示不同的三角形)
師:看這個(gè)小組的同學(xué)想問題多全面呀,不僅想到了用什么方法,還想到了用不同的三角形進(jìn)行驗(yàn)證,老師實(shí)在是佩服你們組的智慧,讓我們把掌聲送給他們!
師:哪個(gè)小組和他們的方法不一樣?
生:我們小組把三角形的三個(gè)內(nèi)角都撕了下來(lái),拼在了一起,正好拼成了一個(gè)平角,也就是180。我們也實(shí)驗(yàn)了不同的三角形,三個(gè)內(nèi)角都可以拼成平角,所以我們小組得出結(jié)論,三角形的內(nèi)角和是180。
師:這個(gè)小組的方法簡(jiǎn)便,易操作,很好。
生:我們小組成員是這樣想的,一個(gè)長(zhǎng)方形有4個(gè)直角,每個(gè)直角90,那么長(zhǎng)方形的內(nèi)角和就是360,每個(gè)長(zhǎng)方形都可以平均分成兩個(gè)直角三角形,每個(gè)直角三角形的內(nèi)角和就是180。 師:你們小組很聰明,從長(zhǎng)方形的內(nèi)角和聯(lián)想到直角三角形的內(nèi)角和是180,從不同的角度去思考問題,謝謝你為我們提供了這么好的方法!
4、小結(jié)
生:沒有。
師:(去掉問號(hào))那就讓我們大聲地讀出來(lái)三角形的內(nèi)角和是1800。
1、說(shuō)一說(shuō)每個(gè)三角形的內(nèi)角和是多少度
師:(出示一個(gè)大三角形)這個(gè)大三角形的內(nèi)角和是多少度?
生: 180
師:(出示一個(gè)小三角形)這個(gè)小三角形的內(nèi)角和是多少度?
生:180
師:(演示)把這兩個(gè)三角形拼在一起,拼成的大三角形的內(nèi)角和是多少度?
生:180
生:把兩個(gè)三角形拼成一個(gè)大三角形,兩個(gè)直角不再是大三角形的內(nèi)角,所以少了180
師:(演示)把一個(gè)大三角形分成兩個(gè)三角形,每個(gè)三角形的內(nèi)角和是多少度?
生:180
2、求下面各角的度數(shù)
師:如果老師告訴你一個(gè)三角形的兩個(gè)角的度數(shù),你能說(shuō)出第三個(gè)角的度數(shù)嗎?
(出)
3、一個(gè)等腰三角形的風(fēng)箏,它的一個(gè)底角是70,它的頂角是多少度?
師:三角形的內(nèi)角和在我們的生活中應(yīng)用很廣泛,老師給大家?guī)?lái)一個(gè)在建筑中應(yīng)用的例子。
生:用量角器量一量
師:量哪個(gè)角?量一量斜拉的鋼索與橋柱形成的夾角嗎?
師:你真是個(gè)善于觀察、善于思考的孩子,努力學(xué)習(xí),將來(lái)一定會(huì)成為一名優(yōu)秀的建筑師。
四、回顧總結(jié),拓展延伸
師:40分鐘很快就過去了,你愿意把自己的收獲與大家共同分享嗎?
生:我知道了三角形的內(nèi)角和是180。
生:無(wú)論是大三角形,還是小三角形,無(wú)論是銳角三角形,還是鈍角三角形,還是銳角三角形,內(nèi)角和都是180。
生:把一個(gè)大三角形分成兩個(gè)小三角形,每個(gè)三角形的內(nèi)角和還是180,把兩個(gè)小三角形拼成一個(gè)大三角形,大三角形的內(nèi)角和還是180。
生:我可以用撕、拼、折等方法來(lái)驗(yàn)證三角形的內(nèi)角和是180。
師:這個(gè)同學(xué)不僅學(xué)會(huì)了知識(shí),而且學(xué)會(huì)了方法,我們只有學(xué)會(huì)了方法,才能更好地去探究更多的知識(shí)。
師:那你現(xiàn)在知道為什么一個(gè)三角形內(nèi)只能有一個(gè)直角或一個(gè)鈍角嗎?
生:兩個(gè)直角的度數(shù)之和是180,再加上一個(gè)角,三個(gè)角的度數(shù)之和超過了180,所以一個(gè)三角形中最多只能有一個(gè)直角。
生:兩個(gè)鈍角的度數(shù)之和就超過了180,再加上一個(gè)角,就更大了,所以一個(gè)三角形中最多只能有一個(gè)鈍角。
師:我們學(xué)習(xí)知識(shí),必須知其然并知其所以然。
師:三角形中還有許許多多的學(xué)問,讓我們?cè)谝院蟮膶W(xué)習(xí)中繼續(xù)去研究。
三角形的內(nèi)角和教學(xué)設(shè)計(jì)博客篇五
教學(xué)內(nèi)容:
教材第67頁(yè)例6、“做一做”及教材第69頁(yè)練習(xí)十六第1~3題。
教學(xué)目標(biāo):
1、通過動(dòng)手操作,使學(xué)生理解并掌握三角形的內(nèi)角和是180°的結(jié)論。
3、培養(yǎng)學(xué)生動(dòng)手動(dòng)腦及分析推理能力。
重點(diǎn)難點(diǎn):
教學(xué)準(zhǔn)備:
導(dǎo)學(xué)過程。
一、復(fù)習(xí)。
1、什么是平角?平角是多少度?
2、計(jì)算角的度數(shù)。
3、回憶三角形的相關(guān)知識(shí)。(出示直角三角形、銳角三角形、鈍角三角形)。
二、新知。
(設(shè)計(jì)意圖:讓學(xué)生經(jīng)歷質(zhì)疑驗(yàn)證結(jié)論這樣的思維過程,真正整體感知三角形內(nèi)角和的知識(shí),真正驗(yàn)證了“實(shí)踐出真知”的道理,這樣的教學(xué),將三角形內(nèi)角和置于平面圖形內(nèi)角和的大背景中,拓展了三角形內(nèi)角和的數(shù)學(xué)知識(shí)背景,滲透數(shù)學(xué)知識(shí)之間的聯(lián)系,有效地避免了新知識(shí)的“橫空出現(xiàn)”。同時(shí),培養(yǎng)學(xué)生的綜合素養(yǎng))。
1、讀學(xué)卡的學(xué)習(xí)目標(biāo)、任務(wù)目標(biāo),做到心里有數(shù)。
4、驗(yàn)證:
(1)初證:用一副三角板說(shuō)明直角三角形的內(nèi)角和是180°。
(2)質(zhì)疑:三角板是特殊的直角三角形,不具有普遍性,不能代表所有三角形。
(3)再證:請(qǐng)按學(xué)卡提示,拿出學(xué)具,選擇自己喜歡的方式驗(yàn)證三角形的內(nèi)角和是180°(師巡視)。
(4)匯報(bào)結(jié)論(清楚明白的給小組加優(yōu)秀10分)。
5、結(jié)論:修改板書,把“?”去掉,寫“是”。
6、追問:把兩塊三角板拼在一起,拼成的大三角形的內(nèi)角和是多少?說(shuō)明三角形無(wú)論大小它的內(nèi)角和都是180°(課件演示)。
7、看微課感知“偉大的發(fā)現(xiàn)”(設(shè)計(jì)意圖:讓學(xué)生感受自己所做的和帕斯卡發(fā)現(xiàn)三角形內(nèi)角和是180°的過程是一樣的,從而培養(yǎng)孩子的自信心和創(chuàng)造力。)。
三、知識(shí)運(yùn)用(課件出示練習(xí)題,生解答)。
1、填空。
(2)一個(gè)直角三角形的一個(gè)銳角是50,則另一個(gè)銳角是()。
(4)一個(gè)等腰三角形,它的一個(gè)底角是50,那么它的頂角是()。
(5)一個(gè)等腰三角形的頂角是60,這個(gè)三角形也是()三角形。
2、判斷。
(1)一個(gè)三角形中最多有兩個(gè)直角。()。
(3)有一個(gè)角是60的等腰三角形不一定是等邊三角形。()。
(5)直角三角形中的兩個(gè)銳角的和等于90。()。
四、拓展探究。
根據(jù)所學(xué)的知識(shí),你能想辦法求出四邊形、五邊形的內(nèi)角和嗎?
1、小組討論。2、匯報(bào)結(jié)果。3、課件提示幫助理解。
五、自我評(píng)價(jià)根據(jù)學(xué)卡要求給自己評(píng)出“優(yōu)”“良好”“合格”。
三角形的內(nèi)角和教學(xué)設(shè)計(jì)博客篇六
本節(jié)微課視頻是蘇教版數(shù)學(xué)教科書四年級(jí)下冊(cè)第78~79頁(yè)的教學(xué)內(nèi)容。在教學(xué)之前,學(xué)生已經(jīng)掌握了角的概念、角的分類和角的測(cè)量;認(rèn)識(shí)了三角形,知道三角形是由三條線段首尾相接圍成的圖形,有三個(gè)頂點(diǎn)、三條邊和三個(gè)角。這些已經(jīng)構(gòu)成學(xué)生進(jìn)一步學(xué)習(xí)的認(rèn)知基礎(chǔ)?!度切蔚膬?nèi)角和》是三角形的一個(gè)重要性質(zhì)。學(xué)生在學(xué)習(xí)四年級(jí)上冊(cè)“角的度量”時(shí),通過測(cè)量三角尺三個(gè)角的度數(shù),知道三角尺三個(gè)角加起來(lái)的和是180度,再加上課前的預(yù)習(xí),大部分的學(xué)生已經(jīng)能得出結(jié)論:三角形的內(nèi)角和是180度,只不過他們不清楚其中的道理,只是機(jī)械性的記憶。因此,本節(jié)課的重點(diǎn)不是結(jié)論,而是驗(yàn)證結(jié)論的過程。教材組織學(xué)生對(duì)不同形狀、不同大小的三角形的內(nèi)角和進(jìn)行探索,通過轉(zhuǎn)化、推理、比較、操作和驗(yàn)證,總結(jié)概括出“所有三角形的內(nèi)角和都是180度”的規(guī)律,從而進(jìn)一步發(fā)展學(xué)生的空間觀念,提高學(xué)生的自主學(xué)習(xí)能力和推理能力。
一、教學(xué)目標(biāo)。
1、通過測(cè)量、轉(zhuǎn)化、觀察和比較等活動(dòng)探索發(fā)現(xiàn)并驗(yàn)證“三角形的內(nèi)角和是180度”的規(guī)律,并且能利用這一結(jié)論解決求三角形中未知角的度數(shù)等實(shí)際問題。
2、通過折一折、拼一拼和剪一剪等一系列的操作活動(dòng)培養(yǎng)學(xué)生的'聯(lián)想意識(shí)和動(dòng)手操作能力。體驗(yàn)驗(yàn)證結(jié)論的過程與方法,提高學(xué)生分析和解決問題的能力。
3、使學(xué)生通過操作的過程獲得發(fā)現(xiàn)規(guī)律的喜悅,獲得成就感,從而激發(fā)學(xué)生積極主動(dòng)學(xué)習(xí)數(shù)學(xué)的興趣。
二、教學(xué)重點(diǎn)和難點(diǎn)。
難點(diǎn):對(duì)不同驗(yàn)證方法的理解和掌握。
三、教學(xué)過程。
(一)質(zhì)疑――發(fā)現(xiàn)問題,提出問題。
交流:不同三角尺的內(nèi)角和都是一樣的嗎?三角尺的內(nèi)角和有什么特征?
提問:三角尺的形狀是什么三角形?三角尺的內(nèi)角和是180度,我們還可以說(shuō)成是什么?(得出結(jié)論:直角三角形的內(nèi)角和是180度。)。
你有什么辦法驗(yàn)證這一結(jié)論呢?(動(dòng)手操作,尋找答案)。
方法一:拿出不同的直角三角形,分別測(cè)量三個(gè)內(nèi)角的度數(shù),再求和。(提示存在誤差,但三個(gè)內(nèi)角的和都在180度左右)。
方法二:用兩個(gè)相同的直角三角形拼成一個(gè)長(zhǎng)方形,由于長(zhǎng)方形的四個(gè)內(nèi)角和是360度,因此能得出一個(gè)直角三角形的三個(gè)內(nèi)角和是180度。
(二)探究――分析問題,解決問題。
出示三個(gè)三角形:直角三角形、銳角三角形和鈍角三角形。
引導(dǎo):直角三角形的內(nèi)角和是180度了,由此我們聯(lián)想到銳角三角形和鈍角三角形的內(nèi)角和也有可能是180度。
提問:你有什么辦法來(lái)驗(yàn)證這一猜想呢?
拿出事先從課本第113頁(yè)剪下來(lái)的3個(gè)三角形,動(dòng)手操作,自主探索,發(fā)現(xiàn)規(guī)律。
方法一:可以像上面那樣先測(cè)量每個(gè)三角形的三個(gè)內(nèi)角的度數(shù),再計(jì)算出它們的和,看看能發(fā)現(xiàn)什么規(guī)律。學(xué)生測(cè)量計(jì)算,教師巡視指導(dǎo)。
引導(dǎo):測(cè)量時(shí)要盡量做到準(zhǔn)確,測(cè)量是存在誤差的,對(duì)于測(cè)量的不準(zhǔn)的同學(xué)要重新測(cè)定和確認(rèn),計(jì)算出它們的和,發(fā)現(xiàn)其中的規(guī)律。
方法二:既然是求三角形的內(nèi)角和,我們就可以想辦法把三角形的3個(gè)內(nèi)角拼在一起,看看拼成了什么角。那怎樣才能把3個(gè)內(nèi)角拼在一起呢?我們可以將三角形中的3個(gè)內(nèi)角撕下來(lái),再拼在一起,會(huì)發(fā)現(xiàn)拼成了一個(gè)平角,是180度。
方法三:把三角形的三個(gè)內(nèi)角撕下來(lái),雖然能將他們拼在一起,但是原有的三角形被破壞了。因此,我們還可以通過折一折的方法,把三個(gè)內(nèi)角折過來(lái)拼在一起,同樣會(huì)發(fā)現(xiàn)拼成一個(gè)平角,是180度。
方法四:將銳角三角形和鈍角三角形分別分成兩個(gè)直角三角形,利用直角三角形內(nèi)角和是180度進(jìn)行推理。180+180=360度,360-90-90=180度。
(三)歸納――獲得結(jié)論。
交流:回顧以上3個(gè)三角形的內(nèi)角和的探索過程,你發(fā)現(xiàn)了什么規(guī)律?
總結(jié):通過測(cè)量計(jì)算、拼一拼和折一折的方法,我們可以消除心中的問號(hào),肯定得說(shuō)出所有三角形的內(nèi)角和都是180度這一結(jié)論。
(四)拓展――鞏固練習(xí)。
1、將一個(gè)大三角形剪成兩個(gè)小三角形,每個(gè)小三角形的內(nèi)角和是多少度?
2、在一個(gè)三角形中,根據(jù)兩個(gè)內(nèi)角的度數(shù),求第三個(gè)內(nèi)角的度數(shù)?
三角形的內(nèi)角和教學(xué)設(shè)計(jì)博客篇七
探索三角形內(nèi)角和的度數(shù)以及已知兩個(gè)角度數(shù)求第三個(gè)角度數(shù)。
教學(xué)目標(biāo):
1、通過測(cè)量、撕拼、折疊等探索活動(dòng),使學(xué)生發(fā)現(xiàn)三角形內(nèi)角和的度數(shù)是180?
2、已知三角形兩個(gè)角的度數(shù),會(huì)求第三個(gè)角的度數(shù)。
3、培養(yǎng)學(xué)生動(dòng)手實(shí)踐,動(dòng)腦思考的習(xí)慣。
教學(xué)重點(diǎn):
教學(xué)難點(diǎn):
教具學(xué)具準(zhǔn)備:
教材與學(xué)生。
教材創(chuàng)設(shè)了一個(gè)有趣的問題情境,通過對(duì)大小兩個(gè)三角形內(nèi)角和的大小比較來(lái)激發(fā)學(xué)生探索的興趣。教材為了得到三角形內(nèi)角和是180的結(jié)論安排了兩個(gè)活動(dòng),通過學(xué)生測(cè)量,折疊,撕拼來(lái)找到答案。
學(xué)生在已有的會(huì)用量角器來(lái)度量一個(gè)角的度數(shù)的基礎(chǔ)上,會(huì)首先想到這種方法。但測(cè)量的誤差會(huì)導(dǎo)致測(cè)量不同,因此,學(xué)生會(huì)想到采取其他更好的辦法,通過親手實(shí)踐,得出結(jié)論。
教學(xué)過程:
一、呈現(xiàn)真實(shí)狀態(tài)。
學(xué)生各抒己見。
二、提出問題:
師;剛才我們觀察三角形哪個(gè)內(nèi)角和大,同學(xué)們有兩種不同的猜想,可以肯定,必定有錯(cuò)下面我們來(lái)測(cè)量驗(yàn)證。
(1)以小組為單位請(qǐng)同學(xué)們拿出量角器,量一量,算一算圖中大小兩個(gè)三角形內(nèi)角和度數(shù),并做好記錄,記錄每個(gè)內(nèi)角的度數(shù)。
(2)組內(nèi)交流。
(3)全班交流。由小組匯報(bào)測(cè)出結(jié)果(三角形內(nèi)角和)。
(4)師小結(jié):我們通過測(cè)量發(fā)現(xiàn),每個(gè)三角形的內(nèi)角和測(cè)出結(jié)果接近180。
三。自主探索、研究問題、歸納總結(jié):
(一)組內(nèi)探索:
(1)以小組為單位探索更好的辦法。
(2)以小組為單位邊展示邊匯報(bào)探索的過程與發(fā)現(xiàn)的結(jié)果。
(有的小組想不出來(lái),可以安排小組和小組之間進(jìn)行交流,目的是讓學(xué)生通過實(shí)踐發(fā)現(xiàn)結(jié)果,在探索中發(fā)現(xiàn)問題,在討論中解決問題,是學(xué)生學(xué)習(xí)到良好的學(xué)習(xí)方法)。
(3)把你沒有想到的方法動(dòng)手做一次。
(4)根據(jù)學(xué)生的反饋情況教師進(jìn)行操作演示。
(二)教師演示。
撕拼法1。教師取出三角形教具,把三個(gè)角撕下來(lái),拼在一起,如圖所示。
2.師:這三個(gè)內(nèi)角放在一起你有什么發(fā)現(xiàn)?
生:發(fā)現(xiàn)三個(gè)內(nèi)角拼成一個(gè)平角。
師:平角是多少度呢?說(shuō)明什么?
生:180?說(shuō)明三個(gè)內(nèi)角和剛好等于180。
師:這種方法是不是適用各種三角形呢?
進(jìn)行實(shí)驗(yàn)后,結(jié)果發(fā)現(xiàn)同樣存在這一規(guī)律,三角形三個(gè)內(nèi)角和是180。
折疊法:師:剛才我們通過測(cè)量發(fā)現(xiàn)三角形內(nèi)角和接近180,那是因?yàn)闇y(cè)量的不那么精確,所以說(shuō)“接近”,又通過撕拼方法發(fā)現(xiàn)三角形的三個(gè)內(nèi)角剛好拼成一個(gè)平角,進(jìn)一步說(shuō)明三個(gè)內(nèi)角和是180,現(xiàn)在再來(lái)演示另一種實(shí)驗(yàn),再次證明我們的發(fā)現(xiàn)。
你們也來(lái)試一試好嗎?
在學(xué)生完成這一實(shí)踐后肯定這一發(fā)現(xiàn)。
四。鞏固練習(xí),知識(shí)升華。
1.完成課本第28頁(yè)的“試一試”第三題。
2.想一想:鈍角三角形最多有幾個(gè)鈍角?為什么?
3.有一個(gè)四邊形,你能不用量角器而算出它的四個(gè)內(nèi)角和嗎?
試一試,看誰(shuí)算得快。
師:誰(shuí)來(lái)說(shuō)說(shuō)自己的計(jì)算過程?
[回答可能有二]:
(一種全部說(shuō)是:)。
師:請(qǐng)問,你們是怎么想的,為什么這么認(rèn)為?
生:……。
師:看來(lái),大家是通過這兩個(gè)三角形猜想的,是嗎?想不想驗(yàn)證一下你們的猜想,(生:想)好,咱們一起走進(jìn)三角形王國(guó),一起去研究它們內(nèi)角和的秘密吧?。◣熢谡n題“內(nèi)角和”下面劃上橫線,打上問號(hào))。
(一種有一部分同學(xué)說(shuō)是,有一部分同學(xué)說(shuō)不是:)。
師:看來(lái),大家的意見不一致,想不想驗(yàn)證一下你們的猜想,(生:想)好,咱們一起走進(jìn)三角形王國(guó),一起去研究它們內(nèi)角和的秘密吧?。◣熢谡n題“內(nèi)角和”下面劃上橫線,打上問號(hào))。
(二)動(dòng)手操作,探究新知。
師:老師看你們有答案了,哪位同學(xué)愿意說(shuō)一說(shuō)你的奇思妙想?
生:我準(zhǔn)備用量的方法。
師:然后呢?
生:然后把它們?nèi)齻€(gè)內(nèi)角的度數(shù)相加起來(lái),就知道了三角形的內(nèi)角和是多少?
師:說(shuō)的真不錯(cuò),還有沒有其它的方法?
生:我是把三角形的三個(gè)角剪下來(lái),拼在一起(師鼓勵(lì):你的想法很有創(chuàng)意,等一會(huì)兒用你的行動(dòng)來(lái)驗(yàn)證你的猜想吧?。?。
生:……。
(如生一時(shí)想不到,師可引導(dǎo):他是把三個(gè)內(nèi)角的度數(shù)相加在一起,我們能不能想辦法把三個(gè)內(nèi)角放在一起進(jìn)行觀察,看看能不能發(fā)現(xiàn)些什么呢?)。
師:好啦,老師相信咱們班的同學(xué)個(gè)個(gè)都是小數(shù)學(xué)家,一定能找出更多的方法的,請(qǐng)你們?cè)谘芯恐?,也像老師一樣,在三個(gè)內(nèi)角上編上序號(hào),角一、角二、角三,現(xiàn)在就請(qǐng)同學(xué)們對(duì)銳角三角形、直角三角形和鈍角三角形等各種類型的三角形進(jìn)行研究,看看它們的內(nèi)角和各有什么特點(diǎn)。咱們比一比,看一看,哪個(gè)小組的方法多,方法好!
開始吧?。▽W(xué)生研究,師巡回指導(dǎo))預(yù)設(shè)時(shí)間:5分鐘。
師:老師看各小組已經(jīng)研究好了,哪位同學(xué)愿意上來(lái)交流一下?
師:請(qǐng)你告訴大家,你是怎么研究的,最后發(fā)現(xiàn)了什么結(jié)果?
(預(yù)設(shè):如果第一類同學(xué)說(shuō)的是量的方法)。
師:你是用什么來(lái)研究的?
生:量角器。
師:那請(qǐng)你說(shuō)一下你度量的結(jié)果好嗎?
(生匯報(bào)度量結(jié)果)。
生:180度。
師:那到底三角形的內(nèi)角和是不是180度呢?還有哪位同學(xué)有其它的方法進(jìn)行驗(yàn)證嗎?
生:我是先把三角形的三個(gè)角剪掉以后粘在一起,然后在量出它們?nèi)齻€(gè)角組成的度數(shù)。
師:他演示的真好,你們聽明白了嗎?李老師把他的過程給大家在大屏幕上演示一下。
(師邊講解邊點(diǎn)擊flash:把三角形按照三個(gè)內(nèi)角撕成三塊,先把角一放在右邊,再把角二放在左邊,最后把角三調(diào)個(gè)頭,插在角一角二的中間,這樣它們?nèi)齻€(gè)內(nèi)角就形成了一個(gè)大角,角一的這條邊,角二這條邊看起來(lái)在一條直線上,那到底是不是在一條直線上呢,我們一起用直尺來(lái)量一下,師演示后問學(xué)生:是不是在一條直線上,那這個(gè)大角是個(gè)什么角呢?通過剛才拼的過程,你有什么發(fā)現(xiàn)?)。
生:我們還用了折的方法(生介紹方法)。
師:你們聽明白了嗎?李老師把他的過程給大家在大屏幕上演示一下。
(師邊講解邊點(diǎn)擊flash:先找到兩條邊的中點(diǎn),把它連起來(lái),把角一沿著中間的這條線向?qū)厡?duì)折,再把角二向里對(duì)折,使它的頂點(diǎn)與角一對(duì)齊,最后把角三也用同樣的方法對(duì)折,這樣它們?nèi)齻€(gè)內(nèi)角就形成了一個(gè)大角,這個(gè)大角是個(gè)什么角呢?)。
生:是個(gè)平角。180度。
師:請(qǐng)這位同學(xué)來(lái)說(shuō)給大家聽聽吧!
生:我把兩個(gè)相同的直角三角形拼成了一個(gè)長(zhǎng)方形,因?yàn)殚L(zhǎng)方形里面有四個(gè)直角,所以它的內(nèi)角和是360度,那么一個(gè)三角形的內(nèi)角和就是180度。
生1:量的不準(zhǔn)。
生2:有的量角器有誤差。
師:對(duì),這就是測(cè)量的誤差,如果測(cè)量?jī)x器再精密一些,我們的方法再準(zhǔn)確一些,那么任意一個(gè)三角形的內(nèi)角和也將是180度。
師:把你們偉大的發(fā)現(xiàn)讀一讀吧!
(三)拓展應(yīng)用,深化認(rèn)識(shí)。
師:請(qǐng)看老師手上的這兩個(gè)三角形,左邊這個(gè)內(nèi)角和是多少度?(生:180度)右邊呢(生:也是180度)。
師:現(xiàn)在老師把它們拼在一起,這個(gè)大三角形的內(nèi)角和又是多少度呢?
(生答后師引導(dǎo)歸納得出:三角形的內(nèi)角和與形狀大小無(wú)關(guān),組成的大三角形的內(nèi)角和依然是180度。)。
師:剛才我們?cè)谟懻搶W(xué)習(xí)三角形知識(shí)的時(shí)候,三角形中的兩個(gè)好朋友卻爭(zhēng)執(zhí)了起來(lái),想知道怎么回事嗎?讓我們一起去看看吧!(出示課件,課件內(nèi)容:一個(gè)大一些的直角三角形說(shuō):“我的個(gè)頭比你大,我的內(nèi)角和一定比你大”。另一個(gè)稍小的銳角三角形說(shuō):“是這樣嗎”?)。
師:到底誰(shuí)說(shuō)的對(duì)呢?今天我們就用我們今天學(xué)到的知識(shí)來(lái)為它們解決解決吧!
師:好,請(qǐng)看大屏幕!
(出示基礎(chǔ)練習(xí))在一個(gè)三角形中角一是140度,角三是25度,求角二的度數(shù)。
生答后,師提問:你是怎樣想的?
生陳述后,師鼓勵(lì):說(shuō)的真好!
出示自行車、等邊三角形的路標(biāo)牌、告訴頂角求底角的房頂、直角三角形的電線桿架進(jìn)行練習(xí)。
師:同學(xué)們,今天我們一起學(xué)習(xí)了三角形的內(nèi)角和,你有哪些收獲呢?
師:嗯,真不錯(cuò),你們知道嗎?三角形的內(nèi)角和等于180度是法國(guó)著名的數(shù)學(xué)家帕斯卡在1635年他12歲時(shí)獨(dú)自發(fā)現(xiàn)的,今天憑著同學(xué)們的聰明智慧也研究出了三角形的內(nèi)角和是180度,老師為你們感到驕傲,老師相信在你們的勤奮學(xué)習(xí)和刻苦鉆研下,你們就是下一個(gè)“帕斯卡”!
師:好,下課!同學(xué)們?cè)僖姡?/p>
三角形的內(nèi)角和教學(xué)設(shè)計(jì)博客篇八
本節(jié)課的教學(xué)先通過計(jì)算三角尺的3個(gè)內(nèi)角的度數(shù)的和,激發(fā)學(xué)生的好奇心,進(jìn)而引發(fā)“三角形內(nèi)角和是180度”的猜想,再通過組織操作活動(dòng)驗(yàn)證猜想,得出結(jié)論。
1、讓學(xué)生通過觀察、操作、比較、歸納,發(fā)現(xiàn)“三角形的內(nèi)角和是180o”。
2、讓學(xué)生學(xué)會(huì)根據(jù)“三角形的內(nèi)角和是180o”這一知識(shí)求三角形中一個(gè)未知角的度數(shù)。
3、激發(fā)學(xué)生主動(dòng)參與、自主探索的意識(shí),鍛煉動(dòng)手能力,發(fā)展空間觀念。
教學(xué)準(zhǔn)備:三角板,量角器、點(diǎn)子圖、自制的三種三角形紙片等。
一、提出猜想:
看了這2個(gè)算式你有什么猜想?
二、驗(yàn)證猜想:
1、畫、量:在點(diǎn)子圖上,分別畫銳角三角形、直角三角形、鈍角三角形。畫好后分別量出各個(gè)角的度數(shù),再把三個(gè)角的度數(shù)相加。
老師注意巡視和指導(dǎo)。交流各自加得的結(jié)果,說(shuō)說(shuō)你的發(fā)現(xiàn)。
2、折、拼:學(xué)生用自己事先剪好的圖形,折一折。
指名介紹折的方法:比如折的是一個(gè)銳角三角形,可以先把它上面的一個(gè)角折下,頂點(diǎn)和下面的邊重合,再分別把左邊、右邊的角往里折,三個(gè)角的頂點(diǎn)要重合。發(fā)現(xiàn):三個(gè)角會(huì)正好在一直線上,說(shuō)明它們合起來(lái)是一個(gè)平角,也就是180度。
繼續(xù)用該方法折鈍角三角形,得到同樣的結(jié)果。
通過交流使學(xué)生明白:除了用剛才的方法之外,直角三角形還可以用更簡(jiǎn)便的方法折;可以直角不動(dòng),而把兩個(gè)銳角折下,正好能拼成一個(gè)直角;兩個(gè)直角的度數(shù)和也是180度。
3、撕、拼:可能有個(gè)別學(xué)生對(duì)折的方法感到有困難。那么還可以用撕的方法。
在撕之前要分別在三個(gè)角上標(biāo)好角1、角2和角3。然后撕下三個(gè)角,把三個(gè)角的一條邊、頂點(diǎn)重合,也能清楚地看到三個(gè)角合起來(lái)就是一個(gè)平角——180度。
小結(jié):我們可以用多種方法,得到同樣的結(jié)果:三角形的內(nèi)角和是180o。
4、試一試:
三角形中,角1=75o,角2=39o,角3=()o。
算一算,量一量,結(jié)果相同嗎?
三、完成想想做做:
1、算出下面每個(gè)三角形中未知角的度數(shù)。
在交流的時(shí)候可以分別學(xué)生說(shuō)說(shuō)怎么算才更方便。比如第1題,可先算40加60等于100,再用180減100等于80o。第2題則先算180減110等于70,再用70減55更方便。第3題是直角三角形,可不用180去減,而用90減55更好。
指出:在計(jì)算的時(shí)候,我們可根據(jù)具體的數(shù)據(jù)選擇更佳的算法。
然后再分別算一算圖上的這三個(gè)三角形的內(nèi)角和。得出結(jié)論:三角形不論大小,它的內(nèi)角和都是180o。
3、用一張正方形紙折一折,填一填。
4、說(shuō)理:一個(gè)直角三角形中最多有幾個(gè)直角?為什么?
一個(gè)鈍角三角形中最多有幾個(gè)直角?為什么?
1、(第2題)你能連一連嗎?
學(xué)生獨(dú)立做,做完后把有疑問的幾個(gè)選出來(lái)交流。
2、在釘子板上分別圍出銳角三角形、直角三角形和鈍角三角形。
學(xué)生圍好后,互相檢查驗(yàn)證。
3、用一張長(zhǎng)方形紙,折出兩個(gè)完全一樣的直角三角形。
用一張正方形紙,折出四個(gè)完全一樣的直角三角形。
讓學(xué)生動(dòng)手折一折,在交流的時(shí)候用“對(duì)角線“來(lái)說(shuō)一說(shuō)。
5、你能在下面的三角形中分別畫一條線段,把它分成兩個(gè)直角三角形嗎?
通過交流使學(xué)生明白:畫出的線段就是原來(lái)三角形的高。
三角形的內(nèi)角和教學(xué)設(shè)計(jì)博客篇九
教學(xué)目標(biāo):
1、通過測(cè)量、撕拼、折疊等探索活動(dòng),使學(xué)生發(fā)現(xiàn)三角形內(nèi)角和的度數(shù)是180?
2、已知三角形兩個(gè)角的度數(shù),會(huì)求第三個(gè)角的度數(shù)。
3、培養(yǎng)學(xué)生動(dòng)手實(shí)踐,動(dòng)腦思考的習(xí)慣。
教學(xué)重點(diǎn):
教學(xué)難點(diǎn):
教具學(xué)具準(zhǔn)備:
教材與學(xué)生。
教材創(chuàng)設(shè)了一個(gè)有趣的問題情境,通過對(duì)大小兩個(gè)三角形內(nèi)角和的大小比較來(lái)激發(fā)學(xué)生探索的興趣。教材為了得到三角形內(nèi)角和是180的結(jié)論安排了兩個(gè)活動(dòng),通過學(xué)生測(cè)量,折疊,撕拼來(lái)找到答案。
學(xué)生在已有的會(huì)用量角器來(lái)度量一個(gè)角的度數(shù)的基礎(chǔ)上,會(huì)首先想到這種方法。但測(cè)量的誤差會(huì)導(dǎo)致測(cè)量不同,因此,學(xué)生會(huì)想到采取其他更好的辦法,通過親手實(shí)踐,得出結(jié)論。
教學(xué)過程:
學(xué)生各抒己見。
師;剛才我們觀察三角形哪個(gè)內(nèi)角和大,同學(xué)們有兩種不同的猜想,可以肯定,必定有錯(cuò)下面我們來(lái)測(cè)量驗(yàn)證。
(1)以小組為單位請(qǐng)同學(xué)們拿出量角器,量一量,算一算圖中大小兩個(gè)三角形內(nèi)角和度數(shù),并做好記錄,記錄每個(gè)內(nèi)角的度數(shù)。
(2)組內(nèi)交流。
(3)全班交流。由小組匯報(bào)測(cè)出結(jié)果(三角形內(nèi)角和)。
(4)師小結(jié):我們通過測(cè)量發(fā)現(xiàn),每個(gè)三角形的內(nèi)角和測(cè)出結(jié)果接近180。
(一)組內(nèi)探索:
(1)以小組為單位探索更好的辦法。
(2)以小組為單位邊展示邊匯報(bào)探索的過程與發(fā)現(xiàn)的結(jié)果。
(有的小組想不出來(lái),可以安排小組和小組之間進(jìn)行交流,目的是讓學(xué)生通過實(shí)踐發(fā)現(xiàn)結(jié)果,在探索中發(fā)現(xiàn)問題,在討論中解決問題,是學(xué)生學(xué)習(xí)到良好的學(xué)習(xí)方法)。
(3)把你沒有想到的方法動(dòng)手做一次。
(使學(xué)生更直觀地理解三角形的內(nèi)角和是180的證明過程)。
(4)根據(jù)學(xué)生的反饋情況教師進(jìn)行操作演示。
(二)教師演示。
撕拼法1。教師取出三角形教具,把三個(gè)角撕下來(lái),拼在一起,如圖所示。
2.師:這三個(gè)內(nèi)角放在一起你有什么發(fā)現(xiàn)?
生:發(fā)現(xiàn)三個(gè)內(nèi)角拼成一個(gè)平角。
師:平角是多少度呢?說(shuō)明什么?
生:180?說(shuō)明三個(gè)內(nèi)角和剛好等于180。
師:這種方法是不是適用各種三角形呢?
進(jìn)行實(shí)驗(yàn)后,結(jié)果發(fā)現(xiàn)同樣存在這一規(guī)律,三角形三個(gè)內(nèi)角和是180。
折疊法:師:剛才我們通過測(cè)量發(fā)現(xiàn)三角形內(nèi)角和接近180,那是因?yàn)闇y(cè)量的不那么精確,所以說(shuō)“接近”,又通過撕拼方法發(fā)現(xiàn)三角形的三個(gè)內(nèi)角剛好拼成一個(gè)平角,進(jìn)一步說(shuō)明三個(gè)內(nèi)角和是180,現(xiàn)在再來(lái)演示另一種實(shí)驗(yàn),再次證明我們的發(fā)現(xiàn)。
你們也來(lái)試一試好嗎?
在學(xué)生完成這一實(shí)踐后肯定這一發(fā)現(xiàn)。
四。鞏固練習(xí),知識(shí)升華。
1.完成課本第28頁(yè)的“試一試”第三題。
2.想一想:鈍角三角形最多有幾個(gè)鈍角?為什么?
3.有一個(gè)四邊形,你能不用量角器而算出它的四個(gè)內(nèi)角和嗎?
試一試,看誰(shuí)算得快。
師:誰(shuí)來(lái)說(shuō)說(shuō)自己的計(jì)算過程?
生:它們的內(nèi)角和都是180度。
[回答可能有二]:
(一種全部說(shuō)是:)。
師:請(qǐng)問,你們是怎么想的,為什么這么認(rèn)為?
生:……。
師:看來(lái),大家是通過這兩個(gè)三角形猜想的,是嗎?想不想驗(yàn)證一下你們的猜想,(生:想)好,咱們一起走進(jìn)三角形王國(guó),一起去研究它們內(nèi)角和的秘密吧?。◣熢谡n題“內(nèi)角和”下面劃上橫線,打上問號(hào))。
(一種有一部分同學(xué)說(shuō)是,有一部分同學(xué)說(shuō)不是:)。
師:看來(lái),大家的意見不一致,想不想驗(yàn)證一下你們的猜想,(生:想)好,咱們一起走進(jìn)三角形王國(guó),一起去研究它們內(nèi)角和的秘密吧?。◣熢谡n題“內(nèi)角和”下面劃上橫線,打上問號(hào))。
(二)動(dòng)手操作,探究新知。
師:老師看你們有答案了,哪位同學(xué)愿意說(shuō)一說(shuō)你的奇思妙想?
生:我準(zhǔn)備用量的方法。
師:然后呢?
生:然后把它們?nèi)齻€(gè)內(nèi)角的度數(shù)相加起來(lái),就知道了三角形的內(nèi)角和是多少?
師:說(shuō)的真不錯(cuò),還有沒有其它的方法?
生:我是把三角形的三個(gè)角剪下來(lái),拼在一起(師鼓勵(lì):你的想法很有創(chuàng)意,等一會(huì)兒用你的行動(dòng)來(lái)驗(yàn)證你的猜想吧?。?。
生:……。
(如生一時(shí)想不到,師可引導(dǎo):他是把三個(gè)內(nèi)角的度數(shù)相加在一起,我們能不能想辦法把三個(gè)內(nèi)角放在一起進(jìn)行觀察,看看能不能發(fā)現(xiàn)些什么呢?)。
師:好啦,老師相信咱們班的同學(xué)個(gè)個(gè)都是小數(shù)學(xué)家,一定能找出更多的方法的,請(qǐng)你們?cè)谘芯恐埃蚕窭蠋熞粯?,在三個(gè)內(nèi)角上編上序號(hào),角一、角二、角三,現(xiàn)在就請(qǐng)同學(xué)們對(duì)銳角三角形、直角三角形和鈍角三角形等各種類型的三角形進(jìn)行研究,看看它們的內(nèi)角和各有什么特點(diǎn)。咱們比一比,看一看,哪個(gè)小組的方法多,方法好!
開始吧!(學(xué)生研究,師巡回指導(dǎo))預(yù)設(shè)時(shí)間:5分鐘。
師:老師看各小組已經(jīng)研究好了,哪位同學(xué)愿意上來(lái)交流一下?
師:請(qǐng)你告訴大家,你是怎么研究的,最后發(fā)現(xiàn)了什么結(jié)果?
(預(yù)設(shè):如果第一類同學(xué)說(shuō)的是量的方法)。
師:你是用什么來(lái)研究的?
生:量角器。
師:那請(qǐng)你說(shuō)一下你度量的結(jié)果好嗎?
(生匯報(bào)度量結(jié)果)。
生:180度。
師:那到底三角形的內(nèi)角和是不是180度呢?還有哪位同學(xué)有其它的方法進(jìn)行驗(yàn)證嗎?
生:我是先把三角形的三個(gè)角剪掉以后粘在一起,然后在量出它們?nèi)齻€(gè)角組成的度數(shù)。
師:他演示的真好,你們聽明白了嗎?李老師把他的過程給大家在大屏幕上演示一下。
(師邊講解邊點(diǎn)擊flash:把三角形按照三個(gè)內(nèi)角撕成三塊,先把角一放在右邊,再把角二放在左邊,最后把角三調(diào)個(gè)頭,插在角一角二的中間,這樣它們?nèi)齻€(gè)內(nèi)角就形成了一個(gè)大角,角一的這條邊,角二這條邊看起來(lái)在一條直線上,那到底是不是在一條直線上呢,我們一起用直尺來(lái)量一下,師演示后問學(xué)生:是不是在一條直線上,那這個(gè)大角是個(gè)什么角呢?通過剛才拼的過程,你有什么發(fā)現(xiàn)?)。
生:我們還用了折的方法(生介紹方法)。
師:你們聽明白了嗎?李老師把他的過程給大家在大屏幕上演示一下。
(師邊講解邊點(diǎn)擊flash:先找到兩條邊的中點(diǎn),把它連起來(lái),把角一沿著中間的這條線向?qū)厡?duì)折,再把角二向里對(duì)折,使它的頂點(diǎn)與角一對(duì)齊,最后把角三也用同樣的方法對(duì)折,這樣它們?nèi)齻€(gè)內(nèi)角就形成了一個(gè)大角,這個(gè)大角是個(gè)什么角呢?)。
生:是個(gè)平角。180度。
師:請(qǐng)這位同學(xué)來(lái)說(shuō)給大家聽聽吧!
生:我把兩個(gè)相同的直角三角形拼成了一個(gè)長(zhǎng)方形,因?yàn)殚L(zhǎng)方形里面有四個(gè)直角,所以它的內(nèi)角和是360度,那么一個(gè)三角形的內(nèi)角和就是180度。
生1:量的不準(zhǔn)。
生2:有的量角器有誤差。
師:對(duì),這就是測(cè)量的誤差,如果測(cè)量?jī)x器再精密一些,我們的方法再準(zhǔn)確一些,那么任意一個(gè)三角形的內(nèi)角和也將是180度。
師:把你們偉大的發(fā)現(xiàn)讀一讀吧!
(三)拓展應(yīng)用,深化認(rèn)識(shí)。
師:請(qǐng)看老師手上的這兩個(gè)三角形,左邊這個(gè)內(nèi)角和是多少度?(生:180度)右邊呢(生:也是180度)。
師:現(xiàn)在老師把它們拼在一起,這個(gè)大三角形的內(nèi)角和又是多少度呢?
(生答后師引導(dǎo)歸納得出:三角形的內(nèi)角和與形狀大小無(wú)關(guān),組成的大三角形的內(nèi)角和依然是180度。)。
師:剛才我們?cè)谟懻搶W(xué)習(xí)三角形知識(shí)的時(shí)候,三角形中的兩個(gè)好朋友卻爭(zhēng)執(zhí)了起來(lái),想知道怎么回事嗎?讓我們一起去看看吧?。ǔ鍪菊n件,課件內(nèi)容:一個(gè)大一些的直角三角形說(shuō):“我的個(gè)頭比你大,我的內(nèi)角和一定比你大”。另一個(gè)稍小的銳角三角形說(shuō):“是這樣嗎”?)。
師:到底誰(shuí)說(shuō)的對(duì)呢?今天我們就用我們今天學(xué)到的知識(shí)來(lái)為它們解決解決吧!
師:好,請(qǐng)看大屏幕!
(出示基礎(chǔ)練習(xí))在一個(gè)三角形中角一是140度,角三是25度,求角二的度數(shù)。
生答后,師提問:你是怎樣想的?
生陳述后,師鼓勵(lì):說(shuō)的真好!
出示自行車、等邊三角形的路標(biāo)牌、告訴頂角求底角的房頂、直角三角形的電線桿架進(jìn)行練習(xí)。
師:同學(xué)們,今天我們一起學(xué)習(xí)了三角形的內(nèi)角和,你有哪些收獲呢?
師:嗯,真不錯(cuò),你們知道嗎?三角形的內(nèi)角和等于180度是法國(guó)著名的數(shù)學(xué)家帕斯卡在1635年他12歲時(shí)獨(dú)自發(fā)現(xiàn)的,今天憑著同學(xué)們的聰明智慧也研究出了三角形的內(nèi)角和是180度,老師為你們感到驕傲,老師相信在你們的勤奮學(xué)習(xí)和刻苦鉆研下,你們就是下一個(gè)“帕斯卡”!
師:好,下課!同學(xué)們?cè)僖姡?/p>
三角形的內(nèi)角和教學(xué)設(shè)計(jì)博客篇十
一、構(gòu)建新的課堂教學(xué)模式。
傳統(tǒng)的教學(xué)往往只重視對(duì)結(jié)論的記憶和模仿,而這節(jié)課老師把學(xué)生的學(xué)習(xí)定位在自主建構(gòu)知識(shí)的.基礎(chǔ)上,建立了“猜想——驗(yàn)證——?dú)w納——運(yùn)用”的教學(xué)模式。
二、培養(yǎng)學(xué)生勇于猜想,大膽創(chuàng)新的精神。
教學(xué)中趙老師遵循的基本教學(xué)原則是激勵(lì)學(xué)生展開積極的思維活動(dòng).先創(chuàng)設(shè)猜角的游戲情景,讓學(xué)生對(duì)三角形的三個(gè)角的度數(shù)關(guān)系產(chǎn)生好奇,引發(fā)學(xué)生的探究欲望.
三、為學(xué)生提供了大量數(shù)學(xué)活動(dòng)的機(jī)會(huì),讓學(xué)生真正成為學(xué)習(xí)的主人。
“給學(xué)生一些權(quán)利,讓他們自己選擇;讓他們自己去鍛煉;給學(xué)生一些問題,讓他們自己去探索;給學(xué)生一片空間,讓學(xué)生自己飛翔.”這正是課堂教學(xué)改革中學(xué)生的主體性的表現(xiàn)。所以在這節(jié)課中趙老師樹立了數(shù)學(xué)教學(xué)為學(xué)生服務(wù),創(chuàng)設(shè)有助于學(xué)生自主學(xué)習(xí),合作交流的機(jī)會(huì),通過想辦法求三角形的內(nèi)角和這一核心問題,引發(fā)學(xué)生去思考,去探究.這樣學(xué)生的潛能的以激活,思維展開了想象,能力得以發(fā)展.
四、給學(xué)生一個(gè)開放探究的學(xué)習(xí)空間.
培養(yǎng)學(xué)生的問題意識(shí)是數(shù)學(xué)課堂教學(xué)的核心問題,所以課堂上學(xué)生的學(xué)習(xí)過程就是解決問題的過程,當(dāng)一個(gè)問題解決完后又引發(fā)出新的問題,使學(xué)生體會(huì)到成功的喜悅,使數(shù)學(xué)課堂充滿挑戰(zhàn).所以課堂上老師沒有因?qū)W生發(fā)現(xiàn)三角形內(nèi)角和是180度而罷休,然后用一個(gè)大的三角形剪成兩個(gè)小的,用兩個(gè)小的拼成大的內(nèi)角和延伸,使學(xué)生悟出規(guī)律,這樣學(xué)生帶著問題在課后向更高的學(xué)習(xí)目標(biāo)繼續(xù)探索,一追求更大的成功。
一堂好課不應(yīng)是自始至終的高潮和精彩,也不必是高科技現(xiàn)代教育技術(shù)的集中展示。一堂好課不是看它的熱鬧程度,而在于學(xué)生從中得到了什么,它留給人們的應(yīng)是思考、啟示和回味。
三角形的內(nèi)角和教學(xué)設(shè)計(jì)博客篇十一
“三角形的內(nèi)角和”是人教版小學(xué)數(shù)學(xué)四年級(jí)下冊(cè)第五單元第四節(jié)的內(nèi)容,“三角形的內(nèi)角和”是三角形的一個(gè)重要性質(zhì)。本課教學(xué)內(nèi)容不算多,學(xué)生只需要翻看課本就會(huì)知道三角形的內(nèi)角和是180°,但是陳麗老師并沒有讓學(xué)生這樣做。“數(shù)學(xué)學(xué)習(xí)的過程實(shí)際上是數(shù)學(xué)活動(dòng)的過程”。課程標(biāo)準(zhǔn)要求我們“將課堂還給學(xué)生,讓課堂煥發(fā)生命的活力”,要求我們“努力營(yíng)造學(xué)生在教學(xué)活動(dòng)中獨(dú)立自主學(xué)習(xí)的時(shí)間和空間,使他們成為課堂教學(xué)中重要的參與者與創(chuàng)造者,落實(shí)學(xué)生的主體地位,促進(jìn)學(xué)生的自主學(xué)習(xí)和探究?!痹诮虒W(xué)中,陳老師力求探究,將教學(xué)思路擬定為“創(chuàng)設(shè)情境,激趣引題——自主合作,探究新知——交流釋疑,歸納總結(jié)——拓展應(yīng)用,反思升華”四個(gè)環(huán)節(jié),努力構(gòu)建探究型的課堂教學(xué)模式。具體體現(xiàn)在以下幾個(gè)方面:
課一開始,陳老師創(chuàng)設(shè)了一個(gè)實(shí)踐操作的活動(dòng)情境:讓學(xué)生畫一個(gè)含有兩個(gè)直角的三角形。很顯然三角形是畫不出來(lái)的,學(xué)生同樣也不知道畫不出來(lái)。簡(jiǎn)單的活動(dòng)激活了學(xué)生的思維,讓他們產(chǎn)生了問題:是不是三角形的角有些什么秘密呢?這樣,在很短的時(shí)間內(nèi)最大限度的激發(fā)學(xué)生探究數(shù)學(xué)的愿望和興趣,而且也很自然地揭示了課題。
在教學(xué)中,陳老師巧妙運(yùn)用“猜想、驗(yàn)證”的方式引導(dǎo)學(xué)生進(jìn)行自主學(xué)習(xí)和探究活動(dòng)。學(xué)生大膽猜想三角形的內(nèi)角和是180°,讓學(xué)生對(duì)問題形成了統(tǒng)一的認(rèn)識(shí),使后邊的探索和驗(yàn)證活動(dòng)有了明確的目標(biāo)。這個(gè)時(shí)候,陳老師就把課堂大量的時(shí)間和空間留給學(xué)生,在學(xué)生交流探究設(shè)想和打算采用的方法后,放手讓每個(gè)同學(xué)自主參與驗(yàn)證活動(dòng),在經(jīng)歷觀察、操作、分析、推理和想象活動(dòng)過程中解決問題,同時(shí)發(fā)展空間觀念和論證推理能力。驗(yàn)證的具體過程為:量角求和——撕角拼一拼——折角拼一拼。拼角的方法具有一般性,結(jié)論的形成不缺乏科學(xué)性。這個(gè)環(huán)節(jié)的設(shè)計(jì)更重要的是變“聽數(shù)學(xué)”為“做數(shù)學(xué)”,讓學(xué)生在“做中學(xué)”。
學(xué)生在活動(dòng)中體驗(yàn),在交流中消除疑惑,獲得新知。這節(jié)課生與生、生與師的交流不僅僅停留在知識(shí)的層面上,陳老師還引導(dǎo)學(xué)生對(duì)獲得知識(shí)所用的方法進(jìn)行了總結(jié),加強(qiáng)了學(xué)法指導(dǎo)。
課程標(biāo)準(zhǔn)提倡練習(xí)的.有效性。本節(jié)課的練習(xí)設(shè)計(jì)陳老師非常注意將數(shù)學(xué)的思考融入不同層次的練習(xí)之中,很好的發(fā)揮練習(xí)的作用。兩個(gè)小三角形拼成一個(gè)較大的三角形互動(dòng)練習(xí)讓學(xué)生進(jìn)一步理解任意三角形的內(nèi)角和都是180°;后面的練習(xí)設(shè)計(jì)從圖形到文字,由一般到特殊;“開心一刻”更是把學(xué)生帶到無(wú)窮的學(xué)習(xí)樂趣之中。這些練習(xí)設(shè)計(jì)目的明確,針對(duì)性強(qiáng),使學(xué)生不但鞏固了知識(shí),更重要的是數(shù)學(xué)思維得到不斷的發(fā)展。
兩點(diǎn)建議:
2、學(xué)生的猜想結(jié)果都是180°,這時(shí)老師是否可以反問:你們是怎樣知道的?便于學(xué)生的學(xué)習(xí)活動(dòng)更流暢的進(jìn)入下一個(gè)環(huán)節(jié)。
總之,我個(gè)人認(rèn)為陳老師對(duì)“四步教學(xué)法”模式的把握是成功的,學(xué)生在這種課堂教學(xué)模式下的學(xué)習(xí)是自主的,是活動(dòng)的,也是快樂的。
三角形的內(nèi)角和教學(xué)設(shè)計(jì)博客篇十二
三角形的內(nèi)角和是三角形的一個(gè)重要特征。本課時(shí)安排在三角形的特性和分類之后進(jìn)行的,它是學(xué)生以后學(xué)習(xí)多邊形的內(nèi)角和的基礎(chǔ)。學(xué)生在掌握知識(shí)方面:基本掌握三角形的分類,角的分類等有關(guān)知識(shí);能力方面:學(xué)生已具備了初步的動(dòng)手操作能力和主觀探究能力以及合作學(xué)習(xí)的習(xí)慣。因此,教材特重視知識(shí)的探索宇發(fā)現(xiàn),安排了一系列的實(shí)驗(yàn)操作活動(dòng)。教材在呈現(xiàn)教學(xué)內(nèi)容時(shí),即重視知識(shí)的形成過程,又注意提供學(xué)生自主探究的空間,為教師組織教學(xué)提供了清晰的思路。學(xué)生通過量;剪;拼;算等活動(dòng),讓學(xué)生探索.實(shí)驗(yàn).發(fā)現(xiàn).驗(yàn)證三角形內(nèi)角和是180度。
知識(shí)于技能:讓學(xué)生通過親自動(dòng)手量.剪.拼等活動(dòng),發(fā)現(xiàn)三角形內(nèi)角和是180度,并會(huì)應(yīng)用這一知識(shí)解決生活中簡(jiǎn)單的實(shí)際問題。
情感態(tài)度與價(jià)值觀:通過學(xué)習(xí)讓學(xué)生體驗(yàn)成功的喜悅,激發(fā)學(xué)生主動(dòng)學(xué)習(xí)數(shù)學(xué)的興趣。
學(xué)生已經(jīng)認(rèn)識(shí)了三角形,并掌握了三角形的分類,較熟悉平角等有關(guān)知識(shí);具備了初步的動(dòng)手操作能力和主動(dòng)探究能力。因此概念的形成是通過量.算.拼等活動(dòng),讓學(xué)生探索.實(shí)驗(yàn).發(fā)現(xiàn).討論.推理.歸納出三角形的內(nèi)角和是180度。
1.關(guān)注學(xué)生的學(xué)習(xí)過程,注意培養(yǎng)學(xué)生動(dòng)手操作能力以及和作與交流的能力,培養(yǎng)應(yīng)用和創(chuàng)新意識(shí)。
2.從學(xué)生已有的知識(shí)和生活經(jīng)驗(yàn)出發(fā),讓學(xué)生通過操作.觀察.思考.交流.推理.歸等活動(dòng),培養(yǎng)學(xué)生的學(xué)習(xí)興趣,體驗(yàn)數(shù)學(xué)的價(jià)值。
教具準(zhǔn)備;多媒體課件.一副三角板。
學(xué)具準(zhǔn)備:量角器.各種三角形.剪刀等。
三角形的內(nèi)角和教學(xué)設(shè)計(jì)博客篇十三
教材第67頁(yè)例6、“做一做”及教材第69頁(yè)練習(xí)十六第1~3題。
1.通過動(dòng)手操作,使學(xué)生理解并掌握三角形的內(nèi)角和是180°的結(jié)論。
2.能運(yùn)用三角形的內(nèi)角和是180°這一結(jié)論,求三角形中未知角的度數(shù)。
3.培養(yǎng)學(xué)生動(dòng)手動(dòng)腦及分析推理能力。
導(dǎo)學(xué)過程。
1、什么是平角?平角是多少度?
2、計(jì)算角的度數(shù)。
3、回憶三角形的相關(guān)知識(shí)。(出示直角三角形、銳角三角形、鈍角三角形)。
(設(shè)計(jì)意圖:讓學(xué)生經(jīng)歷質(zhì)疑驗(yàn)證結(jié)論這樣的思維過程,真正整體感知三角形內(nèi)角和的知識(shí),真正驗(yàn)證了“實(shí)踐出真知”的道理,這樣的教學(xué),將三角形內(nèi)角和置于平面圖形內(nèi)角和的大背景中,拓展了三角形內(nèi)角和的數(shù)學(xué)知識(shí)背景,滲透數(shù)學(xué)知識(shí)之間的聯(lián)系,有效地避免了新知識(shí)的“橫空出現(xiàn)”。同時(shí),培養(yǎng)學(xué)生的綜合素養(yǎng))。
1、讀學(xué)卡的學(xué)習(xí)目標(biāo)、任務(wù)目標(biāo),做到心里有數(shù)。
4、驗(yàn)證:
(1)初證:用一副三角板說(shuō)明直角三角形的內(nèi)角和是180°。
(2)質(zhì)疑:三角板是特殊的直角三角形,不具有普遍性,不能代表所有三角形。
(3)再證:請(qǐng)按學(xué)卡提示,拿出學(xué)具,選擇自己喜歡的方式驗(yàn)證三角形的內(nèi)角和是180°(師巡視)。
(4)匯報(bào)結(jié)論(清楚明白的給小組加優(yōu)秀10分)。
5、結(jié)論:修改板書,把“?”去掉,寫“是”。
6、追問:把兩塊三角板拼在一起,拼成的大三角形的內(nèi)角和是多少?說(shuō)明三角形無(wú)論大小它的內(nèi)角和都是180°(課件演示)。
7、看微課感知“偉大的發(fā)現(xiàn)”(設(shè)計(jì)意圖:讓學(xué)生感受自己所做的和帕斯卡發(fā)現(xiàn)三角形內(nèi)角和是180°的過程是一樣的,從而培養(yǎng)孩子的自信心和創(chuàng)造力。)。
1、填空。
(1)一個(gè)三角形,它的兩個(gè)內(nèi)角度數(shù)之和是110,第三個(gè)內(nèi)角是().
(2)一個(gè)直角三角形的一個(gè)銳角是50,則另一個(gè)銳角是()。
(3)等邊三角形的3個(gè)內(nèi)角都是()。
(4)一個(gè)等腰三角形,它的一個(gè)底角是50,那么它的頂角是()。
(5)一個(gè)等腰三角形的頂角是60,這個(gè)三角形也是()三角形。
2、判斷。
(1)一個(gè)三角形中最多有兩個(gè)直角。()。
(2)銳角三角形任意兩個(gè)內(nèi)角的和大于90。()。
(3)有一個(gè)角是60的等腰三角形不一定是等邊三角形。()。
(4)三角形任意兩個(gè)內(nèi)角的和都大于第三個(gè)內(nèi)角。()。
(5)直角三角形中的兩個(gè)銳角的和等于90。()。
根據(jù)所學(xué)的知識(shí),你能想辦法求出四邊形、五邊形的內(nèi)角和嗎?
1、小組討論。
2、匯報(bào)結(jié)果。
3、課件提示幫助理解。
教學(xué)反思。
今天我講了《三角形內(nèi)角和》這部分內(nèi)容,學(xué)生其實(shí)通過不同途徑已經(jīng)知道三角形內(nèi)角和是180°,是不是說(shuō)這節(jié)課的重難點(diǎn)就已經(jīng)突破了,只要學(xué)生能應(yīng)用知識(shí)解決問題就算是達(dá)到這節(jié)課的教學(xué)目標(biāo)了呢?我想應(yīng)該好好思考教材背后要傳遞的東西。
任何規(guī)律的發(fā)現(xiàn)都要經(jīng)過一個(gè)猜測(cè)、驗(yàn)證的過程,不經(jīng)歷這個(gè)探究的過程,學(xué)生對(duì)于這一內(nèi)容的認(rèn)識(shí)就不深刻,聰明的孩子還會(huì)懷疑三角形內(nèi)角和是180°嗎?。因此這個(gè)結(jié)論必須由實(shí)踐操作得出結(jié)論。所以最終我把本課定為一個(gè)實(shí)踐探究課。
如何開篇點(diǎn)題,是我這次要解決的第一個(gè)問題。怎樣才能讓學(xué)生由已知順利轉(zhuǎn)向?qū)ξ粗奶角?,怎樣直接轉(zhuǎn)向研究三個(gè)角的“和”的問題呢?因此我只設(shè)計(jì)了三個(gè)簡(jiǎn)單的問題然學(xué)生快速進(jìn)入主題。
如何驗(yàn)證內(nèi)角和是180°,是我一直比較糾結(jié)的環(huán)節(jié)。由于小學(xué)生的知識(shí)背景有限,無(wú)法利用證明給予嚴(yán)格的驗(yàn)證。只能通過動(dòng)手操作、空間想象來(lái)讓孩子體會(huì),這些都有“實(shí)驗(yàn)”的特點(diǎn),那么就都會(huì)有誤差,其實(shí)都無(wú)法嚴(yán)格的證明。但是這節(jié)課我們除了要尊重知識(shí)的嚴(yán)謹(jǐn)還應(yīng)該尊重孩子的認(rèn)知。如果通過剪拼、折疊、想象后,還有的孩子認(rèn)為三角形內(nèi)角和是180°值得懷疑的話,這無(wú)非也是件好事,說(shuō)明孩子體會(huì)到了這些方法的不嚴(yán)謹(jǐn),同時(shí)對(duì)知識(shí)有一種尊重,對(duì)自己的操作結(jié)果充滿自信,否則拼個(gè)差不多也可以簡(jiǎn)單的認(rèn)同了內(nèi)角和是180°。
本節(jié)課的練習(xí)的設(shè)置也是努力做到有梯度、有趣味、有拓展。從開始的搶答內(nèi)角和體會(huì)三角形內(nèi)角和跟大小無(wú)關(guān)、跟形狀無(wú)關(guān),到已知兩個(gè)角的度數(shù)求第三個(gè)角,這些都是鞏固。之后的,求拼接兩個(gè)完全一樣的直角三角形后,得到的圖形的內(nèi)角和是多少度,求被剪開的三角形,形成的新圖形的內(nèi)角和是多少度,這些都是對(duì)三角形內(nèi)角和的一次拓展。讓學(xué)生的認(rèn)知發(fā)生沖突,提出挑戰(zhàn)。
給學(xué)生一個(gè)平臺(tái),她會(huì)給你一片精彩。通過動(dòng)手操作來(lái)驗(yàn)證內(nèi)角和是否是180°,學(xué)生最容易出現(xiàn)的就是把3個(gè)角剪下來(lái)拼一拼,個(gè)別人可能會(huì)想到折的方法。而這節(jié)課上有個(gè)小姑娘研究的是直角三角形,她的折法很巧妙,將兩個(gè)銳角折過來(lái),剛好拼成一個(gè)直角,這個(gè)直角和原來(lái)三角形已有的直角就重疊在了一起,兩個(gè)直角就180°。雖然我知道這樣的方法,但是通過試講,孩子們沒有這樣的表現(xiàn),我就沒有奢求什么。但是今天的課堂太豐富多元了。這樣的方法都出現(xiàn)了讓我覺得特別值得肯定。為什么會(huì)這樣呢?我想還是因?yàn)槲医o了他們足夠的時(shí)間去思考。當(dāng)有了空間,孩子才會(huì)施展他們的才華。這是我的一大收獲。
前邊驗(yàn)證時(shí)間過多,到練習(xí)時(shí)間就有些少,特別是求四邊形和六邊形內(nèi)角和時(shí),給的時(shí)間過短,學(xué)生沒有充分思維。
總而言之,這次的公開課,給了我一次學(xué)習(xí)和鍛煉的機(jī)會(huì)。在教案設(shè)計(jì)時(shí),該怎么樣把每一個(gè)環(huán)節(jié)落實(shí)到位,怎么樣說(shuō)好每一句話,預(yù)設(shè)好每一個(gè)環(huán)節(jié),在教研中聽取各位教師的點(diǎn)評(píng),讓我有了茅塞頓開的感覺。在此,我衷心感謝數(shù)學(xué)團(tuán)隊(duì)教師對(duì)我中肯的評(píng)價(jià),感謝他們對(duì)我的直言不諱,無(wú)私奉獻(xiàn)自己的想法,讓我在教學(xué)中,能夠在一個(gè)輕松和諧的教學(xué)氛圍中與學(xué)生共同去探討,去發(fā)現(xiàn),去學(xué)習(xí)。
三角形的內(nèi)角和教學(xué)設(shè)計(jì)博客篇十四
三角形的內(nèi)角和是四年級(jí)下冊(cè)第五單元的內(nèi)容,是在學(xué)生認(rèn)識(shí)三角形的特征、分類的基礎(chǔ)上進(jìn)行教學(xué)的,主要通過不同形式的動(dòng)手操作驗(yàn)證三角形的內(nèi)角和的度數(shù)。
一、亮點(diǎn)。
1.注重?cái)?shù)學(xué)思想方法的滲透。在教學(xué)中,孔石蕾老師首先通過猜想,讓學(xué)。
生通過量一量銳角三角形、直角三角形和鈍角三角形每個(gè)角的度數(shù),有的學(xué)生得到三角形的內(nèi)角和正好是180°,有的大于180°,而有的則小于180°,由此讓學(xué)生去想辦法去驗(yàn)證三角形的內(nèi)角和的度數(shù)。在驗(yàn)證的過程中,學(xué)生采用了把三角形的三個(gè)角撕下來(lái)拼成直角的方法、把三角形的三個(gè)角折成平角的方法得出了三角形的內(nèi)角和是180度,接著教師又通過動(dòng)畫演示操作和幾何畫板的量角的優(yōu)勢(shì),讓學(xué)生清晰地看出三角形內(nèi)角和的度數(shù)是180度,最后又應(yīng)用這一知識(shí)進(jìn)行了綜合的練習(xí)。在整個(gè)教學(xué)過程中,教師采用了猜想、驗(yàn)證、得出結(jié)論、應(yīng)用的四個(gè)探究環(huán)節(jié),讓學(xué)生經(jīng)歷了知識(shí)的發(fā)生、發(fā)展過程,提高了解決問題的能力。
2.精心準(zhǔn)備,精彩呈現(xiàn)。在教學(xué)過程中,孔石蕾老師在課件的制作,幾何畫板的應(yīng)用、知識(shí)材料的拓展、習(xí)題的選擇等方面進(jìn)行了精心設(shè)計(jì)和準(zhǔn)備,教學(xué)過程流暢、教學(xué)環(huán)節(jié)緊湊,教學(xué)語(yǔ)言清晰,有效地達(dá)成了教學(xué)目標(biāo),使學(xué)生在學(xué)習(xí)的過程中不僅掌握了知識(shí),也掌握了學(xué)習(xí)數(shù)學(xué)的方法。
二、建議。
在教學(xué)過程中,可以適當(dāng)?shù)倪M(jìn)行知識(shí)的延伸拓展,如通過學(xué)習(xí)三角形的內(nèi)角和對(duì)于后續(xù)的學(xué)習(xí)有什么影響,可以想到四邊形的內(nèi)角和等等方面的內(nèi)容。
三角形的內(nèi)角和教學(xué)設(shè)計(jì)博客篇十五
各位評(píng)委、老師:
我說(shuō)課的題目是《三角形內(nèi)角和》,內(nèi)容選自人教版九年義務(wù)教育七年級(jí)下冊(cè)第七章第二節(jié)第一課時(shí)。
數(shù)學(xué)是人與人之間精神層面上進(jìn)行的交往。課堂教學(xué)中的交往主要是教師與學(xué)生、學(xué)生與學(xué)生之間的交往。它需要運(yùn)用“對(duì)話式”的學(xué)習(xí)方式,采取多種教學(xué)策略,使學(xué)生在合作、探索、交流中發(fā)展能力。新課程中對(duì)學(xué)生的情感、體驗(yàn)、價(jià)值觀,以及獲取知識(shí)的渠道都有悖于傳統(tǒng)的教學(xué)模式,這正是教師在新課程中尋找新的教學(xué)方式的著眼點(diǎn)。應(yīng)該說(shuō),新的教學(xué)方式將伴隨著教師對(duì)新課程的逐漸透視而形成新的路徑。要破除原有教學(xué)活動(dòng)的框架,建立適應(yīng)師生相互交流的教學(xué)活動(dòng)體系;滿足學(xué)生的心理需求,實(shí)現(xiàn)教者與學(xué)者感情上的融洽和情感上的共鳴;給學(xué)生體驗(yàn)成功的機(jī)會(huì),把“要我學(xué)”變成“我要學(xué)”。我認(rèn)為教師角色的轉(zhuǎn)變一定會(huì)促進(jìn)學(xué)生的發(fā)展、促進(jìn)教育的長(zhǎng)足發(fā)展,在未來(lái)的教學(xué)過程里,教師要做的是:幫助學(xué)生決定適當(dāng)?shù)膶W(xué)習(xí)目標(biāo),并確認(rèn)和協(xié)調(diào)達(dá)到目標(biāo)的最佳途徑;指導(dǎo)學(xué)生形成良好的學(xué)習(xí)習(xí)慣,掌握學(xué)習(xí)策略;創(chuàng)造豐富的教學(xué)情境,培養(yǎng)學(xué)生的學(xué)習(xí)興趣,充分調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性;為學(xué)生提供各種便利,為學(xué)生的學(xué)習(xí)服務(wù);建立一個(gè)接納的、支持性的'、寬容的課堂氣氛;作為學(xué)習(xí)的參與者,與學(xué)生分享自己的感情和想法;和學(xué)生一道尋找真理,能夠承認(rèn)自己的過失和錯(cuò)誤。教學(xué)情境的營(yíng)造是教師走進(jìn)新課程中所面臨的挑戰(zhàn),適應(yīng)新一輪基礎(chǔ)教育課程改革的教學(xué)情境不是文本中的約定,也不是現(xiàn)成的拿來(lái)就能用的,需要我們?cè)诮虒W(xué)活動(dòng)的全過程中去探索、研究、發(fā)現(xiàn)、形成。
三角形的內(nèi)角和定理揭示了組成三角形的三個(gè)角的數(shù)量關(guān)系,此外,它的證明中引入了輔助線,這些都為后繼學(xué)習(xí)奠定了基礎(chǔ),三角形的內(nèi)角和定理也是幾何問題代數(shù)化的體現(xiàn)。
處于這個(gè)年齡階段的學(xué)生有能力自己動(dòng)手,在自己的視野范圍內(nèi)因地制宜地收集、編制、改造適合自身使用,貼近生活實(shí)際的數(shù)學(xué)建模問題,他們樂于嘗試、探索、思考、交流與合作,具有分析、歸納、總結(jié)的能力,他們渴望體驗(yàn)成功感和自豪感。因而老師有必要給學(xué)生充分的自由和空間,同時(shí)注意問題的開放性與可擴(kuò)展性。
1.知識(shí)目標(biāo):在情境教學(xué)中,通過探索與交流,逐步發(fā)現(xiàn)“三角形內(nèi)角和定理”,使學(xué)生親身經(jīng)歷知識(shí)的發(fā)生過程,并能進(jìn)行簡(jiǎn)單應(yīng)用。能夠探索具體問題中的數(shù)量關(guān)系和變化規(guī)律,體會(huì)方程的思想。通過開放式命題,嘗試從不同角度尋求解決問題的方法。教學(xué)中,通過有效措施讓學(xué)生在對(duì)解決問題過程的反思中,獲得解決問題的經(jīng)驗(yàn),進(jìn)行富有個(gè)性的學(xué)習(xí)。
2.能力目標(biāo):通過拼圖實(shí)踐、問題思考、合作探索、組內(nèi)及組間交流,培養(yǎng)學(xué)生的的邏輯推理、大膽猜想、動(dòng)手實(shí)踐等能力。
3.德育目標(biāo):通過添置輔助線教學(xué),滲透美的思想和方法教育。
4.情感、態(tài)度、價(jià)值觀:在良好的師生關(guān)系下,建立輕松的學(xué)習(xí)氛圍,使學(xué)生樂于學(xué)數(shù)學(xué),遇到困難不避讓,在數(shù)學(xué)活動(dòng)中獲得成功的體驗(yàn),增強(qiáng)自信心,在合作學(xué)習(xí)中增強(qiáng)集體責(zé)任感。
采用“問題情境——建立模型——解釋、應(yīng)用與拓展”的模式展開教學(xué)。
采用對(duì)話式、嘗試教學(xué)、問題教學(xué)、分層教學(xué)等多種教學(xué)方法,以達(dá)到教學(xué)目的。
【本文地址:http://mlvmservice.com/zuowen/13436382.html】