直線和圓的位置關(guān)系教案(匯總19篇)

格式:DOC 上傳日期:2023-11-19 17:41:16
直線和圓的位置關(guān)系教案(匯總19篇)
時(shí)間:2023-11-19 17:41:16     小編:LZ文人

教案具有指導(dǎo)教學(xué)、提供參考和確保教學(xué)質(zhì)量的作用。教案的編寫要注重培養(yǎng)學(xué)生的團(tuán)隊(duì)合作和溝通交流能力。通過研究這些教案范文,你可以更好地了解學(xué)科教學(xué)的特點(diǎn)和教學(xué)方法。

直線和圓的位置關(guān)系教案篇一

新課程指出:學(xué)生是學(xué)習(xí)的主體,是發(fā)展的主體。在課堂教學(xué)中,教師要將課堂的主動(dòng)權(quán)讓給學(xué)生,作為教師應(yīng)以“探究過程,探究方法,探究結(jié)果,運(yùn)用結(jié)果”為主線安排教學(xué)進(jìn)程,應(yīng)高度重視學(xué)生的主動(dòng)參與、親自研究、動(dòng)手操作,讓學(xué)生從中去體驗(yàn)學(xué)習(xí)知識(shí)的過程,引導(dǎo)學(xué)生在發(fā)現(xiàn)問題、分析問題、解決問題的同時(shí),培養(yǎng)學(xué)生的自主學(xué)習(xí)能力和創(chuàng)新意識(shí)。

在《直線和圓的位置關(guān)系》這節(jié)課中,我首先由生活中的情景——日落引入,讓學(xué)生發(fā)現(xiàn)地平線和太陽位置關(guān)系的變化,從而引出課題:直線和圓的位置關(guān)系。然后由學(xué)生平移直尺,自主探索發(fā)現(xiàn)直線和圓的三種位置關(guān)系,給出定義,聯(lián)系實(shí)際,由學(xué)生發(fā)現(xiàn)日常生活中存在的直線和圓相交、相切、相離的現(xiàn)象,緊接著引導(dǎo)學(xué)生探索三種位置關(guān)系下圓心到直線的距離與圓半徑的大小關(guān)系,由“做一做”進(jìn)行應(yīng)用,最后去解決實(shí)際問題。

1.由日落的三張照片(太陽與地平線相離、相切、相交)引入,學(xué)生比較感興趣,充分感受生活中反映直線與圓位置關(guān)系的現(xiàn)象,體驗(yàn)到數(shù)學(xué)來源于實(shí)踐。對生活中的數(shù)學(xué)問題發(fā)生好奇,這是學(xué)生最容易接受的學(xué)習(xí)數(shù)學(xué)的好方法。新課標(biāo)下的數(shù)學(xué)教學(xué)的基本特點(diǎn)之一就是密切關(guān)注數(shù)學(xué)與現(xiàn)實(shí)生活的聯(lián)系,從生活中“找”數(shù)學(xué),“想”數(shù)學(xué),讓學(xué)生真正感受到生活之中處處有數(shù)學(xué)。

2.在探索直線和圓位置關(guān)系所對應(yīng)的數(shù)量關(guān)系時(shí),我先引導(dǎo)學(xué)生回顧點(diǎn)和圓的位置關(guān)系所對應(yīng)的數(shù)量關(guān)系,啟發(fā)學(xué)生運(yùn)用類比的思想來思考問題,解決問題,學(xué)生很輕松的就能夠得出結(jié)論,從而突破本節(jié)課的難點(diǎn),使學(xué)生充分理解位置關(guān)系與數(shù)量關(guān)系的相互轉(zhuǎn)化,這種等價(jià)關(guān)系是研究切線的理論基礎(chǔ),從而為下節(jié)課探索切線的性質(zhì)打好基礎(chǔ)。

3.新課標(biāo)下的數(shù)學(xué)強(qiáng)調(diào)人人學(xué)有價(jià)值的數(shù)學(xué),人人學(xué)有用的數(shù)學(xué),為此,在做一做之后我安排了一道實(shí)際問題:“經(jīng)過兩村莊的筆直公路會(huì)不會(huì)穿越一個(gè)圓形的森林公園?”培養(yǎng)學(xué)生解決實(shí)際問題的能力。由于此題要學(xué)生回到生活中去運(yùn)用數(shù)學(xué),學(xué)生的積極性高漲,都急著討論解決方案,是乏味的數(shù)學(xué)學(xué)習(xí)變得有滋有味,使學(xué)生體會(huì)到學(xué)數(shù)學(xué)的重要性,體驗(yàn)“生活中處處用數(shù)學(xué)”。

1.學(xué)生觀察得到直線和圓的三種位置關(guān)系后,是由我講解的三個(gè)概念:相交、相切、相離。學(xué)生被動(dòng)的接受,對概念的理解不是很深刻,可以改為讓學(xué)生下定義,師生共同討論的形式給學(xué)生以思維想象的空間,充分調(diào)動(dòng)學(xué)生的積極性,使學(xué)生實(shí)現(xiàn)自主探究。

2.雖然我在設(shè)計(jì)本節(jié)課時(shí)是體現(xiàn)讓學(xué)生自主操作探究的原則,但在讓學(xué)生探索直線和圓三種位置關(guān)系所對應(yīng)的數(shù)量關(guān)系時(shí),沒有給予學(xué)生足夠的探索、交流的時(shí)間,限制了學(xué)生的思維。此處應(yīng)充分發(fā)揮小組的特點(diǎn),讓學(xué)生相互啟發(fā)討論,形成思維互補(bǔ),集思廣益,從而使概念更清楚,結(jié)論更準(zhǔn)確。

3.對“做一做”的處理不夠,這一環(huán)節(jié)是對探究的成績與效果的探索與檢驗(yàn),重在幫助學(xué)生掌握方法,我在講解“做一做”時(shí),沒有充分展示解題思路,沒有及時(shí)進(jìn)行方法上的總結(jié),致使部分學(xué)生在解決實(shí)際問題時(shí)思路不明確。教師要根據(jù)情況,簡要?dú)w納、概括應(yīng)掌握的方法,使學(xué)生能夠舉一反三,鞏固和擴(kuò)大知識(shí),吸收、內(nèi)化知識(shí)。

總之,新課程的課堂教學(xué)要讓學(xué)生作為課堂教學(xué)的主體參與到課堂教學(xué)過程中來,充分展現(xiàn)自己的個(gè)性,施展自己的才華,使學(xué)生在參與和體驗(yàn)的過程中真正成為學(xué)習(xí)的主人,養(yǎng)成勇于探索、敢于實(shí)踐的個(gè)性品質(zhì)。與此同時(shí),教師還要為學(xué)生的學(xué)習(xí)創(chuàng)造探究的環(huán)境,營造探究的氛圍,促進(jìn)探究的`開展,把握探究的深度,評(píng)價(jià)探究的效果。

直線和圓的位置關(guān)系教案篇二

20xx.11.17早上第二節(jié)授課班級(jí):初三、1班授課教師:

過程與方法目標(biāo):

2.通過例題教學(xué),培養(yǎng)學(xué)生靈活運(yùn)用知識(shí)的解決能力。

情感與態(tài)度目標(biāo):讓學(xué)生從運(yùn)動(dòng)的觀點(diǎn)來觀察直線和圓相交、相切、相離的關(guān)系、關(guān)注知識(shí)的生成,發(fā)展與變化的過程,主動(dòng)探索,勇于發(fā)現(xiàn)。從而領(lǐng)悟世界上的一切物體都是運(yùn)動(dòng)變化著的,并且在一定的條件下可以轉(zhuǎn)化的辯證唯物主義觀點(diǎn)。

利用多媒體放映落日的動(dòng)畫,初中數(shù)學(xué)教案《數(shù)學(xué)教案-直線和圓的位置關(guān)系(公開課)》。引導(dǎo)學(xué)生從公共點(diǎn)個(gè)數(shù)和圓心到直線的.距離兩方面體會(huì)直線和圓的不同位置關(guān)系。

學(xué)生看投影并思考問題。

調(diào)動(dòng)學(xué)生積極主動(dòng)參與數(shù)學(xué)活動(dòng)中.。

探究新知。

1、通過觀察直線和圓的公共點(diǎn)個(gè)數(shù)得出直線和圓相離、相交、相切的定義。

布置作業(yè)。

1、課本第101頁7.3a組第2、3題。

2、課余時(shí)間,留心觀察周圍事物,找出直線和圓相交,相切,相離的實(shí)例,說給大家聽。

直線和圓的位置關(guān)系教案篇三

教學(xué)要求:能夠從日常生活實(shí)例中抽象出數(shù)學(xué)中所說的平面理解平面的無限延展性;正確地用圖形和符號(hào)表示點(diǎn)、直線、平面以及它們之間的關(guān)系;初步掌握文字語言、圖形語言與符號(hào)語言三種語言之間的`轉(zhuǎn)化;理解可以作為推理依據(jù)的三條公理.

教學(xué)重點(diǎn):理解三條公理,能用三種語言分別表示.

教學(xué)難點(diǎn):理解三條公理。

教學(xué)重點(diǎn):掌握平行公理與等角定理.

教學(xué)難點(diǎn):理解異面直線的定義與所成角。

教學(xué)要求:了解直線與平面的三種位置關(guān)系,理解直線在平面外的概念,了解平面與平面的兩種位置關(guān)系.

教學(xué)重點(diǎn):掌握線面、面面位置關(guān)系的圖形語言與符號(hào)語言.

教學(xué)難點(diǎn):理解各種位置關(guān)系的概念.

直線和圓的位置關(guān)系教案篇四

本節(jié)課,我先讓學(xué)生在課前自行完成教學(xué)案中“課前預(yù)習(xí)與導(dǎo)學(xué)”這一部分,情況良好。上課后先信息反饋進(jìn)行評(píng)講,然后引導(dǎo)學(xué)生回憶了點(diǎn)與圓的位置關(guān)系及如何用數(shù)量關(guān)系來判斷點(diǎn)與圓的位置關(guān)系。接著以《海上日出》圖創(chuàng)設(shè)情景,從而引出課題:直線和圓的位置關(guān)系。然后由學(xué)生平移直尺,自主探索發(fā)現(xiàn)直線和圓的三種位置關(guān)系,給出定義,聯(lián)系實(shí)際,由學(xué)生發(fā)現(xiàn)日常生活中存在的直線和圓相交、相切、相離的現(xiàn)象,緊接著引導(dǎo)學(xué)生探索三種位置關(guān)系下圓心到直線的距離與圓半徑的大小關(guān)系,由小“練習(xí)”進(jìn)行應(yīng)用,最后通過“例題”“課堂檢測”去解決實(shí)際問題。通過本節(jié)課的教學(xué),我認(rèn)為成功之處有以下幾點(diǎn):

1、在探索直線和圓位置關(guān)系所對應(yīng)的數(shù)量關(guān)系時(shí),我先引導(dǎo)學(xué)生回顧點(diǎn)和圓的位置關(guān)系所對應(yīng)的數(shù)量關(guān)系,啟發(fā)學(xué)生運(yùn)用類比的思想來思考問題,解決問題,學(xué)生很輕松的就能夠得出結(jié)論,從而突破本節(jié)課的難點(diǎn),使學(xué)生充分理解位置關(guān)系與數(shù)量關(guān)系的相互轉(zhuǎn)化,這種等價(jià)關(guān)系是研究切線的理論基礎(chǔ),從而為下節(jié)課探索切線的性質(zhì)打好基礎(chǔ)。

2、新課標(biāo)下的數(shù)學(xué)強(qiáng)調(diào)人人學(xué)有價(jià)值的數(shù)學(xué),人人學(xué)有用的數(shù)學(xué),為此,在小練習(xí)之后我及時(shí)地進(jìn)行總結(jié)歸納方法,讓學(xué)生在以后解決實(shí)際問題過程中能一下子找到切入點(diǎn),培養(yǎng)學(xué)生解決實(shí)際問題的能力。

同時(shí),我也感覺到本節(jié)課的教學(xué)有不妥之處,主要有以下三點(diǎn):

1、學(xué)生觀察得到直線和圓的三種位置關(guān)系后,是由我講解的三個(gè)概念:相交、相切、相離。講得過多,學(xué)生被動(dòng)的接受,思考得不夠,對概念的理解不是很深刻??梢愿臑樽寣W(xué)生類比點(diǎn)與圓的位置關(guān)系下定義,師生共同討論的形式給學(xué)生以思維想象的空間,充分調(diào)動(dòng)學(xué)生的積極性,使學(xué)生實(shí)現(xiàn)自主探究。

2、對于我們學(xué)生的情況,初三的教學(xué)始終沒有擺脫灌輸式教學(xué),盡管課上也讓學(xué)生自主操作、思考,但老師講的太多,沒有給予學(xué)生足夠的探索、交流的時(shí)間,勢必會(huì)影響到部分學(xué)生的思維,限制了學(xué)生的發(fā)展。所以,我們也要學(xué)會(huì)該“放手時(shí)就放手”,大膽地讓學(xué)生去思考,也許會(huì)有意外的收獲。

3、對教材的把握,對學(xué)生的實(shí)情,在備課時(shí)都要考慮。在選題時(shí)不僅要照顧到基礎(chǔ)薄弱的同學(xué),也要照顧到基礎(chǔ)好些的同學(xué),適時(shí)選做。對于有些題可以適當(dāng)?shù)剡M(jìn)行變式訓(xùn)練,拓展靈活運(yùn)用,活躍學(xué)生的思維。

總之,在今后的數(shù)學(xué)教學(xué)中還有很多需要我學(xué)習(xí)和掌握的東西,希望能和學(xué)生們一起共同進(jìn)步,真正成為一名合格的數(shù)學(xué)教師。

直線和圓的位置關(guān)系教案篇五

教學(xué)目標(biāo):

1)知識(shí)目標(biāo):

a、知道直線和圓相交、相切、相離的定義。

b、根據(jù)定義來判斷直線和圓的位置關(guān)系,會(huì)根據(jù)直線和圓相切的定義畫出已知圓的切線。

c、根據(jù)圓心到直線的距離與圓的半徑之間的數(shù)量關(guān)系揭示直線和圓的位置。

2)能力目標(biāo):

讓學(xué)生通過觀察、看圖、填表、分析、對比,能找出圓心到直線的距離和圓的半徑之間的數(shù)量關(guān)系,揭示直線和圓的關(guān)系。此外,通過直線與圓的相對運(yùn)動(dòng),培養(yǎng)學(xué)生運(yùn)動(dòng)變化的辨證唯物主義觀點(diǎn),通過對研究過程的反思,進(jìn)一步強(qiáng)化對分類和歸納的思想的認(rèn)識(shí)。

直線和圓的位置關(guān)系教案篇六

1、圓的定義:

到定點(diǎn)的距離等于定長的點(diǎn)的集合。

在圓內(nèi)、在圓上、在圓外(由點(diǎn)和圓心的距離與圓的半徑大小來確定)。

3、弦、直徑、孤、弓形、半圓、同心圓、等圓、等孤等概念。

等弧一定要強(qiáng)調(diào)要在同圓或等圓中;半圓不包括直徑。

4、過三點(diǎn)的圓(三角形的外心)。

經(jīng)過三角形三個(gè)頂點(diǎn)的圓叫三角形外接圓;外接圓的圓心叫三角形的外心;三角形的外心是三條邊中垂線的交點(diǎn),到三個(gè)頂點(diǎn)距離相等;直角三角形外心在斜邊上、銳角三角心外心在三角形內(nèi)、鈍角三角形外心在三角形外。

5、垂徑定理及其推論:

定理及推論1:直線過圓心、垂直弦、平分弦、平分弦所對的優(yōu)弧、平分弦所對的劣弧這五要素中用其中兩個(gè)要素做條件就能推導(dǎo)出其它三個(gè)要素都成立。若用過圓心、平分弦做條件時(shí)要強(qiáng)調(diào)被平分的弦不是直徑。

推論2:平行弦所夾的弧相等。

6、圓心角、弦、弦心距、弧的關(guān)系:

圓心角、弧、弦、弦心距之間的相等關(guān)系必須要在同圓或等圓中才能成立;

弧的度數(shù)就等于它所對圓心角的度數(shù)。

7、圓周角定理及推論:

圓周角的定義:頂點(diǎn)在圓上,角的兩邊都與圓相交。

圓周角的定理:圓周角等于同弧所對圓心角的一半。

推論1、在同圓或等圓中,同弧或等弧所對的圓周角相等,圓周角相等,它所對的弧也相等。

推論2:直徑和半圓所對的'圓周角等于90度,90度的圓周角所對的弦是直徑,所對的弧是半圓。

推論3、三角形一邊的中線等于這一邊的一半時(shí),這個(gè)三角形是直角三角形。

8、圓內(nèi)接四邊形:

定義:四個(gè)頂點(diǎn)都在圓上的四邊形。

定理:圓內(nèi)接四邊形對角互補(bǔ)。

推論:圓內(nèi)接四邊形的外角等于它的內(nèi)對角。

相交、相切、相離(由公共點(diǎn)個(gè)數(shù)或圓心到直線距離和圓的半徑大小來確定)。

10、切線的判定和性質(zhì):

定義:與圓只有一個(gè)公共點(diǎn)的直線。

判定定理:經(jīng)過半徑的外端且垂直于半徑的直線是圓的切線。

性質(zhì)定理:經(jīng)過切點(diǎn)的半徑必垂直于切線。

推論1:經(jīng)過切點(diǎn)且垂直于切線的直線必經(jīng)過圓心。

推論2:經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點(diǎn)。

11、三角形內(nèi)切圓:

定義:與三角形三邊都相切的圓叫三角形內(nèi)切圓、內(nèi)切圓的圓心叫三角形內(nèi)心。內(nèi)心是三角形三條角平分線的交點(diǎn),到三角形三邊距離相等。

12、切線長定理:

定理:圓外一點(diǎn)到圓的兩條切線的長相等,這個(gè)點(diǎn)與圓心的連線要平分兩條切線的夾角。

(圓內(nèi)切四邊形對邊相加相等)。

13、弦切角:

定義:一條邊是圓的切線,頂點(diǎn)是切點(diǎn),另一條邊與圓相交的角;

定理:弦切角等于它所夾弧對的圓周角。

推論:兩個(gè)弦切角所夾的弧相等,這兩個(gè)弦切角相等。

14、和圓有關(guān)的比例線段:

相交弦定理及推論、切割線定理及推論。

直線和圓的位置關(guān)系教案篇七

這節(jié)課,我由生活中的情景——日落引入,讓學(xué)生發(fā)現(xiàn)地平線和太陽位置關(guān)系的變化,從而引出課題:直線和圓的位置關(guān)系。然后由學(xué)生平移直尺,自主探索發(fā)現(xiàn)直線和圓的三種位置關(guān)系,給出定義,聯(lián)系實(shí)際,由學(xué)生發(fā)現(xiàn)日常生活中存在的直線和圓相交、相切、相離的現(xiàn)象,緊接著引導(dǎo)學(xué)生探索三種位置關(guān)系下圓心到直線的距離與圓半徑的大小關(guān)系,由“做一做”進(jìn)行應(yīng)用,最后去解決實(shí)際問題。通過本節(jié)課的教學(xué),我認(rèn)為成功之處有以下幾點(diǎn):

1。由日落引入,學(xué)生比較感興趣,充分感受生活中反映直線與圓位置關(guān)系的現(xiàn)象,體驗(yàn)到數(shù)學(xué)來源于實(shí)踐。對生活中的數(shù)學(xué)問題發(fā)生好奇,這是學(xué)生最容易接受的學(xué)習(xí)數(shù)學(xué)的好方法。新課標(biāo)下的數(shù)學(xué)教學(xué)的基本特點(diǎn)之一就是密切關(guān)注數(shù)學(xué)與現(xiàn)實(shí)生活的聯(lián)系,從生活中“找”數(shù)學(xué),“想”數(shù)學(xué),讓學(xué)生真正感受到數(shù)學(xué)無處不在,無時(shí)不有。

2。在探索直線和圓位置關(guān)系所對應(yīng)的數(shù)量關(guān)系時(shí),讓學(xué)生回顧點(diǎn)和圓的位置關(guān)系所對應(yīng)的數(shù)量關(guān)系,啟發(fā)學(xué)生運(yùn)用類比的思想來思考問題,解決問題,學(xué)生很輕松的就能夠得出結(jié)論,從而突破本節(jié)課的難點(diǎn),使學(xué)生充分理解位置關(guān)系與數(shù)量關(guān)系的相互轉(zhuǎn)化,這種等價(jià)關(guān)系是研究切線的理論基礎(chǔ),從而為下節(jié)課探索切線的性質(zhì)打好基礎(chǔ)。

3。新課標(biāo)下的數(shù)學(xué)強(qiáng)調(diào)人人學(xué)有價(jià)值的數(shù)學(xué),人人學(xué)有用的數(shù)學(xué),為此,在做一做之后我安排了一道實(shí)際問題:“經(jīng)過兩村莊的筆直公路會(huì)不會(huì)穿越一個(gè)圓形的森林公園?”培養(yǎng)學(xué)生解決實(shí)際問題的能力。由于此題要學(xué)生回到生活中去運(yùn)用數(shù)學(xué),學(xué)生的積極性高漲,都急著討論解決方案,是乏味的數(shù)學(xué)學(xué)習(xí)變得有滋有味,使學(xué)生體會(huì)到學(xué)數(shù)學(xué)的重要性,體驗(yàn)“生活中處處用數(shù)學(xué)”。

“國培計(jì)劃”初中數(shù)學(xué)——陳曉峰(江西省寧都五中)。

節(jié)課的教學(xué),我認(rèn)為成功之處有以下幾點(diǎn):

1.由日落的三張照片(太陽與地平線相離、相切、相交)引入,學(xué)生比較感興趣,充分感受生活中反映直線與圓位置關(guān)系的現(xiàn)象,體驗(yàn)到數(shù)學(xué)來源于實(shí)踐。對生活中的數(shù)學(xué)問題發(fā)生好奇,這是學(xué)生最容易接受的學(xué)習(xí)數(shù)學(xué)的好方法。新課標(biāo)下的數(shù)學(xué)教學(xué)的基本特點(diǎn)之一就是密切關(guān)注數(shù)學(xué)與現(xiàn)實(shí)生活的聯(lián)系,從生活中“找”數(shù)學(xué),“想”數(shù)學(xué),讓學(xué)生真正感受到生活之中處處有數(shù)學(xué)。

2.在探索直線和圓位置關(guān)系所對應(yīng)的數(shù)量關(guān)系時(shí),我先引導(dǎo)學(xué)生回顧點(diǎn)和圓的位置關(guān)系所對應(yīng)的數(shù)量關(guān)系,啟發(fā)學(xué)生運(yùn)用類比的思想來思考問題,解決問題,學(xué)生很輕松的就能夠得出結(jié)論,從而突破本節(jié)課的難點(diǎn),使學(xué)生充分理解位置關(guān)系與數(shù)量關(guān)系的相互轉(zhuǎn)化,這種等價(jià)關(guān)系是研究切線的理論基礎(chǔ),從而為下節(jié)課探索切線的性質(zhì)打好基礎(chǔ)。

3.新課標(biāo)下的數(shù)學(xué)強(qiáng)調(diào)人人學(xué)有價(jià)值的數(shù)學(xué),人人學(xué)有用的數(shù)學(xué),為此,在做一做之后我安排了一道實(shí)際問題:“經(jīng)過兩村莊的筆直公路會(huì)不會(huì)穿越一個(gè)圓形的森林公園?”培養(yǎng)學(xué)生解決實(shí)際問題的能力。由于此題要學(xué)生回到生活中去運(yùn)用數(shù)學(xué),學(xué)生的積極性高漲,都急著討論解決方案,是乏味的數(shù)學(xué)學(xué)習(xí)變得有滋有味,使學(xué)生體會(huì)到學(xué)數(shù)學(xué)的重要性,體驗(yàn)“生活中處處用數(shù)學(xué)”。

同時(shí),我也感覺到本節(jié)課的設(shè)計(jì)有不妥之處,主要有以下三點(diǎn):

1.學(xué)生觀察得到直線和圓的三種位置關(guān)系后,是由我講解的三個(gè)概念:相交、相切、相離。學(xué)生被動(dòng)的接受,對概念的理解不是很深刻,可以改為讓學(xué)生下定義,師生共同討論的形式給學(xué)生以思維想象的空間,充分調(diào)動(dòng)學(xué)生的積極性,使學(xué)生實(shí)現(xiàn)自主探究。

2.雖然我在設(shè)計(jì)本節(jié)課時(shí)是體現(xiàn)讓學(xué)生自主操作探究的原則,但在讓學(xué)生探索直線和圓三種位置關(guān)系所對應(yīng)的數(shù)量關(guān)系時(shí),沒有給予學(xué)生足夠的探索、交流的時(shí)間,限制了學(xué)生的思維。此處應(yīng)充分發(fā)揮小組的特點(diǎn),讓學(xué)生相互啟發(fā)討論,形成思維互補(bǔ),集思廣益,從而使概念更清楚,結(jié)論更準(zhǔn)確。

直線和圓的位置關(guān)系教案篇八

“思之不慎,行而失當(dāng)”,“學(xué)然后知不足,教然后知困。知不足,然后能自反也;知困,然后能自強(qiáng)也?!狈此家庾R(shí)人類早就有之。作為教師,在教學(xué)中也應(yīng)適時(shí)反思教學(xué)過程的得與失。

開課時(shí),借助微機(jī)展示“圓圓的落日慢慢從海平面升起”的動(dòng)畫,從而展現(xiàn)直線與圓的位置關(guān)系。由此引入課題——直線與圓的位置關(guān)系,學(xué)生比較感興趣,充分感受生活中的數(shù)學(xué)知識(shí),體驗(yàn)數(shù)學(xué)來源于生活。然后提出問題,引導(dǎo)學(xué)生大膽猜想,思考,發(fā)現(xiàn)三種位置關(guān)系,激發(fā)學(xué)生學(xué)習(xí)興趣,營造探索問題的氛圍。同時(shí)讓學(xué)生從生活中“找”數(shù)學(xué),“想”數(shù)學(xué),體會(huì)到數(shù)學(xué)知識(shí)無處不在,應(yīng)用數(shù)學(xué)無處不有。這也符合“數(shù)學(xué)教學(xué)應(yīng)從生活經(jīng)驗(yàn)出發(fā)”的新課程標(biāo)準(zhǔn)要求。

在探索直線和圓位置關(guān)系所對應(yīng)的數(shù)量關(guān)系時(shí),我先引導(dǎo)學(xué)生回顧點(diǎn)和圓的位置關(guān)系所對應(yīng)的數(shù)量關(guān)系,啟發(fā)學(xué)生用類比的方法來研究直線與圓的位置關(guān)系,在研究過程中,采用小組討論的方法,給予學(xué)生足夠的探索、交流的時(shí)間,培養(yǎng)學(xué)生互助、協(xié)作的精神,讓學(xué)生在相互討論中,集思廣益,形成思維互補(bǔ),從而使概念更清楚,結(jié)論更準(zhǔn)確。最后由學(xué)生小結(jié)這一知識(shí)點(diǎn),我板書在黑板上,培養(yǎng)學(xué)生用數(shù)學(xué)語言歸納問題的能力,同時(shí)感受收獲知識(shí)的快樂。

在新知教授完畢,知識(shí)升華這塊,我安排了一道實(shí)際問題,一輛火車的噪首會(huì)不會(huì)影向處在與鐵路相交的另一條公路旁的學(xué)校?如果會(huì)影響,影響的時(shí)間有多長?新課標(biāo)下的數(shù)學(xué)強(qiáng)調(diào)人人學(xué)有價(jià)值的數(shù)學(xué),人人學(xué)有用的數(shù)學(xué),由于此題要學(xué)生回到生活中去運(yùn)用數(shù)學(xué)知識(shí)解決生活中遇到的問題,學(xué)生的積極性高漲,都急著討論解決方案,使乏味的數(shù)學(xué)學(xué)習(xí)變得有滋有味,使學(xué)生體會(huì)到學(xué)數(shù)學(xué)的重要性,體驗(yàn)“生活中處處用數(shù)學(xué)”。

一堂課教學(xué)下來,也發(fā)現(xiàn)有諸多不妥之處,讓我認(rèn)識(shí)到自己需要繼續(xù)努力。歸納主要有以下三點(diǎn):。

1、教師在課堂應(yīng)當(dāng)以引導(dǎo)者的身份出現(xiàn),把課堂和講臺(tái)讓位于學(xué)生,讓“教師的教”真正服務(wù)于“學(xué)生的學(xué)”,而我在這一節(jié)課中因?yàn)橐环矫鎿?dān)心學(xué)生在自主研究知識(shí)的形成時(shí)會(huì)浪費(fèi)時(shí)間,另一方面擔(dān)心會(huì)產(chǎn)生意想不到的或者課前備課時(shí)沒有考慮到的回答,總是把自己的思想強(qiáng)加給學(xué)生,比如學(xué)生觀察得到直線和圓的三種位置關(guān)系后,是由我講解的三個(gè)概念:相交、相切、相離。學(xué)生只是被動(dòng)的接受,這樣就會(huì)對概念的理解不是很深刻。這里可以改為讓學(xué)生自己下定義,教師適當(dāng)放手,以師生共同討論的形式給學(xué)生以思維想象的空間,充分調(diào)動(dòng)學(xué)生的積極性,使學(xué)生實(shí)現(xiàn)自主探究。

2、有些課堂提問欠合理化、科學(xué)化,提問隨意性大,缺乏針對性和啟發(fā)性,導(dǎo)致課堂教學(xué)引導(dǎo)不力,問題缺乏精心安排這就使得課堂存在著不少“徒勞的提問”。讓課堂時(shí)間分配的不太合理。今后應(yīng)該把一些提問設(shè)計(jì)再提煉,能達(dá)到精而準(zhǔn)。

3、在處理課后練習(xí)時(shí),做的不夠細(xì)致,這一環(huán)節(jié)是對前面探究新知識(shí)是否掌握的一個(gè)小測試,重在幫助學(xué)生掌握方法,而我在講解練習(xí)時(shí),只展示了解題思路,并沒有及時(shí)進(jìn)行方法上的總結(jié),致使部分學(xué)生在解決實(shí)際問題時(shí)思路不明確。這里教師要根據(jù)情況,簡要?dú)w納、概括應(yīng)掌握的方法,使學(xué)生能夠舉一反三,鞏固和擴(kuò)大知識(shí),吸收、內(nèi)化知識(shí),充分體現(xiàn)”授人以魚不如授人以漁"。

總之,這是我對自己本節(jié)課的一些教學(xué)反思,或者說是對新課程理念的淺薄認(rèn)識(shí)。

直線和圓的位置關(guān)系教案篇九

教學(xué)目標(biāo):

1.使學(xué)生理解直線和圓的相交、相切、相離的概念。

2.掌握直線與圓的位置關(guān)系的性質(zhì)與判定并能夠靈活運(yùn)用來解決實(shí)際問題。

3.培養(yǎng)學(xué)生把實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題的能力及分類和化歸的能力。

重點(diǎn)難點(diǎn):

2.難點(diǎn):運(yùn)用直線與圓的位置關(guān)系的性質(zhì)及判定解決相關(guān)的問題。

教學(xué)過程:

一.復(fù)習(xí)引入。

(目的:讓學(xué)生將點(diǎn)和圓的位置關(guān)系與直線和圓的位置關(guān)系進(jìn)行類比,以便更好的掌握直線和圓的位置關(guān)系)。

二.定義、性質(zhì)和判定。

1.結(jié)合關(guān)于日出的三幅圖形,通過學(xué)生討論,給出直線與圓的三種位置關(guān)系的定義。

(1)線和圓有兩個(gè)公共點(diǎn)時(shí),叫做直線和圓相交。這時(shí)直線叫做圓的割線。

(2)直線和圓有唯一的公點(diǎn)時(shí),叫做直線和圓相切。這時(shí)直線叫做圓的切線。唯一的公共點(diǎn)叫做切點(diǎn)。

(3)直線和圓沒有公共點(diǎn)時(shí),叫做直線和圓相離。

直線和圓的位置關(guān)系教案篇十

并深刻剖析直線是圓的切線的判定條件和直線與圓相切的性質(zhì);對重要的結(jié)論及時(shí)。

(2)在教學(xué)中,以“觀察——猜想——證明——剖析——應(yīng)用——?dú)w納”為主線,開展在教師組織下,以學(xué)生為主體,活動(dòng)式教學(xué)。

新課程理念及新基礎(chǔ)教育理念都提倡“把課堂還給學(xué)生,讓課堂充滿生命活力”,讓學(xué)生真正“動(dòng)起來”,動(dòng)不應(yīng)當(dāng)是表面的、外在的,而應(yīng)當(dāng)使學(xué)生的思維處于活躍狀態(tài),積極思考問題,這種內(nèi)在的、深層的動(dòng),更要落實(shí),動(dòng)靜結(jié)合,收放適度,動(dòng)得有序,動(dòng)而不亂。課堂教學(xué)要的不是熱鬧場面,而是對問題的深入研究和思考。首先要設(shè)計(jì)好問題,針對不同意見和問題引導(dǎo)學(xué)生展開討論、辯論,抓住學(xué)生發(fā)言中的問題,及時(shí)給以矯正。當(dāng)教師提出問題讓學(xué)生探索時(shí),學(xué)生自己尋找答案時(shí),要放手讓學(xué)生活動(dòng),但要避免學(xué)生興奮過度或活動(dòng)過量。今后再教學(xué)本節(jié)課仍應(yīng)倡導(dǎo)提高學(xué)生的問題意識(shí),以對問題的探究來構(gòu)筑本節(jié)課教學(xué)的主題。但是,教師待學(xué)生的問題提完后,與學(xué)生一道對問題進(jìn)行歸類,找出學(xué)生思維和知識(shí)的核心問題,以此組織課堂教學(xué),并相機(jī)解決其他問題。仍應(yīng)放權(quán)給學(xué)生,給他們想、做、說的機(jī)會(huì),讓他們討論、質(zhì)疑、交流,圍繞某一個(gè)問題展開辯論。教師應(yīng)當(dāng)給學(xué)生時(shí)間和權(quán)利,讓學(xué)生充分進(jìn)行思考,給學(xué)生充分表達(dá)自己思維的機(jī)會(huì)。但是,應(yīng)關(guān)注學(xué)生的參與程度,有的學(xué)生的參與只是一種表面上的行為參與。要看學(xué)生的思維是否活躍,關(guān)鍵是學(xué)生所回答的問題、提出的問題,是否建立在一定的思維層次上,是否會(huì)引起其他學(xué)生的積極思考,還是學(xué)生的自我需要。也就是說我們要關(guān)注學(xué)生思維的狀態(tài)與學(xué)習(xí)互動(dòng)的狀態(tài)。

直線和圓的位置關(guān)系教案篇十一

這是我第一次進(jìn)入初三進(jìn)行教學(xué),即緊張又興奮。經(jīng)過一個(gè)學(xué)期的歷練,在校領(lǐng)導(dǎo)和組內(nèi)老教師的無私幫助下我有了一些進(jìn)步?,F(xiàn)以《直線和圓的位置關(guān)系》第一課時(shí)為例,反思如下。

在初三的教學(xué)過程中,我?guī)缀跏锹犚还?jié)上一節(jié)。而集體備課也給了我很大的幫助。通過集體備課和聽課,在《直線和圓的位置關(guān)系》這節(jié)課中,我首先引導(dǎo)學(xué)生回憶了點(diǎn)與圓的位置關(guān)系及所對應(yīng)的點(diǎn)到圓心的距離與圓半徑的數(shù)量關(guān)系。從而引出課題:直線和圓的位置關(guān)系。然后由學(xué)生平移直尺,自主探索發(fā)現(xiàn)直線和圓的三種位置關(guān)系,給出定義,聯(lián)系實(shí)際,由學(xué)生發(fā)現(xiàn)日常生活中存在的直線和圓相交、相切、相離的現(xiàn)象,緊接著引導(dǎo)學(xué)生探索三種位置關(guān)系下圓心到直線的距離與圓半徑的大小關(guān)系,由“做一做”進(jìn)行應(yīng)用,最后去解決實(shí)際問題。通過本節(jié)課的教學(xué),我認(rèn)為成功之處有以下幾點(diǎn):

1、在探索直線和圓位置關(guān)系所對應(yīng)的數(shù)量關(guān)系時(shí),我先引導(dǎo)學(xué)生回顧點(diǎn)和圓的位置關(guān)系所對應(yīng)的數(shù)量關(guān)系,啟發(fā)學(xué)生運(yùn)用類比的思想來思考問題,解決問題,學(xué)生很輕松的就能夠得出結(jié)論,從而突破本節(jié)課的難點(diǎn),使學(xué)生充分理解位置關(guān)系與數(shù)量關(guān)系的相互轉(zhuǎn)化,這種等價(jià)關(guān)系是研究切線的理論基礎(chǔ),從而為下節(jié)課探索切線的性質(zhì)打好基礎(chǔ)。

2、新課標(biāo)下的數(shù)學(xué)強(qiáng)調(diào)人人學(xué)有價(jià)值的數(shù)學(xué),人人學(xué)有用的數(shù)學(xué),為此,在做一做之后我安排了兩道實(shí)際問題:“經(jīng)過兩村莊的筆直公路會(huì)不會(huì)穿越一個(gè)圓形的森林公園?”“公路邊的學(xué)校會(huì)不會(huì)受到噪聲的影響?”培養(yǎng)學(xué)生解決實(shí)際問題的能力。由于這兩題要學(xué)生回到生活中去運(yùn)用數(shù)學(xué),學(xué)生的積極性高漲,都急著討論解決方案,是乏味的數(shù)學(xué)學(xué)習(xí)變得有滋有味,使學(xué)生體會(huì)到學(xué)數(shù)學(xué)的重要性,體驗(yàn)“生活中處處用數(shù)學(xué)”。

同時(shí),我也感覺到本節(jié)課的設(shè)計(jì)有不妥之處,主要有以下三點(diǎn):

1.學(xué)生觀察得到直線和圓的三種位置關(guān)系后,是由我講解的三個(gè)概念:相交、相切、相離。講得過多,學(xué)生被動(dòng)的接受,思考得不夠,對概念的理解不是很深刻。可以改為讓學(xué)生類比點(diǎn)與圓的位置關(guān)系下定義,師生共同討論的形式給學(xué)生以思維想象的空間,充分調(diào)動(dòng)學(xué)生的積極性,使學(xué)生實(shí)現(xiàn)自主探究。

2、雖然我在設(shè)計(jì)本節(jié)課時(shí)是體現(xiàn)讓學(xué)生自主操作探究的原則,但在讓學(xué)生探索直線和圓三種位置關(guān)系所對應(yīng)的數(shù)量關(guān)系時(shí),沒有給予學(xué)生足夠的探索、交流的時(shí)間,限制了學(xué)生的思維。此處應(yīng)充分發(fā)揮小組的特點(diǎn),讓學(xué)生相互啟發(fā)討論,形成思維互補(bǔ),集思廣益,從而使概念更清楚,結(jié)論更準(zhǔn)確。

3.對“做一做”的處理不夠,這一環(huán)節(jié)是對探究的成績與效果的探索與檢驗(yàn),重在幫助學(xué)生掌握方法,我在講解“做一做”時(shí),沒有充分展示解題思路,沒有及時(shí)進(jìn)行方法上的總結(jié),致使部分學(xué)生在解決實(shí)際問題時(shí)思路不明確。并在進(jìn)行下面的解題時(shí)體現(xiàn)出來。教師要根據(jù)情況,簡要?dú)w納、概括應(yīng)掌握的方法,使學(xué)生能夠舉一反三,不能想當(dāng)然,否則會(huì)影響學(xué)生對知識(shí)的消化吸收。

總之,在今后的數(shù)學(xué)教學(xué)中還有很多需要我學(xué)習(xí)和掌握的東西,希望能和學(xué)生們一起共同進(jìn)步,真正成為一名合格的數(shù)學(xué)教師。

直線和圓的位置關(guān)系教案篇十二

“國培計(jì)劃”初中數(shù)學(xué)——陳曉峰(江西省寧都五中)。

節(jié)課的教學(xué),我認(rèn)為成功之處有以下幾點(diǎn):

1.由日落的三張照片(太陽與地平線相離、相切、相交)引入,學(xué)生比較感興趣,充分感受生活中反映直線與圓位置關(guān)系的現(xiàn)象,體驗(yàn)到數(shù)學(xué)來源于實(shí)踐。對生活中的數(shù)學(xué)問題發(fā)生好奇,這是學(xué)生最容易接受的學(xué)習(xí)數(shù)學(xué)的好方法。新課標(biāo)下的數(shù)學(xué)教學(xué)的基本特點(diǎn)之一就是密切關(guān)注數(shù)學(xué)與現(xiàn)實(shí)生活的聯(lián)系,從生活中“找”數(shù)學(xué),“想”數(shù)學(xué),讓學(xué)生真正感受到生活之中處處有數(shù)學(xué)。

2.在探索直線和圓位置關(guān)系所對應(yīng)的數(shù)量關(guān)系時(shí),我先引導(dǎo)學(xué)生回顧點(diǎn)和圓的位置關(guān)系所對應(yīng)的數(shù)量關(guān)系,啟發(fā)學(xué)生運(yùn)用類比的思想來思考問題,解決問題,學(xué)生很輕松的就能夠得出結(jié)論,從而突破本節(jié)課的難點(diǎn),使學(xué)生充分理解位置關(guān)系與數(shù)量關(guān)系的相互轉(zhuǎn)化,這種等價(jià)關(guān)系是研究切線的理論基礎(chǔ),從而為下節(jié)課探索切線的性質(zhì)打好基礎(chǔ)。

3.新課標(biāo)下的數(shù)學(xué)強(qiáng)調(diào)人人學(xué)有價(jià)值的數(shù)學(xué),人人學(xué)有用的數(shù)學(xué),為此,在做一做之后我安排了一道實(shí)際問題:“經(jīng)過兩村莊的筆直公路會(huì)不會(huì)穿越一個(gè)圓形的森林公園?”培養(yǎng)學(xué)生解決實(shí)際問題的能力。由于此題要學(xué)生回到生活中去運(yùn)用數(shù)學(xué),學(xué)生的積極性高漲,都急著討論解決方案,是乏味的數(shù)學(xué)學(xué)習(xí)變得有滋有味,使學(xué)生體會(huì)到學(xué)數(shù)學(xué)的重要性,體驗(yàn)“生活中處處用數(shù)學(xué)”。

同時(shí),我也感覺到本節(jié)課的設(shè)計(jì)有不妥之處,主要有以下三點(diǎn):

1.學(xué)生觀察得到直線和圓的三種位置關(guān)系后,是由我講解的三個(gè)概念:相交、相切、相離。學(xué)生被動(dòng)的接受,對概念的理解不是很深刻,可以改為讓學(xué)生下定義,師生共同討論的形式給學(xué)生以思維想象的空間,充分調(diào)動(dòng)學(xué)生的積極性,使學(xué)生實(shí)現(xiàn)自主探究。

2.雖然我在設(shè)計(jì)本節(jié)課時(shí)是體現(xiàn)讓學(xué)生自主操作探究的原則,但在讓學(xué)生探索直線和圓三種位置關(guān)系所對應(yīng)的數(shù)量關(guān)系時(shí),沒有給予學(xué)生足夠的探索、交流的時(shí)間,限制了學(xué)生的思維。此處應(yīng)充分發(fā)揮小組的特點(diǎn),讓學(xué)生相互啟發(fā)討論,形成思維互補(bǔ),集思廣益,從而使概念更清楚,結(jié)論更準(zhǔn)確。

直線和圓的位置關(guān)系教案篇十三

楊跟上。

一:教材:

人教版九年義務(wù)教育九年級(jí)數(shù)學(xué)上冊二:學(xué)情分析。

初三學(xué)生已經(jīng)具備一定的獨(dú)立思考和探索能力,并能在探索過程中形成自己的觀點(diǎn),能在傾聽別人意見的過程中逐漸完善自己的想法,因此本節(jié)課設(shè)計(jì)了探究活動(dòng),給學(xué)生提供探索與交流的空間,體現(xiàn)知識(shí)的形成過程。

三教學(xué)目標(biāo)(知識(shí),技能,情感態(tài)度、價(jià)值觀)。

1、知識(shí)與技能。

能綜合運(yùn)用以前的數(shù)學(xué)知識(shí)解決與本節(jié)有關(guān)的實(shí)際問題。

3.情感態(tài)度與價(jià)值觀。

(1)通過和點(diǎn)與圓的位置關(guān)系的類比,學(xué)習(xí)直線與圓的位置關(guān)系,培養(yǎng)學(xué)生類比的思維方法。

(2)培養(yǎng)學(xué)生的相互合作精神四:教學(xué)重點(diǎn)與難點(diǎn):

五:教學(xué)方法:

啟發(fā)探究。

六、教學(xué)環(huán)境及資源準(zhǔn)備。

1、教學(xué)環(huán)境:學(xué)校多媒體教室。2.教學(xué)資源。

(1).教師多媒體課件,(2)學(xué)生準(zhǔn)備硬幣或其他類似圓的用具。

1、自主學(xué)習(xí)策略:通過提出問題讓學(xué)生思考,幫助學(xué)生學(xué)會(huì)探索直線與圓的位置關(guān)系關(guān)系。

2、合作探究策略:通過學(xué)生動(dòng)手操作與相互交流,激發(fā)學(xué)生學(xué)習(xí)興趣,讓學(xué)生在輕松愉快的教學(xué)氣氛下之下掌握直線與圓的位置關(guān)系。

3、理論聯(lián)系實(shí)際策略;通過學(xué)生綜合運(yùn)用數(shù)學(xué)知識(shí)解決直線與圓的位置關(guān)系的實(shí)際問題,培養(yǎng)學(xué)生利用知識(shí)解決實(shí)際問題的能力。

教學(xué)流程:

一.復(fù)習(xí)回顧,導(dǎo)入新課。

由點(diǎn)和圓的位置關(guān)系設(shè)計(jì)了兩個(gè)問題,讓學(xué)生獨(dú)立思考,然后回答問題,為下面做準(zhǔn)備。

二:合作交流,探求新知。

第一步,學(xué)生對直線與圓的公共點(diǎn)個(gè)數(shù)變化情況的探索。

通過學(xué)生動(dòng)手操作和探索,然后相互交流,并畫出圖形,得出直線與圓的公共點(diǎn)個(gè)數(shù)的變化情況。

第二步,師生共同歸納出直線與圓相交、相切等有關(guān)概念。

1.設(shè)圓o的半徑為r,圓心o到直線的距離為d,那么直線與圓在不同的位置關(guān)系下,d與r有什么樣的數(shù)量關(guān)系?請你分別畫出圖形,認(rèn)真觀察和分析圖形,類比點(diǎn)和圓的位置關(guān)系,看看d和r什么數(shù)量關(guān)系。

我設(shè)計(jì)了兩個(gè)問題,使學(xué)生學(xué)會(huì)通過計(jì)算圓心到直線的距離,來判斷直線與圓的位置關(guān)系。四:鞏固提高:

在本節(jié)的教學(xué)中,我設(shè)計(jì)了兩個(gè)練習(xí)、一個(gè)作業(yè)加以鞏固,使學(xué)生能更好的掌握本節(jié)內(nèi)容。

直線和圓的位置關(guān)系教案篇十四

本節(jié)課的教學(xué)我采用先亮標(biāo),亮自學(xué)提示及檢測題的形式讓學(xué)生先自學(xué)。依據(jù)自學(xué)檢測題檢驗(yàn)學(xué)生自學(xué)結(jié)果。然后精講了切線性質(zhì)定理及分析兩種證明方法。然后結(jié)合小黑板練習(xí)鞏固提高這節(jié)知識(shí)。

講課時(shí)我改變了原來講后再練的方式,采用了講評(píng)一個(gè)知識(shí)點(diǎn)后配基礎(chǔ)練習(xí)題,鞏固此知識(shí)點(diǎn)的方法。避免講后再練,練習(xí)與知識(shí)的脫節(jié),練習(xí)緊跟。精講知識(shí)后,再配以比基礎(chǔ)題(鞏固基礎(chǔ)知識(shí)點(diǎn))層次高的兩組練習(xí),讓學(xué)生先做,采用舉手的方式調(diào)查學(xué)生自己運(yùn)用知識(shí)解決問題的情況。講前85%的同學(xué)都舉手做完,還有個(gè)別同學(xué)做到運(yùn)用靈活方法解決問題。中午三道作業(yè)學(xué)生掌握良好。其余學(xué)生在我的講解下也掌握今天的內(nèi)容,會(huì)運(yùn)用兩種方法判斷直線和圓的位置關(guān)系。知道有切線可連圓心和切點(diǎn)得垂直關(guān)系這種基本輔助線。

本節(jié)課的教學(xué)總的來說很順利,學(xué)生掌握良好,由于課程標(biāo)準(zhǔn)對于本節(jié)課要求不高,緊扣標(biāo)準(zhǔn),走進(jìn)中招。本節(jié)課若能再配合課后檢測題,及時(shí)精確把握,學(xué)生掌握情況會(huì)更完美。

重建:講課前,先亮標(biāo),亮自學(xué)提示及檢測題,以問題形式精講切線性質(zhì)定理及證明。配合練習(xí)、提高練習(xí),下課前5分鐘配簡單檢測題以便更全面把握學(xué)生掌握的情況。

教師的行為直接影響著學(xué)生的學(xué)習(xí)方式,要讓學(xué)生真正成為學(xué)習(xí)的主人,積極參與課堂學(xué)習(xí)活動(dòng),因此在教學(xué)中讓學(xué)生想象、觀察、動(dòng)手實(shí)踐、發(fā)現(xiàn)內(nèi)在的聯(lián)系并利用類比歸納的方法,探索規(guī)律,指導(dǎo)學(xué)生合作、研究并嘗試用學(xué)到的知識(shí)解決實(shí)際問題。

直線和圓的位置關(guān)系教案篇十五

:通過觀察、實(shí)驗(yàn)、討論、合作研究等數(shù)學(xué)活動(dòng)使學(xué)生了解探索問題的一般方法;由觀察得到“圓心與直線的距離和圓半徑大小的數(shù)量關(guān)系對應(yīng)等價(jià)于直線和圓的位置關(guān)系”從而實(shí)現(xiàn)位置關(guān)系與數(shù)量關(guān)系的轉(zhuǎn)化,滲透運(yùn)動(dòng)與轉(zhuǎn)化的數(shù)學(xué)思想。

:創(chuàng)設(shè)問題情景,激發(fā)學(xué)生好奇心;體驗(yàn)數(shù)學(xué)活動(dòng)中的探索與創(chuàng)造,感受數(shù)學(xué)的嚴(yán)謹(jǐn)性和數(shù)學(xué)結(jié)論的正確性,在學(xué)習(xí)活動(dòng)中獲得成功的體驗(yàn);通過“轉(zhuǎn)化”數(shù)學(xué)思想的運(yùn)用,讓學(xué)生認(rèn)識(shí)到事物之間是普遍聯(lián)系、相互轉(zhuǎn)化的辨證唯物主義思想。

二、教學(xué)重、難點(diǎn)。

難點(diǎn):學(xué)生能根據(jù)圓心到直線的距離d與圓的半徑r之間的數(shù)量關(guān)系,揭示直線與圓的位置關(guān)系;直線與圓的三種位置關(guān)系判定方法的運(yùn)用。

三、教學(xué)設(shè)計(jì)。

問???題。

設(shè)計(jì)意圖。

師生活動(dòng)。

2.圖形中的圓與直線的位置都是一樣的嗎?

師:讓學(xué)生之間進(jìn)行討論、交流,引導(dǎo)學(xué)生觀察圖形,導(dǎo)入新課.

生:看圖,并說出自己的看法.

師:引導(dǎo)學(xué)生利用類比、歸納的思想,總結(jié)直線與圓的位置關(guān)系的種類,進(jìn)一步深化“數(shù)形結(jié)合”的數(shù)學(xué)思想.

問???題。

設(shè)計(jì)意圖。

師生活動(dòng)。

使學(xué)生回憶初中的數(shù)學(xué)知識(shí),培養(yǎng)抽象概括能力.

師:引導(dǎo)學(xué)生從幾何的角度說明判斷方法和通過直線與圓的方程說明判斷方法.

生:利用圖形,尋找兩種方法的數(shù)學(xué)思想.

師:指導(dǎo)學(xué)生閱讀教科書上的例1.

生:閱讀科書上的例1,并完成教科書第128頁的練習(xí)題2.

師;分析例1,并展示解答過程;啟發(fā)學(xué)生概括判斷直線與圓的位置關(guān)系的基本步驟,注意給學(xué)生留有總結(jié)思考的時(shí)間.

生:交流自己總結(jié)的步驟.

師:展示解題步驟.

7.通過學(xué)習(xí)教科書上的例2,你能說明例2中體現(xiàn)出來的數(shù)學(xué)思想方法嗎?

進(jìn)一步深化“數(shù)形結(jié)合”的數(shù)學(xué)思想.

師:指導(dǎo)學(xué)生閱讀并完成教科書上的例2,啟發(fā)學(xué)生利用“數(shù)形結(jié)合”的數(shù)學(xué)思想解決問題.

問???題。

設(shè)計(jì)意圖。

師生活動(dòng)。

8.通過例2的學(xué)習(xí),你發(fā)現(xiàn)了什么?

明確弦長的運(yùn)算方法.

師:引導(dǎo)并啟發(fā)學(xué)生探索直線與圓的相交弦的求法.

生:通過分析、抽象、歸納,得出相交弦長的運(yùn)算方法.

9.完成教科書第128頁的練習(xí)題1、2、3、4.

師:引導(dǎo)學(xué)生完成練習(xí)題.

生:互相討論、交流,完成練習(xí)題.

10.課堂小結(jié):

教師提出下列問題讓學(xué)生思考:

作業(yè):習(xí)題4.2a組:1、3.

直線和圓的位置關(guān)系教案篇十六

已知直線都是正數(shù))與圓相切,則以為三邊長的三角形是________三角形.

三、解答題。

當(dāng)為何值時(shí),直線與圓有兩個(gè)公共點(diǎn)?有一個(gè)公共點(diǎn)?無公共點(diǎn)?

四、填空題。

若直線與圓相切,則實(shí)數(shù)的值等于________.

圓心為且與直線相切的圓的方程為________.

直線與圓相切,則實(shí)數(shù)等于________.

直線與圓相切,則________.

過點(diǎn)作圓的切線,且直線與平行,則與間的距離是________.

過點(diǎn),作圓的切線,則切線的條數(shù)為________條.

過點(diǎn)的圓與直線相切于點(diǎn),則圓的方程為________.

五、解答題。

過點(diǎn)作圓的切線,求此切線的方程.。

圓與直線相切于點(diǎn),且與直線也相切,求圓的方程.。

六、填空題。

由直線上的一點(diǎn)向圓引切線,則切線長的最小值為_____________.

七、解答題。

求滿足下列條件的圓的切線方程:

(1)經(jīng)過點(diǎn);

(2)斜率為;

(3)過點(diǎn).。

已知圓的方程為,求過的圓的切線方程.。

八、填空題。

直線被圓截得的弦長等于________.

直線被圓截得的弦長等于________.

直線被圓所截得的弦長為________.

圓截直線所得弦的長度為4,則實(shí)數(shù)的值是________.

設(shè)直線與圓相交于兩點(diǎn),若,則圓的面積為________.

直線被圓截得的弦長為________.

直線被圓所截得的弦長為________.

圓心坐標(biāo)為的圓在直線上截得的弦長為,那么這個(gè)圓的方程為________.

過點(diǎn)的直線被圓截得的弦長為,則直線的斜率為________.

過原點(diǎn)的直線與圓相交所得弦的長為2,則該直線的方程為________.

九、解答題。

圓心在直線上,圓過點(diǎn),且截直線所得弦長為,求圓的方程.。

十、填空題。

過點(diǎn)作圓的弦,其中最短弦的長為________.

十一、解答題。

已知圓,直線.

(1)求證:對,直線與圓總有兩個(gè)不同的交點(diǎn);

(2)若直線與圓交于兩點(diǎn),當(dāng)時(shí),求的值.。

設(shè)圓上的點(diǎn)關(guān)于直線的對稱點(diǎn)仍在圓上,且直線被圓截得的弦長為,求圓的方程.。

已知圓,直線.。

證明:不論取什么實(shí)數(shù),直線與圓恒交于兩點(diǎn)。

求直線被圓截得的弦長最小時(shí)的方程,并求此時(shí)的弦長。

十二、填空題。

圓上到直線的距離等于1的點(diǎn)有________個(gè).

在平面直角坐標(biāo)系中,已知圓上有且僅有四個(gè)點(diǎn)到直線的距離為1,則實(shí)數(shù)的取值范圍是________.

設(shè)圓上有且僅有兩個(gè)點(diǎn)到直線的距離等于1,則圓半徑的取值范圍是________.

直線與曲線有且只有一個(gè)公共點(diǎn),則b的取值范圍是_________。

若直線與圓恒有兩個(gè)交點(diǎn),則實(shí)數(shù)的取值范圍為________.

已知點(diǎn)滿足,則的取值范圍是________.

若過點(diǎn)的直線與曲線有公共點(diǎn),則直線的斜率的取值范圍為。

直線和圓的位置關(guān)系教案篇十七

本節(jié)課研究圓與圓的位置關(guān)系,重點(diǎn)是研究兩圓位置關(guān)系的判斷方法,并應(yīng)用這些方法解決有關(guān)的實(shí)際問題。《圓與圓的位置關(guān)系》在舊教材中比重不大,但是在新課標(biāo)中,被作為一個(gè)獨(dú)立的章節(jié),說明新課標(biāo)對這一章節(jié)的要求已經(jīng)有所提高。教材是在初中平面幾何對圓與圓的位置關(guān)系的初步分析的基礎(chǔ)上得到圓與圓的位置關(guān)系的判斷方法,北師大版教材中著重強(qiáng)調(diào)了根據(jù)圓心到直線的距離與圓的半徑的關(guān)系進(jìn)行判斷,對用方程的思想去處理位置關(guān)系沒作要求,但用方程的思想來解決幾何問題是解析幾何的精髓,是平面幾何問題的深化,它將是以后處理圓錐曲線的基本方法,因此,我增加了用方程的思想來分析位置關(guān)系,這樣有利于培養(yǎng)學(xué)生數(shù)形結(jié)合、經(jīng)歷幾何問題代數(shù)化等解析幾何思想方法及辯證思維能力,其基本思維方法和解決問題的技巧在今后整個(gè)圓錐曲線的學(xué)習(xí)中有著非常重要的意義。

作為解析幾何的一堂課,判斷圓與圓的位置關(guān)系,體現(xiàn)的正是解析幾何的思想:用方程處理幾何問題,用幾何方法研究方程性質(zhì)。所以我在教材處理上,對判斷兩圓位置關(guān)系用了方程的思想和幾何兩種方法,兩種方法貫穿始終,使學(xué)生對解析幾何的本質(zhì)有所了解。

第一,學(xué)生學(xué)習(xí)新知識(shí)必須在已有知識(shí)和經(jīng)驗(yàn)的基礎(chǔ)上自主建構(gòu)與形成。所以,我一開始便提出了三個(gè)問題,即復(fù)習(xí)此節(jié)相關(guān)的知識(shí)點(diǎn),通過問題解決,以舊引新,提出新的問題,以類比的方法研究圓與圓的位置關(guān)系。配合幾何畫板的動(dòng)畫演示,啟發(fā)學(xué)生思考當(dāng)初是怎樣研究判斷直線與圓的位置關(guān)系的方法?這種方法是不是同樣可以運(yùn)用到研究圓與圓的位置關(guān)系上來?能不能用來判斷圓與圓的位置關(guān)系?使學(xué)生很自然地從直線與圓的位置關(guān)系的判斷方法類比到圓與圓的位置關(guān)系的判斷方法。

第二,新的課程標(biāo)準(zhǔn)非常重視學(xué)生的自主探究,這是學(xué)習(xí)方式的一次革命,老師的教授過程固然重要,但學(xué)生對知識(shí)的掌握是在學(xué)生自己對知識(shí)有體驗(yàn)、有獨(dú)立的思考和探討的基礎(chǔ)上,才能成為可能。所謂“學(xué)在講之前,講在關(guān)鍵處”,學(xué)生先有一個(gè)對知識(shí)的認(rèn)識(shí)過程,老師再在關(guān)鍵處進(jìn)行講解,使學(xué)生真正完成對知識(shí)感知、形成和鞏固的過程,才是對知識(shí)最好的吸收。

第三,學(xué)生的學(xué)習(xí)是在教師引導(dǎo)下的有目的的學(xué)習(xí),從而教學(xué)的過程就是在教師控制下的學(xué)生自主學(xué)習(xí)和合作探究學(xué)習(xí)的過程,這個(gè)過程中的關(guān)鍵點(diǎn)是怎么樣有效地控制學(xué)生自主學(xué)習(xí)和合作探究學(xué)習(xí)的時(shí)間和空間,在教學(xué)的過程中,我較好地處理了學(xué)生學(xué)習(xí)的空間與時(shí)間,既留給學(xué)生充分思考與探索的時(shí)間與空間,又嚴(yán)格限定時(shí)間,由此培養(yǎng)學(xué)生思維的敏捷性,提高課堂效率。

對于問題探究的題型選擇的一些思考:

第二個(gè)問題研究是研究一個(gè)半徑變化的圓與定圓相切,求題中參數(shù)變化的問題,這道題中同樣要注意的是相切的兩種情況,并且對于內(nèi)切,要充分結(jié)合數(shù)形結(jié)合的思想,判斷出兩圓的半徑大小關(guān)系。兩題都有一定難度,處理時(shí)必須牢牢掌握知識(shí),靈活運(yùn)用。

2、時(shí)間把握。課前復(fù)習(xí)是有必要的,是為了學(xué)生類比舊知識(shí),聯(lián)想新知識(shí),但復(fù)習(xí)舊知識(shí)的時(shí)間應(yīng)該限定在三分鐘以內(nèi),復(fù)習(xí)時(shí)間長會(huì)導(dǎo)致鞏固練習(xí)的時(shí)間不足和問題展開不夠充分。

3、限時(shí)訓(xùn)練。限時(shí)訓(xùn)練的目的是為了讓學(xué)生更有效率地做題,限定時(shí)間過長或是過短都不利于學(xué)生提高數(shù)學(xué)能力,這點(diǎn)還有待研究。

直線和圓的位置關(guān)系教案篇十八

“思之不慎,行而失當(dāng)”,“學(xué)然后知不足,教然后知困。知不足,然后能自反也;知困,然后能自強(qiáng)也?!狈此家庾R(shí)人類早就有之。作為教師,在教學(xué)中也應(yīng)適時(shí)反思教學(xué)過程的得與失。

開課時(shí),借助微機(jī)展示“圓圓的落日慢慢從海平面升起”的動(dòng)畫,從而展現(xiàn)直線與圓的位置關(guān)系。由此引入課題——直線與圓的位置關(guān)系,學(xué)生比較感興趣,充分感受生活中的數(shù)學(xué)知識(shí),體驗(yàn)數(shù)學(xué)來源于生活。然后提出問題,引導(dǎo)學(xué)生大膽猜想,思考,發(fā)現(xiàn)三種位置關(guān)系,激發(fā)學(xué)生學(xué)習(xí)興趣,營造探索問題的氛圍。同時(shí)讓學(xué)生從生活中“找”數(shù)學(xué),“想”數(shù)學(xué),體會(huì)到數(shù)學(xué)知識(shí)無處不在,應(yīng)用數(shù)學(xué)無處不有。這也符合“數(shù)學(xué)教學(xué)應(yīng)從生活經(jīng)驗(yàn)出發(fā)”的新課程標(biāo)準(zhǔn)要求。

在探索直線和圓位置關(guān)系所對應(yīng)的數(shù)量關(guān)系時(shí),我先引導(dǎo)學(xué)生回顧點(diǎn)和圓的位置關(guān)系所對應(yīng)的數(shù)量關(guān)系,啟發(fā)學(xué)生用類比的方法來研究直線與圓的位置關(guān)系,在研究過程中,采用小組討論的方法,給予學(xué)生足夠的探索、交流的時(shí)間,培養(yǎng)學(xué)生互助、協(xié)作的精神,讓學(xué)生在相互討論中,集思廣益,形成思維互補(bǔ),從而使概念更清楚,結(jié)論更準(zhǔn)確。最后由學(xué)生小結(jié)這一知識(shí)點(diǎn),我板書在黑板上,培養(yǎng)學(xué)生用數(shù)學(xué)語言歸納問題的能力,同時(shí)感受收獲知識(shí)的快樂。

在新知教授完畢,知識(shí)升華這塊,我安排了一道實(shí)際問題,一輛火車的噪首會(huì)不會(huì)影向處在與鐵路相交的另一條公路旁的學(xué)校?如果會(huì)影響,影響的時(shí)間有多長?新課標(biāo)下的數(shù)學(xué)強(qiáng)調(diào)人人學(xué)有價(jià)值的數(shù)學(xué),人人學(xué)有用的數(shù)學(xué),由于此題要學(xué)生回到生活中去運(yùn)用數(shù)學(xué)知識(shí)解決生活中遇到的問題,學(xué)生的積極性高漲,都急著討論解決方案,使乏味的數(shù)學(xué)學(xué)習(xí)變得有滋有味,使學(xué)生體會(huì)到學(xué)數(shù)學(xué)的重要性,體驗(yàn)“生活中處處用數(shù)學(xué)”。

一堂課教學(xué)下來,也發(fā)現(xiàn)有諸多不妥之處,讓我認(rèn)識(shí)到自己需要繼續(xù)努力。歸納主要有以下三點(diǎn):。

1、教師在課堂應(yīng)當(dāng)以引導(dǎo)者的身份出現(xiàn),把課堂和講臺(tái)讓位于學(xué)生,讓“教師的教”真正服務(wù)于“學(xué)生的學(xué)”,而我在這一節(jié)課中因?yàn)橐环矫鎿?dān)心學(xué)生在自主研究知識(shí)的形成時(shí)會(huì)浪費(fèi)時(shí)間,另一方面擔(dān)心會(huì)產(chǎn)生意想不到的或者課前備課時(shí)沒有考慮到的回答,總是把自己的思想強(qiáng)加給學(xué)生,比如學(xué)生觀察得到直線和圓的三種位置關(guān)系后,是由我講解的三個(gè)概念:相交、相切、相離。學(xué)生只是被動(dòng)的接受,這樣就會(huì)對概念的理解不是很深刻。這里可以改為讓學(xué)生自己下定義,教師適當(dāng)放手,以師生共同討論的形式給學(xué)生以思維想象的空間,充分調(diào)動(dòng)學(xué)生的積極性,使學(xué)生實(shí)現(xiàn)自主探究。

2、有些課堂提問欠合理化、科學(xué)化,提問隨意性大,缺乏針對性和啟發(fā)性,導(dǎo)致課堂教學(xué)引導(dǎo)不力,問題缺乏精心安排這就使得課堂存在著不少“徒勞的提問”。讓課堂時(shí)間分配的不太合理。今后應(yīng)該把一些提問設(shè)計(jì)再提煉,能達(dá)到精而準(zhǔn)。

3、在處理課后練習(xí)時(shí),做的不夠細(xì)致,這一環(huán)節(jié)是對前面探究新知識(shí)是否掌握的一個(gè)小測試,重在幫助學(xué)生掌握方法,而我在講解練習(xí)時(shí),只展示了解題思路,并沒有及時(shí)進(jìn)行方法上的總結(jié),致使部分學(xué)生在解決實(shí)際問題時(shí)思路不明確。這里教師要根據(jù)情況,簡要?dú)w納、概括應(yīng)掌握的方法,使學(xué)生能夠舉一反三,鞏固和擴(kuò)大知識(shí),吸收、內(nèi)化知識(shí),充分體現(xiàn)”授人以魚不如授人以漁"。

總之,這是我對自己本節(jié)課的一些教學(xué)反思,或者說是對新課程理念的淺薄認(rèn)識(shí)。

將本文的word文檔下載到電腦,方便收藏和打印。

直線和圓的位置關(guān)系教案篇十九

薛老師執(zhí)教的高三文科復(fù)習(xí)課:《直線與圓的位置關(guān)系》,首先從一個(gè)引例出發(fā),讓學(xué)生嘗試作圖和驗(yàn)證,得出知識(shí)要點(diǎn),繼而在此基礎(chǔ)上繼續(xù)研究直線方程和軌跡等問題。例題只有一個(gè),但小題很多,題題遞進(jìn),環(huán)環(huán)相扣,在此環(huán)節(jié)上教師以學(xué)生訓(xùn)練為主,教師講授和引導(dǎo)為輔,共同完成本節(jié)課的整體教學(xué)內(nèi)容。

我聽了薛老師的這節(jié)課認(rèn)為本節(jié)課設(shè)計(jì)高度重視學(xué)生的主動(dòng)參與、親自操作,讓學(xué)生從中去體驗(yàn)學(xué)習(xí)知識(shí)的過程,同時(shí),也注重培養(yǎng)學(xué)生的自主學(xué)習(xí)能力和創(chuàng)新意識(shí)。整體看來這節(jié)課的優(yōu)點(diǎn)很多,很值得我去學(xué)習(xí)。

總結(jié)起來,大概有以下幾個(gè)特點(diǎn)。

(一)注重一個(gè)“滲透”——德育滲透。

在數(shù)學(xué)教學(xué)中,我們常常把德育教育與辯證唯物主義、愛國主義情懷聯(lián)系在一起,借助古今中外數(shù)學(xué)史不惜把數(shù)學(xué)課上成政治課,卻成為一堂蹩腳的課。其實(shí),通過數(shù)學(xué)問題的發(fā)生和解決過程的教學(xué),培養(yǎng)與鍛煉學(xué)生知難而進(jìn)的堅(jiān)強(qiáng)意志,敗而不餒的心理素質(zhì),一絲不茍的學(xué)習(xí)品質(zhì),勤于思考的良好學(xué)風(fēng),勇于探索的創(chuàng)新精神,實(shí)事求是的科學(xué)態(tài)度,這也是是德育教育,更是數(shù)學(xué)本質(zhì)上的德育教育。本課薛老師把這種德育教育滲透到教學(xué)的每一個(gè)環(huán)節(jié),力求“潤物細(xì)無聲”。當(dāng)學(xué)生解題遇到困難時(shí),教師能給予耐心的引導(dǎo)。但,在課堂上,處理第(3)小題第二問時(shí),有一名男生利用圓的定義很巧妙地給出了軌跡方程,薛老師可能沒有很好地把握表揚(yáng)的機(jī)會(huì),而是詢問學(xué)生有否最后算出答案,顯得有些匆促。

(二)堅(jiān)持兩個(gè)“原則”

1、例題設(shè)計(jì)注重分層教學(xué),堅(jiān)持面向全體學(xué)生的原則。

題目母體來源于學(xué)生現(xiàn)有教輔書《全品》,卻在原題基礎(chǔ)上進(jìn)行了分層遞進(jìn)的改編,讓不同的學(xué)生都有不同的收獲。以學(xué)生的最近發(fā)展區(qū)為指向,充分尊重了學(xué)生現(xiàn)有的認(rèn)知水平和個(gè)性差異,為不同層次的學(xué)生采用適合自己個(gè)性的方法進(jìn)行學(xué)習(xí)創(chuàng)造了條件。

2、教學(xué)過程授人以漁,堅(jiān)持以學(xué)生發(fā)展為本的原則。

讓學(xué)生深刻經(jīng)歷:通過作圖和求解基本例題回憶知識(shí)結(jié)構(gòu)——通過嘗試深化知識(shí)內(nèi)容——通過遞進(jìn)擴(kuò)展知識(shí)聯(lián)系,教會(huì)學(xué)生研究的方法,而不是結(jié)果。

(三)落實(shí)三個(gè)“容量”——知識(shí)量、活動(dòng)量和思維量。

本節(jié)課所選內(nèi)容以解析幾何為平臺(tái),卻可以集函數(shù)性質(zhì)、圖像、方程、不等式于一體,例題只有一題,但以此展開的小題卻逐層遞進(jìn)和推進(jìn),容量大,難度高。可喜的是,薛老師通過合理運(yùn)用現(xiàn)代技術(shù)和整合例題,成功地豐富了知識(shí)量;加強(qiáng)探索與過程教學(xué),有效地落實(shí)了思維量;突出學(xué)生板演與探究教學(xué),巧妙地增加了活動(dòng)量,值得借鑒。

(四)實(shí)現(xiàn)四個(gè)“轉(zhuǎn)變”——學(xué)生角色從被動(dòng)到主動(dòng);教師角色從傳授到指導(dǎo);學(xué)習(xí)理念從封閉到開放;學(xué)習(xí)形式從單一到多元。

本課初步實(shí)現(xiàn)了“四個(gè)轉(zhuǎn)變”是由于采用了探究式的教學(xué)策略,為學(xué)生提供開放性的學(xué)習(xí)內(nèi)容、開放性的教育資源和開放性的教學(xué)形式。特別是向?qū)W生提供了更多的機(jī)會(huì)和時(shí)間,讓學(xué)生嘗試和探究、合作和交流、歸納和總結(jié),最大限度地提高學(xué)生學(xué)習(xí)活動(dòng)的自由度,促使學(xué)生思維空間的充分開放。

(五)培養(yǎng)五種“能力”——應(yīng)用能力、探究能力、反思與提問能力、交流合作能力和創(chuàng)新能力。

本課從引入開始,充分放手讓學(xué)生動(dòng)腦、動(dòng)口、動(dòng)手,使研究問題得以逐個(gè)深入,難點(diǎn)得以一個(gè)個(gè)突破,能力得以一點(diǎn)點(diǎn)培養(yǎng)。事實(shí)上,解析幾何復(fù)習(xí)課,重在數(shù)形結(jié)合,重在幾何性質(zhì),重在靜動(dòng)結(jié)合,課堂貴在“生動(dòng)”,所謂“生動(dòng)”,是指“生”出“動(dòng)”。要樹立生本意識(shí),立足學(xué)生“可動(dòng)”;設(shè)置問題探究,引領(lǐng)學(xué)生“會(huì)動(dòng)”;課前充分預(yù)設(shè),不怕學(xué)生“亂動(dòng)”;及時(shí)表揚(yáng)肯定,激勵(lì)學(xué)生“愿動(dòng)”。

但是我認(rèn)為這節(jié)課也有一些值得探討的問題:

第一、老師講的還是太多。聽說杜郎口中學(xué)要求老師每節(jié)課講課時(shí)間不能超過10分鐘,否則是不合格的。一堂課,就只有40分鐘,老師講多了,學(xué)生自然就參與少了。這樣的后果就會(huì)導(dǎo)致學(xué)生具體體驗(yàn)時(shí)間不夠,同時(shí)規(guī)范操作和演練也不夠。

第二、在學(xué)生回答引入題時(shí),假設(shè)直線方程時(shí),學(xué)生沒有考慮到斜率是否存在的情況,這時(shí),老師沒有及時(shí)進(jìn)行補(bǔ)充和糾正。一個(gè)很明顯的后果就是導(dǎo)致在(2)問的板演中,學(xué)生解答出錯(cuò)。

第三,學(xué)生板演時(shí)沒有很好地結(jié)合圖像進(jìn)行解題,這時(shí),老師應(yīng)該要適時(shí)引導(dǎo)學(xué)生作好草圖。凸顯解題時(shí)要從宏觀到微觀,從直覺到精確,從定性到定量分析。

第四,本節(jié)課最大的特色就是很好的整合了例題,以一題可以掃遍所有的直線與圓的有關(guān)知識(shí)點(diǎn),這是一種復(fù)習(xí)習(xí)慣和策略。教師在這個(gè)點(diǎn)上應(yīng)該要向?qū)W生強(qiáng)調(diào),引導(dǎo)學(xué)生今后復(fù)習(xí)也應(yīng)該有意識(shí)地進(jìn)行整合和提升,做到既“重復(fù)”,又“學(xué)習(xí)”,這才是復(fù)習(xí)。

第五,本節(jié)課還有一個(gè)線索,就是前面的題目基本上能借助幾何性質(zhì)進(jìn)行解題,而最后一問必須采用解析幾何的思路,就是用代數(shù)的方法解題,這實(shí)際上要求老師要進(jìn)行總結(jié),告訴學(xué)生直線與圓的位置關(guān)系解題時(shí),先考慮幾何性質(zhì),再借助代數(shù)方法解決,這不僅是一般的解題思路,也為后面的直線與橢圓的位置關(guān)系埋下伏筆。

總之,這是一堂原生態(tài)的高三復(fù)習(xí)課,讓我獲益匪淺。以上僅是一家之言,在此權(quán)當(dāng)拋磚引玉,謝謝大家!

【本文地址:http://mlvmservice.com/zuowen/13430564.html】

全文閱讀已結(jié)束,如果需要下載本文請點(diǎn)擊

下載此文檔