余弦定理課件范文(19篇)

格式:DOC 上傳日期:2023-11-19 05:26:14
余弦定理課件范文(19篇)
時(shí)間:2023-11-19 05:26:14     小編:GZ才子

總結(jié)可以幫助我們發(fā)現(xiàn)問題,尋找解決方案。深入分析自己在任務(wù)中的優(yōu)勢(shì)和不足,進(jìn)行全面反思是寫一篇完美總結(jié)的必要環(huán)節(jié)。過去一年的學(xué)習(xí)總結(jié),給我?guī)聿簧偈斋@;

余弦定理課件篇一

各位老師大家好!

今天我說課的內(nèi)容是余弦定理,本節(jié)內(nèi)容共分3課時(shí),今天我將就第1課時(shí)的余弦定理的證明與簡(jiǎn)單應(yīng)用進(jìn)行說課。下面我分別從教材分析。教學(xué)目標(biāo)的確定。教學(xué)方法的選擇和教學(xué)過程的設(shè)計(jì)這四個(gè)方面來闡述我對(duì)這節(jié)課的教學(xué)設(shè)想。

一、教材分析。

本節(jié)內(nèi)容是江蘇教育出版社出版的普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書《數(shù)學(xué)》必修五的第一章第2節(jié),在此之前學(xué)生已經(jīng)學(xué)習(xí)過了勾股定理。平面向量、正弦定理等相關(guān)知識(shí),這為過渡到本節(jié)內(nèi)容的學(xué)習(xí)起著鋪墊作用。本節(jié)內(nèi)容實(shí)質(zhì)是學(xué)生已經(jīng)學(xué)習(xí)的勾股定理的延伸和推廣,它描述了三角形重要的邊角關(guān)系,將三角形的“邊”與“角”有機(jī)的聯(lián)系起來,實(shí)現(xiàn)邊角關(guān)系的互化,為解決斜三角形中的邊角求解問題提供了一個(gè)重要的工具,同時(shí)也為在日后學(xué)習(xí)中判斷三角形形狀,證明三角形有關(guān)的等式與不等式提供了重要的依據(jù)。

在本節(jié)課中教學(xué)重點(diǎn)是余弦定理的內(nèi)容和公式的掌握,余弦定理在三角形邊角計(jì)算中的運(yùn)用;教學(xué)難點(diǎn)是余弦定理的發(fā)現(xiàn)及證明;教學(xué)關(guān)鍵是余弦定理在三角形邊角計(jì)算中的運(yùn)用。

二、教學(xué)目標(biāo)的確定。

基于以上對(duì)教材的認(rèn)識(shí),根據(jù)數(shù)學(xué)課程標(biāo)準(zhǔn)的“學(xué)生是數(shù)學(xué)學(xué)習(xí)的主人,教師是數(shù)學(xué)學(xué)習(xí)的組織者。引導(dǎo)者與合作者”這一基本理念,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)和心理特征,我認(rèn)為本節(jié)課的教學(xué)目標(biāo)有:

三、教學(xué)方法的選擇。

基于本節(jié)課是屬于新授課中的數(shù)學(xué)命題教學(xué),根據(jù)《學(xué)記》中啟發(fā)誘導(dǎo)的思想和布魯納的發(fā)現(xiàn)學(xué)習(xí)理論,我將主要采用“啟發(fā)式教學(xué)”和“探究性教學(xué)”的教學(xué)方法即從一個(gè)實(shí)際問題出發(fā),發(fā)現(xiàn)無法使用剛學(xué)習(xí)的正弦定理解決,造成學(xué)生在認(rèn)知上的沖突,產(chǎn)生疑惑,從而激發(fā)學(xué)生的探索新知的欲望,之后進(jìn)一步啟發(fā)誘導(dǎo)學(xué)生分析,綜合,概括從而得出原理解決問題,最終形成概念,獲得方法,培養(yǎng)能力。

在教學(xué)中利用計(jì)算機(jī)多媒體來輔助教學(xué),充分發(fā)揮其快捷、生動(dòng)、形象的特點(diǎn)。

四、教學(xué)過程的設(shè)計(jì)。

為達(dá)到本節(jié)課的教學(xué)目標(biāo)、突出重點(diǎn)、突破難點(diǎn),在教材分析、確定教學(xué)目標(biāo)和合理選擇教法與學(xué)法的基礎(chǔ)上,我把教學(xué)過程設(shè)計(jì)為以下四個(gè)階段:創(chuàng)設(shè)情境、引入課題;探索研究、構(gòu)建新知;例題講解、鞏固練習(xí);課堂小結(jié),布置作業(yè)。具體過程如下:

1、創(chuàng)設(shè)情境,引入課題。

利用多媒體引出如下問題:

a地和b地之間隔著一個(gè)水塘現(xiàn)選擇一地點(diǎn)c,可以測(cè)得的大小及,求a、b兩地之間的距離c。

【設(shè)計(jì)意圖】由于學(xué)生剛學(xué)過正弦定理,一定會(huì)采用剛學(xué)的知識(shí)解題,但由于無法找到一組已知的邊及其所對(duì)角,從而產(chǎn)生疑惑,激發(fā)學(xué)生探索欲望。

2、探索研究、構(gòu)建新知。

(1)由于初中接觸的是解直角三角形的問題,所以我將先帶領(lǐng)學(xué)生從特殊情況為直角三角形()時(shí)考慮。此時(shí)使用勾股定理,得。

(3)考慮到我們所作的圖為銳角三角形,討論上述結(jié)論能否推廣到在為鈍角三角形()中。

通過解決問題可以得到在任意三角形中都有,之后讓同學(xué)們類比出……這樣我就完成了對(duì)余弦定理的引入,之后總結(jié)給出余弦定理的內(nèi)容及公式表示。

在學(xué)生已學(xué)習(xí)了向量的基礎(chǔ)上,考慮到新課改中要求使用新工具、新方法,我會(huì)引導(dǎo)同學(xué)類比向量法證明正弦定理的過程嘗試使用向量的方法證明余弦定理、之后引導(dǎo)學(xué)生對(duì)余弦定理公式進(jìn)行變形,用三邊值來表示角的余弦值,給出余弦定理的第二種表示形式,這樣就完成了新知的構(gòu)建。

根據(jù)余弦定理的兩種形式,我們可以利用余弦定理解決以下兩類解斜三角形的問題:

(1)已知三邊,求三個(gè)角;

(2)已知三角形兩邊及其夾角,求第三邊和其他兩個(gè)角。

3、例題講解、鞏固練習(xí)。

本階段的教學(xué)主要是通過對(duì)例題和練習(xí)的思考交流、分析講解以及反思小結(jié),使學(xué)生初步掌握使用余弦定理解決問題的方法。其中例題先以學(xué)生自己思考解題為主,教師點(diǎn)評(píng)后再規(guī)范解題步驟及板書,課堂練習(xí)請(qǐng)同學(xué)們自主完成,并請(qǐng)同學(xué)上黑板板書,從而鞏固余弦定理的運(yùn)用。

例題講解:

例1在中,

(1)已知,求;

(2)已知,求。

【設(shè)計(jì)意圖】例題1分別是通過已知三角形兩邊及其夾角求第三邊,已知三角形三邊求其夾角,這樣余弦定理的兩個(gè)形式分別得到了運(yùn)用,進(jìn)而鞏固了學(xué)生對(duì)余弦定理的運(yùn)用。

例2對(duì)于例題1(2),求的大小。

【設(shè)計(jì)意圖】已經(jīng)求出了的度數(shù),學(xué)生可能會(huì)有兩種解法:運(yùn)用正弦定理或運(yùn)用余弦定理,比較正弦定理和余弦定理,發(fā)現(xiàn)使用余弦定理求解角的問題可以避免解的取舍問題。

例3使用余弦定理證明:在中,當(dāng)為銳角時(shí);當(dāng)為鈍角時(shí),

【設(shè)計(jì)意圖】例3通過對(duì)和的比較,體現(xiàn)了“余弦定理是勾股定理的推廣”這一思想,進(jìn)一步加深了對(duì)余弦定理的認(rèn)識(shí)和理解。

課堂練習(xí):

練習(xí)1在中,

(1)已知,求;

(2)已知,求。

【設(shè)計(jì)意圖】檢驗(yàn)學(xué)生是否掌握余弦定理的兩個(gè)形式,鞏固學(xué)生對(duì)余弦定理的運(yùn)用。

練習(xí)2若三條線段長(zhǎng)分別為5,6,7,則用這三條線段()。

a、能組成直角三角形。

b、能組成銳角三角形。

c、能組成鈍角三角形。

d、不能組成三角形。

【設(shè)計(jì)意圖】與例題3相呼應(yīng)。

練習(xí)3在中,已知,試求的大小。

【設(shè)計(jì)意圖】要求靈活使用公式,對(duì)公式進(jìn)行變形。

4、課堂小結(jié),布置作業(yè)。

先請(qǐng)同學(xué)對(duì)本節(jié)課所學(xué)內(nèi)容進(jìn)行小結(jié),教師再對(duì)以下三個(gè)方面進(jìn)行總結(jié):

(3)余弦定理的可以解決的兩類解斜三角形的問題。

通過師生的共同小結(jié),發(fā)揮學(xué)生的主體作用,有利于學(xué)生鞏固所學(xué)知識(shí),也能培養(yǎng)學(xué)生的歸納和概括能力。

布置作業(yè)。

必做題:習(xí)題1、2、1、2、3、5、6;

選做題:習(xí)題1、2、12、13。

【設(shè)計(jì)意圖】。

作業(yè)分為必做題和選做題、針對(duì)學(xué)生素質(zhì)的差異進(jìn)行分層訓(xùn)練,既使學(xué)生掌握基礎(chǔ)知識(shí),又使學(xué)有余力的學(xué)生有所提高。

各位老師,以上所說只是我預(yù)設(shè)的一種方案,但課堂是千變?nèi)f化的,會(huì)隨著學(xué)生和教師的臨時(shí)發(fā)揮而隨機(jī)生成。預(yù)設(shè)效果如何,最終還有待于課堂教學(xué)實(shí)踐的檢驗(yàn)。

本說課一定存在諸多不足,懇請(qǐng)老師提出寶貴意見,謝謝。

余弦定理課件篇二

《余弦定理》是全日制中等國(guó)家規(guī)劃教材(人教版)數(shù)學(xué)第一冊(cè)中第六章平面向量第六部分。余弦定理是歐氏空間度量幾何的最重要定理,是解斜三角形的重要定理,是整個(gè)測(cè)量學(xué)的基礎(chǔ)。余弦定理是勾股定理的推廣,可用解析法、向量法等方法證明。余弦定理主要能解決有關(guān)三角形的三類問題:

1)、已知兩邊及其夾角,求第三邊和其他兩個(gè)角。

2)、已知三邊求三個(gè)內(nèi)角;

3)、判斷三角形的形狀。以及相關(guān)的證明題。

本著數(shù)學(xué)與專業(yè)有機(jī)結(jié)合的指導(dǎo)思想,讓數(shù)學(xué)服務(wù)于專業(yè)的需要。以及最大限度的提高學(xué)生的學(xué)習(xí)興趣,在本節(jié)課,我不是將余弦定理簡(jiǎn)單呈現(xiàn)給學(xué)生,而是創(chuàng)造設(shè)情境,設(shè)計(jì)了與機(jī)械相關(guān)聯(lián)并具有愛國(guó)主題的二個(gè)任務(wù),通過任務(wù)驅(qū)動(dòng)法教學(xué),極大提高了學(xué)生的學(xué)習(xí)興趣,激發(fā)學(xué)生探索新知識(shí)的強(qiáng)烈求知欲望,在完成數(shù)學(xué)教學(xué)任務(wù)的同時(shí),強(qiáng)化了數(shù)學(xué)與專業(yè)的有機(jī)結(jié)合,培養(yǎng)了學(xué)生將數(shù)學(xué)知識(shí)運(yùn)用于自身專業(yè)中的能力。同時(shí)通過任務(wù)驅(qū)動(dòng),培養(yǎng)了學(xué)生自主探究式學(xué)習(xí)的能力;提升解決實(shí)際實(shí)際問題的能力。因?yàn)樗O(shè)計(jì)的兩個(gè)任務(wù)具有愛國(guó)主義題材,學(xué)生在完成知識(shí)學(xué)習(xí)的同時(shí),也極大的激發(fā)了愛國(guó)主義精神。

在確定教學(xué)方法前,首先要求教師吃透教材,選擇恰當(dāng)?shù)慕虒W(xué)方法和教學(xué)手段把知識(shí)傳授給學(xué)生。本節(jié)課主要采用任務(wù)驅(qū)動(dòng)法、引導(dǎo)發(fā)現(xiàn)法、觀察法、歸納總結(jié)法、講練結(jié)合法。并采用電教手段使用多媒體輔助教學(xué)。

1.任務(wù)驅(qū)動(dòng)法。

教師精心設(shè)計(jì)與機(jī)械專業(yè)相關(guān)聯(lián)的二個(gè)任務(wù),作為貫穿整節(jié)課的主線,通過具體任務(wù)的完成,提高學(xué)生學(xué)習(xí)的興趣,激發(fā)求知欲,啟發(fā)學(xué)生對(duì)問題進(jìn)行思考。在研究過程中,激發(fā)學(xué)生探索新知識(shí)的強(qiáng)烈欲望。提升解決實(shí)際總是的能力,并極大的激發(fā)了愛國(guó)主義精神。

2.引導(dǎo)發(fā)現(xiàn)法、觀察法。

通過對(duì)勾股定理的觀察和三角形直角的相關(guān)變形,學(xué)生從中受啟發(fā),發(fā)現(xiàn)余弦定理,并證明它。

3.歸納總結(jié)法。

學(xué)生通過前期的探索研究,自主歸納總結(jié)出余弦定理及其推論及判斷三角形形狀的相關(guān)規(guī)律。

4.講練結(jié)合法。

講授充分發(fā)揮教師主導(dǎo)作用,引導(dǎo)學(xué)生自主學(xué)習(xí)。練習(xí)讓學(xué)生從多角度對(duì)所學(xué)定理進(jìn)行認(rèn)知,及時(shí)鞏固所學(xué)的知識(shí),鍛煉了解決實(shí)際問題的能力,發(fā)揮出學(xué)生的主觀能動(dòng)性,成為學(xué)習(xí)的主體。

學(xué)生學(xué)法主要有觀察、分析、發(fā)現(xiàn)、自主探究、小組協(xié)作等方法。經(jīng)教師啟發(fā)、誘導(dǎo),學(xué)生通過觀察與分析去發(fā)現(xiàn)并證明余弦定理,培養(yǎng)歸納與猜想、抽象與概括等邏輯思維能力,訓(xùn)練思維品質(zhì)。

(一)知識(shí)目標(biāo)。

2、使學(xué)生初步掌握應(yīng)用余弦定理解斜三角形。

1

(二)能力目標(biāo)。

1、培養(yǎng)學(xué)生在本專業(yè)范圍內(nèi)熟練運(yùn)用余弦定理解決實(shí)際問題的能力。

2、通過啟發(fā)、誘導(dǎo)學(xué)生發(fā)現(xiàn)和證明余弦定理的過程,培養(yǎng)學(xué)生觀察、分析、歸納、猜想、抽象、概括等邏輯思維能力。

3、通過對(duì)余弦定理的推導(dǎo),培養(yǎng)學(xué)生的知識(shí)遷移能力和建模意識(shí),及合作學(xué)習(xí)的意識(shí)。

(三)德育目標(biāo)。

1、培養(yǎng)學(xué)生的愛國(guó)主義精神、及團(tuán)結(jié)、協(xié)作精神。

2、通過三角函數(shù)、余弦定理、向量的數(shù)量積等知識(shí)的聯(lián)系理解事物之間普遍聯(lián)系與辯證統(tǒng)一。

教學(xué)重點(diǎn)是余弦定理及應(yīng)用余弦定理解斜三角形;

教學(xué)中注重突出重點(diǎn)、突破難點(diǎn),從五個(gè)層次進(jìn)行教學(xué)。

創(chuàng)設(shè)情境、任務(wù)驅(qū)動(dòng);

引導(dǎo)探究、發(fā)現(xiàn)定理;

完成任務(wù)、應(yīng)用遷移;

拓展升華、交流反思;

小結(jié)歸納、布置作業(yè)。

(一)、導(dǎo)入。

1、教師創(chuàng)設(shè)情境設(shè)置二個(gè)任務(wù),做為貫穿本課的主線和數(shù)學(xué)與專業(yè)有機(jī)結(jié)合的鈕帶,通過完成這二個(gè)任務(wù),達(dá)到掌握余弦定理并學(xué)會(huì)應(yīng)用的目標(biāo)。

2、通過與直角三角形勾股定理引出余弦定理(快樂起點(diǎn))經(jīng)教師啟發(fā)、誘導(dǎo),學(xué)生通過探索研究,合理猜想來發(fā)現(xiàn)余弦定理。

(二)、新課。

3.證明猜想,導(dǎo)出余弦定理及余弦定理的變形。

經(jīng)過嚴(yán)密邏輯推理證明得出余弦定理,這一過程中,鍛煉了學(xué)生觀察、分析、歸納、猜想、抽象、概括等邏輯思維能力。

4.解決二個(gè)任務(wù)。

5.操作演練,鞏固提高。

6.小結(jié):

通過學(xué)生口答方式小結(jié),讓學(xué)生強(qiáng)化記憶,分清重點(diǎn),深化對(duì)余弦定理的理解。

7.作業(yè):

板書是課堂教學(xué)重要部分,為再現(xiàn)知識(shí)體系,突出重點(diǎn),將余弦定理知識(shí)體系展示在板書中,利于學(xué)生加深印象,理清思路。

在教學(xué)設(shè)計(jì)上,采用任務(wù)驅(qū)動(dòng),教師精心設(shè)計(jì)與機(jī)械專業(yè)相關(guān)聯(lián)的二個(gè)任務(wù),作為貫穿整節(jié)課的主線,通過具體任務(wù)的完成,即提高學(xué)生學(xué)習(xí)的興趣,又激發(fā)求知欲;知識(shí)點(diǎn)學(xué)習(xí)則循序漸進(jìn),符合學(xué)生的認(rèn)知特點(diǎn)。經(jīng)教師啟發(fā)、誘導(dǎo),學(xué)生通過觀察、分析、發(fā)現(xiàn)、自主探究、小組協(xié)作等方法在獲取新知的同時(shí),培養(yǎng)了歸納與猜想、抽象與概括等邏輯思維能力。

余弦定理課件篇三

人教版《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書必修(五)》(第2版)第一章《解三角形》第一單元第二課《余弦定理》。通過利用向量的數(shù)量積方法推導(dǎo)余弦定理,正確理解其結(jié)構(gòu)特征和表現(xiàn)形式,解決“邊、角、邊”和“邊、邊、邊”問題,初步體會(huì)余弦定理解決“邊、邊、角”,體會(huì)方程思想,激發(fā)學(xué)生探究數(shù)學(xué),應(yīng)用數(shù)學(xué)的潛能。

本課之前,學(xué)生已經(jīng)學(xué)習(xí)了三角函數(shù)、向量基本知識(shí)和正弦定理有關(guān)內(nèi)容,對(duì)于三角形中的邊角關(guān)系有了較進(jìn)一步的認(rèn)識(shí)。在此基礎(chǔ)上利用向量方法探求余弦定理,學(xué)生已有一定的學(xué)習(xí)基礎(chǔ)和學(xué)習(xí)興趣。總體上學(xué)生應(yīng)用數(shù)學(xué)知識(shí)的意識(shí)不強(qiáng),創(chuàng)造力較弱,看待與分析問題不深入,知識(shí)的系統(tǒng)性不完善,使得學(xué)生在余弦定理推導(dǎo)方法的探求上有一定的難度,在發(fā)掘出余弦定理的結(jié)構(gòu)特征、表現(xiàn)形式的數(shù)學(xué)美時(shí),能夠激發(fā)學(xué)生熱愛數(shù)學(xué)的思想感情;從具體問題中抽象出數(shù)學(xué)的本質(zhì),應(yīng)用方程的思想去審視,解決問題是學(xué)生學(xué)習(xí)的一大難點(diǎn)。

新課程的數(shù)學(xué)提倡學(xué)生動(dòng)手實(shí)踐,自主探索,合作交流,深刻地理解基本結(jié)論的本質(zhì),體驗(yàn)數(shù)學(xué)發(fā)現(xiàn)和創(chuàng)造的歷程,力求對(duì)現(xiàn)實(shí)世界蘊(yùn)涵的一些數(shù)學(xué)模式進(jìn)行思考,作出判斷;同時(shí)要求教師從知識(shí)的傳授者向課堂的設(shè)計(jì)者、組織者、引導(dǎo)者、合作者轉(zhuǎn)化,從課堂的執(zhí)行者向?qū)嵤┱?、探究開發(fā)者轉(zhuǎn)化。本課盡力追求新課程要求,利用師生的互動(dòng)合作,提高學(xué)生的數(shù)學(xué)思維能力,發(fā)展學(xué)生的數(shù)學(xué)應(yīng)用意識(shí)和創(chuàng)新意識(shí),深刻地體會(huì)數(shù)學(xué)思想方法及數(shù)學(xué)的應(yīng)用,激發(fā)學(xué)生探究數(shù)學(xué)、應(yīng)用數(shù)學(xué)知識(shí)的潛能。

繼續(xù)探索三角形的邊長(zhǎng)與角度間的具體量化關(guān)系、掌握余弦定理的兩種表現(xiàn)形式,體會(huì)向量方法推導(dǎo)余弦定理的思想;通過實(shí)踐演算運(yùn)用余弦定理解決“邊、角、邊”及“邊、邊、邊”問題;深化與細(xì)化方程思想,理解余弦定理的本質(zhì)。通過相關(guān)教學(xué)知識(shí)的聯(lián)系性,理解事物間的普遍聯(lián)系性。

教學(xué)重點(diǎn)是余弦定理的發(fā)現(xiàn)過程及定理的'應(yīng)用;教學(xué)難點(diǎn)是用向量的數(shù)量積推導(dǎo)余弦定理的思路方法及余弦定理在應(yīng)用求解三角形時(shí)的思路。

本課的教學(xué)應(yīng)具有承上啟下的目的。因此在教學(xué)設(shè)計(jì)時(shí)既要兼顧前后知識(shí)的聯(lián)系,又要使學(xué)生明確本課學(xué)習(xí)的重點(diǎn),將新舊知識(shí)逐漸地融為一體,構(gòu)建比較完整的知識(shí)系統(tǒng)。所以在余弦定理的表現(xiàn)方式、結(jié)構(gòu)特征上重加指導(dǎo),只有當(dāng)學(xué)生正確地理解了余弦定理的本質(zhì),才能更好地應(yīng)用求解問題。本課教學(xué)設(shè)計(jì)力求在型(模型、類型),質(zhì)(實(shí)質(zhì)、本質(zhì)),思(思維、思想方法)上達(dá)到教學(xué)效果。本課之前學(xué)生已學(xué)習(xí)過三角函數(shù),平面幾何,平面向量、解析幾何、正弦定理等與本課緊密聯(lián)系的內(nèi)容,使本課有了較多的處理工具,也使余弦定理的探討有了更加簡(jiǎn)潔的工具。因此在本課的教學(xué)設(shè)計(jì)中抓住前后知識(shí)的聯(lián)系,重視數(shù)學(xué)思想的教學(xué),加深對(duì)數(shù)學(xué)概念本質(zhì)的理解,認(rèn)識(shí)數(shù)學(xué)與實(shí)際的聯(lián)系,學(xué)會(huì)應(yīng)用數(shù)學(xué)知識(shí)和方法解決一些實(shí)際問題。學(xué)生應(yīng)用數(shù)學(xué)的意識(shí)不強(qiáng),創(chuàng)造力不足、看待問題不深入,很大原因在于學(xué)生的知識(shí)系統(tǒng)不夠完善。因此本課運(yùn)用聯(lián)系的觀點(diǎn),從多角度看待問題,在提出問題、思考分析問題、解決問題等多方面對(duì)學(xué)生進(jìn)行示范引導(dǎo),將舊知識(shí)與新知識(shí)進(jìn)行重組擬合及提高,幫助學(xué)生建立自己的良好知識(shí)結(jié)構(gòu)。

余弦定理課件篇四

《余弦定理》是全日制中等教育國(guó)家規(guī)劃教材(人教版)數(shù)學(xué)第一冊(cè)中第六章平面向量第六部分。余弦定理是歐氏空間度量幾何的最重要定理,是解斜三角形的重要定理,是整個(gè)測(cè)量學(xué)的基礎(chǔ)。余弦定理是勾股定理的推廣,可用解析法、向量法等方法證明。余弦定理主要能解決有關(guān)三角形的三類問題:

1)、已知兩邊及其夾角,求第三邊和其他兩個(gè)角。

2)、已知三邊求三個(gè)內(nèi)角;

3)、判斷三角形的形狀。以及相關(guān)的證明題。

本著數(shù)學(xué)與專業(yè)有機(jī)結(jié)合的指導(dǎo)思想,讓數(shù)學(xué)服務(wù)于專業(yè)的需要。以及最大限度的提高學(xué)生的學(xué)習(xí)興趣,在本節(jié)課,我不是將余弦定理簡(jiǎn)單呈現(xiàn)給學(xué)生,而是創(chuàng)造設(shè)情境,設(shè)計(jì)了與機(jī)械相關(guān)聯(lián)并具有愛國(guó)主題的二個(gè)任務(wù),通過任務(wù)驅(qū)動(dòng)法教學(xué),極大提高了學(xué)生的學(xué)習(xí)興趣,激發(fā)學(xué)生探索新知識(shí)的強(qiáng)烈求知欲望,在完成數(shù)學(xué)教學(xué)任務(wù)的同時(shí),強(qiáng)化了數(shù)學(xué)與專業(yè)的有機(jī)結(jié)合,培養(yǎng)了學(xué)生將數(shù)學(xué)知識(shí)運(yùn)用于自身專業(yè)中的能力。同時(shí)通過任務(wù)驅(qū)動(dòng),培養(yǎng)了學(xué)生自主探究式學(xué)習(xí)的能力;提升解決實(shí)際實(shí)際問題的能力。因?yàn)樗O(shè)計(jì)的兩個(gè)任務(wù)具有愛國(guó)主義題材,學(xué)生在完成知識(shí)學(xué)習(xí)的同時(shí),也極大的激發(fā)了愛國(guó)主義精神。

在確定教學(xué)方法前,首先要求教師吃透教材,選擇恰當(dāng)?shù)慕虒W(xué)方法和教學(xué)手段把知識(shí)傳授給學(xué)生。本節(jié)課主要采用任務(wù)驅(qū)動(dòng)法、引導(dǎo)發(fā)現(xiàn)法、觀察法、歸納總結(jié)法、講練結(jié)合法。并采用電教手段使用多媒體輔助教學(xué)。

1.任務(wù)驅(qū)動(dòng)法。

教師精心設(shè)計(jì)與機(jī)械專業(yè)相關(guān)聯(lián)的二個(gè)任務(wù),作為貫穿整節(jié)課的主線,通過具體任務(wù)的完成,提高學(xué)生學(xué)習(xí)的興趣,激發(fā)求知欲,啟發(fā)學(xué)生對(duì)問題進(jìn)行思考。在研究過程中,激發(fā)學(xué)生探索新知識(shí)的強(qiáng)烈欲望。提升解決實(shí)際總是的能力,并極大的激發(fā)了愛國(guó)主義精神。

2.引導(dǎo)發(fā)現(xiàn)法、觀察法。

通過對(duì)勾股定理的觀察和三角形直角的相關(guān)變形,學(xué)生從中受啟發(fā),發(fā)現(xiàn)余弦定理,并證明它。

3.歸納總結(jié)法。

學(xué)生通過前期的探索研究,自主歸納總結(jié)出余弦定理及其推論及判斷三角形形狀的相關(guān)規(guī)律。

4.講練結(jié)合法。

講授充分發(fā)揮教師主導(dǎo)作用,引導(dǎo)學(xué)生自主學(xué)習(xí)。練習(xí)讓學(xué)生從多角度對(duì)所學(xué)定理進(jìn)行認(rèn)知,及時(shí)鞏固所學(xué)的知識(shí),鍛煉了解決實(shí)際問題的能力,發(fā)揮出學(xué)生的主觀能動(dòng)性,成為學(xué)習(xí)的主體。

學(xué)生學(xué)法主要有觀察、分析、發(fā)現(xiàn)、自主探究、小組協(xié)作等方法。經(jīng)教師啟發(fā)、誘導(dǎo),學(xué)生通過觀察與分析去發(fā)現(xiàn)并證明余弦定理,培養(yǎng)歸納與猜想、抽象與概括等邏輯思維能力,訓(xùn)練思維品質(zhì)。

(一)知識(shí)目標(biāo)。

2、使學(xué)生初步掌握應(yīng)用余弦定理解斜三角形。

(二)能力目標(biāo)。

1、培養(yǎng)學(xué)生在本專業(yè)范圍內(nèi)熟練運(yùn)用余弦定理解決實(shí)際問題的能力。

2、通過啟發(fā)、誘導(dǎo)學(xué)生發(fā)現(xiàn)和證明余弦定理的過程,培養(yǎng)學(xué)生觀察、分析、歸納、猜想、抽象、概括等邏輯思維能力。

3、通過對(duì)余弦定理的推導(dǎo),培養(yǎng)學(xué)生的知識(shí)遷移能力和建模意識(shí),及合作學(xué)習(xí)的意識(shí)。

(三)德育目標(biāo)。

1、培養(yǎng)學(xué)生的愛國(guó)主義精神、及團(tuán)結(jié)、協(xié)作精神。

2、通過三角函數(shù)、余弦定理、向量的數(shù)量積等知識(shí)的聯(lián)系理解事物之間普遍聯(lián)系與辯證統(tǒng)一。

教學(xué)重點(diǎn)是余弦定理及應(yīng)用余弦定理解斜三角形;

分析勾股定理的'結(jié)構(gòu)特征,從而突破發(fā)現(xiàn)余弦定理,應(yīng)用余弦定理解斜三角形。

教學(xué)中注重突出重點(diǎn)、突破難點(diǎn),從五個(gè)層次進(jìn)行教學(xué)。

創(chuàng)設(shè)情境、任務(wù)驅(qū)動(dòng);

引導(dǎo)探究、發(fā)現(xiàn)定理;

完成任務(wù)、應(yīng)用遷移;

拓展升華、交流反思;

小結(jié)歸納、布置作業(yè)。

(一)、導(dǎo)入。

1、教師創(chuàng)設(shè)情境設(shè)置二個(gè)任務(wù),做為貫穿本課的主線和數(shù)學(xué)與專業(yè)有機(jī)結(jié)合的鈕帶,通過完成這二個(gè)任務(wù),達(dá)到掌握余弦定理并學(xué)會(huì)應(yīng)用的目標(biāo)。

2、通過與直角三角形勾股定理引出余弦定理(快樂起點(diǎn))經(jīng)教師啟發(fā)、誘導(dǎo),學(xué)生通過探索研究,合理猜想來發(fā)現(xiàn)余弦定理。

(二)、新課。

3.證明猜想,導(dǎo)出余弦定理及余弦定理的變形。

經(jīng)過嚴(yán)密邏輯推理證明得出余弦定理,這一過程中,鍛煉了學(xué)生觀察、分析、歸納、猜想、抽象、概括等邏輯思維能力。

4.解決二個(gè)任務(wù)。

5.操作演練,鞏固提高。

6.小結(jié):

通過學(xué)生口答方式小結(jié),讓學(xué)生強(qiáng)化記憶,分清重點(diǎn),深化對(duì)余弦定理的理解。

7.作業(yè):

余弦定理課件篇五

各位老師大家好!

今天我說課的內(nèi)容是余弦定理,本節(jié)內(nèi)容共分3課時(shí),今天我將就第1課時(shí)的余弦定理的證明與簡(jiǎn)單應(yīng)用進(jìn)行說課。下面我分別從教材分析。教學(xué)目標(biāo)的確定。教學(xué)方法的選擇和教學(xué)過程的設(shè)計(jì)這四個(gè)方面來闡述我對(duì)這節(jié)課的教學(xué)設(shè)想。

本節(jié)內(nèi)容是江蘇教育出版社出版的普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書《數(shù)學(xué)》必修五的第一章第2節(jié),在此之前學(xué)生已經(jīng)學(xué)習(xí)過了勾股定理。平面向量、正弦定理等相關(guān)知識(shí),這為過渡到本節(jié)內(nèi)容的學(xué)習(xí)起著鋪墊作用。本節(jié)內(nèi)容實(shí)質(zhì)是學(xué)生已經(jīng)學(xué)習(xí)的勾股定理的延伸和推廣,它描述了三角形重要的邊角關(guān)系,將三角形的“邊”與“角”有機(jī)的聯(lián)系起來,實(shí)現(xiàn)邊角關(guān)系的互化,為解決斜三角形中的邊角求解問題提供了一個(gè)重要的工具,同時(shí)也為在日后學(xué)習(xí)中判斷三角形形狀,證明三角形有關(guān)的等式與不等式提供了重要的依據(jù)。

在本節(jié)課中教學(xué)重點(diǎn)是余弦定理的內(nèi)容和公式的掌握,余弦定理在三角形邊角計(jì)算中的運(yùn)用;教學(xué)難點(diǎn)是余弦定理的發(fā)現(xiàn)及證明;教學(xué)關(guān)鍵是余弦定理在三角形邊角計(jì)算中的運(yùn)用。

基于以上對(duì)教材的認(rèn)識(shí),根據(jù)數(shù)學(xué)課程標(biāo)準(zhǔn)的“學(xué)生是數(shù)學(xué)學(xué)習(xí)的主人,教師是數(shù)學(xué)學(xué)習(xí)的組織者。引導(dǎo)者與合作者”這一基本理念,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)和心理特征,我認(rèn)為本節(jié)課的教學(xué)目標(biāo)有:

基于本節(jié)課是屬于新授課中的數(shù)學(xué)命題教學(xué),根據(jù)《學(xué)記》中啟發(fā)誘導(dǎo)的思想和布魯納的發(fā)現(xiàn)學(xué)習(xí)理論,我將主要采用“啟發(fā)式教學(xué)”和“探究性教學(xué)”的教學(xué)方法即從一個(gè)實(shí)際問題出發(fā),發(fā)現(xiàn)無法使用剛學(xué)習(xí)的正弦定理解決,造成學(xué)生在認(rèn)知上的沖突,產(chǎn)生疑惑,從而激發(fā)學(xué)生的探索新知的欲望,之后進(jìn)一步啟發(fā)誘導(dǎo)學(xué)生分析,綜合,概括從而得出原理解決問題,最終形成概念,獲得方法,培養(yǎng)能力。

在教學(xué)中利用計(jì)算機(jī)多媒體來輔助教學(xué),充分發(fā)揮其快捷、生動(dòng)、形象的特點(diǎn)。

為達(dá)到本節(jié)課的教學(xué)目標(biāo)、突出重點(diǎn)、突破難點(diǎn),在教材分析、確定教學(xué)目標(biāo)和合理選擇教法與學(xué)法的基礎(chǔ)上,我把教學(xué)過程設(shè)計(jì)為以下四個(gè)階段:創(chuàng)設(shè)情境、引入課題;探索研究、構(gòu)建新知;例題講解、鞏固練習(xí);課堂小結(jié),布置作業(yè)。具體過程如下:

1、創(chuàng)設(shè)情境,引入課題。

利用多媒體引出如下問題:

a地和b地之間隔著一個(gè)水塘現(xiàn)選擇一地點(diǎn)c,可以測(cè)得的大小及,求a、b兩地之間的距離c。

【設(shè)計(jì)意圖】由于學(xué)生剛學(xué)過正弦定理,一定會(huì)采用剛學(xué)的知識(shí)解題,但由于無法找到一組已知的邊及其所對(duì)角,從而產(chǎn)生疑惑,激發(fā)學(xué)生探索欲望。

2、探索研究、構(gòu)建新知。

(1)由于初中接觸的是解直角三角形的問題,所以我將先帶領(lǐng)學(xué)生從特殊情況為直角三角形()時(shí)考慮。此時(shí)使用勾股定理,得。

(3)考慮到我們所作的圖為銳角三角形,討論上述結(jié)論能否推廣到在為鈍角三角形()中。

通過解決問題可以得到在任意三角形中都有,之后讓同學(xué)們類比出……這樣我就完成了對(duì)余弦定理的引入,之后總結(jié)給出余弦定理的內(nèi)容及公式表示。

在學(xué)生已學(xué)習(xí)了向量的基礎(chǔ)上,考慮到新課改中要求使用新工具、新方法,我會(huì)引導(dǎo)同學(xué)類比向量法證明正弦定理的過程嘗試使用向量的方法證明余弦定理、之后引導(dǎo)學(xué)生對(duì)余弦定理公式進(jìn)行變形,用三邊值來表示角的余弦值,給出余弦定理的第二種表示形式,這樣就完成了新知的構(gòu)建。

根據(jù)余弦定理的兩種形式,我們可以利用余弦定理解決以下兩類解斜三角形的問題:

(1)已知三邊,求三個(gè)角;

(2)已知三角形兩邊及其夾角,求第三邊和其他兩個(gè)角。

3、例題講解、鞏固練習(xí)。

本階段的教學(xué)主要是通過對(duì)例題和練習(xí)的思考交流、分析講解以及反思小結(jié),使學(xué)生初步掌握使用余弦定理解決問題的方法。其中例題先以學(xué)生自己思考解題為主,教師點(diǎn)評(píng)后再規(guī)范解題步驟及板書,課堂練習(xí)請(qǐng)同學(xué)們自主完成,并請(qǐng)同學(xué)上黑板板書,從而鞏固余弦定理的運(yùn)用。

例題講解:

例1在中,

(1)已知,求;

(2)已知,求。

【設(shè)計(jì)意圖】例題1分別是通過已知三角形兩邊及其夾角求第三邊,已知三角形三邊求其夾角,這樣余弦定理的兩個(gè)形式分別得到了運(yùn)用,進(jìn)而鞏固了學(xué)生對(duì)余弦定理的運(yùn)用。

例2對(duì)于例題1(2),求的大小。

【設(shè)計(jì)意圖】已經(jīng)求出了的度數(shù),學(xué)生可能會(huì)有兩種解法:運(yùn)用正弦定理或運(yùn)用余弦定理,比較正弦定理和余弦定理,發(fā)現(xiàn)使用余弦定理求解角的問題可以避免解的取舍問題。

例3使用余弦定理證明:在中,當(dāng)為銳角時(shí);當(dāng)為鈍角時(shí),

【設(shè)計(jì)意圖】例3通過對(duì)和的比較,體現(xiàn)了“余弦定理是勾股定理的推廣”這一思想,進(jìn)一步加深了對(duì)余弦定理的認(rèn)識(shí)和理解。

課堂練習(xí):

練習(xí)1在中,

(1)已知,求;

(2)已知,求。

【設(shè)計(jì)意圖】檢驗(yàn)學(xué)生是否掌握余弦定理的兩個(gè)形式,鞏固學(xué)生對(duì)余弦定理的運(yùn)用。

練習(xí)2若三條線段長(zhǎng)分別為5,6,7,則用這三條線段()。

a、能組成直角三角形。

b、能組成銳角三角形。

c、能組成鈍角三角形。

d、不能組成三角形。

【設(shè)計(jì)意圖】與例題3相呼應(yīng)。

練習(xí)3在中,已知,試求的大小。

【設(shè)計(jì)意圖】要求靈活使用公式,對(duì)公式進(jìn)行變形。

4、課堂小結(jié),布置作業(yè)。

先請(qǐng)同學(xué)對(duì)本節(jié)課所學(xué)內(nèi)容進(jìn)行小結(jié),教師再對(duì)以下三個(gè)方面進(jìn)行總結(jié):

(3)余弦定理的可以解決的兩類解斜三角形的問題。

通過師生的共同小結(jié),發(fā)揮學(xué)生的主體作用,有利于學(xué)生鞏固所學(xué)知識(shí),也能培養(yǎng)學(xué)生的歸納和概括能力。

布置作業(yè)。

必做題:習(xí)題1、2、1、2、3、5、6;

選做題:習(xí)題1、2、12、13。

作業(yè)分為必做題和選做題、針對(duì)學(xué)生素質(zhì)的差異進(jìn)行分層訓(xùn)練,既使學(xué)生掌握基礎(chǔ)知識(shí),又使學(xué)有余力的學(xué)生有所提高。

各位老師,以上所說只是我預(yù)設(shè)的一種方案,但課堂是千變?nèi)f化的,會(huì)隨著學(xué)生和教師的臨時(shí)發(fā)揮而隨機(jī)生成。預(yù)設(shè)效果如何,最終還有待于課堂教學(xué)實(shí)踐的檢驗(yàn)。

本說課一定存在諸多不足,懇請(qǐng)老師提出寶貴意見,謝謝。

余弦定理課件篇六

《余弦定理》是全日制中等教育國(guó)家規(guī)劃教材(人教版)數(shù)學(xué)第一冊(cè)中第六章平面向量第六部分。余弦定理是歐氏空間度量幾何的最重要定理,是解斜三角形的重要定理,是整個(gè)測(cè)量學(xué)的基礎(chǔ)。余弦定理是勾股定理的推廣,可用解析法、向量法等方法證明。余弦定理主要能解決有關(guān)三角形的三類問題:

1、已知兩邊及其夾角,求第三邊和其他兩個(gè)角。

2、已知三邊求三個(gè)內(nèi)角;

3、判斷三角形的形狀。以及相關(guān)的證明題。

本著數(shù)學(xué)與專業(yè)有機(jī)結(jié)合的指導(dǎo)思想,讓數(shù)學(xué)服務(wù)于專業(yè)的需要。以及最大限度的提高學(xué)生的學(xué)習(xí)興趣,在本節(jié)課,我不是將余弦定理簡(jiǎn)單呈現(xiàn)給學(xué)生,而是創(chuàng)造設(shè)情境,設(shè)計(jì)了與機(jī)械相關(guān)聯(lián)并具有愛國(guó)主題的二個(gè)任務(wù),通過任務(wù)驅(qū)動(dòng)法教學(xué),極大提高了學(xué)生的學(xué)習(xí)興趣,激發(fā)學(xué)生探索新知識(shí)的強(qiáng)烈求知欲望,在完成數(shù)學(xué)教學(xué)任務(wù)的同時(shí),強(qiáng)化了數(shù)學(xué)與專業(yè)的有機(jī)結(jié)合,培養(yǎng)了學(xué)生將數(shù)學(xué)知識(shí)運(yùn)用于自身專業(yè)中的能力。同時(shí)通過任務(wù)驅(qū)動(dòng),培養(yǎng)了學(xué)生自主探究式學(xué)習(xí)的能力;提升解決實(shí)際實(shí)際問題的能力。因?yàn)樗O(shè)計(jì)的兩個(gè)任務(wù)具有愛國(guó)主義題材,學(xué)生在完成知識(shí)學(xué)習(xí)的同時(shí),也極大的激發(fā)了愛國(guó)主義精神。

在確定教學(xué)方法前,首先要求教師吃透教材,選擇恰當(dāng)?shù)慕虒W(xué)方法和教學(xué)手段把知識(shí)傳授給學(xué)生。本節(jié)課主要采用任務(wù)驅(qū)動(dòng)法、引導(dǎo)發(fā)現(xiàn)法、觀察法、歸納總結(jié)法、講練結(jié)合法。并采用電教手段使用多媒體輔助教學(xué)。

1、任務(wù)驅(qū)動(dòng)法。

教師精心設(shè)計(jì)與機(jī)械專業(yè)相關(guān)聯(lián)的二個(gè)任務(wù),作為貫穿整節(jié)課的主線,通過具體任務(wù)的完成,提高學(xué)生學(xué)習(xí)的興趣,激發(fā)求知欲,啟發(fā)學(xué)生對(duì)問題進(jìn)行思考。在研究過程中,激發(fā)學(xué)生探索新知識(shí)的強(qiáng)烈欲望。提升解決實(shí)際總是的能力,并極大的激發(fā)了愛國(guó)主義精神。

2、引導(dǎo)發(fā)現(xiàn)法、觀察法。

通過對(duì)勾股定理的觀察和三角形直角的相關(guān)變形,學(xué)生從中受啟發(fā),發(fā)現(xiàn)余弦定理,并證明它。

3、歸納總結(jié)法。

學(xué)生通過前期的探索研究,自主歸納總結(jié)出余弦定理及其推論及判斷三角形形狀的相關(guān)規(guī)律。

4、講練結(jié)合法。

講授充分發(fā)揮教師主導(dǎo)作用,引導(dǎo)學(xué)生自主學(xué)習(xí)。練習(xí)讓學(xué)生從多角度對(duì)所學(xué)定理進(jìn)行認(rèn)知,及時(shí)鞏固所學(xué)的知識(shí),鍛煉了解決實(shí)際問題的能力,發(fā)揮出學(xué)生的主觀能動(dòng)性,成為學(xué)習(xí)的主體。

學(xué)生學(xué)法主要有觀察、分析、發(fā)現(xiàn)、自主探究、小組協(xié)作等方法。經(jīng)教師啟發(fā)、誘導(dǎo),學(xué)生通過觀察與分析去發(fā)現(xiàn)并證明余弦定理,培養(yǎng)歸納與猜想、抽象與概括等邏輯思維能力,訓(xùn)練思維品質(zhì)。

(一)知識(shí)目標(biāo)。

2、使學(xué)生初步掌握應(yīng)用余弦定理解斜三角形。

(二)能力目標(biāo)。

1、培養(yǎng)學(xué)生在本專業(yè)范圍內(nèi)熟練運(yùn)用余弦定理解決實(shí)際問題的能力。

2、通過啟發(fā)、誘導(dǎo)學(xué)生發(fā)現(xiàn)和證明余弦定理的過程,培養(yǎng)學(xué)生觀察、分析、歸納、猜想、抽象、概括等邏輯思維能力。

3、通過對(duì)余弦定理的.推導(dǎo),培養(yǎng)學(xué)生的知識(shí)遷移能力和建模意識(shí),及合作學(xué)習(xí)的意識(shí)。

(三)德育目標(biāo)。

1、培養(yǎng)學(xué)生的愛國(guó)主義精神、及團(tuán)結(jié)、協(xié)作精神。

2、通過三角函數(shù)、余弦定理、向量的數(shù)量積等知識(shí)的聯(lián)系理解事物之間普遍聯(lián)系與辯證統(tǒng)一。

分析勾股定理的結(jié)構(gòu)特征,從而突破發(fā)現(xiàn)余弦定理,應(yīng)用余弦定理解斜三角形。

教學(xué)中注重突出重點(diǎn)、突破難點(diǎn),從五個(gè)層次進(jìn)行教學(xué)。

創(chuàng)設(shè)情境、任務(wù)驅(qū)動(dòng);

引導(dǎo)探究、發(fā)現(xiàn)定理;

完成任務(wù)、應(yīng)用遷移;

拓展升華、交流反思;

(一)導(dǎo)入。

1、教師創(chuàng)設(shè)情境設(shè)置二個(gè)任務(wù),做為貫穿本課的主線和數(shù)學(xué)與專業(yè)有機(jī)結(jié)合的鈕帶,通過完成這二個(gè)任務(wù),達(dá)到掌握余弦定理并學(xué)會(huì)應(yīng)用的目標(biāo)。

2、通過與直角三角形勾股定理引出余弦定理(快樂起點(diǎn))經(jīng)教師啟發(fā)、誘導(dǎo),學(xué)生通過探索研究,合理猜想來發(fā)現(xiàn)余弦定理。

(二)新課。

3、證明猜想,導(dǎo)出余弦定理及余弦定理的變形。

經(jīng)過嚴(yán)密邏輯推理證明得出余弦定理,這一過程中,鍛煉了學(xué)生觀察、分析、歸納、猜想、抽象、概括等邏輯思維能力。

4、解決二個(gè)任務(wù)。

5、操作演練,鞏固提高。

6、小結(jié):

通過學(xué)生口答方式小結(jié),讓學(xué)生強(qiáng)化記憶,分清重點(diǎn),深化對(duì)余弦定理的理解。

7、作業(yè):

板書是課堂教學(xué)重要部分,為再現(xiàn)知識(shí)體系,突出重點(diǎn),將余弦定理知識(shí)體系展示在板書中,利于學(xué)生加深印象,理清思路。

在教學(xué)設(shè)計(jì)上,采用任務(wù)驅(qū)動(dòng),教師精心設(shè)計(jì)與機(jī)械專業(yè)相關(guān)聯(lián)的二個(gè)任務(wù),作為貫穿整節(jié)課的主線,通過具體任務(wù)的完成,即提高學(xué)生學(xué)習(xí)的興趣,又激發(fā)求知欲;知識(shí)點(diǎn)學(xué)習(xí)則循序漸進(jìn),符合學(xué)生的認(rèn)知特點(diǎn)。經(jīng)教師啟發(fā)、誘導(dǎo),學(xué)生通過觀察、分析、發(fā)現(xiàn)、自主探究、小組協(xié)作等方法在獲取新知的同時(shí),培養(yǎng)了歸納與猜想、抽象與概括等邏輯思維能力。

余弦定理課件篇七

《余弦定理》是全日制中等教育國(guó)家規(guī)劃教材(人教版)數(shù)學(xué)第一冊(cè)中第六章平面向量第六部分。余弦定理是歐氏空間度量幾何的最重要定理,是解斜三角形的重要定理,是整個(gè)測(cè)量學(xué)的基礎(chǔ)。余弦定理是勾股定理的推廣,可用解析法、向量法等方法證明。余弦定理主要能解決有關(guān)三角形的三類問題:

1、已知兩邊及其夾角,求第三邊和其他兩個(gè)角。

2、已知三邊求三個(gè)內(nèi)角;

3、判斷三角形的形狀。以及相關(guān)的證明題。

本著數(shù)學(xué)與專業(yè)有機(jī)結(jié)合的指導(dǎo)思想,讓數(shù)學(xué)服務(wù)于專業(yè)的需要。以及最大限度的提高學(xué)生的學(xué)習(xí)興趣,在本節(jié)課,我不是將余弦定理簡(jiǎn)單呈現(xiàn)給學(xué)生,而是創(chuàng)造設(shè)情境,設(shè)計(jì)了與機(jī)械相關(guān)聯(lián)并具有愛國(guó)主題的二個(gè)任務(wù),通過任務(wù)驅(qū)動(dòng)法教學(xué),極大提高了學(xué)生的學(xué)習(xí)興趣,激發(fā)學(xué)生探索新知識(shí)的強(qiáng)烈求知欲望,在完成數(shù)學(xué)教學(xué)任務(wù)的同時(shí),強(qiáng)化了數(shù)學(xué)與專業(yè)的有機(jī)結(jié)合,培養(yǎng)了學(xué)生將數(shù)學(xué)知識(shí)運(yùn)用于自身專業(yè)中的能力。同時(shí)通過任務(wù)驅(qū)動(dòng),培養(yǎng)了學(xué)生自主探究式學(xué)習(xí)的能力;提升解決實(shí)際實(shí)際問題的能力。因?yàn)樗O(shè)計(jì)的兩個(gè)任務(wù)具有愛國(guó)主義題材,學(xué)生在完成知識(shí)學(xué)習(xí)的同時(shí),也極大的激發(fā)了愛國(guó)主義精神。

在確定教學(xué)方法前,首先要求教師吃透教材,選擇恰當(dāng)?shù)慕虒W(xué)方法和教學(xué)手段把知識(shí)傳授給學(xué)生。本節(jié)課主要采用任務(wù)驅(qū)動(dòng)法、引導(dǎo)發(fā)現(xiàn)法、觀察法、歸納總結(jié)法、講練結(jié)合法。并采用電教手段使用多媒體輔助教學(xué)。

1、任務(wù)驅(qū)動(dòng)法。

教師精心設(shè)計(jì)與機(jī)械專業(yè)相關(guān)聯(lián)的二個(gè)任務(wù),作為貫穿整節(jié)課的主線,通過具體任務(wù)的完成,提高學(xué)生學(xué)習(xí)的興趣,激發(fā)求知欲,啟發(fā)學(xué)生對(duì)問題進(jìn)行思考。在研究過程中,激發(fā)學(xué)生探索新知識(shí)的強(qiáng)烈欲望。提升解決實(shí)際總是的能力,并極大的激發(fā)了愛國(guó)主義精神。

2、引導(dǎo)發(fā)現(xiàn)法、觀察法。

通過對(duì)勾股定理的觀察和三角形直角的相關(guān)變形,學(xué)生從中受啟發(fā),發(fā)現(xiàn)余弦定理,并證明它。

3、歸納總結(jié)法。

學(xué)生通過前期的探索研究,自主歸納總結(jié)出余弦定理及其推論及判斷三角形形狀的相關(guān)規(guī)律。

4、講練結(jié)合法。

講授充分發(fā)揮教師主導(dǎo)作用,引導(dǎo)學(xué)生自主學(xué)習(xí)。練習(xí)讓學(xué)生從多角度對(duì)所學(xué)定理進(jìn)行認(rèn)知,及時(shí)鞏固所學(xué)的知識(shí),鍛煉了解決實(shí)際問題的能力,發(fā)揮出學(xué)生的主觀能動(dòng)性,成為學(xué)習(xí)的主體。

學(xué)生學(xué)法主要有觀察、分析、發(fā)現(xiàn)、自主探究、小組協(xié)作等方法。經(jīng)教師啟發(fā)、誘導(dǎo),學(xué)生通過觀察與分析去發(fā)現(xiàn)并證明余弦定理,培養(yǎng)歸納與猜想、抽象與概括等邏輯思維能力,訓(xùn)練思維品質(zhì)。

(一)知識(shí)目標(biāo)。

2、使學(xué)生初步掌握應(yīng)用余弦定理解斜三角形。

(二)能力目標(biāo)。

1、培養(yǎng)學(xué)生在本專業(yè)范圍內(nèi)熟練運(yùn)用余弦定理解決實(shí)際問題的能力。

2、通過啟發(fā)、誘導(dǎo)學(xué)生發(fā)現(xiàn)和證明余弦定理的過程,培養(yǎng)學(xué)生觀察、分析、歸納、猜想、抽象、概括等邏輯思維能力。

3、通過對(duì)余弦定理的.推導(dǎo),培養(yǎng)學(xué)生的知識(shí)遷移能力和建模意識(shí),及合作學(xué)習(xí)的意識(shí)。

(三)德育目標(biāo)。

1、培養(yǎng)學(xué)生的愛國(guó)主義精神、及團(tuán)結(jié)、協(xié)作精神。

2、通過三角函數(shù)、余弦定理、向量的數(shù)量積等知識(shí)的聯(lián)系理解事物之間普遍聯(lián)系與辯證統(tǒng)一。

分析勾股定理的結(jié)構(gòu)特征,從而突破發(fā)現(xiàn)余弦定理,應(yīng)用余弦定理解斜三角形。

教學(xué)中注重突出重點(diǎn)、突破難點(diǎn),從五個(gè)層次進(jìn)行教學(xué)。

創(chuàng)設(shè)情境、任務(wù)驅(qū)動(dòng);

引導(dǎo)探究、發(fā)現(xiàn)定理;

完成任務(wù)、應(yīng)用遷移;

拓展升華、交流反思;

(一)導(dǎo)入。

1、教師創(chuàng)設(shè)情境設(shè)置二個(gè)任務(wù),做為貫穿本課的主線和數(shù)學(xué)與專業(yè)有機(jī)結(jié)合的鈕帶,通過完成這二個(gè)任務(wù),達(dá)到掌握余弦定理并學(xué)會(huì)應(yīng)用的目標(biāo)。

2、通過與直角三角形勾股定理引出余弦定理(快樂起點(diǎn))經(jīng)教師啟發(fā)、誘導(dǎo),學(xué)生通過探索研究,合理猜想來發(fā)現(xiàn)余弦定理。

(二)新課。

3、證明猜想,導(dǎo)出余弦定理及余弦定理的變形。

經(jīng)過嚴(yán)密邏輯推理證明得出余弦定理,這一過程中,鍛煉了學(xué)生觀察、分析、歸納、猜想、抽象、概括等邏輯思維能力。

4、解決二個(gè)任務(wù)。

5、操作演練,鞏固提高。

6、小結(jié):

通過學(xué)生口答方式小結(jié),讓學(xué)生強(qiáng)化記憶,分清重點(diǎn),深化對(duì)余弦定理的理解。

7、作業(yè):

板書是課堂教學(xué)重要部分,為再現(xiàn)知識(shí)體系,突出重點(diǎn),將余弦定理知識(shí)體系展示在板書中,利于學(xué)生加深印象,理清思路。

在教學(xué)設(shè)計(jì)上,采用任務(wù)驅(qū)動(dòng),教師精心設(shè)計(jì)與機(jī)械專業(yè)相關(guān)聯(lián)的二個(gè)任務(wù),作為貫穿整節(jié)課的主線,通過具體任務(wù)的完成,即提高學(xué)生學(xué)習(xí)的興趣,又激發(fā)求知欲;知識(shí)點(diǎn)學(xué)習(xí)則循序漸進(jìn),符合學(xué)生的認(rèn)知特點(diǎn)。經(jīng)教師啟發(fā)、誘導(dǎo),學(xué)生通過觀察、分析、發(fā)現(xiàn)、自主探究、小組協(xié)作等方法在獲取新知的同時(shí),培養(yǎng)了歸納與猜想、抽象與概括等邏輯思維能力。

(一)一、教材分析1.地位及作用“余弦定理”是人教a版數(shù)學(xué)必修5主要內(nèi)容之一,是解決有關(guān)斜三角形問題的兩個(gè)重要定理之一,也是初中“勾股定......

余弦定理課件篇八

大家好!

今天我說課的內(nèi)容是余弦定理,本節(jié)內(nèi)容共分3課時(shí),今天我將就第1課時(shí)的余弦定理的證明與簡(jiǎn)單應(yīng)用進(jìn)行說課。下面我分別從教材分析。目標(biāo)的確定。方法的選擇和教學(xué)過程的設(shè)計(jì)這四個(gè)方面來闡述我對(duì)這節(jié)課的教學(xué)設(shè)想。

本節(jié)內(nèi)容是江蘇出版社出版的普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書《數(shù)學(xué)》必修五的第一章第2節(jié),在此之前學(xué)生已經(jīng)學(xué)習(xí)過了勾股定理。平面向量、正弦定理等相關(guān)知識(shí),這為過渡到本節(jié)內(nèi)容的學(xué)習(xí)起著鋪墊作用。本節(jié)內(nèi)容實(shí)質(zhì)是學(xué)生已經(jīng)學(xué)習(xí)的勾股定理的延伸和推廣,它描述了三角形重要的邊角關(guān)系,將三角形的“邊”與“角”有機(jī)的聯(lián)系起來,實(shí)現(xiàn)邊角關(guān)系的互化,為解決斜三角形中的邊角求解問題提供了一個(gè)重要的工具,同時(shí)也為在日后學(xué)習(xí)中判斷三角形形狀,證明三角形有關(guān)的等式與不等式提供了重要的依據(jù)。

在本節(jié)課中教學(xué)重點(diǎn)是余弦定理的內(nèi)容和公式的掌握,余弦定理在三角形邊角計(jì)算中的運(yùn)用;教學(xué)難點(diǎn)是余弦定理的發(fā)現(xiàn)及證明;教學(xué)關(guān)鍵是余弦定理在三角形邊角計(jì)算中的運(yùn)用。

基于以上對(duì)教材的認(rèn)識(shí),根據(jù)數(shù)學(xué)課程標(biāo)準(zhǔn)的“學(xué)生是數(shù)學(xué)學(xué)習(xí)的主人,教師是數(shù)學(xué)學(xué)習(xí)的組織者。引導(dǎo)者與合作者”這一基本理念,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)和心理特征,我認(rèn)為本節(jié)課的教學(xué)目標(biāo)有:

基于本節(jié)課是屬于新授課中的數(shù)學(xué)命題教學(xué),根據(jù)《學(xué)記》中啟發(fā)誘導(dǎo)的思想和布魯納的發(fā)現(xiàn)學(xué)習(xí)理論,我將主要采用“啟發(fā)式教學(xué)”和“探究性教學(xué)”的教學(xué)方法即從一個(gè)實(shí)際問題出發(fā),發(fā)現(xiàn)無法使用剛學(xué)習(xí)的正弦定理解決,造成學(xué)生在認(rèn)知上的沖突,產(chǎn)生疑惑,從而激發(fā)學(xué)生的探索新知的欲望,之后進(jìn)一步啟發(fā)誘導(dǎo)學(xué)生分析,綜合,概括從而得出原理解決問題,最終形成概念,獲得方法,培養(yǎng)能力。

在教學(xué)中利用計(jì)算機(jī)多媒體來輔助教學(xué),充分發(fā)揮其快捷、生動(dòng)、形象的特點(diǎn)。

為達(dá)到本節(jié)課的教學(xué)目標(biāo)、突出重點(diǎn)、突破難點(diǎn),在教材分析、確定教學(xué)目標(biāo)和合理選擇教法與學(xué)法的基礎(chǔ)上,我把教學(xué)過程設(shè)計(jì)為以下四個(gè)階段:創(chuàng)設(shè)情境、引入課題;探索研究、構(gòu)建新知;例題講解、鞏固練習(xí);課堂小結(jié),布置作業(yè)。具體過程如下:

1、創(chuàng)設(shè)情境,引入課題。

利用多媒體引出如下問題:

a地和b地之間隔著一個(gè)水塘現(xiàn)選擇一地點(diǎn)c,可以測(cè)得的大小及,求a、b兩地之間的距離c。

【設(shè)計(jì)意圖】由于學(xué)生剛學(xué)過正弦定理,一定會(huì)采用剛學(xué)的知識(shí)解題,但由于無法找到一組已知的邊及其所對(duì)角,從而產(chǎn)生疑惑,激發(fā)學(xué)生探索欲望。

2、探索研究、構(gòu)建新知。

(1)由于初中接觸的是解直角三角形的問題,所以我將先帶領(lǐng)學(xué)生從特殊情況為直角三角形()時(shí)考慮。此時(shí)使用勾股定理,得。

(3)考慮到我們所作的圖為銳角三角形,討論上述結(jié)論能否推廣到在為鈍角三角形()中。

通過解決問題可以得到在任意三角形中都有,之后讓同學(xué)們類比出……這樣我就完成了對(duì)余弦定理的引入,之后總結(jié)給出余弦定理的內(nèi)容及公式表示。

在學(xué)生已學(xué)習(xí)了向量的基礎(chǔ)上,考慮到新課改中要求使用新工具、新方法,我會(huì)引導(dǎo)同學(xué)類比向量法證明正弦定理的過程嘗試使用向量的方法證明余弦定理、之后引導(dǎo)學(xué)生對(duì)余弦定理公式進(jìn)行變形,用三邊值來表示角的余弦值,給出余弦定理的第二種表示形式,這樣就完成了新知的構(gòu)建。

根據(jù)余弦定理的兩種形式,我們可以利用余弦定理解決以下兩類解斜三角形的問題:

(1)已知三邊,求三個(gè)角;

(2)已知三角形兩邊及其夾角,求第三邊和其他兩個(gè)角。

3、例題講解、鞏固練習(xí)。

本階段的教學(xué)主要是通過對(duì)例題和練習(xí)的思考交流、分析講解以及反思小結(jié),使學(xué)生初步掌握使用余弦定理解決問題的方法。其中例題先以學(xué)生自己思考解題為主,教師點(diǎn)評(píng)后再規(guī)范解題步驟及板書,課堂練習(xí)請(qǐng)同學(xué)們自主完成,并請(qǐng)同學(xué)上黑板板書,從而鞏固余弦定理的運(yùn)用。

例題講解:

例1在中,

(1)已知,求;

(2)已知,求。

【設(shè)計(jì)意圖】例題1分別是通過已知三角形兩邊及其夾角求第三邊,已知三角形三邊求其夾角,這樣余弦定理的兩個(gè)形式分別得到了運(yùn)用,進(jìn)而鞏固了學(xué)生對(duì)余弦定理的運(yùn)用。

例2對(duì)于例題1(2),求的大小。

【設(shè)計(jì)意圖】已經(jīng)求出了的度數(shù),學(xué)生可能會(huì)有兩種解法:運(yùn)用正弦定理或運(yùn)用余弦定理,比較正弦定理和余弦定理,發(fā)現(xiàn)使用余弦定理求解角的問題可以避免解的取舍問題。

例3使用余弦定理證明:在中,當(dāng)為銳角時(shí);當(dāng)為鈍角時(shí),

【設(shè)計(jì)意圖】例3通過對(duì)和的比較,體現(xiàn)了“余弦定理是勾股定理的'推廣”這一思想,進(jìn)一步加深了對(duì)余弦定理的認(rèn)識(shí)和理解。

課堂練習(xí):

練習(xí)1在中,

(1)已知,求;

(2)已知,求。

【設(shè)計(jì)意圖】檢驗(yàn)學(xué)生是否掌握余弦定理的兩個(gè)形式,鞏固學(xué)生對(duì)余弦定理的運(yùn)用。

練習(xí)2若三條線段長(zhǎng)分別為5,6,7,則用這三條線段()。

a、能組成直角三角形。

b、能組成銳角三角形。

c、能組成鈍角三角形。

d、不能組成三角形。

【設(shè)計(jì)意圖】與例題3相呼應(yīng)。

練習(xí)3在中,已知,試求的大小。

【設(shè)計(jì)意圖】要求靈活使用公式,對(duì)公式進(jìn)行變形。

4、課堂小結(jié),布置作業(yè)。

先請(qǐng)同學(xué)對(duì)本節(jié)課所學(xué)內(nèi)容進(jìn)行小結(jié),教師再對(duì)以下三個(gè)方面進(jìn)行總結(jié):

(3)余弦定理的可以解決的兩類解斜三角形的問題。

通過師生的共同小結(jié),發(fā)揮學(xué)生的主體作用,有利于學(xué)生鞏固所學(xué)知識(shí),也能培養(yǎng)學(xué)生的歸納和概括能力。

布置作業(yè)。

必做題:習(xí)題1、2、1、2、3、5、6;

選做題:習(xí)題1、2、12、13。

【設(shè)計(jì)意圖】。

作業(yè)分為必做題和選做題、針對(duì)學(xué)生素質(zhì)的差異進(jìn)行分層訓(xùn)練,既使學(xué)生掌握基礎(chǔ)知識(shí),又使學(xué)有余力的學(xué)生有所提高。

各位老師,以上所說只是我預(yù)設(shè)的一種方案,但課堂是千變?nèi)f化的,會(huì)隨著學(xué)生和教師的臨時(shí)發(fā)揮而隨機(jī)生成。預(yù)設(shè)效果如何,最終還有待于課堂教學(xué)實(shí)踐的檢驗(yàn)。

本說課一定存在諸多不足,懇請(qǐng)老師提出寶貴意見,謝謝。

余弦定理課件篇九

《余弦定理》選自人教a版高中數(shù)學(xué)必修五第一章第一節(jié)第一課時(shí)。本節(jié)課的主要教學(xué)內(nèi)容是余弦定理的內(nèi)容及證明,以及運(yùn)用余弦定理解決“兩邊一夾角”“三邊”的解三角形問題。

知識(shí)與技能:1、理解并掌握余弦定理和余弦定理的推論。

2、掌握余弦定理的推導(dǎo)、證明過程。

3、能運(yùn)用余弦定理及其推論解決“兩邊一夾角”“三邊”問題。 過程與方法:1、通過從實(shí)際問題中抽象出數(shù)學(xué)問題,培養(yǎng)學(xué)生知識(shí)的遷移能力。

2、通過直角三角形到一般三角形的過渡,培養(yǎng)學(xué)生歸納總結(jié)能力。3、通過余弦定理推導(dǎo)證明的過程,培養(yǎng)學(xué)生運(yùn)用所學(xué)知識(shí)解決實(shí)際問題的能力。

情感態(tài)度與價(jià)值觀:1、在交流合作的過程中增強(qiáng)合作探究、團(tuán)結(jié)協(xié)作精神,體驗(yàn) 解決問題的成功喜悅。

2、感受數(shù)學(xué)一般規(guī)律的美感,培養(yǎng)數(shù)學(xué)學(xué)習(xí)的興趣。 三、教學(xué)重難點(diǎn)

重點(diǎn):余弦定理及其推論和余弦定理的運(yùn)用。

難點(diǎn):余弦定理的發(fā)現(xiàn)和推導(dǎo)過程以及多解情況的判斷。

四、教學(xué)用具

普通教學(xué)工具、多媒體工具 (以上均為命題教學(xué)的準(zhǔn)備)

余弦定理課件篇十

隨著科學(xué)技術(shù)的發(fā)展,教育資源和教育需求也隨之增長(zhǎng)和變化。我校進(jìn)行了初中數(shù)學(xué)分層教學(xué)課題研究,而分層次備課是搞好分層教學(xué)的關(guān)鍵,教師應(yīng)在吃透教材、大綱的情況下,按照不同層次學(xué)生的實(shí)際情況,設(shè)計(jì)好分層次教學(xué)的全過程。本文將結(jié)合本人的教學(xué)經(jīng)驗(yàn),對(duì)分層教學(xué)教案設(shè)計(jì)進(jìn)行初步探討。

1教學(xué)目標(biāo)的制定。

制定具體可行的教學(xué)目標(biāo),先要分清哪些屬于共同目標(biāo),哪些屬于層次目標(biāo)。并在知識(shí)與技能、過程與方法、情感態(tài)度與價(jià)值觀三個(gè)方面對(duì)不同層次的學(xué)生制定具體的要求。

2教法學(xué)法的制定。

制定教法學(xué)法應(yīng)結(jié)合各層次學(xué)生的具體情況而定,如對(duì)a層學(xué)生少講多練,注重培養(yǎng)其自學(xué)能力;對(duì)b層學(xué)生,則實(shí)行精講精練,注重課本上的例題和習(xí)題的處理;對(duì)c層學(xué)生則要求要低,淺講多練,弄懂基本概念,掌握必要的基礎(chǔ)知識(shí)和基本技能。

3教學(xué)重難點(diǎn)的制定。

教學(xué)重難點(diǎn)的制定也應(yīng)結(jié)合各層次學(xué)生的具體情況而定。

4教學(xué)過程的設(shè)計(jì)。

4.1情境導(dǎo)向,分層定標(biāo)。教師以實(shí)例演示、設(shè)問等多種方法導(dǎo)入新課。要利用各種教學(xué)資料創(chuàng)設(shè)恰當(dāng)?shù)膶W(xué)習(xí)情境為各層學(xué)生呈現(xiàn)適合于本層學(xué)生水平學(xué)習(xí)的內(nèi)容。

4.2分層練習(xí),探討生疑。學(xué)生對(duì)照各自的目標(biāo)分層自學(xué)。教師要鼓勵(lì)學(xué)生主動(dòng)實(shí)踐,自覺地去發(fā)現(xiàn)問題、探討問題、解決問題。

4.3集體回授,異步釋疑?!凹w回授”主要是針對(duì)人數(shù)占優(yōu)勢(shì)的b層學(xué)生,為解決具有共性的問題而組織的一種集體教學(xué)活動(dòng)。教師為那些來不及解決的、不具有共性的問題分先后在層內(nèi)釋疑即“異步釋疑”。

5練習(xí)與作業(yè)的設(shè)計(jì)。

教師在設(shè)計(jì)練習(xí)或布置作業(yè)時(shí)要遵循“兩部三層”的原則?!皟刹俊笔侵妇毩?xí)或作業(yè)分為必做題和選做題兩部分;“三層”是指教師在處理練習(xí)時(shí)要具有三個(gè)層次:第一層次為知識(shí)的直接運(yùn)用和基礎(chǔ)練習(xí);第二、三兩層次的題目為選做題,這樣可使a層學(xué)生有練習(xí)的機(jī)會(huì),b、c兩層學(xué)生也有充分發(fā)展的余地。

分層教學(xué)下教師不能再“拿一個(gè)教案用到底”,而要精心地設(shè)計(jì)課堂教學(xué)活動(dòng),針對(duì)不同層次的學(xué)生選擇恰當(dāng)?shù)姆椒ê褪侄?,了解學(xué)生的實(shí)際需求,關(guān)心他們的進(jìn)步,改革課堂教學(xué)模式,充分調(diào)動(dòng)學(xué)生的學(xué)習(xí)主動(dòng)性,創(chuàng)造良好的課堂教學(xué)氛圍,形成成功的激勵(lì)機(jī)制,確保每一個(gè)學(xué)生都有所進(jìn)步。

將本文的word文檔下載到電腦,方便收藏和打印。

余弦定理課件篇十一

人教版《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書?必修(五)》(第2版)第一章《解三角形》第一單元第二課《余弦定理》。通過利用向量的數(shù)量積方法推導(dǎo)余弦定理,正確理解其結(jié)構(gòu)特征和表現(xiàn)形式,解決“邊、角、邊”和“邊、邊、邊”問題,初步體會(huì)余弦定理解決“邊、邊、角”,體會(huì)方程思想,激發(fā)學(xué)生探究數(shù)學(xué),應(yīng)用數(shù)學(xué)的潛能。

本課之前,學(xué)生已經(jīng)學(xué)習(xí)了三角函數(shù)、向量基本知識(shí)和正弦定理有關(guān)內(nèi)容,對(duì)于三角形中的邊角關(guān)系有了較進(jìn)一步的認(rèn)識(shí)。在此基礎(chǔ)上利用向量方法探求余弦定理,學(xué)生已有一定的學(xué)習(xí)基礎(chǔ)和學(xué)習(xí)興趣??傮w上學(xué)生應(yīng)用數(shù)學(xué)知識(shí)的意識(shí)不強(qiáng),創(chuàng)造力較弱,看待與分析問題不深入,知識(shí)的系統(tǒng)性不完善,使得學(xué)生在余弦定理推導(dǎo)方法的探求上有一定的難度,在發(fā)掘出余弦定理的結(jié)構(gòu)特征、表現(xiàn)形式的數(shù)學(xué)美時(shí),能夠激發(fā)學(xué)生熱愛數(shù)學(xué)的思想感情;從具體問題中抽象出數(shù)學(xué)的本質(zhì),應(yīng)用方程的思想去審視,解決問題是學(xué)生學(xué)習(xí)的一大難點(diǎn)。

新課程的數(shù)學(xué)提倡學(xué)生動(dòng)手實(shí)踐,自主探索,合作交流,深刻地理解基本結(jié)論的本質(zhì),體驗(yàn)數(shù)學(xué)發(fā)現(xiàn)和創(chuàng)造的歷程,力求對(duì)現(xiàn)實(shí)世界蘊(yùn)涵的一些數(shù)學(xué)模式進(jìn)行思考,作出判斷;同時(shí)要求教師從知識(shí)的傳授者向課堂的設(shè)計(jì)者、組織者、引導(dǎo)者、合作者轉(zhuǎn)化,從課堂的執(zhí)行者向?qū)嵤┱?、探究開發(fā)者轉(zhuǎn)化。本課盡力追求新課程要求,利用師生的互動(dòng)合作,提高學(xué)生的數(shù)學(xué)思維能力,發(fā)展學(xué)生的數(shù)學(xué)應(yīng)用意識(shí)和創(chuàng)新意識(shí),深刻地體會(huì)數(shù)學(xué)思想方法及數(shù)學(xué)的應(yīng)用,激發(fā)學(xué)生探究數(shù)學(xué)、應(yīng)用數(shù)學(xué)知識(shí)的潛能。

繼續(xù)探索三角形的邊長(zhǎng)與角度間的具體量化關(guān)系、掌握余弦定理的兩種表現(xiàn)形式,體會(huì)向量方法推導(dǎo)余弦定理的思想;通過實(shí)踐演算運(yùn)用余弦定理解決“邊、角、邊”及“邊、邊、邊”問題;深化與細(xì)化方程思想,理解余弦定理的本質(zhì)。通過相關(guān)教學(xué)知識(shí)的聯(lián)系性,理解事物間的普遍聯(lián)系性。

教學(xué)重點(diǎn)是余弦定理的發(fā)現(xiàn)過程及定理的應(yīng)用;教學(xué)難點(diǎn)是用向量的數(shù)量積推導(dǎo)余弦定理的思路方法及余弦定理在應(yīng)用求解三角形時(shí)的思路。

本課的教學(xué)應(yīng)具有承上啟下的目的。因此在教學(xué)設(shè)計(jì)時(shí)既要兼顧前后知識(shí)的聯(lián)系,又要使學(xué)生明確本課學(xué)習(xí)的重點(diǎn),將新舊知識(shí)逐漸地融為一體,構(gòu)建比較完整的知識(shí)系統(tǒng)。所以在余弦定理的表現(xiàn)方式、結(jié)構(gòu)特征上重加指導(dǎo),只有當(dāng)學(xué)生正確地理解了余弦定理的本質(zhì),才能更好地應(yīng)用求解問題。本課教學(xué)設(shè)計(jì)力求在型(模型、類型),質(zhì)(實(shí)質(zhì)、本質(zhì)),思(思維、思想方法)上達(dá)到教學(xué)效果。本課之前學(xué)生已學(xué)習(xí)過三角函數(shù),平面幾何,平面向量、解析幾何、正弦定理等與本課緊密聯(lián)系的內(nèi)容,使本課有了較多的處理工具,也使余弦定理的探討有了更加簡(jiǎn)潔的工具。因此在本課的教學(xué)設(shè)計(jì)中抓住前后知識(shí)的聯(lián)系,重視數(shù)學(xué)思想的教學(xué),加深對(duì)數(shù)學(xué)概念本質(zhì)的理解,認(rèn)識(shí)數(shù)學(xué)與實(shí)際的聯(lián)系,學(xué)會(huì)應(yīng)用數(shù)學(xué)知識(shí)和方法解決一些實(shí)際問題。學(xué)生應(yīng)用數(shù)學(xué)的意識(shí)不強(qiáng),創(chuàng)造力不足、看待問題不深入,很大原因在于學(xué)生的知識(shí)系統(tǒng)不夠完善。因此本課運(yùn)用聯(lián)系的觀點(diǎn),從多角度看待問題,在提出問題、思考分析問題、解決問題等多方面對(duì)學(xué)生進(jìn)行示范引導(dǎo),將舊知識(shí)與新知識(shí)進(jìn)行重組擬合及提高,幫助學(xué)生建立自己的良好知識(shí)結(jié)構(gòu)。

余弦定理課件篇十二

本課是在學(xué)生學(xué)習(xí)了三角函數(shù)、平面幾何、平面向量、正弦定理的基礎(chǔ)上而設(shè)置的教學(xué)內(nèi)容,因此本課的教學(xué)有較多的處理辦法。從解三角形的問題出發(fā),提出解題需要,引發(fā)認(rèn)知沖突,激起學(xué)生的求知欲望,調(diào)動(dòng)了學(xué)生的學(xué)習(xí)積極性;在定理證明的教學(xué)中,引導(dǎo)學(xué)生從向量知識(shí)、坐標(biāo)法、平面幾何等方面進(jìn)行分析討論。在給出余弦定理的三個(gè)等式和三個(gè)推論之后,又對(duì)知識(shí)進(jìn)行了歸納比較,發(fā)現(xiàn)特征,便于學(xué)生識(shí)記,同時(shí)也指出了勾股定理是余弦定理的特殊情形,提高了學(xué)生的思維層次。

命題的應(yīng)用是命題教學(xué)的一個(gè)重要環(huán)節(jié),學(xué)習(xí)命題的重要目的是應(yīng)用命題去解決問題。所以,例題的精選、講解是至關(guān)重要的。設(shè)計(jì)中的例1、例2是常規(guī)題,讓學(xué)生應(yīng)用數(shù)學(xué)知識(shí)求解問題,鞏固余弦定理知識(shí)。例3是已知兩邊一對(duì)角,求解三角形問題,可用正弦定理求之,也可用余弦定理求解,通過比較分析,突出了正、余弦定理的聯(lián)系,深化了對(duì)兩個(gè)定理的理解,培養(yǎng)了解決問題的能力。本課在繼承了傳統(tǒng)數(shù)學(xué)教學(xué)模式優(yōu)點(diǎn),結(jié)合新課程的要求進(jìn)行改進(jìn)和發(fā)展,以發(fā)展學(xué)生的數(shù)學(xué)思維能力為主線,發(fā)揮教師的設(shè)計(jì)者,組織者作用,在使學(xué)生掌握知識(shí)的同時(shí),幫助學(xué)生摸索自己的學(xué)習(xí)方法。

本課的教學(xué)應(yīng)具有承上啟下的目的。因此在教學(xué)設(shè)計(jì)時(shí)既兼顧前后知識(shí)的聯(lián)系,又使學(xué)生明確本課學(xué)習(xí)的重點(diǎn),將新舊知識(shí)逐漸地融為一體,構(gòu)建比較完整的知識(shí)系統(tǒng)。所以在余弦定理的表現(xiàn)方式、結(jié)構(gòu)特征上重加指導(dǎo),只有當(dāng)學(xué)生正確地理解了余弦定理的本質(zhì),才能更好地應(yīng)用求解問題。本課教學(xué)設(shè)計(jì)力求在型(模型、類型),質(zhì)(實(shí)質(zhì)、本質(zhì)),思(思維、思想方法)上達(dá)到教學(xué)效果。本課之前學(xué)生已學(xué)習(xí)過三角函數(shù),平面幾何,平面向量、解析幾何、正弦定理等與本課緊密聯(lián)系的內(nèi)容,使本課有了較多的處理工具,也使余弦定理的探討有了更加簡(jiǎn)潔的工具。因此在本課的教學(xué)設(shè)計(jì)中抓住前后知識(shí)的聯(lián)系,重視數(shù)學(xué)思想的教學(xué),加深對(duì)數(shù)學(xué)概念本質(zhì)的理解,認(rèn)識(shí)數(shù)學(xué)與實(shí)際的聯(lián)系,學(xué)會(huì)應(yīng)用數(shù)學(xué)知識(shí)和方法解決一些實(shí)際問題。學(xué)生應(yīng)用數(shù)學(xué)的意識(shí)不強(qiáng),創(chuàng)造力不足、看待問題不深入,很大原因在于學(xué)生的知識(shí)系統(tǒng)不夠完善。因此本課運(yùn)用聯(lián)系的觀點(diǎn),從多角度看待問題,在提出問題、思考分析問題、解決問題等多方面對(duì)學(xué)生進(jìn)行示范引導(dǎo),將舊知識(shí)與新知識(shí)進(jìn)行重組擬合及提高,幫助學(xué)生建立自己的良好知識(shí)結(jié)構(gòu)。

本課學(xué)生動(dòng)手較多,會(huì)有很多新問題產(chǎn)生,因此顯得課堂時(shí)間不足。今后教學(xué)要在這方面注意把握。

余弦定理課件篇十三

人教版《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書·必修(五)》(第2版)第一章《解三角形》第一單元第二課《余弦定理》。通過利用向量的數(shù)量積方法推導(dǎo)余弦定理,正確理解其結(jié)構(gòu)特征和表現(xiàn)形式,解決“邊、角、邊”和“邊、邊、邊”問題,初步體會(huì)余弦定理解決“邊、邊、角”,體會(huì)方程思想,激發(fā)學(xué)生探究數(shù)學(xué),應(yīng)用數(shù)學(xué)的潛能。

本課之前,學(xué)生已經(jīng)學(xué)習(xí)了三角函數(shù)、向量基本知識(shí)和正弦定理有關(guān)內(nèi)容,對(duì)于三角形中的邊角關(guān)系有了較進(jìn)一步的認(rèn)識(shí)。在此基礎(chǔ)上利用向量方法探求余弦定理,學(xué)生已有一定的學(xué)習(xí)基礎(chǔ)和學(xué)習(xí)興趣??傮w上學(xué)生應(yīng)用數(shù)學(xué)知識(shí)的意識(shí)不強(qiáng),創(chuàng)造力較弱,看待與分析問題不深入,知識(shí)的系統(tǒng)性不完善,使得學(xué)生在余弦定理推導(dǎo)方法的探求上有一定的難度,在發(fā)掘出余弦定理的結(jié)構(gòu)特征、表現(xiàn)形式的數(shù)學(xué)美時(shí),能夠激發(fā)學(xué)生熱愛數(shù)學(xué)的思想感情;從具體問題中抽象出數(shù)學(xué)的本質(zhì),應(yīng)用方程的思想去審視,解決問題是學(xué)生學(xué)習(xí)的一大難點(diǎn)。

新課程的數(shù)學(xué)提倡學(xué)生動(dòng)手實(shí)踐,自主探索,合作交流,深刻地理解基本結(jié)論的本質(zhì),體驗(yàn)數(shù)學(xué)發(fā)現(xiàn)和創(chuàng)造的歷程,力求對(duì)現(xiàn)實(shí)世界蘊(yùn)涵的一些數(shù)學(xué)模式進(jìn)行思考,作出判斷;同時(shí)要求教師從知識(shí)的傳授者向課堂的設(shè)計(jì)者、組織者、引導(dǎo)者、合作者轉(zhuǎn)化,從課堂的執(zhí)行者向?qū)嵤┱?、探究開發(fā)者轉(zhuǎn)化。本課盡力追求新課程要求,利用師生的互動(dòng)合作,提高學(xué)生的數(shù)學(xué)思維能力,發(fā)展學(xué)生的數(shù)學(xué)應(yīng)用意識(shí)和創(chuàng)新意識(shí),深刻地體會(huì)數(shù)學(xué)思想方法及數(shù)學(xué)的應(yīng)用,激發(fā)學(xué)生探究數(shù)學(xué)、應(yīng)用數(shù)學(xué)知識(shí)的潛能。

繼續(xù)探索三角形的邊長(zhǎng)與角度間的具體量化關(guān)系、掌握余弦定理的兩種表現(xiàn)形式,體會(huì)向量方法推導(dǎo)余弦定理的思想;通過實(shí)踐演算運(yùn)用余弦定理解決“邊、角、邊”及“邊、邊、邊”問題;深化與細(xì)化方程思想,理解余弦定理的本質(zhì)。通過相關(guān)教學(xué)知識(shí)的聯(lián)系性,理解事物間的普遍聯(lián)系性。

教學(xué)重點(diǎn)是余弦定理的發(fā)現(xiàn)過程及定理的應(yīng)用;教學(xué)難點(diǎn)是用向量的數(shù)量積推導(dǎo)余弦定理的思路方法及余弦定理在應(yīng)用求解三角形時(shí)的思路。

本課的教學(xué)應(yīng)具有承上啟下的目的。因此在教學(xué)設(shè)計(jì)時(shí)既要兼顧前后知識(shí)的聯(lián)系,又要使學(xué)生明確本課學(xué)習(xí)的重點(diǎn),將新舊知識(shí)逐漸地融為一體,構(gòu)建比較完整的知識(shí)系統(tǒng)。所以在余弦定理的表現(xiàn)方式、結(jié)構(gòu)特征上重加指導(dǎo),只有當(dāng)學(xué)生正確地理解了余弦定理的本質(zhì),才能更好地應(yīng)用求解問題。本課教學(xué)設(shè)計(jì)力求在型(模型、類型),質(zhì)(實(shí)質(zhì)、本質(zhì)),思(思維、思想方法)上達(dá)到教學(xué)效果。本課之前學(xué)生已學(xué)習(xí)過三角函數(shù),平面幾何,平面向量、解析幾何、正弦定理等與本課緊密聯(lián)系的內(nèi)容,使本課有了較多的處理工具,也使余弦定理的探討有了更加簡(jiǎn)潔的工具。因此在本課的教學(xué)設(shè)計(jì)中抓住前后知識(shí)的聯(lián)系,重視數(shù)學(xué)思想的教學(xué),加深對(duì)數(shù)學(xué)概念本質(zhì)的理解,認(rèn)識(shí)數(shù)學(xué)與實(shí)際的聯(lián)系,學(xué)會(huì)應(yīng)用數(shù)學(xué)知識(shí)和方法解決一些實(shí)際問題。學(xué)生應(yīng)用數(shù)學(xué)的意識(shí)不強(qiáng),創(chuàng)造力不足、看待問題不深入,很大原因在于學(xué)生的知識(shí)系統(tǒng)不夠完善。因此本課運(yùn)用聯(lián)系的觀點(diǎn),從多角度看待問題,在提出問題、思考分析問題、解決問題等多方面對(duì)學(xué)生進(jìn)行示范引導(dǎo),將舊知識(shí)與新知識(shí)進(jìn)行重組擬合及提高,幫助學(xué)生建立自己的良好知識(shí)結(jié)構(gòu)。

余弦定理課件篇十四

奇偶性是人教a版第一章集合與函數(shù)概念的第3節(jié)函數(shù)的基本性質(zhì)的第2小節(jié)。

奇偶性是函數(shù)的一條重要性質(zhì),教材從學(xué)生熟悉的及入手,從特殊到一般,從具體到抽象,注重信息技術(shù)的應(yīng)用,比較系統(tǒng)地介紹了函數(shù)的奇偶性。從知識(shí)結(jié)構(gòu)看,它既是函數(shù)概念的拓展和深化,又是后續(xù)研究指數(shù)函數(shù)、對(duì)數(shù)函數(shù)、冪函數(shù)、三角函數(shù)的基礎(chǔ)。因此,本節(jié)課起著承上啟下的重要作用。

2、學(xué)情分析。

從學(xué)生的認(rèn)知基礎(chǔ)看,學(xué)生在初中已經(jīng)學(xué)習(xí)了軸對(duì)稱圖形和中心對(duì)稱圖形,并且有了一定數(shù)量的簡(jiǎn)單函數(shù)的儲(chǔ)備。同時(shí),剛剛學(xué)習(xí)了函數(shù)單調(diào)性,已經(jīng)積累了研究函數(shù)的基本方法與初步經(jīng)驗(yàn)。

3、教學(xué)目標(biāo)。

基于以上對(duì)教材和學(xué)生的分析,以及新課標(biāo)理念,我設(shè)計(jì)了這樣的教學(xué)目標(biāo):

余弦定理課件篇十五

《余弦定理》選自人教a版高中數(shù)學(xué)必修五第一章第一節(jié)第一課時(shí)。本節(jié)課的主要教學(xué)內(nèi)容是余弦定理的內(nèi)容及證明,以及運(yùn)用余弦定理解決“兩邊一夾角”“三邊”的解三角形問題。

余弦定理的學(xué)習(xí)有充分的基礎(chǔ),初中的勾股定理、必修一中的向量知識(shí)、上一課時(shí)的正弦定理都是本節(jié)課內(nèi)容學(xué)習(xí)的知識(shí)基礎(chǔ),同時(shí)又對(duì)本節(jié)課的學(xué)習(xí)提供了一定的方法指導(dǎo)。其次,余弦定理在高中解三角形問題中有著重要的地位,是解決各種解三角形問題的常用方法,余弦定理也經(jīng)常運(yùn)用于空間幾何中,所以余弦定理是高中數(shù)學(xué)學(xué)習(xí)的一個(gè)十分重要的內(nèi)容。

1、理解并掌握余弦定理和余弦定理的推論。

2、掌握余弦定理的推導(dǎo)、證明過程。

3、能運(yùn)用余弦定理及其推論解決“兩邊一夾角”“三邊”問題。

1、通過從實(shí)際問題中抽象出數(shù)學(xué)問題,培養(yǎng)學(xué)生知識(shí)的遷移能力。

2、通過直角三角形到一般三角形的過渡,培養(yǎng)學(xué)生歸納總結(jié)能力。

3、通過余弦定理推導(dǎo)證明的過程,培養(yǎng)學(xué)生運(yùn)用所學(xué)知識(shí)解決實(shí)際問題的能力。

1、在交流合作的過程中增強(qiáng)合作探究、團(tuán)結(jié)協(xié)作精神,體驗(yàn) 解決問題的成功喜悅。

2、感受數(shù)學(xué)一般規(guī)律的美感,培養(yǎng)數(shù)學(xué)學(xué)習(xí)的興趣。

重點(diǎn):余弦定理及其推論和余弦定理的運(yùn)用。

難點(diǎn):余弦定理的發(fā)現(xiàn)和推導(dǎo)過程以及多解情況的判斷。

普通教學(xué)工具、多媒體工具 (以上均為命題教學(xué)的準(zhǔn)備)

余弦定理課件篇十六

今天我說課的內(nèi)容是余弦定理,本節(jié)內(nèi)容共分3課時(shí),今天我將就第1課時(shí)的余弦定理的證明與簡(jiǎn)單應(yīng)用進(jìn)行說課。下面我分別從教材分析。教學(xué)目標(biāo)的確定。教學(xué)方法的選擇和教學(xué)過程的設(shè)計(jì)這四個(gè)方面來闡述我對(duì)這節(jié)課的教學(xué)設(shè)想。

本節(jié)內(nèi)容是江蘇教育出版社出版的普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書《數(shù)學(xué)》必修五的第一章第2節(jié),在此之前學(xué)生已經(jīng)學(xué)習(xí)過了勾股定理。平面向量、正弦定理等相關(guān)知識(shí),這為過渡到本節(jié)內(nèi)容的學(xué)習(xí)起著鋪墊作用。本節(jié)內(nèi)容實(shí)質(zhì)是學(xué)生已經(jīng)學(xué)習(xí)的勾股定理的延伸和推廣,它描述了三角形重要的邊角關(guān)系,將三角形的“邊”與“角”有機(jī)的聯(lián)系起來,實(shí)現(xiàn)邊角關(guān)系的互化,為解決斜三角形中的邊角求解問題提供了一個(gè)重要的工具,同時(shí)也為在日后學(xué)習(xí)中判斷三角形形狀,證明三角形有關(guān)的等式與不等式提供了重要的依據(jù)。

在本節(jié)課中教學(xué)重點(diǎn)是余弦定理的內(nèi)容和公式的掌握,余弦定理在三角形邊角計(jì)算中的運(yùn)用;教學(xué)難點(diǎn)是余弦定理的發(fā)現(xiàn)及證明;教學(xué)關(guān)鍵是余弦定理在三角形邊角計(jì)算中的運(yùn)用。

基于以上對(duì)教材的認(rèn)識(shí),根據(jù)數(shù)學(xué)課程標(biāo)準(zhǔn)的“學(xué)生是數(shù)學(xué)學(xué)習(xí)的主人,教師是數(shù)學(xué)學(xué)習(xí)的組織者。引導(dǎo)者與合作者”這一基本理念,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)和心理特征,我認(rèn)為本節(jié)課的教學(xué)目標(biāo)有:

基于本節(jié)課是屬于新授課中的數(shù)學(xué)命題教學(xué),根據(jù)《學(xué)記》中啟發(fā)誘導(dǎo)的思想和布魯納的發(fā)現(xiàn)學(xué)習(xí)理論,我將主要采用“啟發(fā)式教學(xué)”和“探究性教學(xué)”的教學(xué)方法即從一個(gè)實(shí)際問題出發(fā),發(fā)現(xiàn)無法使用剛學(xué)習(xí)的正弦定理解決,造成學(xué)生在認(rèn)知上的沖突,產(chǎn)生疑惑,從而激發(fā)學(xué)生的探索新知的欲望,之后進(jìn)一步啟發(fā)誘導(dǎo)學(xué)生分析,綜合,概括從而得出原理解決問題,最終形成概念,獲得方法,培養(yǎng)能力。

在教學(xué)中利用計(jì)算機(jī)多媒體來輔助教學(xué),充分發(fā)揮其快捷、生動(dòng)、形象的特點(diǎn)。

為達(dá)到本節(jié)課的教學(xué)目標(biāo)、突出重點(diǎn)、突破難點(diǎn),在教材分析、確定教學(xué)目標(biāo)和合理選擇教法與學(xué)法的基礎(chǔ)上,我把教學(xué)過程設(shè)計(jì)為以下四個(gè)階段:創(chuàng)設(shè)情境、引入課題;探索研究、構(gòu)建新知;例題講解、鞏固練習(xí);課堂小結(jié),布置作業(yè)。具體過程如下:

1、創(chuàng)設(shè)情境,引入課題

利用多媒體引出如下問題:

a地和b地之間隔著一個(gè)水塘現(xiàn)選擇一地點(diǎn)c,可以測(cè)得的大小及,求a、b兩地之間的距離c。

【設(shè)計(jì)意圖】由于學(xué)生剛學(xué)過正弦定理,一定會(huì)采用剛學(xué)的知識(shí)解題,但由于無法找到一組已知的邊及其所對(duì)角,從而產(chǎn)生疑惑,激發(fā)學(xué)生探索欲望。

2、探索研究、構(gòu)建新知

(1)由于初中接觸的是解直角三角形的問題,所以我將先帶領(lǐng)學(xué)生從特殊情況為直角三角形()時(shí)考慮。此時(shí)使用勾股定理,得。

(3)考慮到我們所作的圖為銳角三角形,討論上述結(jié)論能否推廣到在為鈍角三角形()中。

通過解決問題可以得到在任意三角形中都有,之后讓同學(xué)們類比出……這樣我就完成了對(duì)余弦定理的引入,之后總結(jié)給出余弦定理的內(nèi)容及公式表示。

在學(xué)生已學(xué)習(xí)了向量的基礎(chǔ)上,考慮到新課改中要求使用新工具、新方法,我會(huì)引導(dǎo)同學(xué)類比向量法證明正弦定理的過程嘗試使用向量的方法證明余弦定理、之后引導(dǎo)學(xué)生對(duì)余弦定理公式進(jìn)行變形,用三邊值來表示角的余弦值,給出余弦定理的第二種表示形式,這樣就完成了新知的構(gòu)建。

根據(jù)余弦定理的兩種形式,我們可以利用余弦定理解決以下兩類解斜三角形的問題:

(1)已知三邊,求三個(gè)角;

(2)已知三角形兩邊及其夾角,求第三邊和其他兩個(gè)角。

3、例題講解、鞏固練習(xí)

本階段的教學(xué)主要是通過對(duì)例題和練習(xí)的思考交流、分析講解以及反思小結(jié),使學(xué)生初步掌握使用余弦定理解決問題的方法。其中例題先以學(xué)生自己思考解題為主,教師點(diǎn)評(píng)后再規(guī)范解題步驟及板書,課堂練習(xí)請(qǐng)同學(xué)們自主完成,并請(qǐng)同學(xué)上黑板板書,從而鞏固余弦定理的運(yùn)用。

例題講解:

例1在中,

(1)已知,求;

(2)已知,求。

【設(shè)計(jì)意圖】例題1分別是通過已知三角形兩邊及其夾角求第三邊,已知三角形三邊求其夾角,這樣余弦定理的兩個(gè)形式分別得到了運(yùn)用,進(jìn)而鞏固了學(xué)生對(duì)余弦定理的運(yùn)用。

例2對(duì)于例題1(2),求的大小。

【設(shè)計(jì)意圖】已經(jīng)求出了的度數(shù),學(xué)生可能會(huì)有兩種解法:運(yùn)用正弦定理或運(yùn)用余弦定理,比較正弦定理和余弦定理,發(fā)現(xiàn)使用余弦定理求解角的問題可以避免解的取舍問題。

例3使用余弦定理證明:在中,當(dāng)為銳角時(shí);當(dāng)為鈍角時(shí),

【設(shè)計(jì)意圖】例3通過對(duì)和的比較,體現(xiàn)了“余弦定理是勾股定理的推廣”這一思想,進(jìn)一步加深了對(duì)余弦定理的認(rèn)識(shí)和理解。

課堂練習(xí):

練習(xí)1在中,

(1)已知,求;

(2)已知,求。

【設(shè)計(jì)意圖】檢驗(yàn)學(xué)生是否掌握余弦定理的兩個(gè)形式,鞏固學(xué)生對(duì)余弦定理的運(yùn)用。

練習(xí)2若三條線段長(zhǎng)分別為5,6,7,則用這三條線段()。

a、能組成直角三角形

b、能組成銳角三角形

c、能組成鈍角三角形

d、不能組成三角形

【設(shè)計(jì)意圖】與例題3相呼應(yīng)。

練習(xí)3在中,已知,試求的大小。

【設(shè)計(jì)意圖】要求靈活使用公式,對(duì)公式進(jìn)行變形。

4、課堂小結(jié),布置作業(yè)

先請(qǐng)同學(xué)對(duì)本節(jié)課所學(xué)內(nèi)容進(jìn)行小結(jié),教師再對(duì)以下三個(gè)方面進(jìn)行總結(jié):

(1)余弦定理的內(nèi)容和公式;

(2)余弦定理實(shí)質(zhì)上是勾股定理的推廣;

(3)余弦定理的可以解決的兩類解斜三角形的問題。

通過師生的共同小結(jié),發(fā)揮學(xué)生的主體作用,有利于學(xué)生鞏固所學(xué)知識(shí),也能培養(yǎng)學(xué)生的歸納和概括能力。

布置作業(yè)

必做題:習(xí)題1、2、1、2、3、5、6;

選做題:習(xí)題1、2、12、13。

【設(shè)計(jì)意圖】

作業(yè)分為必做題和選做題、針對(duì)學(xué)生素質(zhì)的差異進(jìn)行分層訓(xùn)練,既使學(xué)生掌握基礎(chǔ)知識(shí),又使學(xué)有余力的學(xué)生有所提高。

各位老師,以上所說只是我預(yù)設(shè)的一種方案,但課堂是千變?nèi)f化的,會(huì)隨著學(xué)生和教師的臨時(shí)發(fā)揮而隨機(jī)生成。預(yù)設(shè)效果如何,最終還有待于課堂教學(xué)實(shí)踐的檢驗(yàn)。

本說課一定存在諸多不足,懇請(qǐng)老師提出寶貴意見,謝謝。

余弦定理課件篇十七

《余弦定理》是全日制中等教育國(guó)家規(guī)劃教材(人教版)數(shù)學(xué)第一冊(cè)中第六章平面向量第六部分。余弦定理是歐氏空間度量幾何的最重要定理,是解斜三角形的重要定理,是整個(gè)測(cè)量學(xué)的基礎(chǔ)。余弦定理是勾股定理的推廣,可用解析法、向量法等方法證明。余弦定理主要能解決有關(guān)三角形的三類問題:1)、已知兩邊及其夾角,求第三邊和其他兩個(gè)角。2)、已知三邊求三個(gè)內(nèi)角;3)、判斷三角形的形狀。以及相關(guān)的證明題。

本著數(shù)學(xué)與專業(yè)有機(jī)結(jié)合的指導(dǎo)思想,讓數(shù)學(xué)服務(wù)于專業(yè)的需要。以及最大限度的提高學(xué)生的學(xué)習(xí)興趣,在本節(jié)課,我不是將余弦定理簡(jiǎn)單呈現(xiàn)給學(xué)生,而是創(chuàng)造設(shè)情境,設(shè)計(jì)了與機(jī)械相關(guān)聯(lián)并具有愛國(guó)主題的二個(gè)任務(wù),通過任務(wù)驅(qū)動(dòng)法教學(xué),極大提高了學(xué)生的學(xué)習(xí)興趣,激發(fā)學(xué)生探索新知識(shí)的強(qiáng)烈求知欲望,在完成數(shù)學(xué)教學(xué)任務(wù)的同時(shí),強(qiáng)化了數(shù)學(xué)與專業(yè)的有機(jī)結(jié)合,培養(yǎng)了學(xué)生將數(shù)學(xué)知識(shí)運(yùn)用于自身專業(yè)中的能力。同時(shí)通過任務(wù)驅(qū)動(dòng),培養(yǎng)了學(xué)生自主探究式學(xué)習(xí)的能力;提升解決實(shí)際實(shí)際問題的能力。因?yàn)樗O(shè)計(jì)的兩個(gè)任務(wù)具有愛國(guó)主義題材,學(xué)生在完成知識(shí)學(xué)習(xí)的同時(shí),也極大的激發(fā)了愛國(guó)主義精神。

教師精心設(shè)計(jì)與機(jī)械專業(yè)相關(guān)聯(lián)的二個(gè)任務(wù),作為貫穿整節(jié)課的主線,通過具體任務(wù)的完成,提高學(xué)生學(xué)習(xí)的興趣,激發(fā)求知欲,啟發(fā)學(xué)生對(duì)問題進(jìn)行思考。在研究過程中,激發(fā)學(xué)生探索新知識(shí)的強(qiáng)烈欲望。提升解決實(shí)際總是的能力,并極大的激發(fā)了愛國(guó)主義精神。

2、引導(dǎo)發(fā)現(xiàn)法、觀察法。

通過對(duì)勾股定理的觀察和三角形直角的相關(guān)變形,學(xué)生從中受啟發(fā),發(fā)現(xiàn)余弦定理,并證明它。

3、歸納總結(jié)法。

學(xué)生通過前期的探索研究,自主歸納總結(jié)出余弦定理及其推論及判斷三角形形狀的相關(guān)規(guī)律。

4、講練結(jié)合法。

講授充分發(fā)揮教師主導(dǎo)作用,引導(dǎo)學(xué)生自主學(xué)習(xí)。練習(xí)讓學(xué)生從多角度對(duì)所學(xué)定理進(jìn)行認(rèn)知,及時(shí)鞏固所學(xué)的知識(shí),鍛煉了解決實(shí)際問題的能力,發(fā)揮出學(xué)生的主觀能動(dòng)性,成為學(xué)習(xí)的主體。

學(xué)生學(xué)法主要有觀察、分析、發(fā)現(xiàn)、自主探究、小組協(xié)作等方法。經(jīng)教師啟發(fā)、誘導(dǎo),學(xué)生通過觀察與分析去發(fā)現(xiàn)并證明余弦定理,培養(yǎng)歸納與猜想、抽象與概括等邏輯思維能力,訓(xùn)練思維品質(zhì)。

(一)知識(shí)目標(biāo)。

1、使學(xué)生掌握余弦定理及其證明。

2、使學(xué)生初步掌握應(yīng)用余弦定理解斜三角形。

1

(二)能力目標(biāo)。

1、培養(yǎng)學(xué)生在本專業(yè)范圍內(nèi)熟練運(yùn)用余弦定理解決實(shí)際問題的能力。

2、通過啟發(fā)、誘導(dǎo)學(xué)生發(fā)現(xiàn)和證明余弦定理的過程,培養(yǎng)學(xué)生觀察、分析、歸納、猜想、抽象、概括等邏輯思維能力。

3、通過對(duì)余弦定理的推導(dǎo),培養(yǎng)學(xué)生的知識(shí)遷移能力和建模意識(shí),及合作學(xué)習(xí)的意識(shí)。

(三)德育目標(biāo)。

1、培養(yǎng)學(xué)生的愛國(guó)主義精神、及團(tuán)結(jié)、協(xié)作精神。

2、通過三角函數(shù)、余弦定理、向量的數(shù)量積等知識(shí)的聯(lián)系理解事物之間普遍聯(lián)系與辯證統(tǒng)一。

教學(xué)重點(diǎn)是余弦定理及應(yīng)用余弦定理解斜三角形;

分析勾股定理的結(jié)構(gòu)特征,從而突破發(fā)現(xiàn)余弦定理,應(yīng)用余弦定理解斜三角形。

教學(xué)中注重突出重點(diǎn)、突破難點(diǎn),從五個(gè)層次進(jìn)行教學(xué)。

創(chuàng)設(shè)情境、任務(wù)驅(qū)動(dòng);

引導(dǎo)探究、發(fā)現(xiàn)定理;

完成任務(wù)、應(yīng)用遷移;

拓展升華、交流反思;

小結(jié)歸納、布置作業(yè)。

(一)、導(dǎo)入。

1、教師創(chuàng)設(shè)情境設(shè)置二個(gè)任務(wù),做為貫穿本課的主線和數(shù)學(xué)與專業(yè)有機(jī)結(jié)合的鈕帶,通過完成這二個(gè)任務(wù),達(dá)到掌握余弦定理并學(xué)會(huì)應(yīng)用的目標(biāo)。

2、通過與直角三角形勾股定理引出余弦定理(快樂起點(diǎn))經(jīng)教師啟發(fā)、誘導(dǎo),學(xué)生通過探索研究,合理猜想來發(fā)現(xiàn)余弦定理。

(二)、新課。

3、證明猜想,導(dǎo)出余弦定理及余弦定理的變形。

經(jīng)過嚴(yán)密邏輯推理證明得出余弦定理,這一過程中,鍛煉了學(xué)生觀察、分析、歸納、猜想、抽象、概括等邏輯思維能力。

4、解決二個(gè)任務(wù)。

5、操作演練,鞏固提高。

6、小結(jié):

通過學(xué)生口答方式小結(jié),讓學(xué)生強(qiáng)化記憶,分清重點(diǎn),深化對(duì)余弦定理的理解。

7、作業(yè):

板書是課堂教學(xué)重要部分,為再現(xiàn)知識(shí)體系,突出重點(diǎn),將余弦定理知識(shí)體系展示在板書中,利于學(xué)生加深印象,理清思路。

在教學(xué)設(shè)計(jì)上,采用任務(wù)驅(qū)動(dòng),教師精心設(shè)計(jì)與機(jī)械專業(yè)相關(guān)聯(lián)的二個(gè)任務(wù),作為貫穿整節(jié)課的主線,通過具體任務(wù)的完成,即提高學(xué)生學(xué)習(xí)的興趣,又激發(fā)求知欲;知識(shí)點(diǎn)學(xué)習(xí)則循序漸進(jìn),符合學(xué)生的認(rèn)知特點(diǎn)。經(jīng)教師啟發(fā)、誘導(dǎo),學(xué)生通過觀察、分析、發(fā)現(xiàn)、自主探究、小組協(xié)作等方法在獲取新知的同時(shí),培養(yǎng)了歸納與猜想、抽象與概括等邏輯思維能力。

余弦定理課件篇十八

茲有________學(xué)校__________學(xué)院______專業(yè)_________同學(xué)于_________年___月____日至_____年______月日在實(shí)習(xí)。

該同學(xué)的實(shí)習(xí)職位是_____________。

該學(xué)生在實(shí)習(xí)期間工作認(rèn)真,腳踏實(shí)地,虛心請(qǐng)教并且努力掌握工作技能,善于思考,能夠舉一反三。善解人意,積極配合領(lǐng)導(dǎo)及同事的工作,虛心聽取他人意見。在時(shí)間緊迫的情況下,能夠加時(shí)加班完成任務(wù)。能夠?qū)⒃趯W(xué)校所學(xué)的知識(shí)靈活應(yīng)用到具體的工作中去,保質(zhì)保量完成工作任務(wù)。同時(shí),本公司將要求該學(xué)生嚴(yán)格遵守我公司的各項(xiàng)規(guī)章制度,實(shí)習(xí)時(shí)間,服從實(shí)習(xí)安排,完成實(shí)習(xí)任務(wù),尊敬實(shí)習(xí)單位人員,并能與公司同事和睦相處。與其一同合作的員工都對(duì)該學(xué)生的表現(xiàn)予以肯定。

特此證明。

證明人:_________(實(shí)習(xí)單位蓋章)。

_________年____月____日。

余弦定理課件篇十九

一、教材分析:(說教材)。

《余弦定理》是全日制中等教育國(guó)家規(guī)劃教材(人教版)數(shù)學(xué)第一冊(cè)中第六章平面向量第六部分。余弦定理是歐氏空間度量幾何的最重要定理,是解斜三角形的重要定理,是整個(gè)測(cè)量學(xué)的基礎(chǔ)。余弦定理是勾股定理的推廣,可用解析法、向量法等方法證明。余弦定理主要能解決有關(guān)三角形的三類問題:1)、已知兩邊及其夾角,求第三邊和其他兩個(gè)角。2)、已知三邊求三個(gè)內(nèi)角;3)、判斷三角形的形狀。以及相關(guān)的證明題。

二、說教學(xué)思路。

本著數(shù)學(xué)與專業(yè)有機(jī)結(jié)合的指導(dǎo)思想,讓數(shù)學(xué)服務(wù)于專業(yè)的需要。以及最大限度的提高學(xué)生的學(xué)習(xí)興趣,在本節(jié)課,我不是將余弦定理簡(jiǎn)單呈現(xiàn)給學(xué)生,而是創(chuàng)造設(shè)情境,設(shè)計(jì)了與機(jī)械相關(guān)聯(lián)并具有愛國(guó)主題的二個(gè)任務(wù),通過任務(wù)驅(qū)動(dòng)法教學(xué),極大提高了學(xué)生的學(xué)習(xí)興趣,激發(fā)學(xué)生探索新知識(shí)的強(qiáng)烈求知欲望,在完成數(shù)學(xué)教學(xué)任務(wù)的同時(shí),強(qiáng)化了數(shù)學(xué)與專業(yè)的有機(jī)結(jié)合,培養(yǎng)了學(xué)生將數(shù)學(xué)知識(shí)運(yùn)用于自身專業(yè)中的能力。同時(shí)通過任務(wù)驅(qū)動(dòng),培養(yǎng)了學(xué)生自主探究式學(xué)習(xí)的能力;提升解決實(shí)際實(shí)際問題的能力。因?yàn)樗O(shè)計(jì)的兩個(gè)任務(wù)具有愛國(guó)主義題材,學(xué)生在完成知識(shí)學(xué)習(xí)的同時(shí),也極大的激發(fā)了愛國(guó)主義精神。

三、說教法。

教師精心設(shè)計(jì)與機(jī)械專業(yè)相關(guān)聯(lián)的二個(gè)任務(wù),作為貫穿整節(jié)課的主線,通過具體任務(wù)的完成,提高學(xué)生學(xué)習(xí)的興趣,激發(fā)求知欲,啟發(fā)學(xué)生對(duì)問題進(jìn)行思考。在研究過程中,激發(fā)學(xué)生探索新知識(shí)的強(qiáng)烈欲望。提升解決實(shí)際總是的能力,并極大的激發(fā)了愛國(guó)主義精神。

2.引導(dǎo)發(fā)現(xiàn)法、觀察法。

通過對(duì)勾股定理的觀察和三角形直角的相關(guān)變形,學(xué)生從中受啟發(fā),發(fā)現(xiàn)余弦定理,并證明它。

3.歸納總結(jié)法。

學(xué)生通過前期的探索研究,自主歸納總結(jié)出余弦定理及其推論及判斷三角形形狀的相關(guān)規(guī)律。

4.講練結(jié)合法。

講授充分發(fā)揮教師主導(dǎo)作用,引導(dǎo)學(xué)生自主學(xué)習(xí)。練習(xí)讓學(xué)生從多角度對(duì)所學(xué)定理進(jìn)行認(rèn)知,及時(shí)鞏固所學(xué)的知識(shí),鍛煉了解決實(shí)際問題的能力,發(fā)揮出學(xué)生的主觀能動(dòng)性,成為學(xué)習(xí)的主體。

四、說學(xué)法。

學(xué)生學(xué)法主要有觀察、分析、發(fā)現(xiàn)、自主探究、小組協(xié)作等方法。經(jīng)教師啟發(fā)、誘導(dǎo),學(xué)生通過觀察與分析去發(fā)現(xiàn)并證明余弦定理,培養(yǎng)歸納與猜想、抽象與概括等邏輯思維能力,訓(xùn)練思維品質(zhì)。

五、教學(xué)目標(biāo)。

(一)知識(shí)目標(biāo)。

1、使學(xué)生掌握余弦定理及其證明。

2、使學(xué)生初步掌握應(yīng)用余弦定理解斜三角形。

1

(二)能力目標(biāo)。

1、培養(yǎng)學(xué)生在本專業(yè)范圍內(nèi)熟練運(yùn)用余弦定理解決實(shí)際問題的能力。

2、通過啟發(fā)、誘導(dǎo)學(xué)生發(fā)現(xiàn)和證明余弦定理的過程,培養(yǎng)學(xué)生觀察、分析、歸納、猜想、抽象、概括等邏輯思維能力。

3、通過對(duì)余弦定理的推導(dǎo),培養(yǎng)學(xué)生的知識(shí)遷移能力和建模意識(shí),及合作學(xué)習(xí)的意識(shí)。

(三)德育目標(biāo)。

1、培養(yǎng)學(xué)生的愛國(guó)主義精神、及團(tuán)結(jié)、協(xié)作精神。

2、通過三角函數(shù)、余弦定理、向量的數(shù)量積等知識(shí)的聯(lián)系理解事物之間普遍聯(lián)系與辯證統(tǒng)一。

六、教學(xué)重點(diǎn)。

教學(xué)重點(diǎn)是余弦定理及應(yīng)用余弦定理解斜三角形;

七、教學(xué)難點(diǎn)。

教學(xué)中注重突出重點(diǎn)、突破難點(diǎn),從五個(gè)層次進(jìn)行教學(xué)。

創(chuàng)設(shè)情境、任務(wù)驅(qū)動(dòng);

引導(dǎo)探究、發(fā)現(xiàn)定理;

完成任務(wù)、應(yīng)用遷移;

拓展升華、交流反思;

小結(jié)歸納、布置作業(yè)。

(一)、導(dǎo)入。

1、教師創(chuàng)設(shè)情境設(shè)置二個(gè)任務(wù),做為貫穿本課的主線和數(shù)學(xué)與專業(yè)有機(jī)結(jié)合的鈕帶,通過完成這二個(gè)任務(wù),達(dá)到掌握余弦定理并學(xué)會(huì)應(yīng)用的目標(biāo)。

2、通過與直角三角形勾股定理引出余弦定理(快樂起點(diǎn))經(jīng)教師啟發(fā)、誘導(dǎo),學(xué)生通過探索研究,合理猜想來發(fā)現(xiàn)余弦定理。

(二)、新課。

3.證明猜想,導(dǎo)出余弦定理及余弦定理的變形。

經(jīng)過嚴(yán)密邏輯推理證明得出余弦定理,這一過程中,鍛煉了學(xué)生觀察、分析、歸納、猜想、抽象、概括等邏輯思維能力。

4.解決二個(gè)任務(wù)。

5.操作演練,鞏固提高。

6.小結(jié):

通過學(xué)生口答方式小結(jié),讓學(xué)生強(qiáng)化記憶,分清重點(diǎn),深化對(duì)余弦定理的理解。

7.作業(yè):

九、板書設(shè)計(jì)。

板書是課堂教學(xué)重要部分,為再現(xiàn)知識(shí)體系,突出重點(diǎn),將余弦定理知識(shí)體系展示在板書中,利于學(xué)生加深印象,理清思路。

十、課后反思。

在教學(xué)設(shè)計(jì)上,采用任務(wù)驅(qū)動(dòng),教師精心設(shè)計(jì)與機(jī)械專業(yè)相關(guān)聯(lián)的二個(gè)任務(wù),作為貫穿整節(jié)課的主線,通過具體任務(wù)的完成,即提高學(xué)生學(xué)習(xí)的興趣,又激發(fā)求知欲;知識(shí)點(diǎn)學(xué)習(xí)則循序漸進(jìn),符合學(xué)生的認(rèn)知特點(diǎn)。經(jīng)教師啟發(fā)、誘導(dǎo),學(xué)生通過觀察、分析、發(fā)現(xiàn)、自主探究、小組協(xié)作等方法在獲取新知的同時(shí),培養(yǎng)了歸納與猜想、抽象與概括等邏輯思維能力。

【本文地址:http://mlvmservice.com/zuowen/13186884.html】

全文閱讀已結(jié)束,如果需要下載本文請(qǐng)點(diǎn)擊

下載此文檔