堅持鍛煉身體,保持健康的生活方式??偨Y需要注意哪些常見的錯誤和陷阱?希望大家能充分利用這些總結范文,找到適合自己的寫作風格和技巧。
一次函數(shù)的性質教學設計篇一
在學習了正比例函數(shù)的概念之后進行一次函數(shù)的概念學習,學生還是比較有信心學好的。
課例根據(jù)教材的安排,通過設計經歷由實際問題引出一次函數(shù)解析式的過程,體會數(shù)學與現(xiàn)實生活的聯(lián)系;通過思考題來不斷細化教材,達到層層鋪墊、分層遞進的目的。
1.理解一次函數(shù)和正比例函數(shù)的概念;通過類比的方法學習一次函數(shù),體會數(shù)學研究方法多樣性。
2.根據(jù)實際問題列出簡單的一次函數(shù)的表達式.找出問題中的變量并用字母表示是探求函數(shù)關系的第一步。
3.本節(jié)課重點講授了運用函數(shù)的關系式來表達實際問題,通過引導分析,感覺學生收獲比較大。
另外,寫出函數(shù)的關系式,學生比較困難,本節(jié)課也存在可以不斷提高完善的地方。
一次函數(shù)的性質教學設計篇二
教學過程中教師應通過情境創(chuàng)設激發(fā)學生的學習興趣,對函數(shù)與圖像的對應關系應讓學生動手去實踐,去發(fā)現(xiàn),對一次函數(shù)的圖象是一條直線應讓學生自己得出。在得出結論之后,讓學生能運用“兩點確定一條直線”,很快做出一次函數(shù)的圖像。在鞏固練習活動中,鼓勵學生積極思考,提高學生解決實際問題的能力。
根據(jù)學生狀況,教學設計也應做出相應的調整.如第一環(huán)節(jié):探究新知,固然可以激發(fā)學生興趣,但也可能容易讓學生關注代數(shù)表達式的尋求,甚至部分學生形成一定的認知障礙,因此該環(huán)節(jié)也可以直接開門見山,直切主題,如提出問題:一次函數(shù)的代數(shù)形式是y=kx+b,那么,一個一次函數(shù)對應的圖形具有什么特征呢?今天我們就研究一次函數(shù)對應的圖形特征—本節(jié)課是學生首次接觸利用數(shù)形結合的思想研究一次函數(shù)圖象和性質,對他們而言觀察對象、探索思路、研究方法都是陌生的,因而在教學過程中我通過問題情境的創(chuàng)設,激發(fā)學生的學習興趣,引導學生觀察一次函數(shù)的圖像,探討一次函數(shù)的簡單性質,逐步加深學生對一次函數(shù)及性質的認識。本節(jié)課的重點是要學生了解正比例函數(shù)的確定需要一個條件,一次函數(shù)的確定需要兩個條件,能由條件求出一些簡單的一次函數(shù)表達式,并能解決有關現(xiàn)實問題。本節(jié)課設計注重發(fā)展了學生的數(shù)形結合的思想方法及綜合分析解決問題的能力及應用意識的培養(yǎng),為后繼學習打下基礎。
由于這節(jié)課的知識容量較大,而且內容較難,我們所用的學案就能很好地幫助學生消化理解該知識,。在教學過程中,讓學生親自動手、動腦畫圖的方式,通過教師的引導,學生的交流、歸納等環(huán)節(jié)較成功地完成了教學目標,收到了較好的效果。但還存在著不盡人意的地方,由于課的內容容量較大,對于有些知識點,如“隨著x值的增大,y的值分別如何化?”,本應給學生更多的時間練習、討論,以幫助理解消化該知識,但由于時間緊,學生的這一活動開展的不充分。課堂氣氛不夠活躍,個別學生的主動性、積極性沒有充分調動起來。這是今后教學中應該注意的問題。
一次函數(shù)的性質教學設計篇三
1.這節(jié)課是在學生系統(tǒng)的學習了指數(shù)概念、函數(shù)概念,基本掌握了函數(shù)性質的基礎上進行學習的,具有初步的函數(shù)知識,但是對于研究具體的初等函數(shù)的性質的基本方法和步驟還比較陌生,對于指數(shù)函數(shù)要怎么樣進行較為系統(tǒng)的研究對學生來說是有困難的,因此這節(jié)課的每一個環(huán)節(jié)以我引導,以學生的自主探究為主來完成是符合學情的。
2.設計“指數(shù)函數(shù)的圖象及性質”,“y=ax的圖象和y=(1/a)x的圖象間的關系”.“a的大小對函數(shù)圖象的影響”三個問題,讓學生通過幾何畫板軟件動手畫圖操作、自主探究、主動思考來達到對知識的發(fā)現(xiàn)和接受,改變過去機械接受和死記結論的狀況,符合新課改的理念,同時也完成了這節(jié)課的主要教學任務。
3.在對底數(shù)a的范圍的思考及三個探究性問題后都設置了練習,能及時反饋學生對所探求到的知識的掌握程度,便于及時調整課堂教學行為。從課后看學生對這些知識的掌握應該是比較好的。
在整個的教學過程中,始終體現(xiàn)以學生為本的教育理念。在學生已有的認知基礎上進行設問和引導,關注學生的認知過程,強調學生的品德、思維和心理等方面的發(fā)展。重視討論、交流和合作,重視探究問題的習慣的培養(yǎng)和養(yǎng)成。同時,考慮不同學生的個性差異和發(fā)展層次,使不同的學生都有發(fā)展,體現(xiàn)因材施教的原則。
1.沒有充分調動學生的積極性,課堂氣氛顯得沉悶。
2.盡量放手讓學生自己去解決問題,教師自己講得偏多,學生的主體作用體現(xiàn)得不夠。
3.指數(shù)函數(shù)概念部分的教學時間稍多,后面教學過程稍顯倉促,學生自主探究的時間不夠,因此違背了教學設計的初衷。
當然我會通過對學生作業(yè)的批改獲得更全面的對學生知識掌握的評價和課堂效果的反思,并在后續(xù)的時間里修訂課堂設計方案,達到預期的教學效果,實現(xiàn)學生的目標掌握和能力發(fā)展。
一次函數(shù)的性質教學設計篇四
這節(jié)課的教學主要使學生在原有基礎上,通過類比一次函數(shù)掌握二次函數(shù)圖象和性質,突出的是探索交流合作的方式。
在知識學習過程中給學生留有充分的思考與交流的時間和空間,讓學生經歷了畫圖、觀察、猜測、交流、反思等活動,借助圖形教學,形象直觀,體現(xiàn)了數(shù)形結合思想,激發(fā)了學生的學習興趣,培養(yǎng)學生的觀察、分析、歸納、概括能力,提高數(shù)學課堂教學的效率和效果,促使學生主動參與到“做”數(shù)學的活動中,從而更加深刻地認識最簡二次函數(shù)的性質。
對于本節(jié)課,我個人認為在教學思路上還是比較清晰的,重難點把握得還是比較準確的,復習時利用原來學過的函數(shù)圖像,讓學生說出增減性,很自然的就引發(fā)出了探究二次函數(shù)性質的問題以及利用具體的圖像,學生比較容易理解和掌握。
2011年10月21日來源:本站。
進入二次函數(shù)這一章節(jié)后,難點也就隨之而來了,因為這一章節(jié)中大部分的內容都是數(shù)形結合的知識,學生在這部分也一直是難點。在學習一次函數(shù)的時候,涉及到函數(shù)增減性的問題,當時的解決方法是讓學生動手去做,方法如下:首先做出一次函數(shù)的草圖,然后用左手從圖像的左到右移動,并且要求學生說出隨著x的增大(手由左向右的移動過程中x是一直在增大的),圖像是升高了還是降低了。最后把話說完整,隨著x的增大y是增大了還是減小了,這種方法在當時大部分學生還是能夠接受的。所以在二次函數(shù)的性質這節(jié)課之前我就決定了,還是用動手比劃的方法讓學生去理解增減性。
首先,讓學生理解想求出二次函數(shù)的增減性首先要從二次函數(shù)的一般式轉化為頂點式,目的在于通過頂點式就可以直接看出對稱軸,再給學生充分的時間讓學生發(fā)現(xiàn),二次函數(shù)與一次函數(shù)的增減性是不同的,一次函數(shù)不用分段去說,而二次函數(shù)要求以對稱軸為分界點分段去說。在這些都準備好之后,告訴學生判斷增減性的要點:
(1)通過函數(shù)的頂點和開口方向,畫出二次函數(shù)的草圖。
(2)在草圖上標出對稱軸,然后用對稱軸把二次函數(shù)的定義域分成兩部分。
一次函數(shù)的性質教學設計篇五
《一次函數(shù)的應用》這節(jié)課的教學內容是湘教版版八年級數(shù)學上冊第二章第三節(jié)的內容。本節(jié)課討論了一次函數(shù)的某些應用,在這些實際應用中,備課時注意到與學生的實際生活相聯(lián)系,切實發(fā)生在學生的身邊的某些實際情境,并且注意用函數(shù)觀點來處理問題或對問題的解決用函數(shù)做出某種解釋,用以加深對函數(shù)的認識,并突出知識之間的內在聯(lián)系。本節(jié)的主要內容是讓學生逐步形成用函數(shù)的觀點處理問題意識,體驗數(shù)形結合的思想方法。
教學時,能夠達到三維目標的要求,突出重點把握難點。能夠讓學生經歷數(shù)學知識的應用過程,關注對問題的分析過程,讓學生自己利用已經具備的知識分析實例。用函數(shù)的觀點處理實際問題的關鍵在于分析實際情境,建立函數(shù)模型,并進一步提出明確的數(shù)學問題,注意分析的過程,即將實際問題置于已有的知識背景之中,用數(shù)學知識重新理解(這是什么?可以看成什么?),讓學生逐步學會用數(shù)學的眼光考察實際問題。同時,在解決問題的過程中,要充分利用函數(shù)的圖象,滲透數(shù)形結合的思想。
具體分析本節(jié)課,首先簡單的用幾分鐘時間回顧一下一次函數(shù)的基本理論,“學習理論是為了服務于實踐”的一句話,打開了本節(jié)課的課題,過渡自然。本節(jié)課用函數(shù)的觀點處理實際問題,主要圍繞著路程、價格這樣的實際問題,通過在速度一定的條件下路程與時間的關系,總價在單價一定的情形下,總價與數(shù)量的關系這幾個例題,認識到一次函數(shù)與實際問題的關系,在講解這幾個例子的時候,創(chuàng)設了學生熟悉的情境,如在建立一次函數(shù)模型進行預測的問題時,問學生:“你知道今年奧運會的撐桿跳高的記錄是多少?你能對它進行預測嗎?”,簡單的一句話引出問題,這樣更能引起學生的興趣,使學生更積極地參與到教學中來,因為情境熟悉,也能快速地與學生產生共鳴。創(chuàng)設了輕松和諧的教學環(huán)境與氛圍,師生互動較好,這樣能使學生主動開動思維,利用已有的知識順利的解決這幾個問題。
在講解例題的同時,試著讓學生利用圖象解決問題,培養(yǎng)學生數(shù)形結合的思想,并提示學生注意自變量在實際情境中的取值范圍問題。而后,給學生幾分鐘的思考時間,讓他們通過平時對生活的細心觀察,生活中有關一次函數(shù)的有價值的問題,說出來與全班共同分享。這一環(huán)節(jié)的設置,不僅體現(xiàn)新教改的合作交流的思想,更主要的培養(yǎng)他們與人協(xié)作的能力。更好的發(fā)展了學生的主體性,讓他們也做了一回小老師,展示他們的個性,這樣有益于他們健康的人格的成長。最后在總結中讓學生體會到利用一次函數(shù)解決實際問題,關鍵在于建立數(shù)學函數(shù)模型,并布置了作業(yè)。從總體看整個教學環(huán)節(jié)也比較完整。
這節(jié)課如果能利用多媒體課件幻燈片的方式展示出來,例題的展示將會更快點,整節(jié)課將會更加豐滿。當然,在教學實施中我也考慮到了這一點,所以在講解例題的時候將每個例題的要點以簡短的板書形式展示出來,在一定程度上也節(jié)省了時間。
一次函數(shù)的性質教學設計篇六
本節(jié)的主要內容是讓學生逐步形成用函數(shù)的觀點處理問題意識,體驗數(shù)形結合的思想方法。
教學時,能夠達到三維目標的要求,突出重點把握難點。能夠讓學生經歷數(shù)學知識的應用過程,關注對問題的分析過程,讓學生自己利用已經具備的知識分析實例。用函數(shù)的觀點處理實際問題的關鍵在于分析實際情境,建立函數(shù)模型,并進一步提出明確的數(shù)學問題,注意分析的過程,即將實際問題置于已有的知識背景之中,用數(shù)學知識重新理解(這是什么?可以看成什么?),讓學生逐步學會用數(shù)學的'眼光考察實際問題。同時,在解決問題的過程中,要充分利用函數(shù)的圖象,滲透數(shù)形結合的思想。
具體分析本節(jié)課,首先簡單的用幾分鐘時間回顧一下一次函數(shù)的基本理論,“學習理論是為了服務于實踐”的一句話,打開了本節(jié)課的課題,過渡自然。本節(jié)課用函數(shù)的觀點處理實際問題,主要圍繞著路程、價格這樣的實際問題,通過在速度一定的條件下路程與時間的關系,總價在單價一定的情形下,總價與數(shù)量的關系這幾個例題,認識到一次函數(shù)與實際問題的關系,在講解這幾個例子的時候,創(chuàng)設了學生熟悉的情境,如在建立一次函數(shù)模型進行預測的問題時,問學生:“你知道今年奧運會的撐桿跳高的記錄是多少?你能對它進行預測嗎?”,簡單的一句話引出問題,這樣更能引起學生的興趣,使學生更積極地參與到教學中來,因為情境熟悉,也能快速地與學生產生共鳴。創(chuàng)設了輕松和諧的教學環(huán)境與氛圍,師生互動較好,這樣能使學生主動開動思維,利用已有的知識順利的解決這幾個問題。在講解例題的同時,試著讓學生利用圖象解決問題,培養(yǎng)學生數(shù)形結合的思想,并提示學生注意自變量在實際情境中的取值范圍問題。
而后,給學生幾分鐘的思考時間,讓他們通過平時對生活的細心觀察,生活中有關一次函數(shù)的有價值的問題,說出來與全班共同分享。這一環(huán)節(jié)的設置,不僅體現(xiàn)新教改的合作交流的思想,更主要的培養(yǎng)他們與人協(xié)作的能力。更好的發(fā)展了學生的主體性,讓他們也做了一回小老師,展示他們的個性,這樣有益于他們健康的人格的成長。最后在總結中讓學生體會到利用一次函數(shù)解決實際問題,關鍵在于建立數(shù)學函數(shù)模型,并布置了作業(yè)。從總體看整個教學環(huán)節(jié)也比較完整。
這節(jié)課如果能利用多媒體課件幻燈片的方式展示出來,例題的展示將會更快點,整節(jié)課將會更加豐滿。當然,在教學實施中我也考慮到了這一點,所以在講解例題的時候將每個例題的要點以簡短的板書形式展示出來,在一定程度上也節(jié)省了時間。
一次函數(shù)的性質教學設計篇七
本節(jié)課的教學優(yōu)點:
一、定位較準,立足于本校學情。由于學生基礎較差,本節(jié)復習是按知識點復習,目的是落實知識點和掌握一些基本的題型,通過教學來看目標已達成。
二、習題設計合理,立足于思維訓練。本節(jié)課每個知識點都設計了針對性的練習,通過練習學生的解體技巧、方法、思維都得到了解決。
三、注重了數(shù)學思想方法的滲透。在反比例函數(shù)的性質教學時,緊緊抓住關鍵詞語,突破難點。性質強調“在同一象限內”,而我們學生往往忽略這個問題,無論是怎樣的兩點,都直接用性質,對此,采用討論的觀點,結合圖像觀察,讓學生看到理解到:在同一象限內可直接用性質,不在同一象限內,一、二象限的點的縱坐標永遠大于三、四象限內點的縱坐標。這樣,非常明了的讓學生把最容易混淆的知識分清了,突破難點的同時及時總結出這其中體現(xiàn)出的數(shù)學思想方法:分類討論和數(shù)形結合的思想方法。不足之處:。
一、預見性不夠。這主要體現(xiàn)在知識回顧中的第二題,本來打算一點而過,結果學生的回答偏離了老師的預想,老師勢必站在學生的角度給他們一一糾正,從而浪費了時間,自己對于突發(fā)事件的處理靈活性還不夠,掌控課堂的能力有待提高。
二、對學生的情感關注太少。如果在一開始就用生動活潑激趣的語言導入課題,在教學過程中對少數(shù)同學的回答能及時給予表揚和激勵,不但能消除學生的緊張情緒,也能激發(fā)學生的興趣,堅定學習的信心。
三、角色轉換不徹底。在整個課堂教學過程中,教師圍繞主題、圍繞學生提問的多,給學生提問的時間和機會很少.不能大膽放心把課堂交還給學生.
今后還需要改進的地方:
一、在上課過程中,要始終關注學生的情感。因為學生的學習是認知和情感的結合,只有給了他們情感上的極大滿足,學生才會獲得渴望成功的動力,我們的自主學習活動才能收到應有的效果。
二、不斷學習新的教育理論,不斷更新教學觀念,使數(shù)學教育面向全體學生,實現(xiàn)——人人學有價值的數(shù)學,人人都能獲得必需的數(shù)學,不同的人在數(shù)學上得到不同的發(fā)展。
總之,解后的反思方法、規(guī)律得到了及時的小結歸納;解后的反思使我們撥開迷蒙,看清”廬山真面目”而逐漸成熟起來;在反思中學會了獨立思考,在反思中學會了傾聽,學會了交流、合作,學會了分享,體驗了學習的樂趣,交往的快慰。
一次函數(shù)的性質教學設計篇八
1、本節(jié)課首先從最簡單的正比例函數(shù)入手、從正比例函數(shù)的定義、函數(shù)關系式、引入次函數(shù)的概念。
2、八年級數(shù)學中的一次函數(shù)是中學數(shù)學中的一種最簡單、最基本的函數(shù),是反映現(xiàn)實世界的數(shù)量關系和變化規(guī)律的常見數(shù)學模型之一,也是學生今后進一步學習初、高中其它函數(shù)和高中解析幾何中的直線方程的基礎。
1、雖然這是一節(jié)全新的數(shù)學概念課,學生沒有接觸過。但是,孩子們已經具備了函數(shù)的一些知識,如正比例函數(shù)的概念及性質,這些都為學習本節(jié)內容做好了鋪墊。
2、八年級數(shù)學中的一次函數(shù)是中學數(shù)學中的一種最簡單、最基本的函數(shù),是反映現(xiàn)實世界的數(shù)量關系和變化規(guī)律的常見數(shù)學模型之一,也是學生今后進一步學習其它函數(shù)的基礎。
3、學生認知障礙點:根據(jù)問題信息寫出一次函數(shù)的表達式。
1、理解一次函數(shù)與正比例函數(shù)的概念以及它們的關系,在探索過程中,發(fā)展抽象思維及概括能力,體驗特殊和一般的辯證關系。
2、能根據(jù)問題信息寫出一次函數(shù)的表達式。能利用一次函數(shù)解決簡單的實際問題。
3、經歷利用一次函數(shù)解決實際問題的過程,逐步形成利用函數(shù)觀點認識現(xiàn)實世界的意識和能力。
2、會根據(jù)已知信息寫出一次函數(shù)的表達式。
一次函數(shù)的性質教學設計篇九
3、經歷一次函數(shù)概念的認識,和利用一次函數(shù)解決實際問題的過程,逐步認識利用函數(shù)觀點認識現(xiàn)實世界的意識和能力。
一次函數(shù)的概念以及一次函數(shù)和正比例函數(shù)的關系。
理解一次函數(shù)和正比例函數(shù)的關系。
引導發(fā)現(xiàn)、探究指導。
自主學習、合作學習。
多媒體。
一、情景引入。
母親節(jié)快到了,紅紅想送一大束康乃馨給媽媽,花店老板告訴她,若買10支以及10支以下,每支3元,買10支以上,超過的部分打8折,如果紅紅買了x支康乃馨(x10),付給老板y元錢,請寫出y與x之間的函數(shù)關系式。
二、探究新知。
1、下列問題中,變量之間的對應關系是函數(shù)關系嗎?如果是,請寫出函數(shù)解析式?
(4)把一個長10cm,寬5cm的矩形的長減少xcm,寬不變,矩形面積y(單位:cm2)隨x的值而變化。
2、這些函數(shù)解析式有哪些共同特征?
3、你能仿照正比例函數(shù)的概念,歸納總結出一次函數(shù)的概念嗎?
4、一次函數(shù)和正比例函數(shù)有什么關系?
三、展示歸納(學生做后,解答過程學生說老師寫,發(fā)動學生糾正和完善并總結歸納出一次函數(shù)的概念)。
1、學生先用獨立思考,在進行小組討論,老師準備板書,巡回指導,了解情況;
2、學生逐一回答,其他學生逐一補充完善;
3、教師火龍點睛,強調關鍵。
四、練習鞏固(過渡語:了解了一次函數(shù)的概念之后下面老師就來檢驗一下同學們,看看同學們能判斷一個函數(shù)是一次函數(shù)嗎?)(每個練習先讓學生做,教師巡回指導,然后讓有一定問題的學生匯報展示,發(fā)動學生評價完善,教師強調關鍵地方,在進行下一個練習)。
練習1下列函數(shù)中哪些是一次函數(shù),哪些又是正比例函數(shù)?
(1)y=—8x;(2)y=—;(3)y=5x+6;(4)y=—0。5x—1;
(5)y=—1;(6)y=—13;(7)y=2(x—4);(8)y=。
練習2已知一次函數(shù)y=kx+b,當x=1時,y=5;當x=—1時,y=1。求k和b的值。
五、小結與歸納(由學生來陳述,百花齊放。教師不做限定,沒說到的,教師補充。)。
1、通過本節(jié)課的學習,你有何收獲?
2、反思一下你所獲得的經驗,與同學交流!
六、作業(yè):必做題:教科書第91頁第3題;
選做題:請寫出若干個變量y與x之間的函數(shù)解析式,讓同桌判斷是否是一次函數(shù);如果是,請說出其一次項系數(shù)與常數(shù)項。
七、板書設計(以課堂生成為準)。
八、課后反思:
在上一節(jié)課,學生整體感受了研究函數(shù)的一般思路與方法,但在具體知識理解的深度上還是不夠,尤其作業(yè)上學生對概念中的自變量的次數(shù)理解不夠到位。在這節(jié)課的學習中,應當促進學生從整體把握的高度深刻的理解一次函數(shù)與正比例函數(shù)的概念以及它們之間的關系。在概念的學習中,教師對學生提供的經驗性材料太少,僅從正面入手不足以使學生真正理解概念,還必須從側面和反面來理解概念,通過多舉例,多練習來鞏固概念。
教學中,需要分清并抓住本質現(xiàn)象,鼓勵學生用自己的語言闡述自己的看法,學生在經歷大量源自實際背景下的解析式的分析比較后,抽象概括出它們的一般結構,從而形成一次函數(shù)的概念,教師在強調概念需要注意和容易出錯的地方。在知識的獲取過程中,始終交織著舊知與新知、變與不變、相同與不同的對立與統(tǒng)一,這些都觸動著學生對數(shù)學學習的情感。
另外,課前備學生是十分必要的,只有充分了解學生,課時盡量關注每一個學生,做到心中有學生,使每一個學生都參與課堂活動中來,讓他們感受到自己是這節(jié)課的主角,從而學習數(shù)學的積極性提高,降低兩極分化。
一次函數(shù)的性質教學設計篇十
(2)通過“做一做”引入例1,進一步發(fā)展學生數(shù)形結合的意識和能力。
(1)在探究二元一次方程和一次函數(shù)的對應關系中,在體會近似解與準確解中,培養(yǎng)學生勤于思考、精益求精的精神。
(2)在經歷同一數(shù)學知識可用不同的數(shù)學方法解決的過程中,培養(yǎng)學生的創(chuàng)新意識和變式能力。
(2)二元一次方程組和對應的兩條直線的關系。
數(shù)形結合和數(shù)學轉化的思想意識。
教具:多媒體課件、三角板。
學具:鉛筆、直尺、練習本、坐標紙。
第一環(huán)節(jié):設置問題情境,啟發(fā)引導(5分鐘,學生回答問題回顧知識)。
內容:
1.方程x+y=5的解有多少個?是這個方程的解嗎?
2.點(0,5),(5,0),(2,3)在一次函數(shù)y=的圖像上嗎?
3.在一次函數(shù)y=的圖像上任取一點,它的坐標適合方程x+y=5嗎?
4.以方程x+y=5的解為坐標的所有點組成的圖像與一次函數(shù)y=的圖像相同嗎?
由此得到本節(jié)課的第一個知識點:
(1)以二元一次方程的解為坐標的點都在相應的函數(shù)圖像上;
第二環(huán)節(jié)自主探索方程組的解與圖像之間的關系(10分鐘,教師引導學生解決)。
內容:
1.解方程組。
2.上述方程移項變形轉化為兩個一次函數(shù)y=和y=2x,在同一直角坐標系內分別作出這兩個函數(shù)的圖像。
(1)求二元一次方程組的解可以轉化為求兩條直線的交點的橫縱坐標;
(2)求兩條直線的交點坐標可以轉化為求這兩條直線對應的函數(shù)表達式聯(lián)立的二元一次方程組的解。
(3)解二元一次方程組的方法有:代入消元法、加減消元法和圖像法三種。
注意:利用圖像法求二元一次方程組的解是近似解,要得到準確解,一般還是用代入消元法和加減消元法解方程組。
第三環(huán)節(jié)典型例題(10分鐘,學生獨立解決)。
探究方程與函數(shù)的相互轉化。
內容:例1用作圖像的方法解方程組。
例2如圖,直線與的交點坐標是。
第四環(huán)節(jié)反饋練習(10分鐘,學生解決全班交流)。
內容:
1.已知一次函數(shù)與的圖像的交點為,則。
2.已知一次函數(shù)與的圖像都經過點a(—2,0),且與軸分別交于b,c兩點,則的面積為()。
(a)4(b)5(c)6(d)7。
3.求兩條直線與和軸所圍成的三角形面積。
4.如圖,兩條直線與的交點坐標可以看作哪個方程組的解?
第五環(huán)節(jié)課堂小結(5分鐘,師生共同總結)。
內容:以“問題串”的形式,要求學生自主總結有關知識、方法:
1.二元一次方程和一次函數(shù)的。圖像的關系;
(1)以二元一次方程的解為坐標的點都在相應的函數(shù)圖像上;
2.方程組和對應的兩條直線的關系:
(1)方程組的解是對應的兩條直線的交點坐標;
(2)兩條直線的交點坐標是對應的方程組的解;
(1)代入消元法;
(2)加減消元法;
(3)圖像法。要強調的是由于作圖的不準確性,由圖像法求得的解是近似解。
第六環(huán)節(jié)作業(yè)布置。
習題7.7a組(優(yōu)等生)1、2、3b組(中等生)1、2c組1、2。
一次函數(shù)的性質教學設計篇十一
過程與方法。
(2)通過“做一做”引入例1,進一步發(fā)展學生數(shù)形結合的意識和能力。
情感與態(tài)度。
(1)在探究二元一次方程和一次函數(shù)的對應關系中,在體會近似解與準確解中,培養(yǎng)學生勤于思考、精益求精的精神。
(2)在經歷同一數(shù)學知識可用不同的數(shù)學方法解決的過程中,培養(yǎng)學生的創(chuàng)新意識和變式能力。
教學重點。
教學難點。
數(shù)形結合和數(shù)學轉化的思想意識。
教學準備。
教具:多媒體課件、三角板。
學具:鉛筆、直尺、練習本、坐標紙。
教學過程。
第一環(huán)節(jié):設置問題情境,啟發(fā)引導(5分鐘,學生回答問題回顧知識)。
內容:
1.方程x+y=5的解有多少個?是這個方程的解嗎?
2.點(0,5),(5,0),(2,3)在一次函數(shù)y=的圖像上嗎?
3.在一次函數(shù)y=的圖像上任取一點,它的坐標適合方程x+y=5嗎?
4.以方程x+y=5的解為坐標的所有點組成的圖像與一次函數(shù)y=的圖像相同嗎?
由此得到本節(jié)課的第一個知識點:
(2)一次函數(shù)圖像上的點的坐標都適合相應的二元一次方程。
第二環(huán)節(jié)自主探索方程組的解與圖像之間的關系(10分鐘,教師引導學生解決)。
內容:
1.解方程組。
2.上述方程移項變形轉化為兩個一次函數(shù)y=和y=2x,在同一直角坐標系內分別作出這兩個函數(shù)的圖像。
(1)求二元一次方程組的解可以轉化為求兩條直線的交點的橫縱坐標;
(2)求兩條直線的交點坐標可以轉化為求這兩條直線對應的函數(shù)表達式聯(lián)立的二元一次方程組的解。
(3)解二元一次方程組的方法有:代入消元法、加減消元法和圖像法三種。
注意:利用圖像法求二元一次方程組的解是近似解,要得到準確解,一般還是用代入消元法和加減消元法解方程組。
第三環(huán)節(jié)典型例題(10分鐘,學生獨立解決)。
探究方程與函數(shù)的相互轉化。
內容:例1用作圖像的方法解方程組。
例2如圖,直線與的交點坐標是。
第四環(huán)節(jié)反饋練習(10分鐘,學生解決全班交流)。
內容:
1.已知一次函數(shù)與的圖像的交點為,則。
2.已知一次函數(shù)與的圖像都經過點a(—2,0),且與軸分別交于b,c兩點,則的面積為()。
(a)4(b)5(c)6(d)7。
3.求兩條直線與和軸所圍成的三角形面積。
4.如圖,兩條直線與的交點坐標可以看作哪個方程組的解?
第五環(huán)節(jié)課堂小結(5分鐘,師生共同總結)。
內容:以“問題串”的形式,要求學生自主總結有關知識、方法:
(2)一次函數(shù)圖像上的點的坐標都適合相應的二元一次方程。
2.方程組和對應的兩條直線的關系:
(1)方程組的解是對應的兩條直線的交點坐標;
(2)兩條直線的交點坐標是對應的方程組的解;
(1)代入消元法;
(2)加減消元法;
(3)圖像法。要強調的是由于作圖的不準確性,由圖像法求得的解是近似解。
第六環(huán)節(jié)作業(yè)布置。
習題7.7a組(優(yōu)等生)1、2、3b組(中等生)1、2c組1、2。
一次函數(shù)的性質教學設計篇十二
(3)連線:按照橫坐標由小到大的順序,把這些點依次連接起來.
(1)在選擇兩點畫直線時,要盡可能取橫、縱坐標都是整數(shù)的點.
(2)畫函數(shù)圖像時,要注意自變量的取值范圍.
(3)由一次函數(shù)的圖像是一條直線及“兩點確定一條直線”知,畫一次函數(shù)的圖像時,只要先確定這個圖像上兩個點的位置,再過這兩點畫直線就可以了.
一次函數(shù)的性質教學設計篇十三
知識目標:了解二元一次方程、二元一次方程組及其解等有關概念,并會判斷一組數(shù)是不是某個二元一次方程組的解。
能力目標:通過討論和練習,進一步培養(yǎng)學生的觀察、比較、分析的能力。
情感目標:通過對實際問題的分析,使學生進一步體會方程是刻畫現(xiàn)實世界的有效數(shù)學模型,培養(yǎng)學生良好的數(shù)學應用意識。
判斷一組數(shù)是不是某個二元一次方程組的解,培養(yǎng)學生良好的數(shù)學應用意識。
一、引入、實物投影。
2、請每個學習小組討論(討論2分鐘,然后發(fā)言)。
這個問題由于涉及到老牛和小馬的馱包裹的兩個未知數(shù),我們設老牛馱x個包裹,小馬馱y個包裹,老牛的包裹數(shù)比小馬多2個,由此得方程x-y=2,若老牛從小馬背上拿來1個包裹,這時老牛的包裹是小馬的2倍,得方程:x+1=2(y-1)。
師:同學們能用方程的。方法來發(fā)現(xiàn)、解決問題這很好,上面所列方程有幾個未知數(shù)?含未知數(shù)的項的次數(shù)是多少?(含有兩個未知數(shù),并且所含未知數(shù)項的次數(shù)是1)。
師:含有兩個未知數(shù),并且含未知數(shù)項的次數(shù)都是1的方程叫做二元一次方程。
一次函數(shù)的性質教學設計篇十四
婁方才。
學習一次函數(shù)時,通過創(chuàng)設情境、提出問題以及規(guī)律發(fā)現(xiàn)等環(huán)節(jié),讓學生比較自主地去發(fā)現(xiàn)和掌握到一次函數(shù)的概念、圖象及性質,使學生通過探索學習經歷利用函數(shù)圖象研究函數(shù)性質的過程,提升學生的觀察、比較、抽象和概括能力,并從中切實體驗數(shù)形結合的思想與方法。
一、設計目標,制定方法。
在教學中,通過預習提綱(課前用)、學卷(課堂用)、小測(課后用)來輔助教學。預習題綱中涉及到的一次函數(shù)關系式,學生能夠比較容易發(fā)現(xiàn)規(guī)律。這些關系式的得出都是結合生活實際設計的,使學生能夠從中感受一次函數(shù)與生活的聯(lián)系。這一塊的內容不需要講解很多,把關系式一擺出,學生很容易發(fā)現(xiàn)規(guī)律,得出一次函數(shù)的形式,這種發(fā)現(xiàn)規(guī)律主動接受知識比老師生硬的教使學生被動掌握知識,效果要好很多。小測是在課堂內容完成后,馬上進行的檢測,主要是考察當節(jié)課學生對基礎知識掌握的情況,難度不會很大,也便于學生發(fā)現(xiàn)當節(jié)課的問題。
新課標提倡我們,要注重教材的分析和教學內容的優(yōu)化整合。遵循學生認知規(guī)律,選用最恰當最有效的教學方法,高質量完成教學任務。使用過的華東師大版和新人教版都是把正比例函數(shù)和一次函數(shù)的概念、圖象分開講解的,本身由于正比例函數(shù)就是特殊的一次函數(shù),存在著必然著的聯(lián)系和區(qū)別,所以把這兩塊的內容進行了整合設計。
一次函數(shù)的性質探索是通過四個活動來完成,讓學生參與進來,讓他們自己發(fā)現(xiàn)問題和規(guī)律,并根據(jù)學卷和老師的引導進行。
總結。
二、優(yōu)化整合,環(huán)節(jié)展示。
1、一次函數(shù)的概念。通過候鳥的飛行路程和時間的關系以及登山的高度與溫度的關系,再加上預習題綱設計了八道與生活聯(lián)系密切的小題,共十個函數(shù)關系式,讓學生可以輕松認識一次函數(shù)(包括正比例函數(shù))關系式,引導學生去發(fā)現(xiàn)這些關系式形式上的規(guī)律,比較快地總結出了y=kx+b的形式。形式容易記憶,關鍵是學生對兩個常數(shù)k和b的理解,馬上配以判斷一次函數(shù)的練習來進行鞏固。教學中特別地強調了正比例函數(shù)就是特殊的一次函數(shù)的這種關系。同時設計:當m為何值時,函數(shù)是正比例函數(shù),這種題型加深學生對關系式中k0的認識。
2、一次函數(shù)的畫法。之前學過的畫函數(shù)圖象都是采用描點法,并且要取好多點,那在認識了一次函數(shù)的形式后,有沒有更簡便的方法來畫圖象呢?我首先展示了上兩節(jié)課學生在同一平面直角坐標系中畫出的函數(shù)和函數(shù)的圖象。
在引入畫一次函數(shù)的兩點法之前,設計了三個小問題讓學生們行星地思考:
(3)回憶課時3學卷里的函數(shù)y=x+0.5,y=2x、y=2x-。
1、y=2x+1的圖象,它們都是___線。
用這三個小問題做鋪墊,學生們很快完成下面填空:一次函數(shù)的圖象形狀是一條___線。___點確定一條直線,所以以后畫一次函數(shù)圖象時只需要取___點,這種方法叫___點法。
兩點法提出來后,再引導學生進行新的思考:既然是取兩點就可以畫一次函數(shù)圖象,那么如何取點自然成了畫直線的關鍵?這時學生不由自主地就會講出取x=0,此時馬上肯定了學生想的非常好,同時提醒取另外一個x值。這個值學生們講的就比較多,什么都有,甚至有的為了好玩,取好大值的。進行了引導后,布置學生在同一平面直角坐標系中畫函數(shù)y=-6x和y=-6x+6。并引導學生結合這兩條直線分析正比例函數(shù)和一次函數(shù)的圖象上的區(qū)別與聯(lián)系。
3、一次函數(shù)的性質。在活動前,設計了一個水銀溫度計里水銀泡隨著溫度的變化而變化的情境,讓學生充分感受這種函數(shù)的變化就在身邊。并滲透數(shù)形結合思想,來研究其性質。
三、
適時總結,修改教設。
一節(jié)課學生的學習效果,關鍵看教師的教學設計是否符合學生的求知需要。本節(jié)課的優(yōu)點在于學生在教師的引導下進行的思考,對掌握知識有輔助作用,而且教學設計符合大部分學生需要,學生課堂參與積極性比較高,學生在求知過程中信心倍增。但是否會解決問題,是否學生真的都進行了徹底的思考,可能會影響到學習效果。就像這節(jié)課,學生在討論性質時,場面很熱鬧,在總結時又好像都沒問題,但在解決問題時(小測和作業(yè)中的反映)非常容易出錯。針對這一現(xiàn)象,我思考這節(jié)課的教學,特別是性質探索這一環(huán)節(jié),如果把前三個活動借助幾何畫板來展示,加入平移、變換,還可以隨機畫一次函數(shù),根據(jù)顯示的k和b的取值(符號)來驗證或體會性質,都很直接,更形象的東西學生接受起來比抽象的容易一些。
四、及時反思,提升理論。
立足于“一次函數(shù)的概念、圖象和性質”這一教學重點,從創(chuàng)設情境、提出問題,到新課學習、規(guī)律發(fā)現(xiàn),再到例題,小結,練習,老師不斷地引導,學生不斷地思考、討論,在這個過程中,認識了一次函數(shù)的形式,會用兩點法畫一次函數(shù)的圖象,并且能夠結合圖象獲取相關信息(得出性質)。從整節(jié)課的效果上看,學生們學的還是很有信心,也很積極主動,學習氣氛也很濃烈。這節(jié)課知識點比較多,但都算基礎,關鍵是教學設計能夠牽著學生主動去探索知識。
成功之一:《新課程標準》十分強調數(shù)學學習與現(xiàn)實生活的聯(lián)系,要求數(shù)學教學必須從學生熟悉的生活情境和感興趣的事實出發(fā),為他們提供觀察和操作機會,使他們有更多的機會從周圍熟悉的事物中學習和理解數(shù)學,體會到數(shù)學就在身邊,感受到數(shù)學的趣味和作用。這節(jié)課在學習一次函數(shù)概念時,舉出的與生活聯(lián)系密切的八個函數(shù)函數(shù)(體現(xiàn)在預習題綱中,課前已完成)起到了很大幫助。學生很快地發(fā)現(xiàn)了一次函數(shù)形式的規(guī)律,把抽象問題具體化,激發(fā)學生學習一次函數(shù)的興趣,加深學生對一次函數(shù)關系式的印象,正確的把握正比例函數(shù)和一次函數(shù)的關系,為學習、研究一次函數(shù)奠定了基礎。
成功之二:引導學生對畫一次函數(shù)圖象的兩點法的思考,畫圖的過程已經讓部分學生提前感受了一次函數(shù)的性質。
成功之三:在探索一次函數(shù)性質時設計的四個活動,循序漸進,讓學生充分地參與了討論和總結。
每節(jié)課都有它獨特的亮點,當然也會有它的不足和遺憾之處,只有不斷地反思,不斷地總結和思考,才會使自己的實踐能力和教學藝術在這個過程中得到提升,使自己在教學中取得進步。
遺憾之一:學生在用兩點法畫直線取點時,對x取0比較感興趣,雖然在教學設計時不主張硬性規(guī)定學生如何取點,但應該引導一下學生對y取0的思考,或者在畫圖時,把不同學生取的不同點展示一下,這樣也好為求直線與兩坐標軸的交點打下基礎,就不用在后面補充的練習中再浪費時間去進行說明。在這里,忽視了這樣一個非常重要的體會交點的機會。
遺憾之二:在用兩點法畫完圖后,因為學生在取點時表現(xiàn)的比較積極,可以說已經進入了一個學習高潮,借此,應該給出二至三道關于性質的題讓學生根據(jù)畫的圖去判斷,從而去體會圖象的意義和作用,然后再進入學習探索性質的環(huán)節(jié)。
一次函數(shù)的性質教學設計篇十五
3.直線y=kx+b與方程的聯(lián)系。
那么一元一次不等式與一次函數(shù)是怎樣的關系呢?本節(jié)課研究一元一次不等式與一次函數(shù)的關系。
教師活動:引導學生回顧一次函數(shù)相關概念以及一次函數(shù)與方程的關系。
設計意圖:回顧所學知識作好新知識的銜接。
二、導探激勵。
問題1:我們來看下面兩個問題有什么關系?
1.解不等式5x+63x+10.。
2.當自變量x為何值時函數(shù)y=2x—4的值大于0?
問題2:作出函數(shù)y=2x—5的圖象,觀察圖象回答下列問題:
(1)x取何值時,2x—5=0?
(2)x取哪些值時,2x—50?
(3)x取哪些值時,2x—50?
(4)x取哪些值時,2x—53?
教師活動:展示問題1,適當時間后請學生解答并說明理由,教師借助課件作結論性評判。
設計意圖:問題2可以直接解不等式(或方程)求解,但這里意圖是讓學生通過直接圖。
象得到。引導學生體會既可以運用函數(shù)圖象解不等式,也可以運用解不等式幫助研究函數(shù)問題,二者互相滲透,互相作用。
學生可以用不同方法解答,教師意圖是盡量用圖象求解。
問題3:用畫函數(shù)圖象的方法解不等式5x+42x+10。
學生活動:在教師指導下,順利完成作圖,觀察求出答案,并能歸納總結出其特點.活動過程及結論:
種函數(shù)觀點認識問題的方法,對于繼續(xù)學習數(shù)學很重要.。
三、鞏固練習。
2.利用圖象解出x:
6x—43x+2.。
四.隨堂練習。
2.利用圖象解不等式5x—12x+5.。
五.課時小結。
六.課后作業(yè)。
習題14.3─3、4、7題.。
七.活動與探究。
教學反思:
本堂課在設計上可以跳出教材,根據(jù)學生的實際情況,在問題1中可設計一。
個簡單一點的不等式,待學生會將不等式轉化為一次函數(shù)分析并用圖像解決時在增加難度,放在問題3中一并解決,這樣學生在接受上不會太難,也不會導致時間分配不合理,以至設計的內容無法完成。另外,這充分發(fā)揮學生的主體性,讓學生通過觀察及操作發(fā)現(xiàn)一次函數(shù)與一元一次不等式的關系及用一次函數(shù)解決一元一次不等式的方法。
一次函數(shù)的性質教學設計篇十六
一.教學目標:
1.認知目標:
2)理解二元一次方程組的解的概念。
3)會用列表嘗試的方法找二元一次方程組的解。
2.能力目標:
1)滲透把實際問題抽象成數(shù)學模型的思想。
2)通過嘗試求解,培養(yǎng)學生的探索能力。
3.情感目標:
1)培養(yǎng)學生細致,認真的學習習慣。
2)在積極的教學評價中,促進師生的情感交流。
二.教學重難點。
難點:用列表嘗試的方法求出方程組的解。
三.教學過程。
(一)創(chuàng)設情景,引入課題。
1.本班共有40人,請問能確定男*各幾人嗎?為什么?
(1)如果設本班男生x人,*y人,用方程如何表示?(x+y=40)。
(2)這是什么方程?根據(jù)什么?
2.男生比*多了2人。設男生x人,*y人。方程如何表示?x,y的值是多少?
3.本班男生比*多2人且男*共40人。設該班男生x人,*y人。方程如何表示?
兩個方程中的x表示什么?類似的兩個方程中的y都表示?
象這樣,同一個未知數(shù)表示相同的量,我們就應用大括號把它們連起來組成一個方程組。
[設計意圖:從學生身邊取數(shù)據(jù),讓他們感受到生活中處處有數(shù)學]。
(二)探究新知,練習鞏固。
(1)請同學們看課本,了解二元一次方程組的的概念,并找出關鍵詞由教師板書。
[讓學生看書,引起他們對教材重視。找關鍵詞,加深他們對概念的了解。]。
x+y=3,x+y=200,。
2x-3=7,3x+4y=3。
y+z=5,x=y+10,。
2y+1=5,4x-y2=2。
學生作出判斷并要說明理由。
(1)由學生給出引例的答案,教師指出這就是此方程組的解。
(2)練習:把下列各組數(shù)的題序填入圖中適當?shù)奈恢茫?/p>
x=1;x=-2;x=;-x=。
y=0;y=2;y=1;y=。
方程x+y=0的解,方程2x+3y=2的解,方程組x+y=0的解。
2x+3y=2。
(3)既滿足第一個方程也滿足第二個方程的解叫作二元一次方程組的解。
(4)練習:已知x=0是方程組x-b=y的解,求a,b的值。
y=0.55x+2a=2y。
(三)合作探索,嘗試求解。
現(xiàn)在我們一起來探索如何尋找方程組的解呢?
1.已知兩個整數(shù)x,y,試找出方程組3x+y=8的解。
2x+3y=10。
學生兩人一小組合作探索。并讓已經找出方程組解的學生利用實物投影,講明自己的解題思路。
提煉方法:列表嘗試法。
一般思路:由一個方程取適當?shù)膞y的值,代到另一個方程嘗試。
2.據(jù)了解,某商店出售兩種不同星號的“紅雙喜”牌乒乓球。其中“紅雙喜”二星乒乓球每盒6只,三星乒乓球每盒3只。某同學一共買了4盒,剛好有15個球。
(1)設該同學“紅雙喜”二星乒乓球買了x盒,三星乒乓球買了y盒,請根據(jù)問題中的條件列出關于x、y的方程組。(2)用列表嘗試的方法解出這個方程組的解。
由學生獨立完成,并分析講解。
(四)課堂小結,布置作業(yè)。
1.這節(jié)課學哪些知識和方法?(二元一次方程組及解概念,列表嘗試法)。
2.你還有什么問題或想法需要和大家交流?
3.作業(yè)本。
教學設計說明:
1.本課設計主線有兩條。其一是知識線,內容從二元一次方程組的概念到二元一次方程組解的概念再到列表嘗試法,環(huán)環(huán)相扣,層層遞進;第二是能力培養(yǎng)線,學生從看書理解二元一次方程組的概念到學會歸納解的概念,再到自主探索,用列表嘗試法解題,循序漸進,逐步提高。
2.“讓學生成為課堂的真正主體”是本課設計的主要理念。由學生給出數(shù)據(jù),得出結果,再讓他們在積極嘗試后進行講解,實現(xiàn)生生互評。把課堂的一切交給學生,相信他們能在已有的知識上進一步學習提高,教師只是點播和引導者。
3.本課在設計時對教材也進行了適當改動。例題方面考慮到數(shù)*時代,學生對膠卷已漸失興趣,所以改為學生比較熟悉的乒乓球為體裁。另一方面,充分挖掘練習的作用,為知識的落實打下軋實的基礎,為學生今后的進一步學習做好鋪墊。
2022初中語文優(yōu)秀教師教案范文-語文優(yōu)秀教案模板范文。
標準教案范文精選。
一次函數(shù)的性質教學設計篇十七
作為一位杰出的教職工,編寫教學設計是必不可少的,教學設計是把教學原理轉化為教學材料和教學活動的計劃。那么優(yōu)秀的教學設計是什么樣的呢?以下是小編為大家收集的二元一次方程與一次函數(shù)教學設計,歡迎閱讀與收藏。
2、能根據(jù)一次函數(shù)的圖像求二元一次方程組的近似值。
1、用作圖像法求二元一次方程組的近似值。
1、做圖像時要標準、精確,近似值才接近。
先自學課本,用心思考自主學習部分,努力獨立完成,再與其他同學討論未明白的內容。課上展示,針對自己不明白問題多聽多問。
問題1、
(1)方程x+y=5的解有多少組?寫出其中的幾組解。
(3)在一次函數(shù)y=5—x的圖像上任取一點,它們的坐標適合方程x+y=5嗎?
(5)由以上的探究過程,你發(fā)現(xiàn)了什么?
問題2、
(3)由以上探究過程,我們發(fā)現(xiàn)解二元一次方程組的方法除了加減消元法和代入消元法,還可以用法解方程組;我們還發(fā)現(xiàn)可以利用解二元一次方程組的方法求兩條直線交點的坐標。
合作探究:
(1)用做圖像的方法解方程組。
(2)用解方程的方法求直線y=4—2x與直線y=2x—12交點。
一次函數(shù)的性質教學設計篇十八
本節(jié)課的教學設計反思是圍繞著今天“六個有效”的主題活動展開反思的。
學生已初步掌握了函數(shù)的概念、一次函數(shù)的圖象及性質,并了解了函數(shù)的三種表達方式:圖象法、列表法、解析式法。在此基礎上通過知識提問引導學生進一步掌握一次函數(shù)的相關知識并能靈活的應用到習題中,有效的“復習回顧”在本節(jié)課起到了承上啟下的作用。
根據(jù)實際的問題情境感受生活中的一次函數(shù),利用已知的條件,來確定一次函數(shù)中正比例函數(shù)表達式,并理解確定正比例函數(shù)表達式的方法和條件。
設置這個例題是物理學中的一個彈簧現(xiàn)象,目的在于讓學生從不同的情景中獲取信息來求一次函數(shù)表達式,一次函數(shù)表達式的確定需要兩個條件,能由條件利用“待定系數(shù)”法求出一些簡單的一次函數(shù)表達式,并能解決有關現(xiàn)實問題、并進一步體會函數(shù)表達式是刻畫現(xiàn)實世界的一個很好的數(shù)學模型,而且體現(xiàn)了數(shù)學這門學科的基礎性。
通過對求一次函數(shù)表達式方法的歸納和提升,加強學生對求一次函數(shù)表達式方法和步驟的理解,通過“感悟收獲”解決本節(jié)課的重點和難點。
通過分小組“比一比、練一練”的活動形式,不僅激發(fā)了學生學習數(shù)學知識的興趣,而且能將本節(jié)課的知識靈活的應用到習題中,提高了學生的解題能力和思維能力。
根據(jù)本班學生及教學情況在教學課堂后為了進一步鞏固課堂知識,布置一定量的作業(yè),難度不應過大,有效的作業(yè)更能拓展學生的思維,并體會解決問題的多樣性。
以上是本人對“六個有效”課堂的體會,有理解不到之處,請各位領導,老師指正批評,謝謝大家。
一次函數(shù)的性質教學設計篇十九
1、問題導入:
請同學們思考后回答:
(1)找出問題中的變量并用字母表示,列出函數(shù)關系式、
(2)這兩個函數(shù)關系式有什么共同點?自變量的取值范圍各有什么限制?
以上這些問題,請各小組討論一下,派代表回答、引出課題(板書課題)教師最后總結一次函數(shù)的概念、(板書)。
1、做一做:
我們已經學習了用描點法畫函數(shù)的圖象,請同學運用描點法畫出下列函數(shù)的圖象(老師用多媒體打出題目)。根據(jù)學生的動手實踐、觀察與討論,得出結論:一次函數(shù)的圖象是一條直線、特別地,正比例函數(shù)的圖象是經過原點的一條直線。
2、接下來教師提問:
(1)觀察所畫出的四個一次函數(shù)的圖象,比較各對一次函數(shù)的圖象有什么共同點,有什么不同點。
4、鞏固訓練:
(1)在同一平面直角坐標系中畫出下列函數(shù)的圖象。
將直線向上平移5個單位,得到直線_______________________、
(由學生到前板演)、
函數(shù)反映了客觀世界中量的變化規(guī)律,那么一次函數(shù)又有什么性質呢?
1、請同學們來一起觀察大屏幕上函數(shù)圖象(教師用多媒體演示函數(shù)的圖象),并回答:當一個點在直線上從左右移動時,它的位置如何變化?你能從中得到函數(shù)值的變化與自變量的變化規(guī)律嗎?(教師運用現(xiàn)代化的教學手段來演示點的移動情況,進一步促進了學生對一次函數(shù)的變化規(guī)律理解)由學生討論出結果:也就是說,函數(shù)值隨自變量的增大而增大、(教師板書)。
【本文地址:http://mlvmservice.com/zuowen/13111566.html】